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Abstract

We explore a “partial unification” model that a new strong gauge group is combined with

the ordinary color and hypercharge gauge groups. The VEV responsible for the combination is

of the order of the SU(2)×U(1) breaking scale, but the coupling of the new physics to standard

model particles is suppressed by the strong interaction of the new gauge group. This simple

extension of the standard model has a rich phenomenology, including composite particles of

the new confining gauge interaction, a coloron and a Z ′ which are rather weakly coupled to

standard model particles, and massive vector bosons charged under both the ordinary color

and hypercharge gauge groups and the new strong gauge group. The new scalar glueball

could be produced by gluon fusion and decay into two photons, both through loops of the

new massive vector bosons. The simplest version of the model has some issues: the massive

vector bosons are stable and the coloron and the Z ′ are strongly constrained by search data.

An extension of the model to include additional fermions with the new gauge coupling, though

not as simple and elegant, can address both issues and more. It allows the massive vector

boson to decay into a colorless, neutral state that could be a candidate of the dark matter.

And the coloron and Z ′ can decay dominantly into the new fermions, completely changing

the search bounds. If the massive vector bosons are still long-lived, they could form new

bound states, “vector bosoniums” with additional interesting phenomenology. The model is

an explicit example of how new physics at small scales could be hidden by strong interactions.



1 Introduction

A new TeV-scale strong force has been an attractive possibility of physics beyond the standard

model. In technicolor [1] or composite Higgs models [2], a confining gauge theory is an

essential ingredient. Even if the hierarchy problem is not addressed, the existence of new

strong dynamics is still well-motivated from the view point of non-minimality of our nature

as often seen in string theory. Therefore, the phenomenological study of a new strong force

is cutting-edge and its search is one of the central issues in the LHC experiments.

In this paper, we report on a new possibility in model building to connect a previously

unobserved strong dynamics with our world, the standard model. We pursue a “partial

unification” scenario in which a part of the ordinary color and hypercharge gauge groups and

the new strong gauge group are combined near the SU(2)×U(1)-breaking scale of 250 GeV.

We do not pretend that the structures we explore here are in any way unique, but we do

believe that it is interesting to build a very explicit and minimal model of such a scenario.

This very simple extension of the standard model has a rich phenomenology at the TeV scale,

including massive vector bosons which we call X ′, X̄ ′, charged under both the ordinary color

and hypercharge gauge groups and the new strong gauge group. The model also contains

color octet vector bosons (colorons [3–5]) and a Z ′ (see for example [6]) both of which are

rather weakly coupled to standard model particles, and color singlet and octet scalars (see for

example [5]).

The lightest glueball associated with the new strong gauge interaction is a scalar particle

with mass of O(100) GeV and shows fascinating signatures such as diphoton resonances which

could be observed at the LHC. All the other new states have masses that scale with the partial

unification scale. The scale of confinement after the gauge symmetry breaking is generically

smaller. The new scalar glueball is produced through loops of the new massive vector bosons

X ′, X̄ ′ and decays into standard model gauge bosons.

The simplest version of the model has some issues: the massive vector bosons are stable

and the coloron and Z ′ are strongly constrained by search data. An extension of the model

to include additional fermions, though not as simple and elegant, can address both issues and

more. We show how this can allow the X ′ boson to decay into quarks and antiquarks plus a

colorless, neutral state that could be an unusual dark matter candidate. The decays of the

coloron and Z ′ into pairs of the new fermions are important in evading search constraints.

There are many possible extensions of this kind, depending on the details of the partial

unification. In the particular example we discuss in detail, the model contains one or more

charge 5/3 quarks and neutral fermions with the new strong interaction.

Apart from the mass and decay constant of the lightest glueball, which we take from
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lattice gauge theory studies [7–9], the relevant spectrum and interactions in our model can

be calculated perturbatively in some regions of the parameter space. There is also a region

of parameter space where the new gauge coupling is rather large, so some of our estimates

may be only rough approximations, and indeed, we can’t even be sure that the relevant

symmetry breaking takes place as the perturbation theory suggests. Nevertheless we believe

that it is very important to explore these issues in the context of detailed calculations in an

explicit model in which calculations can be controlled in at least some region of the parameter

space. We think that this is an important complement to studies that depend on completely

uncontrolled approximations, however reasonable they may be. We take some support for this

view from our discussion of compositeness constraints, in which we correct a long-standing

error in the literature (see the discussion following (3.10)). And of course, if a diphoton

resonance is observed at future experiments, and some scenario like this turns out to be the

right explanation, we will learn a tremendous amount about strong gauge interactions that

are very different from QCD.

The rest of the paper is organized as follows. In section 2, we present our model and

analyze the mass spectra. We discuss some of the experimental constraints on the model

in section 3. In section 4, we discuss the glueballs associated with the new strong gauge

interaction that is partially unified with color SU(3) at a relatively low scale. In section 5,

we add additional fermions to the model transforming under the new gauge interaction.

If the X ′, X̄ ′ gauge bosons are still long-lived, they form new bound states, “vector boso-

niums.” Detailed phenomenology of the vector bosoniums is left for a future study. Various

details including group theory notation and identities and some of the interactions in the

model are relegated to appendices.

2 Partial unification

Here we discuss a minimal extension of the standard model in which a part of the color SU(3)

and the hypercharge U(1) resides in an extended gauge group. The U(1) normalization is

important for determining the electric charge of the new massive vector bosons. In this

section, we describe the symmetry breaking in detail and analyze the mass spectra of the

scalar fields and the vector bosons.

2.1 The SU(N + 3) model

We introduce a new SU(N + 3)H gauge theory with a complex scalar ξ which is charged

under both the SU(N + 3)H gauge group and the (would-be) standard model gauge groups

SU(3)C′ × U(1)Y ′ . The charge assignment is shown in Table 1. Thus the ξ transforms like
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SU(N + 3)H SU(3)C′ SU(2)L U(1)Y ′

ξ N + 3 3̄ 1 − Nq
N+3

Table 1: The charge assignment of the ξ field. The U(1)Y ′ charge of ξ is explained in the
main text.

Gauge field Gauge coupling Generator

SU(N + 3)H HA
µ gH TA

SU(3)C′ A′aµ g′3 T a

SU(2)L Wα
µ g2 Tα

U(1)Y ′ B′µ g′Y SY ′

Table 2: The names of gauge fields, gauge couplings and generators of the model. Here,
A = 1, · · · , (N + 3)2 − 1, a = 1, · · · , 8 and α = 1, 2, 3. More group theory notation and
identities are summarized in appendix A.

(N + 3, 3̄)−Nq/(N+3) under SU(N + 3)H × SU(3)C′ × U(1)Y ′ and it is convenient to represent

it as an (N + 3) × 3 matrix. The names of gauge fields, gauge couplings and generators are

summarized in Table 2. The ordinary standard model particles have the conventional charges

under the SU(3)C′ × SU(2)L × U(1)Y ′ . We can also introduce new matter fermions charged

under the SU(N + 3)H gauge group, which have an interesting role in the massive gauge

boson decay. This will be discussed in section 5. The most general potential involving only

the scalar ξ can be written as

Vξ =
1

4
λ1

(
Tr(ξ†ξ)− 3a2

)2
+

1

2
λ2 Tr

(
ξ†ξ − a2I3

)2
, (2.1)

where I3 is the 3 × 3 identity matrix, λ1, λ2 are dimensionless parameters and a is a mass

parameter.

For the range of parameters

λ2 > 0 , λ1 > −
2

3
λ2 , (2.2)

the potential (2.1) is minimized when some of the components in ξ get nonzero vacuum
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SU(N)H SU(3)C SU(2)L U(1)Y

X ′ N 3 1 q

X̄ ′ N 3̄ 1 −q
Z ′ 1 1 1 0

G′ 1 8 1 0

Table 3: The charge assignments of the massive vector bosons.

expectation values. The vev can be put in the following form

〈ξ〉 =


a 0 0
0 a 0
0 0 a
0 0 0
...

...
...

 , (2.3)

and the gauge groups SU(N + 3)H × SU(3)C′ × SU(2)L × U(1)Y ′ are spontaneously broken

to SU(N)H × SU(3)C × SU(2)L × U(1)Y . Below the scale a, the gauge structure is just the

conventional standard model with an additional SU(N) gauge group that does not couple to

the standard model particles. Thus for a large a the gauge couplings of the SU(3)C×SU(2)L×
U(1)Y would be just the standard model couplings to a good approximation. However, we

will see that this is not an interesting limit. Instead, we will be interested in a of the order

of (or even smaller than) the SU(2) × U(1) breaking scale v ≈ 250 GeV. We will try to

convince you of the somewhat surprising statement that such a low value of a is not ruled

out by current data. Roughly speaking, this works because the heavy gauge boson masses are

of the order of a times a large coupling gH , and in many cases can be integrated out as if a

were large. In general, this is a dangerous procedure, because the large coupling can appear

in the numerator and spoil decoupling. But here is it often OK, because there are no direct

order-gH couplings to the standard model particles.

The model contains massive particles whose masses scale with a. Corresponding to the

broken symmetries, there are massive X ′, X̄ ′ gauge bosons, charged under both SU(3)C ,

U(1)Y and the new SU(N)H , as well as the Z ′ and the color octet G′ vector bosons. The

G′ gauge boson is also called as the coloron. The charge assignments of the massive vector

bosons are summarized in Table 3. In this mass range, there are also massive scalars, GO and

GS transforming like an octet and singlet respectively under the color SU(3)C . Their mass

spectra are analyzed below.
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2.2 Gauge couplings

After the symmetry breaking, the ordinary SU(3)C , U(1)Y gauge groups are given by combi-

nations of the SU(N +3)H gauge group and the SU(3)C′ , U(1)Y ′ gauge groups. The ordinary

massless gluons and their gauge coupling gs are given by the following relations,

Ga
µ =

g′3H
a
µ + gHA

′a
µ√

g2
H + (g′3)2

,
1

g2
s

=
1

(gH)2
+

1

(g′3)2
, (2.4)

where gH and g′3 are the gauge couplings of the SU(N + 3)H and SU(3)C′ gauge groups

respectively. The field Ha
µ (a = 1, · · · , 8) is the SU(3) part of the SU(N + 3)H gauge field

HA
µ (A = 1, · · · , (N + 3)2 − 1).

We next consider the U(1) normalization. The U(1)Y ′ charge of ξ is given by −N/(N + 3)

times the U(1)Y charge of the X ′ gauge boson, which we call q. The U(1) subgroup of

SU(N + 3)H commuting with the SU(3) and SU(N) subgroups, is generated by

SH ≡
q

N + 3

(
N I3 0

0 −3 IN

)
, [SH , T3×N ] = 0 , T3×N =

(
T3 0
0 TN

)
, (2.5)

which is normalized so that the U(1)Y charge of the standard model is given by

SY = SH + SY ′ . (2.6)

In this case, we correctly obtain SY 〈ξ〉 = 0, which means SY is not broken in the effective

theory between the scale a and the Higgs vev. On the other hand, the properly normalized

generator of the U(1) subgroup is

S̃H = kSH , k =

√
N + 3

q
√

6N
. (2.7)

Note that because the SU(N + 3)H does not involve the electroweak SU(2)L, there is no

constraint on the X ′ charge q from the structure of the electroweak interactions. However, if

we require that states that are singlets under the color SU(3)C and the confining SU(N)H

are integrally charged, then we have the constraint

q =
3j − 1

3N
for integer j if N mod 3 = 1 ,

q =
3j + 1

3N
for integer j if N mod 3 = 2 ,

q =
j

N
for integer j if N mod 3 = 0 .

(2.8)
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Another constraint on q is discussed below.

The ordinary massless hypercharge gauge field Bµ and its gauge coupling gY are given by

Bµ =
g′YB

′′
µ + g′′YB

′
µ√

(g′Y )2 + (g′′Y )2
,

1

g2
Y

=
1

(g′Y )2
+

1

(g′′Y )2
, (2.9)

where

g′′Y = kgH , k =

√
N + 3

q
√

6N
, (2.10)

and B′′µ is the (properly normalized) U(1) part of the SU(N + 3)H gauge field. Because the

low energy theory is identical to the standard model as a → ∞, this implies that to leading

order in (v/a)2 (v is the Higgs vev)

1√
1/(kgH)2 + 1/(g′Y )2

' e

cos θW
. (2.11)

Here, sin2 θW = 0.23 is the weak mixing angle and e is the electromagnetic gauge coupling.

Solving this equation for g′Y , we obtain

g′Y '
1√

cos2 θW
e2
− 6Nq2

(N+3)g2H

, (2.12)

which implies that q cannot be too large.

2.3 Massive vector bosons

We here analyze the mass spectrum of the G′, Z ′ and X ′, X̄ ′ gauge bosons and some of their

interactions. From the covariant derivative of the scalar ξ which has the vev (2.3), the coloron

G′ and the massive vector boson corresponding to the broken U(1) are given by the linear

combinations,

G′
a
µ =

gHH
a
µ − g′3A′

a
µ√

g2
H + (g′3)2

, B−µ =
g′′YB

′′
µ − g′YB′µ√

(g′Y )2 + (g′′Y )2
. (2.13)

The vector boson masses are

m2
G′ = a2

(
g2
H + (g′3)2

)
,

m2
B− = 6

(
Nq

N + 3

)2

a2
(
(g′Y )2 + (g′′Y )2

)
,

m2
X′ = g2

Ha
2 .

(2.14)
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Note that the coloron is always heavier than the X ′, X̄ ′ gauge bosons.

After SU(2)× U(1) breaking, the massless photon field is the linear combination,

Aµ =
gYW

3
µ + g2Bµ√

(g2)2 + (gY )2
. (2.15)

The two massive eigenstates are given by

Zµ = cosωẐµ + sinωB−µ , Z ′µ = − sinωẐµ + cosωB−µ , (2.16)

where

Ẑµ =
g2W

3
µ − gYBµ√

(g2)2 + (gY )2
, tan 2ω = −2

δm̂2

m̂2
B− − m̂2

Z

, (2.17)

and

m̂2
Z =

1

4
v2
(
(g2)2 + (gY )2

)
,

m̂2
B− =

1

4
v2 (g′Y )4

(g′Y )2 + (g′′Y )2
+m2

B− ,

δm̂2 =
1

4
v2(g′Y )2

√
(g2)2 + (gY )2√
(g′Y )2 + (g′′Y )2

.

(2.18)

The eigenvalues are

m2
Z =

1

2

(
m̂2
Z + m̂2

B− −
√(

m̂2
Z − m̂2

B−

)2
+ 4δm̂4

)
,

m2
Z′ =

1

2

(
m̂2
Z + m̂2

B− +

√(
m̂2
Z − m̂2

B−

)2
+ 4δm̂4

)
.

(2.19)

We now summarize the interactions of the massive gauge bosons with the standard model

fermion f for later purposes. The X ′, X̄ ′ gauge bosons do not couple to the standard model

fermion at tree level. The coloron interaction with the standard model fermion is

L ⊃ − (g′3)2√
g2
H + (g′3)2

f̄γµT af G′
a
µ . (2.20)

The important point is that the coupling is small when the gH coupling is large. This will be

the interesting region for our analysis. In this region, g′3 ≈ gs by the relation (2.4).
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The Z ′ couplings are more complicated because the SU(2) symmetry breaking scale v is

important. Even though we will keep the new symmetry breaking scale, a, of the same order

as v, because the strong SU(N +3) group is not directly coupled to standard model particles,

we will be able to expand quantities in 1/gH to simplify our expressions and understand what

is going on. At leading order in 1/gH , the masses satisfy

gHa ≈ mG′ ≈ mX′ ≈
√
N + 3

N
mZ′ (2.21)

and the Z ′ interaction is

L ⊃ −

√
6Nq

(N + 3)

(g′Y )2

gH

(
Y f
L f̄Lγ

µfL + Y f
R f̄Rγ

µfR

)
Z ′µ . (2.22)

Here, Y f
L,R are the hypercharges of the left and right-handed fermions fL,R. Again the in-

teraction is suppressed when the gH coupling is large and g′Y ≈ e/ cos θW by the relation

(2.9).

2.4 Scalar mass spectrum

The scalar ξ has 6(N + 3) (real) degrees of freedom. Here, 8 + 1 + 6N of them are unphysical

Nambu-Goldstone modes eaten in the symmetry breaking. Thus there are 9 physical degrees

of freedom. The potential of the scalar sector is given by (2.1) plus terms involving the

standard model Higgs φ,

VHiggs =
1

4
λ3

(
φ†φ− v2

2

)2

+ λ4

(
φ†φ− v2

2

)(
Tr(ξ†ξ)− 3a2

)
, (2.23)

where λ3 and λ4 are dimensionless coupling constants. To analyze the mass spectrum of the

physical modes, we now take unitary gauge,

ξ =

(
aI3 + χ/

√
2

0

)
, φ =

1√
2

(
0

v + h

)
, where χ† = χ . (2.24)

The trace and traceless parts of χ are singlet and octet under the color SU(3)C respectively.

Properly normalizing the kinetic terms, the color octet/singlet scalars are written (using the

Gell-Mann matrices λa) as

Ga
O = Tr (λaχ) , GS ≡

√
2

3
Tr (χ) . (2.25)
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Then, the mass of the octet scalar GO is given by

m2
GO

= 2λ2a
2 . (2.26)

Due to the second term of (2.23), the singlet component GS mixes with the Higgs field h.

The mass eigenstates are

φ1 = h cos θh +GS sin θh , φ2 = −h sin θh +GS cos θh . (2.27)

The mixing angle θh is given by

tan 2θh = − 2
√

6λ4va

m2
GS
−m2

h

, (2.28)

where

m2
GS

=

(
3λ1 +

2

3
λ2

)
a2 , m2

h =
1

2
λ3v

2 . (2.29)

The eigenvalues are

m2
φ1

=
1

2

(
m2
h +m2

GS

)
− 1

2

√(
−m2

h +m2
GS

)2
+ 24λ2

4v
2a2 ,

m2
φ2

=
1

2

(
m2
h +m2

GS

)
+

1

2

√(
−m2

h +m2
GS

)2
+ 24λ2

4v
2a2 .

(2.30)

The mass of the lighter eigenstate mφ1 gives the physical Higgs boson mass, mφ1 ' 125 GeV.

3 Experimental constraints

In this section, we discuss the experimental constraints on the new parameters that we have

introduced in our extension of the standard model. The possible constraints are of three

kinds. There are constraints from precise tests of the standard model at low energies. There

are “conpositeness” constraints on the virtual effects of the new particles. In addition, there

are bounds from direct searches for the new particles in our model, in particular the lower

bounds on the Z ′ mass and the coloron mass.

3.1 Electroweak precision tests

For a sufficiently large a, the low-energy interactions of the standard model particles are

indistinguishable from their standard model limits. But our a will not be large, so precise
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tests of the standard model create interesting constraints. Let us consider the U(1) part of

the model,

L ⊃ −1

4
B′µνB

′µν − 1

4
B′′µνB

′′µν +
1

2
m2
B−B

−
µB

−µ . (3.1)

Here, B′µν and B′′µν are the field strengths of the B′µ and B′′µ gauge fields respectively. The B′µ

field couples to the usual standard model fields with the gauge coupling g′Y . We can integrate

out the heavy mode at tree level by solving the equation of motion for the B′′µ field, given by

∂νB′′µν −m2
B′′B

′′
µ = −g

′
Y

g′′Y
m2
B′′B

′
µ , m2

B′′ ≡
(

(g′′Y )2

(g′Y )2 + (g′′Y )2

)
m2
B− . (3.2)

We have defined a handy parameter m2
B′′ which is not a physical mass. This equation of

motion has a solution,

B′′µν =
g′Y
g′′Y

δνµ + ∂µ∂
ν/m2

B′′

1 + ∂2/m2
B′′

B′ν . (3.3)

Thus the Lagrangian after integrating out B′′µ at tree level is given by

Leff ⊃ −
1

4
B′µνB

′µν − 1

4

(
g′Y
g′′Y

)2

B′µν

(
1

1 + ∂2/m2
B′′

)
B′

µν

= −1

4

(g′Y )2 + (g′′Y )2

(g′′Y )2
B′µνB

′µν +
1

4

(
g′Y
g′′Y

)2

B′µν

(
∂2

m2
B′′

)
B′

µν
+ · · · .

(3.4)

We have omitted to write irrelevant dimension eight and higher operators. Correctly normal-

izing the kinetic term as in (2.9), we obtain

Leff ⊃ −
1

4
BµνB

µν − 1

4

(
g′Y
g′′Y

)2
1

m2
B−

(∂ρB
µν)2 + · · · , (3.5)

where Bµ is the ordinary hypercharge gauge field which couples to the standard model fields

with the gauge coupling gY . Note that there are no effective operators to give the S, T and

U parameters [10]. However, the second term of this Lagrangian contributes to the so-called

Y parameter [11],

Y =

(
g′Y
g′′Y

mW

mB−

)2

'
(
g′Y
g′′Y

mW

mZ′

)2

, (3.6)

where mW is the W boson mass. The direct constraint on the Y parameter is Y = (4.2 ±
4.9) × 10−3. Note that a similar analysis applies in any model with a Z ′ which mixes only

through the U(1).
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3.2 The Z ′ mass bound

The Z ′ boson is mainly produced by Drell-Yan like quark annihilation at the LHC. This boson

can decay into a pair of leptons. The null result of dielectron and dimuon final state searches

by the ATLAS and CMS detectors [12, 13] gives the strongest bound on the Z ′ mass. From

the interaction (2.22), the decay width of Z ′ into a pair of fermions is given by

Γ(Z ′ → ff̄) =
CfmZ′

24π

(g′Y )4

(g′Y )2 + (g′′Y )2

(
(Y f

L )2 + (Y f
R )2
)
, (3.7)

where Cf is the color factor (1 for a color singlet and 3 for a color triplet). The Z ′ boson can

also decay into two bosons, Z ′ → W+W−, Zh, ZGS, if kinematically allowed. These are not

dominant in the most of the parameter space and do not dramatically affect the branching

ratio into leptons. The coupling (2.22) also implies the Drell-Yan production rate of the Z ′

is inversely proportional to g2
H for large gH . But this does not help much. If the Z ′ decays

dominantly into standard model particles, the branching ratio into leptons is large and a Z ′

lighter than a few TeV is ruled out [14, 15]. However, if we introduce new fermions charged

under the SU(N + 3)H gauge group, as we do in section 5, the coupling of the Z ′ to these is

proportional to gH , and therefore much larger than the coupling to standard model particles.

If the Z ′ decay into these fermions is kinematically allowed, it dominates over the standard

model decays in the interesting region of large gH and a light Z ′ is not impossible.

3.3 Coloron phenomenology

Let us look at the color octet massive vector bosons, colorons, which are also mainly produced

by quark annihilation at the LHC. The NLO cross section of coloron production from quark

annihilation has been calculated in Ref [16]. The gluon fusion contribution has been analyzed

in Ref [17] and gives a sub-leading effect. The coloron can decay into GOGO, GOZ
′, qq̄ and

X ′X̄ ′ if these decay modes are open. The relevant interactions of these decay modes are

summarized in appendix B.1. The two-body decay rates of the coloron are then given by

Γ(G′ → GOGO) =
1

256π

(g2
H − (g′3)2)

2

g2
H + (g′3)2

mG′

(
1−

4m2
GO

m2
G′

)3/2

,

Γ(G′ → GOZ
′) =

1

36π

(
g2
H + (g′3)2

) m2
Z′

m2
G′

p

(
3 +

p2

m2
Z′

)
,
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Γ(G′ → qq̄) =
1

24π

(g′3)4

g2
H + (g′3)2

mG′

(
1−

4m2
q

m2
G′

)1/2

,

Γ(G′ → X ′X̄ ′) =
N

96π

g4
H

g2
H + (g′3)2

mG′

(
1− 4m2

X′

m2
G′

)3/2(
3− m2

G′

m2
X′

+
m4
G′

4m4
X′

)
,

(3.8)

where mq is the quark mass and

p2 =
1

4m2
G′

(
m2
G′ − (mZ′ −mGO)2

) (
m2
G′ − (mZ′ +mGO)2

)
. (3.9)

Because of (2.21), we do not expect the G′ → X ′X̄ ′ to be allowed in the interesting region

of large gH . As in the case of the Z ′ boson, if we introduce new fermions charged under the

SU(N + 3)H gauge group, G′ can also decay into the quark components of the new fermions.

Because the mZ′ < mG′ for large gH (by (2.21) again), the coloron decay is kinematically

allowed whenever the Z ′ decay is. Thus if we introduce new SU(N + 3) fermions to evade

the Z ′ search bounds, we will automaatically evade the coloron search bounds. If the GO is

very light, the G′ → GOGO mode and perhaps G′ → GOZ
′ can be important.

Another experimental constraint on the coloron mass and its interactions with the standard

model quarks comes from searches for quark contact interactions. The coloron exchange

induces four-fermion interactions among the quarks,

Leff ⊃ −
(g′3)4

g2
H + (g′3)2

1

m2
G′

(q̄γµT
aq) (q̄γµT aq) . (3.10)

These quark contact interactions lead to constructive interference with the ordinary QCD

terms and hence deviation of dijet angular distributions from the perturbative QCD predic-

tions.

There is certainly a strong constraint on (3.10) from LHC data. Unfortunately, the pub-

lished results from CMS in [18] consider only a set of contact terms which they call “the

most general flavor diagonal” set, but which is not general enough to include (3.10). Because

quarks carry both color and flavor, (3.10) is not equivalent to the ηLL term in [18]. This

poor choice also appears in the particle data group review of compositeness [19]. A sensible

general form appears in [20], but unfortunately this does not seem to have been universally

adopted in the literature. We expect that the constraint on (3.10) will be of the same order

of magnitude of those quoted in [18].

a =
mG′√

g2
H + (g′3)2

'
(g′3)2

g2
H + (g′3)2

5 TeV (3.11)
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This constraint is not affected (at least not very much) by the additional SU(N + 3) fermions

that we will introduce in section 5.

Note that this constraint gives a very severe lower bound on the scale a in the small gH

region of our parameter space because the coloron mass is approximately given by mG′ ≈ g′3a

in this region. But for large gH , relatively light colorons may be allowed.

4 N-Glueballs

We here consider phenomenology of the glueballs associated with the SU(N)H gauge theory,

which we call N -glueballs. First, we discuss the mass spectrum of the N -glueballs. Then, we

analyze the effective higher dimensional operators involving N -gluons and the standard model

particles which are relevant for the glueball decays. The decays of the scalar, pseudoscalar

and spin 2 glueballs are presented.

4.1 The N-glueball masses

Below the scale of the SU(N + 3)H symmetry breaking, the unbroken SU(N)H gauge in-

teraction becomes strong and finally confines giving rise to the N -glueball spectrum. For

very small gH coupling, the confinement scale of the SU(N)H pure Yang-Mills gauge theory,

denoted as ΛH , is generically well below the symmetry breaking scale, and we can estimate

it using 0-loop matching and the 1-loop β-function:

ΛH = mX′ e
− 6π

(11N−2nf )αH (a) . (4.1)

Here, αH(a) ≡ g2
H(a)/4π means the gauge coupling at the scale a and nf is the number

of SU(N) fermions in the low-energy theory. Note that the confinement scale is scheme

independent at 1-loop level. We could improve on (4.1) using the techniques of Hall and

Weinberg [21, 22] including 1-loop matching and 2-loop renormalization, but this will not

change the qualitative message of (4.1). ΛH is smaller than mX′ , but for large αH , we would

expect the exponential factor in (4.1) to be of order 1 unless the running in the low-energy

theory is very slow, for example by having matter fields to nearly cancel the effect of SU(N)H

gauge fields.

For a given ΛH , we can appeal to lattice calculations to estimate the glueball masses.

From [8], the scalar glueball 0++ is the lightest and its mass m0 is estimated to lie in the

region 4.7ΛMS < m0 < 11ΛMS (ΛMS is the MS scheme confinement scale) with very small

dependence on N . From the lattice result [7], the spin 2++ glueball mass is m2++ ' 1.4m0

and the pseudoscalar glueball mass is m0−+ ' 1.5m0. There are many other states but we

concentrate on these three lightest N -glueballs in the rest of the discussion.
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JPC Operator

0++ S = TrFµνF
µν

0−+ P = TrFµνF̃
µν

2++, 1−+, 0++ Tµρ = TrFµλF
λ
ρ − 1

4
gµρS

2++, 2−+ Lµνρσ = TrFµνFρσ − 1
2

(gµρTνσ + gνσTµρ − gµσTνρ − gνρTµσ)

− 1
12

(gµρgνσ − gµσgνρ)S + 1
12
εµνρσP

Table 4: The dimension four operator which represents each glueball state. Here, Fµν denotes
the field strength of the SU(N)H gauge boson and F̃µν = 1

2
εµνρσF

ρσ. The trace acts on the
SU(N)H generators.

JPC Operator

1−−, 1+− Ω
(1)
µν = TrFµνFρσF

ρσ

1−−, 1+− Ω
(2)
µν = TrF ρ

µ F
σ
ρ Fσν

Table 5: The dimension six operator which represents each glueball state.

As we have seen in the discussion of experimental constraints, and will emphasize below,

the interesting parameter space is in large αH region. In this region, our theory is strongly

coupled and (4.1) is certainly a reliable quantitative guide. It is even unclear that the relevant

symmetry breaking takes place as the perturbation theory suggests. Thus, we do not know

the relation between the X ′ mass and the glueball mass. We will simply assume that the X ′

mass and the glueball mass are of the same order.

4.2 The dimension eight operators

In our model, the N -glueballs can decay into the standard model gauge bosons through loops

of the X ′, X̄ ′ gauge bosons. When the confinement scale ΛH is sufficiently small compared

to the scale a, the situation is similar to the so-called Hidden Valley scenario [23] where the

X ′, X̄ ′ gauge bosons correspond to mediators between the standard model sector and the

hidden SU(N)H gauge sector. Ref [24] has discussed the hidden glueball decays into the

standard model gauge bosons through loops of heavy fermions. In ref [24], these decays are

14



analyzed using the factorized matrix elements,

M(Ψ→ AA) = 〈SM |OSM |0〉〈0|OH |Ψ〉 ,

M(Ψ→ Ψ′ +A) = 〈SM |OSM |0〉〈Ψ′|OH |Ψ〉 .
(4.2)

Here, Ψ(′) denotes a glueball state and A the standard model gauge bosons collectively. After

integrating out heavy fields in the loops, the decays are described by dimension eight operators,

Leff ⊃ OSMOH where OSM represents an operator composed of the standard model gauge

fields. Table 4 (5) shows the relevant dimension four (six) operator OH which represents each

glueball state [9, 24]. Then, the effective Lagrangian after integrating out the X ′, X̄ ′ gauge

bosons can be written as

Leff =
g2
H

(4π)2m4
X′

(
g2
Y κYB

µνBρσ + g2
sκsTrGµνGρσ

)
× (aSSgµρgνσ + aPPεµνρσ + aTTµρgνσ + aLLµνρσ)

+
g3
HgY

(4π)2m4
X′
κΩ

(
b1B

µνΩ(1)
µν + b2B

µνΩ(2)
µν

)
,

(4.3)

where Bµν and Gµν denote the field strengths of the ordinary hypercharge and color gauge

fields and κY = 6q2, κs = 2 and κΩ = 6q. The coefficients aS,P,T,L, b1,2 are obtained by the

one-loop computation. Two examples of the relevant diagrams of the X ′, X̄ ′ gauge boson

loops are shown in Figure 1. The calculation of the coefficients has been done in [25,26] and

is summarized in appendix C. The results are

aS =
89

480
, aP =

79

960
, aT =

7

5
, aL =

1

40
,

b1 = − 5

16
, b2 =

27

20
.

(4.4)

The coefficient aS here is about a factor of ten larger than when particles inside the loops are

fermions (aS|fermion = 1/60 [24]). Thus the production cross section of the lightest glueball by

gluon fusion is enhanced by a factor of O(100) in this model.

4.3 The scalar effective operator

The mixing between the scalar N -glueball and the singlet scalar GS is generated by loops of

the X ′, X̄ ′ gauge bosons. This may be important for the glueball decays because the singlet

GS also mixes with the Higgs boson and the glueball decays into a pair of the standard
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𝑔𝑁

𝑋′

Figure 1: Two example diagrams of the X ′, X̄ ′ gauge boson loops to generate the effective
dimension eight operators of the N -glueballs with the standard model gauge fields. Here, g,
γ and gN denote the ordinary gluon, the photon and the SU(N)H gauge boson respectively.

model fermions and massive gauge bosons are induced through these mixings. The one-loop

diagrams of the massive vector boson X ′ to generate the effective interaction of the SU(N)H

gauge fields with GS are shown in Figure 2 (There are also the diagrams of the X̄ ′ gauge

boson). The relevant interactions of the X ′, X̄ ′ gauge bosons with the scalar GS and the

SU(N)H gauge fields are summarized in appendix B.2. The similar calculation as the case of

the Higgs boson decays through the W boson loops gives the mixing term between GS and

the scalar glueball,

LGS−S =
αH
2π

kgN
ΛgN

GS S ,
kgN
ΛgN

= −
(

3

4
√

6a

)
FV (τX′) . (4.5)

Here, we have defined τX′ ≡ m2
GS
/(4m2

X′). The loop function FV (τ) is given by

FV (τ) = −
(
τ−1(3 + 2τ) + 3τ−2(−1 + 2τ)Z(τ)

)
, (4.6)

and

Z(τ) =


[
sin−1(

√
τ)
]2

(τ ≤ 1)

−1
4

log
[

1+
√

1−τ−1

1−
√

1−τ−1 − iπ
]2

(τ ≥ 1)
. (4.7)

Using this effective interaction, we will discuss the lightest N -glueball decays into a pair of

the standard model fermions and massive gauge bosons.

We here comment on phenomenology of the singlet scalar GS briefly. The GS scalar can be

produced by gluon fusion through loops of both the coloron and the X ′, X̄ ′ gauge bosons. The

produced GS decays into a pair of the standard model gauge bosons and the Higgs bosons.

The decays into the standard model fermions and massive gauge bosons are also possible
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𝑔𝑁

𝑔𝑁

𝐺𝑆𝑋′

𝑔𝑁
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𝐺𝑆

𝑋′

Figure 2: One-loop diagrams of the X ′ gauge boson to contribute to the effective interaction
of the SU(N)H gauge fields with the color singlet scalar GS. There are also the diagrams of
the X̄ ′ gauge boson.

through the mixing with the Higgs boson. Furthermore, when the mass of GS is larger than

twice the N -glueball mass, the same loops of the X ′, X̄ ′ gauge bosons as above induce the

GS decay into two glueballs. We leave detailed phenomenology of the scalar GS to a future

study.

4.4 The lightest glueball decays

We now consider the decays of the lightest N -glueball 0++ through the effective dimension

eight operators in (4.3) generated by loops of the X ′, X̄ ′ vector bosons. The glueball domi-

nantly decays into a pair of gluons. The diphoton decay is also induced by the new vector

boson loops. As discussed above, the decay amplitude is written by the factorized matrix

element (4.2). The amplitude of the glueball decay into a pair of gluons is then given by

M(0++ → gg) =
αsαH
m4
X′
κsaS 〈ga1gb2|TrGµνG

µν |0〉〈0|S|0++〉 . (4.8)

Here, the transition to two gluons is 〈ga1gb2|TrGµνG
µν |0〉 = δab

(
k1
µε

1
ν − k1

νε
1
µ

)
(k2µε2ν − k2νε2µ)

where k1,2 are gluon momenta and ε1,2 are polarizations. From this decay amplitude, the

decay rate is calculated as

Γ(0++ → gg) =
8α2

sα
2
H

16πm8
X′
κ2
sa

2
Sm

3
0

(
FS

0++

)2
, (4.9)

where FS
0++ ≡ 〈0|S|0++〉 is the decay constant of the scalar glueball 0++ and 2.00m3

0 ≤
4παHFS

0++ ≤ 4.77m3
0 from the lattice result for the SU(3) pure Yang-Mills theory [8]. We

assume that this lattice result persists also in cases with general numbers of N . In the same

way, we can compute the decay rates of 0++ → γγ, ZZ, Zγ. The branching ratios are given

17



by

Br(0++ → γγ) ' Γ(0++ → γγ)

Γ(0++ → gg)
=

α2

2α2
s

κ2
Y

κ2
s

=
9

2

q4α2

α2
s

, (4.10)

and

Br(0++ → ZZ) ' Γ(0++ → ZZ)

Γ(0++ → gg)
=
α2 tan4 θW

2α2
s

κ2
Y

κ2
s

(
1− 4m2

Z

m2
0

)1/2(
1− 4m2

Z

m2
0

+
6m4

Z

m4
0

)
,

Br(0++ → Zγ) ' Γ(0++ → Zγ)

Γ(0++ → gg)
=
α2 tan2 θW

α2
s

κ2
Y

κ2
s

(
1− m2

Z

m2
0

)3

.

(4.11)

Here, we have assumed that the total decay width is approximately given by Γtotal ' Γ(0++ →
gg). These decay modes are also induced through the glueball mixing with the GS scalar but

they are effectively two-loop effects and can be ignored. Note that the branching ratio of the

diphoton decay is completely determined by the electric charge q of the X ′ gauge boson unlike

the case where particles in the loops are various fermions with various masses and charges.

From the mixing term (4.5) generated by loops of the X ′, X̄ ′ gauge bosons, the glueball

decays 0++ → hh, f f̄ ,WW are also possible. The decays GS → hh, f f̄ ,WW are induced by

the GS interaction and mixing with the Higgs boson. All of these depend on the coupling λ4

that governs GS-h mixing, so they need not be large. At leading order in λ4, the decay rates

of 0++ → hh, f f̄ ,WW are written as

Γ(0++ → hh) =

(
2αHkgNFS

0++

4πΛgN (m2
GS
−m2

0)

)2

ΓGS→hh(m
2
0)

'
(

2αHkgNFS
0++

4πΛgN (m2
GS
−m2

0)

)2 (√
6λ4a/2

)2

32πm0

√
1− 4m2

h

m2
0

,

Γ(0++ → ff̄) =

(
2αHkgNFS

0++

4πΛgN (m2
GS
−m2

0)

)2

ΓGS→ff̄ (m
2
0)

'
(

2αHkgNFS
0++

4πΛgN (m2
GS
−m2

0)

)2
(

3
√

6λ4

9λ1 + 2λ2

v

a

)2

ΓSM
h→ff̄ (m

2
0) ,
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Γ(0++ → WW ) =

(
2αHkgNFS

0++

4πΛgN (m2
GS
−m2

0)

)2

ΓGS→WW (m2
0)

'
(

2αHkgNFS
0++

4πΛgN (m2
GS
−m2

0)

)2
(

3
√

6λ4

9λ1 + 2λ2

v

a

)2

ΓSM
h→WW (m2

0) .

(4.12)

Here, Γh→ff̄ (m
2
0) and Γh→WW (m2

0) are the decay rates of the Higgs boson into a pair of the

standard model fermions and the W bosons evaluated at the mass scale of the glueball. The

branching ratios of these decay modes depend on the parameters of the scalar sector. In the

rest of the discussion, we assume the λ4 coupling is not too large (or the GS scalar is heavy)

so that they do not dominate over the diphoton decay.

The present calculations of the glueball decay rates only take into account the leading

order effects. At the next-to-leading order, we have substantial αs and αH corrections. Then,

the actual total decay rate of the lightest N -glueball may be larger.

4.5 The pseudoscalar glueball decays

We next consider the decays of the pseudoscalar N -glueball 0−+ through the effective di-

mension eight operator (4.3). As in the case of the lightest scalar glueball, the width of the

pseudoscalar glueball decay into a pair of gluons is

Γ(0−+ → gg) =
8α2

sα
2
H

16πm8
X′
κ2
sa

2
Pm

3
0−+

(
FP

0−+

)2
, (4.13)

where FP
0−+ ≡ 〈0|P |0−+〉 is the decay constant of the pseudoscalar glueball. We can also

compute the decay rates of 0−+ → γγ, ZZ, Zγ. The branching ratios are given by

Br(0−+ → γγ) ' Γ(0−+ → γγ)

Γ(0−+ → gg)
=

α2

2α2
s

κ2
Y

κ2
s

=
9

2

q4α2

α2
s

,

Br(0−+ → ZZ) ' Γ(0−+ → ZZ)

Γ(0−+ → gg)
=
α2 tan4 θW

2α2
s

κ2
Y

κ2
s

(
1− 4m2

Z

m2
0−+

)3/2

,

Br(0−+ → Zγ) ' Γ(0−+ → Zγ)

Γ(0−+ → gg)
=
α2 tan2 θW

α2
s

κ2
Y

κ2
s

(
1− m2

Z

m2
0−+

)3

. (4.14)

The pseudoscalar glueball can also decay into the lightest glueball with a pair of gauge bosons,

but its branching ratio is significantly suppressed, as discussed in Ref [24].
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4.6 The 2++ glueball decays

Finally, we summarize the decays of the 2++ N -glueball. The existence of this glueball is also

a prediction in the present scenario. The decay rates of 2++ → gg, γγ, ZZ, Zγ are calculated

in Ref [24] for the case where particles inside the loops are fermions. They are expressed in

terms of the decay constants of the 2++ glueball,

〈0|Tµν |2++〉 ≡ FT
2++εµν ,

〈0|Lµνρσ|2++〉 ≡ FL
2++ (Pµρενσ − Pµσενρ + Pνσεµρ − Pνρεµσ) .

(4.15)

Here, εµν is the polarization tensor of 2++ and Pµν ≡ gµν−2pµpν/p
2. The results of the decay

rates are given by

Γ(2++ → gg) =
8α2

sα
2
H

160πm8
X′
κ2
sm

3
2++

(
1

2
a2
T

(
FT

2++

)2
+

4

3
a2
L

(
FL

2++

)2
)
,

Γ(2++ → γγ) =
4α2α2

H

160πm8
X′
κ2
Ym

3
2++

(
1

2
a2
T

(
FT

2++

)2
+

4

3
a2
L

(
FL

2++

)2
)
,

Γ(2++ → ZZ) =
α2α2

H tan4 θW
40πm8

X′
κ2
Ym

3
2++ (1− 4x2)1/2

(
1

2
a2
TfT (x2)

(
FT

2++

)2

+
4

3
a2
LfL(x2)

(
FL

2++

)2
+

40

3
aTaLfTL(x2) FT

2++FL
2++

)
,

Γ(2++ → Zγ) =
α2α2

H tan2 θW
20πm8

X′
κ2
Ym

3
2++ (1− x2)3

(
1

2
a2
TgT (x2)

(
FT

2++

)2

+
4

3
a2
LgL(x2)

(
FL

2++

)2
+

20

3
aTaLx2 FT

2++FL
2++

)
,

(4.16)

where x2 = m2
Z/m

2
2++ and

fT (x) = 1− 3x+ 6x2 , fL(x) = 1 + 2x+ 36x2 , fTL(x) = x(1− x) ,

gT (x) = 1 +
1

2
x+

1

6
x2 , gL(x) = 1 + 3x+ 6x2 .

(4.17)

5 The X ′ decay

In the simplest version of the model that we have discussed above, there is an unbroken

U(1) global symmetry under which the X ′, X̄ ′ gauge bosons are charged and hence these

massive gauge bosons are stable. While this is not obviously ruled out experimentally and
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SU(N + 3)H SU(3)C′ SU(2)L U(1)Y ′

ψ N + 3 1 1 3q
N+3

Table 6: The charge assignment of the fermion relevant to the X ′ decay.

SU(N)H SU(3)C SU(2)L U(1)Y

χ N 1 1 0

η 1 3 1 q

Table 7: The charge assignment of the fermion ψ = (χ, η) after the symmetry breaking.

cosmologically (at least if the reheating temperature after inflation is sufficiently low and also

non-thermal production of the X ′, X̄ ′ gauge bosons is suppressed), we here comment on a

modest extension of the model which allows the X ′ boson to decay without breaking the U(1)

global symmetry.

Let us introduce a Dirac fermion ψ charged under the U(1)Y ′ gauge group and the SU(N+

3)H gauge group with a Dirac mass smaller than mZ′/2. Table 6 and Table 7 show the charge

assignments of this fermion ψ = (χ, η) before and after the symmetry breaking. The χ and

η components are approximately degenerate because there are no renormalizable couplings

of ψ to the ξ field. We assume that the new fermion interacts with the standard model

matter fields. The possible interaction depends on the charge q of the X ′ gauge boson. For

instance, when the charge is q = 5/3, we can write down (for example) the following invariant

non-renormalizable interaction term (in Majorana notation):

1

M3
UV

(uj3Rβu
k3
R )(dcj3Lβψ

c
jNL

)ξjNk3 + h.c. (5.1)

where uR and dR are the ordinary right-handed up and down quarks, j3 and k3 are color

indices and jN is an SU(N)H index, all summed over. Then, if the X ′ gauge boson is heavier

than the χ, it can decay as follows:

X ′ → χ̄uud̄ . (5.2)

The electrically neutral fermion χ is stable and might be a candidate of the dark matter.

The colored fermion η can be produced at the LHC but its collider phenomenology signif-

icantly depends on its charge and the details of its decays. For example, for q = 5/3, η is a

charge 5/3 quark and the interaction term (5.1) along with the ξ VEV produces the decay

η → uud̄ . (5.3)
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If the lifetime of this fermion is long enough, the pair produced ηη̄ may form a bound state

like charmonium. If the decay (5.3) is fast, we may see the uud̄ jets in the LHC detectors.

The detailed analysis is beyond the scope of this paper and will be discussed elsewhere.

If the scale MUV is very low, we may worry that the UV completion will include flavor-

changing netural-current effects. It is interesting to note that we can generalize (5.1) to

incorporate a SU(3)U ×SU(3)D symmetry acting on the right handed charge 2/3 and charge

−1/3 quarks respectively. The generalization, now including SU(3)U flavor indices, jU , kU

and `U and a SU(3)D flavor index jD (again all summed over), looks like

1

M3
UV

(U j3jU
R βUk3kU

R )εjUkU `U (Dc
j3jDL

βψc`U jDjNL
)ξjNk3 + h.c. (5.4)

Now we have nine ψ fields which carry the U and D flavor symmetries (and it is amusing to

note that this is getting close to the number of SU(N) fermions necessary slow the running

of the SU(N) coupling below the mX′ scale). Thus we can tune the coupling to preserve

the flavor symmetry. Likewise, we can adjust things so that the Dirac mass terms for the ψ

fermions are equal, preserving the symmetry. None of this is natural but it suggests that the

flavor changing neutral currents will not be an insurmountable constraint, even if the coupling

is fairly strong.

6 Conclusion

In this paper, we have described a partial unification model that a part of the color SU(3) and

the hypercharge U(1) resides in an extended gauge group that is broken by a VEV slightly

smaller than the Higgs VEV! We have discussed the experimental constraints on the

new parameters. Precise tests of the standard model at low energies constrain the model

parameters and require the coupling of the new gauge group to be large. Constraints from

searches for the Z ′ and the coloron require that they decay dominantly into new particles. The

scalar glueball associated with the new confining gauge theory can have a mass of O(100) GeV

and be produced by gluon fusion and decay into two photons through loops of the new massive

vector bosons X, X̄ ′. The production and decays are analyzed by the effective dimension

eight operator of the glueball and the mixing term with the singlet scalar. The decays of the

pseudoscalar and spin 2 glueballs have been also presented.

One of the important predictions in the present model is the existence of the X ′, X̄ ′ gauge

bosons, which may be pair produced at colliders. In the simplest version of the model, the

X ′, X̄ ′ gauge bosons are stable. We have discussed a modest extension of the model which

allows the X ′ boson to decay into a colorless, neutral fermion. The lifetime of the X ′ gauge

boson depends on the mass of the new fermion and the size of the coupling of the interaction
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term with the standard model field(s) like (5.1). When the X ′ gauge boson is stable at collider

time scales, the bound states of the X ′, X̄ ′ gauge bosons, the vector bosoniums, are formed.

Detailed phenomenology of the vector bosoniums is left for a future study. It might be also

interesting to clarify whether a stable baryonic bound state of the neutral fermion could give

the correct dark matter abundance.

We close by reiterating a few of the things we have noticed from the analysis that may be

more generally useful.

1. A partial unification not involving the electroweak SU(2) can depend on an arbitrary

charge, q (see (2.5) and the discussion following).

2. “Flavor-diagonality” is an inappropriate assumption for compositeness tests (see (3.10)

and the discussion following).

3. Perhaps the most important and surprising message is that a low partial unification

scale with new particles that have large mass because their couplings to the symmetry

breaking field are large may be only weakly constrained if the strong interactions do not

directly involve the standard model fermions (see (3.6) and the discussion following).

Issues similar to points 1 and 3 appear in the literature in other contexts such as composite

Higgs models (see for example [31,32]). We have seen these things in a very explicit model in

which the calculations can be controlled in some region of the parameter space (even though

we want to push on the boundaries of this region). An example is “order 1” numbers that

are not really order 1 as in (4.4). Our model is an explicit example of how new physics could

be hidden right in front of our noses at the SU(2)× U(1) breaking scale and below.

Acknowledgments

We would like to thank Prateek Agrawal, Masaki Asano, Tatsuhiko Ikeda, Matthew Reece,

Ryosuke Sato and Matthew Strassler for fruitful discussions. We are particularly grateful

to M. Reece for many important comments from the very beginning of this work. HG is

supported in part by the National Science Foundation under grant PHY-1418114. YN is

supported by a JSPS Fellowship for Research Abroad.

A Normalization and identities of group theory

We here summarize normalization and identities of SU(N + 3) and its subgroups. The com-

mutation relations are

[TA, TB] = ifABCTC , (A.1)
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where TA (A = 1, · · · , (N + 3)2 − 1) are generators and fABC are totally antisymmetric

structure constants. The anti-commutation relations are

{TA, TB} = δAB
1

N + 3
+ dABCTC , (A.2)

where dABC are totally symmetric. There are relations,

Tr(TAR T
B
R ) = C(R)δAB , fABC = − i

C(R)
Tr
(
[TAR , T

B
R ]TC

)
, (A.3)

where R denotes a representation. For the (anti-)fundamental representations, N + 3 and

N + 3, C(R) = 1/2. We also have

TAR T
A
R = C2(R)1 , fABCfABD = (N + 3)δCD , (A.4)

where C2(R) is the quadratic Casimir and C2(G) = N + 3 for the adjoint representation.

Next, let us divide the SU(N + 3) generators into the generators of the subgroups U(1)×
SU(3)×SU(N) and the other non-hermitian generators. We denote the SU(3) generators as

T a , T b , a, b = 1, · · · , 8 , (A.5)

which satisfy

[T a, T b] = ifabcT c , fabcfabd = 3δcd , (A.6)

and the U(1) generator as T 9 ≡ S̃. The SU(N) generators are

Tm , T n , m, n = 10 + 6N, · · · , (N + 3)2 − 1 , (A.7)

which satisfy

[Tm, T n] = ifmnlT l , fmnlfmnk = Nδlk , (A.8)

and the 6N non-hermitian generators are

T p , T q̄ , p, q̄ = 10, · · · , 9 + 3N , (A.9)

which satisfy

Tr (T pT q̄) =
1

2
δpq , (A.10)
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for the fundamental representations. The commutation relations of the generators among the

SU(3), U(1) and SU(N) subgroups are zero,

[T a, Tm] = [T a, T 9] = [Tm, T 9] = 0 . (A.11)

We also have

Tr (T aTm) = Tr
(
T aT 9

)
= Tr (T aT p) = Tr (T aT p̄)

= Tr
(
TmT 9

)
= Tr (TmT p) = Tr (TmT p̄) = Tr

(
T 9T p

)
= Tr

(
T 9T p̄

)
= 0 .

(A.12)

and

fpqa = f p̄q̄a = 0 . (A.13)

Then, we can derive the following useful formula,

fpq̄a(fpq̄b)∗ = f q̄pa(f q̄pb)∗

=
1

2

(
fABafABb − f cdaf cdb

)
=

1

2
((N + 3)− 3) δab =

N

2
δab .

(A.14)

Note that (fpq̄a)∗ = f p̄qa. In the same way, we have

fpq̄m(fpq̄n)∗ = f q̄pm(f q̄pn)∗

=
1

2

(
fABmfABn − fklmfkln

)
=

1

2
((N + 3)−N) δmn =

3

2
δmn .

(A.15)

Note that (fpq̄m)∗ = f p̄qm.

B Summary of interactions

In this appendix, we summarize some of the interactions in the model.

B.1 Coloron interactions

We concentrate on the coloron interactions relevant to the coloron decays. The interaction

which leads to G′ → GOGO is given by

L ⊃ g2
H − (g′3)2√
g2
H + (g′3)2

fabc(∂µGa
O)G′

b
µG

c
O . (B.1)
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The relevant interaction of G′ → GOZ
′ is

L ⊃ −
√

2

3
mZ′

√
g2
H + (g′3)2Ga

OZ
′
µG
′µa . (B.2)

The interactions to give G′ → X ′X̄ ′ are

L ⊃ g2
H√

g2
H + (g′3)2

fapq̄
{
− (∂κG

′a
λ)X

′κpX̄ ′
λq̄

+ (∂κX
′p
λ)G

′κaX̄ ′
λq̄ − (∂κX

′p
λ)X̄

′κq̄G′
λa

+ (∂κG
′a
λ)X̄

′κq̄X ′
λp − (∂κX̄

′q̄
λ)G

′κaX ′
λp

+ (∂κX̄
′q̄
λ)X

′κpG′
λa
}
.

(B.3)

B.2 New massive gauge boson interactions

We here present the X ′, X̄ ′ interactions which lead to the mixing between the scalar N -glueball

and the singlet scalar GS. The X ′, X̄ ′ gauge boson interaction with the scalar GS is given by

L ⊃ 1√
6
g2
HaGSX

′
µX̄
′µ . (B.4)

The cubic interactions of the X ′, X̄ ′ gauge bosons with the SU(N)H gauge field Hm
µ are

L ⊃− gHfmpq̄(∂κHm
λ )X ′

κp
X̄ ′

λq̄
+ gHf

mpq̄(∂κX
′p
λ)H

κmX̄ ′
λq̄ − gHfmpq̄(∂κX ′pλ)X̄ ′

κq̄
Hλm

+ gHf
mpq̄(∂κH

m
λ )X̄ ′

κq̄
X ′

λp − gHfmpq̄(∂κX̄ ′q̄λ)HκmX ′
λp

+ gHf
mpq̄(∂κX̄

′q̄
λ)X

′κpHλm .

(B.5)

The quartic interactions are given by

L ⊃− g2
H(fmnlHm

κ H
n
λ )(fpq̄lX ′

κp
X̄ ′

λq̄
)

− g2
H(f rmq̄Hm

κ X̄
′q̄
λ)(f

r̄npHκnX ′
λp

)

+ g2
H(f rmq̄Hm

κ X̄
′q̄
λ)(f

r̄npX ′
κp
Hλn) .

(B.6)

C The effective operator coefficients

We here identify the coefficients of the effective dimension eight operators presented in the

main text, aS, aP , aT , aL and b1, b2. First, we have the relation,

εµνρσεαβγδ = −gαζgβηgγθgδξ det


δζρ δζσ δζµ δζν
δηρ δησ δηµ δην
δθρ δθσ δθµ δθν
δξρ δξσ δξµ δξν

 . (C.1)
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Using this relation, the effective Lagrangian (4.3) can be rewritten as

Leff =
g2
H

(4π)2m4
X′

{
(
g2
Y χYBρσB

ρσ + g2
sχsTrGρσG

ρσ
)(

aS −
1

4
aT +

1

3
aL

)
TrFαβF

αβ

+
(
g2
Y χYB

µνBρσ + g2
sχsTrGµνGρσ

)(
8aP +

2

3
aL

)
TrFρµFσν

−
(
g2
Y χYB

µνBρσ + g2
sχsTrGµνGρσ

)(
4aP −

2

3
aL

)
TrFρσFµν

+
(
g2
Y χYB

µ
σB

ρσ + g2
sχsTrGµ

σG
ρσ
)

(aT − 2aL) TrFµλF
λ
ρ

}
+

g3
HgY

(4π)2m4
X′
κΩ

(
b1B

µνΩ(1)
µν + b2B

µνΩ(2)
µν

)
.

(C.2)

The general expression of the effective Lagrangian has been calculated in [25, 26]. Using this

result, we obtain

aS =
7

288
(γ1 + γ2) +

1

18
(γ3 + γ4) , aP =

1

288
(γ1 + γ2)− 1

144
(γ3 + γ4) ,

aT =
1

8
(γ1 + γ2) +

1

6
(γ3 + γ4) , aL =

1

48
(γ1 + γ2) +

1

12
(γ3 + γ4) ,

b1 =
1

12
(γ3 + γ4) , b2 =

1

12
(γ1 + γ2) ,

(C.3)

where (γ1, γ2, γ3, γ4) =
(

342
35
, 675

105
,−621

210
,−333

420

)
for a spin one particle integrated out. Then, we

have the coefficients presented in (4.4).
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