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Abstract

We introduce a class of unified supersymmetric axion theories with unified and PQ sym-
metries broken by the same set of fields at a scale ∼ 2 × 1016 GeV. A typical domain
wall number of order 30 leads to an axion decay constant fa of order 1015 GeV. Inflation
generates a large saxion condensate giving a reheat temperature TR below the QCD scale
for supersymmetry breaking of order 1-10 TeV. Axion field oscillations commence in the
saxion matter-dominated era near the QCD scale, and recent lattice computations of the
temperature dependence of the axion mass in this era allow a controlled calculation of the
axion dark matter abundance. A successful prediction of this abundance results for an
initial axion misalignment angle of order unity, θi ∼ 1. A highly correlated set of predic-
tions are discussed for fa, TR, the supersymmetric Higgs mass parameter µ, the amount of
dark radiation ∆Neff , the proton decay rate Γ(p→ e+π0), isocurvature density perturba-
tions and the B-mode of the cosmic microwave background. The last two are particularly
interesting when the energy scale of inflation is also of order 1016 GeV.

1 Introduction

An elegant solution to the strong CP problem was proposed in 1977 by promoting the strong
CP parameter θ̄ to a field [1, 2, 3]. This field, the axion a(x), is the pseudo-Goldstone boson
produced by spontaneously breaking a global U(1) symmetry at scale fa. The axion acquires a
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mass because this PQ symmetry is explicitly broken by a color anomaly, leading to an interaction
in the low energy effective theory of

LaGG̃ =
g2

3

32π2

a

fa
GµνG̃µν (1.1)

where G is the QCD field strength. By 1981, constraints from particle physics and astrophysics
already required this scale to be very much larger than the weak scale, fa > 109 GeV [4].
At that time it appeared natural to identify fa as the scale of grand unification, either non-
supersymmetric [5] or supersymmetric [6], with the same field breaking both the unified gauge
and PQ symmetries.

However, in 1983 axion production in the early universe by the misalignment mechanism
was discovered, suggesting a limit on fa far below the unified scale [7, 8, 9]. Requiring that
axions produced from oscillations of the misaligned condensate do not give more dark matter
than observed today yields

faθ
1.7
i
<∼ 1012 GeV , (1.2)

effectively decoupling PQ breaking from physics at the unified scale. For the Pre-Inflation
cosmology, where PQ breaking occurs before inflation, θi is the initial axion field misalignment
angle and has a flat prior distribution and so is expected to be order unity, while for the Post-
Inflation cosmology θi must be averaged, leading to θeff = π/

√
3 [10, 11].

The bound Eq. (1.2) applies to the conventional cosmology with an early radiation dominated
universe and can be violated if there is a large entropy release between the GeV and MeV eras
[12]. However, a general bound can still be derived even for this case. An analytic estimate
requiring that axions from the misaligned condensate not give more dark matter than observed
today yields [13]

faθi <∼ 1015 GeV

(
3 MeV

TR

)1
2

(1.3)

independent of the particle physics model for the entropy release. TR is the reheat temperature
after this entropy release, and is constrained by the 4He abundance from Big Bang Nucleosyn-
thesis (BBN) to be larger than about 3 MeV [14]. Thus, in both the Pre-Inflation cosmology
(with θ of order unity) or the Post-Inflation cosmology (where θeff = π/

√
3), a low TR allows fa to

be as large as 1015 GeV, which is still significantly below the scale of gauge coupling unification
with TeV scale supersymmetry, characterized by the SU(5) gauge boson mass MX ' 2 × 1016

GeV. From Eqs. (1.3), the physics of PQ breaking apparently lies well below the unified mass
scale, unless θi � 1. While low θi could be understood in a multiverse with an anthropic re-
quirement limiting the dark matter abundance [15], since 1983 there has been little interest in
pursuing grand unified theories where PQ and unified gauge symmetries are broken together.

The frequently quoted bound of Eq. (1.2) may not apply in supersymmetric theories. With
low energy supersymmetry the field responsible for breaking the PQ symmetry is expected to
release entropy at late time possibly diluting the misalignment axions [16]. There is no need
for introducing separate physics for axion dilution – it can arise from the late decay of a saxion
condensate. However, whether the saxion condensate dilutes axions significantly depends on
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the corresponding reheat temperature and hence on fa. In any case, the bound of Eq. (1.3) still
applies. Axion dilution from saxion decays has led to several studies with fa of order 1015−1016

GeV [17].
In this paper we study a class of Supersymmetric Grand Unified Theories where unified

and PQ symmetries are broken together – SaxiGUTs. We demonstrated that these theories are
realistic and lead to a characteristic set of predictions. The key ingredients of these theories are

• TeV scale supersymmetry with precise gauge coupling unification.[18] The scale of the
vacuum expectation value (vev) that breaks SU(5) unified gauge symmetry is predicted
to be

V5 ' (1− 4)× 1016 GeV (1.4)

depending on threshold corrections and the value of the unified gauge coupling, g5, with
higher g5 leading to lower V5.

• Simultaneous breaking of SU(5) and PQ symmetries:

VPQ ∼ V5. (1.5)

Such a large PQ breaking implies a Pre-Inflation cosmology. PQ symmetry is broken before
inflation and reheating after inflation does not restore the PQ symmetry. Hence axion
strings and domain walls are inflated away and are not relevant to the observable universe.
The amount of dark matter arising from the misalignment of the axion condensate depends
on the initial misalignment angle θi, which we take order unity.

• A large color anomaly of the PQ symmetry. The scale fa, defined by Eq. (1.1), is deter-
mined by

fa =

√
2VPQ
NDW

' 1015 GeV

(
VPQ

3× 1016 GeV

)(
40

NDW

)
, (1.6)

where NDW is the color anomaly of the PQ theory, also known as the domain wall number.
In SaxiGUTs it would require an accident for NDW to be order unity, and instead we find
that in typical SaxiGUTs NDW ∼ 10− 100.

• Doublet-triplet splitting giving a DFSZ-type axion theory. A key issue in unified theories
is the mass splitting between the light Higgs doublets and their SU(5) partners, which
must be heavy to satisfy the bound from proton decay searches. The two Higgs doublets
lie in multiplets H and H̄ of the unified theory and a large mass splitting between the
weak doublets and color triplets arises from an interaction between H̄H and fields that
break the unified symmetry. We study the generic case where H̄H carries a non-zero PQ
charge and hence the axion theory is of DFSZ type [19, 20]. This includes theories where
the doublet-triplet splitting arises via fine-tuning [6] or via vacuum alignment [21].

A large value of NDW resolves an apparent discrepancy: fa ∼ 1015 GeV and V5 ' (1− 4)×
1016 GeV become consistent with VPQ ∼ V5. The relation between V5 and fa is

V5 =
NDW√

2c
fa where c ≡ VPQ

V5

(1.7)
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Figure 1: The SU(5) breaking scale V5 as a function of fa, i.e. Eq. (1.7), for two different values
of NDW/c. The orange lines show values of fa, for different θi, that yield the observed dark
matter abundance for TR = 3 MeV; as TR is increased, fa decreases as 1/

√
TR.

and c is order unity. In Fig. 1 we illustrate this consistency between supersymmetric gauge
coupling unification of Eq. (1.4) and values of fa that yield the observed dark matter from
Eq. (1.3) for the two representative values NDW/c = 10, 100.

We present our study as follows. We introduce general SaxiGUT theories, together with
simple examples, in Sec. 2, and in doing so we precisely define the scale of PQ breaking VPQ,
the scale of gauge coupling unification V5 and the domain wall number NDW. In Sec. 3 we
demonstrate that inflation typically generates a saxion condensate of order VPQ or larger. The
misalignment axion DM abundance is independent of the specific SaxiGUT model and in Sec. 4
we present an effective field theory (EFT) for the axion chiral multiplet valid below the PQ
breaking scale. We compute in Sec. 5 the dark matter abundance from axion oscillations initiated
when the saxion condensate dominates the total energy of the universe, making use of recent
lattice results. We emphasize that the observed dark matter abundance calls for supersymmetry
breaking at the TeV scale. The rest of the paper is devoted to additional signals for SaxiGUTs:
dark radiation in Sec. 6, proton decay in Sec. 7, isocurvature perturbations and CMB tensor
modes in Sec. 8. A concise summary of correlated predictions for SaxiGUTs is provided in
Sec. 9.

2 SaxiGUT Theories

We study a class of theories where the grand unified symmetry G and the PQ symmetry are
broken by the vevs of a set of chiral superfields at the unified scale. Some of these fields carry
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both G and PQ quantum numbers, while others may be charged under only G or PQ. In this
section we first give a precise definition of the scales of vevs for PQ breaking, VPQ, and gauge
coupling unification, V5. Next we give examples of SaxiGUTs and the moduli field that results
from breaking PQ symmetry, and finally we discuss the domain wall number. Throughout the
rest of this paper we adopt the following conventions: we denote superfields and their lowest
components by boldface and regular typeface, respectively. Thus we are interested in theories
of chiral superfields Φi where the lowest components Φi get G and/or PQ breaking vevs vi.

2.1 PQ and SU(5) Breaking Scales

The scale of PQ breaking is defined by

V 2
PQ =

∑
i

q2
i v

2
i (2.1)

where the PQ charges qi of Φi are normalized such that they are all integers with |qi| as small
as possible. Gauge coupling unification depends on the spectrum of states at the unified scale
that breaks SU(5) symmetry (G may be larger than SU(5)), such as the heavy SU(5) gauge
bosons X and Higgs colored triplets. We choose to define the symmetry breaking scale of gauge
coupling unification by

V 2
5 =

(
MX

g5

)2

=
∑
i

t2i v
2
i (2.2)

where g5 is the gauge coupling evaluated at scale V5. The group theory constants t2i = (5/6, 4/3)
for i = (24, 75) dimensional representations are close to unity, while ti = 0 if vi preserves SU(5).
Ignoring unified threshold corrections, gauge coupling unification implies MX ' 2 × 1016 GeV
so that V5 ' 2 × 1016 GeV/g5. With the minimal matter content of the MSSM below MX

the unified coupling is predicted to be g5 ' 0.7; however, with additional matter the unified
coupling could be larger. With further uncertainty from unified threshold corrections, we adopt
the range V5 ∼ (1− 4)× 1016 GeV for precision unification.

For low energy physics of the axion supermultiplet the key result is

VPQ = c V5 ' c (1− 4)× 1016 GeV. (2.3)

From Eqs. (2.1) and (2.2), c is typically larger than unity, although it can be less than unity if
some Φi have qi = 0.

We study DFSZ type theories where the matter and Higgs fields of the low energy theory
carry PQ charges. In particular the MSSM Higgs bilinear HuHd carries non-zero PQ charge,
so that the cosmological saxion condensate decays to Higgs and electroweak gauge bosons,
reheating the visible sector. Hence the µ term is generated from PQ breaking, from operators
of the form [G(Φi)HuHd]θ2 or [XG(Φi,Φ

†
j)HuHd]θ2θ̄2 , where X is a chiral superfield with a

supersymmetry breaking F component.
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2.2 SaxiGUT Models

In principle the PQ symmetry could be an R symmetry, as in the case of both the Nilles-Raby
SU(5) theory [6] and the Hall-Raby SO(10) theory [21]. However, it has been shown quite
generally that in flat space supersymmetric theories with a continuous R symmetry broken at
scale VPQ the vacuum value of the superpotential is bounded by |〈W 〉| ≤ FVPQ/2 where F is
the scale of supersymmetry breaking [22]. Such values of |〈W 〉| are insufficient to cancel the
cosmological constant in supergravity unless VPQ is of order the reduced Planck mass. Hence
we restrict our attention to non-R symmetries.

Many SaxiGUTs models can be constructed as follows. Let f(Φ) be a PQ invariant product
of n of the Φi fields, divided by Mn

∗ , where M∗ is the UV cutoff of the theory: f = (Π Φ)/Mn
∗ .

The superpotential takes the form

W = W (f) +H Φ1(1 + f + ...)H (2.4)

where H and H contain the Higgs doublets that lead to quark and charged lepton masses,
and Φ1 has opposite PQ charge to that of HH . The superpotential W (f) leads to a non-zero
vev for f , breaking both PQ and G. This could arise by introducing a singlet field Z that
drives the vev via W (f) = M2

∗Z(f − 1) or from a superpotential that is a polynomial in f ,
W (f) = M3

∗ (f + f 2 + ...), where part of moduli space has f determined to a non-zero value.
The former case requires f to be invariant under the gauge symmetry G. In the latter case if
f is not gauge invariance certain terms in the polynomial expansions are absent. Here and in
Eqs. (2.4, 2.5) we omit the dimensionless coupling constants. Those in the interaction involving
H and H are fine-tuned to yield a splitting between the doublet and triplet Higgs, leading to a
TeV scale µ parameter. Those in W (f) must be chosen so that the vacuum value for f is less
than unity, allowing the PQ and gauge symmetries to be broken below the cutoff in the region
of validity of the theory.

Simple SU(5) theories with two Φi fields include f = Σ(+1)Σ(−1)/M2
∗ , S(+1)Σ(−1)/M2

∗
and f = Σ(+1)2Σ(−2)/M3

∗ where S and Σ are SU(5) singlets and adjoints, respectively, and
the PQ charges are shown in parenthesis. An example with f ∼ (Σ+Σ−) and no driver field is

W (Σ+,Σ−) = M∗(Σ+Σ−) +
(Σ+Σ−)2

M∗
+ ...+H Σ+

(
1 +

(Σ+Σ−)

M2
∗

+ ...

)
H . (2.5)

Although the superpotential interactions determine the vev of f , the spontaneous breaking
of the global PQ symmetry, with supersymmetry unbroken, implies a massless chiral superfield,
σ(x), that parameterizes a degenerate moduli space of vacua. This is lifted by the addition of
soft supersymmetry breaking interactions

Vsoft = m̃2

[
ci φ

∗
iφi +O

(
(φ∗iφi)

2

M2
∗

)]
(2.6)

where m̃ is the scale of supersymmetry breaking and the constants ci describe interactions
between supersymmetry breaking and unified sectors. We take ci > 0 so that the vacuum is
determined by the quadratic terms alone.
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In the example with two fields Φ±, of PQ charge ±q, and f = Φ+Φ−/M
2
∗ determined to be

M2/M2
∗ , the vacuum is

v± =

(
c∓
c±

)1
4
M (2.7)

giving

VPQ = xqM, x =

√√√√(c+

c−

)1
2

+

(
c−
c+

)1
2
. (2.8)

Small fluctuations about this vacuum are described by

Φ± = v±e
±qA/VPQ , (2.9)

where A is the canonically normalized axion chiral superfield A = (s+ ia)/
√

2+θã. The saxion
field s is defined to be zero at the minimum of the potential and, like the axino field ã, picks
up a supersymmetry breaking mass, while the axion field a acquires mass only from the QCD
anomaly.

The constant c is easily computed in particular models. For example, in any theory where
symmetry breaking arises from SU(5) adjoints and singlets, Φi = (ΣA,Sα), with PQ charges
qi = ±1

c =
VPQ
V5

=

√
6

5

(
1 +

∑
α v

2
α∑

A v
2
A

)
. (2.10)

This result applies even if G is larger than SU(5), such as SO(10), as long as the G breaking
vevs can be decomposed into SU(5) singlets and adjoints.

2.3 Domain Wall Number

A key aspect of SaxiGUTs is that the domain wall number, NDW, resulting from the field
configurations of the vacuum of Φi is typically large. For a non-R symmetry

NDW = 2

∣∣∣∣∣∑
a

qaTa

∣∣∣∣∣ (2.11)

where a runs over all chiral superfields of the theory, including both Φi and the matter and
Higgs of the low energy theory. The PQ charges qa are normalized so that |qi| are all integers
and take the smallest values possible. Ta is the Dynkin index of the color generator for repre-
sentation a with conventional normalization. For SU(5), Ta = 1/2, 3/2, 5, ... for the 5, 10, 24, ...
representations. For SO(10), Ta = 1, 2, 8, 12, ... for the 10, 16, 45, 54, ... representations. Given
the size of these Dynkin indices, and that |qi| ≥ 1, SaxiGUTs typically have NDW � 1, and we
will often consider the range of NDW from 10 to 100.

For the theories described by Eq. (2.4) NDW depends on the nature of the PQ singlet func-
tion f and on the nature of Φ1 appearing in Eq. (2.4). It can be summarized as NDW =
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2 |q1 +
∑

i qiTi|, where i only runs over all Φi. In two field SU(5) examples: f ∼ Σ+Σ− gives
NDW = 2 for both choices of Φ1 = (Σ+,Σ−); f ∼ SΣ gives NDW = (8, 12) for Φ1 = (S,Σ);
and f ∼ Σ2Σ′ gives NDW = (8, 14) for Φ1 = (Σ,Σ′). These theories have only a few small
multiplets breaking the unified symmetry. Larger unified theories will have larger NDW; for
example the Hall-Raby SO(10) theory has NDW = 94.

3 Initial Conditions from Inflation

The abundance of axion dark matter is greatly affected by the decay of the saxion condensate,
so it is important to study the size of this condensate, which originates from standard inflation.
SaxiGUTs have a large domain wall number as discussed in Sec. 2. We avoid the axion domain
wall and GUT monopole problems by assuming that the PQ and G breaking vevs of Φi are
non-zero during inflation so that these defects are inflated away. Hence, both during and after
inflation we must work in the broken phase where, in the supersymmetric limit, the potential
involves a complex flat direction, σ(x), corresponding to the axion and saxion field modes. When
the potential is expanded about any point along this flat direction, the orthogonal modes have
masses of order the unified scale (ignoring the possibility of further moduli). Hence any initial
values for these other modes will rapidly disappear due to damped oscillations in the expanding
early universe.

In this section we find inflation leads to three behaviors for the initial value of the condensate
σi (defined with σ = 0 today)

1. σi ∼ VPQ, where VPQ is the PQ breaking scale today, as defined in the previous section
(with VPQ ∼ V5 ∼ 2× 1016 GeV).

2. σi ∼M∗, where M∗ is the UV cutoff of the SaxiGUT field theory.

3. σi = 0.

The third case results only in certain special situations, and is not of interest for SaxiGUTs.
The axion dark matter abundance resulting from the first two cases is computed in Sec. 5 and
is found to be independent of σi over the entire relevant region of parameter space. In Sec. 8
we show that the second case allows the energy scale of inflation EI ∼ 1016 GeV, so that tensor
modes of the cosmic microwave background may be discovered at next generation experiments.

The potential for σ requires supersymmetry breaking, and during inflation supersymmetry
was broken by the physics that generated the inflaton potential ρI ∼ E4

I [23]. This physics
communicates with the grand unified sector via higher dimension operators suppressed by the
cutoff scale of the theory, M∗ > VPQ, so that during inflation σ feels a supersymmetry breaking
potential

V I(σ) = ρI

[
cIi
φ∗iφi
M2
∗

+O

(
φ∗iφi
M2
∗

)2
]

(3.1)
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where the constants cIi describe interactions between inflation and unified sectors and are order
unity. The relevant supersymmetry breaking scale is E2

I /M∗ and for EI > 1010 GeV this scale
dominates that from the usual soft supersymmetry breaking interactions, m̃ ∼ TeV.

For cIi > 0, only the leading term in 1/M2
∗ in Eq. (3.1) is needed to determine σ and the

resulting potential leads to a minimum for the real component of σ which acquires a mass of
order of E2

I /M∗. For any cutoff M∗ less than the reduced Planck scale MPl = 2.4 × 1018 GeV,
the saxion field will undergo oscillations during inflation, since msI > 3HI , and will settle to the
minimum of this potential. Thus inflation determines an initial value for the saxion field.

In the SaxiGUT models discussed in Sec. 2, the superpotential constrains a product of n
fields, called f(φi), to some value Mn, with M of order VPQ. With cIi of order unity, at the
minimum φi = vIi take values of order M . For example, in the case of f ∼ Φ+Φ−

vI± =

(
cI∓
cI±

)1
4

M. (3.2)

Comparing with Eqs. (2.7, 2.8)
σi = (xI − x) qM (3.3)

where xI is the same function of cI± as x is of c±. For generic order unity parameters (cI±, c±),
σi ∼ VPQ so that theories with cI± > 0 are of the first type listed above.

In certain theories moduli space may have special symmetry points. If the interactions lead-
ing to the symmetry breaking potentials respect these discrete symmetries, then the constants ci
and cIi may be equal to the symmetry point values. With f ∼ Φ+Φ−, imposing a Z2 symmetry
Φ+ ↔ Φ− leads to c+ = c− and cI+ = cI−. Under these circumstances the minimum of the
potential is at the symmetry point both during and after inflation so that xI = x and there is
no condensate σi = 0, giving the third case listed above.

If one or more of cIi are negative, the quadratic term of Eq. (3.1) leads to field values much
greater than VPQ. Positive higher order terms are required to stop runaway behavior, and in
this case the generic expectation is that σi ∼M∗, the second case listed above.

The role of inflation in the above discussion is to determine σi. However, even if EI � 1010

GeV, so the inflationary era does not determine σi, there is no reason why this initial value
should be within VPQ of the minimum determined by Eq. (2.6).

4 The Effective Theory Below The Unified Scale

To describe axion and saxion physics below the PQ breaking scale, we take a model-independent
approach and write down an EFT. This is sufficient for the computation in the next section of
the axion dark matter abundance, which is therefore independent of many model-dependent
features of SaxiGUTs. Since VPQ is much larger than the SUSY breaking scale, we construct a
supersymmetric EFT where the PQ symmetry is non-linearly realized [24, 25]. In this section
we write down such an EFT and give the partial widths for saxion decays. Details about the
EFT and calculations can be found in Appendix A.
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Our conceptual starting point is a UV complete theory where the PQ symmetry is broken
by the vevs vi of chiral superfields Φi. We assign to Φi a PQ charge qi, such that a PQ rotation
with angle α in the UV theory induces

Φi → exp [iqiα] Φi . (4.1)

At energies below the PQ breaking scale we have a massless Goldstone superfield

A =
s+ i a√

2
+
√

2θã+ θ2FA . (4.2)

The different components of A are massless, since the axion a mass is protected by being a
Goldstone bosons and the degeneracy in the multiplet is ensured by SUSY. The breaking of
SUSY will provide masses for the saxion s and the axino1 ã, but not for the axion. In the
low-energy EFT the PQ symmetry is non-linearly realized

A → A+ i α VPQ , (4.3)

where the effective scale of PQ breaking VPQ was introduced in Eq. (2.1). The axion superfield
A is the low-energy degree of freedom associated with the PQ breaking fields in the UV, which
can be expanded around their vevs as follows

Φi = vi exp

[
qi
A

VPQ

]
. (4.4)

The EFT Lagrangian and the details of the saxion decay widths calculation are presented
in App. A. Here, we only report the results relevant to the discussion in Sec. 5. The saxion has
two possible decay channels. Kähler potential interactions induce saxion decays to two axions
through the operator

Lsaa =
κ√

2VPQ
s ∂µa∂µa , (4.5)

κ ≡
∑ q3

i v
2
i

V 2
PQ

. (4.6)

For models with only a single PQ breaking field, or theories with more than one but all with the
same PQ charge, we have κ = 1. In more general cases κ is a free parameter. The associated
decay width results in

Γs→aa =
κ2

64π

m3
s

V 2
PQ

. (4.7)

1We do not consider axino LSPs. Axinos can be copiously produced through Freeze-In [26], and if they are
the LSP, their cosmic density could be depleted by a dilution mechanism analogous to the one discussed in this
work [27].
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Superpotential and SUSY breaking interactions are responsible for visible saxion decays to
Higgs bosons through the operators

VsHuHd
=
√

2 qµ
µ2

VPQ
s
(
H†uHu +H†dHd

)
+ qµ

m2
A sin 2β

VPQ

s

2
√

2
(HuHd + h.c.) . (4.8)

Here, qµ is the PQ charge of the MSSM µ term, tan β is the ratio of the Higgs vevs and mA

is the mass of the CP-odd Higgs boson A. All the partial decay widths in the decoupling
limit (mA � mZ) can be found in App. A. In this work we use the large tan β limit of those
expressions

Γs→ visible = D ×
q2
µµ

4

16πmsV 2
PQ

, (4.9)

where the overall multiplicative factor D counts the number of final states kinematically allowed.
For decays to SM final states only (Higgs boson and longitudinal weak bosons) we have D = 4.
If decays to heavier Higgs bosons (H, A and H±) are also accessible then D = 8. The result (4.9)
is valid even if the TeV scale theory is larger than the MSSM, provided that the interactions
responsible for saxion decays are dominated by the µ term.

5 Axion Dark Matter and Dilution from Saxions

In SaxiGUT theories the unified and PQ symmetries are broken before inflation. In the absence
of supersymmetry breaking there is a complex flat direction corresponding to the axion and
saxion modes. During inflation the vacuum energy of the inflaton field breaks supersymmetry,
generating a potential for the saxion field. In Sec. 3 we argue that this generically leads to an
initial displacement of the saxion field around today’s minimum of σi ∼ VPQ. This condensate
decays at a rate given by Eq. (4.9) and, given the large value of VPQ, the decays occur after
the QCD phase transition, diluting the axion density. This invalidates the usual cosmological
bound on fa of Eq. (1.2) and in this section we compute the axion dark matter abundance in
SaxiGUTs. We begin by summarizing the relevant cosmological evolution, illustrated in Fig. 2.

After inflation the saxion field remains fixed at σi due to Hubble friction until the Hubble
parameter drops to 3H ∼ ms when it starts to oscillate at temperature

T (s)
osc =

(
10

π2g∗(T
(s)
osc)

)1
4 √

msMPl, (5.1)

where g∗(T ) is the effective number of degrees of freedom in the thermal bath at temperature
T . This happens during an early Radiation Dominated era (RD′). Once the saxion field starts
oscillating, its energy density red-shifts as non-relativistic matter and thus decreases as a−3,
where a is the scale factor of the FRW metric. It eventually dominates over radiation, and the
universe enters an early matter-dominated (MD) era at temperature TM where the saxion and
radiation energy densities are equal

m2
sσ

2
i

(
TM

T
(s)
osc

)3

=
π2

30
g∗(TM) T 4

M . (5.2)
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Figure 2: A summary of different eras in saxion cosmology.

Assuming g∗(T
(s)
osc) ≈ g∗(TM), we find

TM = 3

(
10

g∗(TM)π2

)1
4 m

1/2
s σ2

i

M
3/2
Pl

. (5.3)

This MD era consists of two phases – adiabatic (MDA) and non-adiabatic (MDNA), as detailed
in Ref. [27]. During the MDA phase, the radiation energy density is dominated by the red-
shifted initial radiation, with the saxion decay products providing a sub-dominant contribution.
However, the relativistic decay products of the saxion eventually become the dominant form of
radiation at temperature

TNA =

(
33 55/4

227/4π9/2

q4
µD2µ8σ2

iM
1/2
Pl

m
3/2
s V 4

PQ g∗(TR) g∗(TM)1/4

)1
5

' 0.2 GeV q4/5
µ

(
D
4

)2
5 ( µ

3 TeV

)13
10

(
µ

ms

) 3
10
(

σi
VPQ

)2
5
(

2× 1016 GeV

VPQ

)2
5

,

(5.4)

where we used g∗(TR) = 10.75 and g∗(TM) = 228.75 for the full SM and MSSM values. At
temperatures below TNA, saxion decays reheat the universe and a large amount of entropy is
released. Finally, most of the saxions decay when H ∼ Γs at the reheat temperature

TR =

(
90

π2g∗(TR)

)1
4 √

ΓsMPl '
(

90

π2g∗(TR)

)1
4 qµ
√
D

4
√
π

µ2M
1/2
Pl

VPQ
√
ms

, (5.5)

where D denotes the number of final states kinematically accessible in saxion decay and in the
second expression we recall that Γs is dominated by Γs→ visible. This reheat temperature plays a
key role in our analysis of the cosmological axion abundance and its dependence on µ, as well
as other dimensionless parameters, is shown in the right panel of Fig. 3. It is remarkable that
the relevant range of TR that leads to the observed dark matter results for µ of order (1 − 10)
TeV. After saxion decay, the Universe returns to a Radiation Dominated era (RD). The saxion
cosmology described in this section is summarized in Fig. 2.
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5.1 Analytic Results

The cosmological axion abundance depends sensitively on the turn-on of axion field oscillations.
In SaxiGUTs this occurs during the saxion MD era at a lower temperature than in the usual
RD case. We assume the temperature dependance of the axion mass takes the form

ma(T ) =

{
ma(0)

(
Λ
T

)n
T ≥ Λ

ma(0) T ≤ Λ
(5.6)

ma(0) = 6 eV

(
106GeV

fa

)
, (5.7)

where Λ is the QCD phase transition scale. A lattice calculation in the quenched approximation
gives 2n ' 6.8 [28], in good agreement with the dilute instanton gas approximation. However,
including light dynamical quarks leads to a much lower value, 2n = 2.7 [29]. We show results
for both results and take Λ = 150 MeV. These lattice results have a limited domain of validity
in temperature, but are sufficient for axion oscillations in the MD era.

We calculate the axion abundance from the misalignment mechanism and saxion dilution
following Ref. [13]. The calculation is simplified by employing the adiabatic condition that,
despite the varying axion mass, the number densities of both the axion and saxion scale the
same way as a−3 after the axion starts to oscillate at temperature T

(a)
osc . For convenience, we

define ξ ≡ ma(T
(a)
osc )/ma(TR) ≤ 1. If T

(a)
osc ≤ Λ, ξ = 1; otherwise, ξ = (Λ/T

(a)
osc )n. We obtain the

axion abundance by

ρa
s

∣∣∣
TR

=
3

4

ρa
ρs

∣∣∣∣
TR

TR =
3

4

ρa
ρs

∣∣∣∣
T

(a)
osc

TR
ξ

=
9

8

f 2
aθ

2
i

M2
Pl

TR
ξ
, (5.8)

where we have taken into account the varying axion mass by ξ and used ρa(T
(a)
osc ) = m2

a(T
(a)
osc )f 2

aθ
2
i /2

as well as the saxion energy density ρs(T
(a)
osc ) = m2

a(T
(a)
osc )M2

Pl/3. Setting the axion abundance
equal to that of the observed DM gives

Te =
3

2

f 2
aθ

2
i TR

M2
Plξ

(5.9)

Ωah
2 = 0.12 θ2

i ξ
−1

(
fa

9× 1014 GeV

)2(
TR

3 MeV

)
(5.10)

where Te ≈ 0.6 eV is the usual temperature of matter radiation equality.
To find T

(a)
osc one can make use of the temperature scaling of the saxion energy density during

the MDNA era, ρs ∝ T 8 [27], and of the Hubble constant 3H ∼ ma(T
(a)
osc ) at the time of axion

oscillation as well as H ∼ T 2
R/MPl at the end of reheating

ρs(T
(a)
osc )

ρs(TR)
=

(
T

(a)
osc

TR

)8

=
m2
a(T

(a)
osc )M2

Pl/3
π2

30
g∗(TR)T 4

R

(5.11)
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T (a)
osc =

(√
10

π

ma(0)ΛnMPlT
2
R√

g∗(TR)

) 1
4+n

for T (a)
osc ≥ Λ, (5.12)

and the results for T
(a)
osc ≤ Λ can be easily obtained by setting n = 0. This can be used to show

that the particular choice of parameters in Eq. (5.10) corresponds to T
(a)
osc < Λ and thus ξ = 1.

From Eq. (5.12), we can find the condition for T
(a)
osc = Λ gives a critical value for TR

T
(c)
R = 10 MeV

(
Λ

150 MeV

)2(
fa

1015 GeV

)1
2
(
g∗(TR)

10

)1
4
, (5.13)

shown as the blue dotted lines in Fig. 4. This demonstrates that, for the range of TR of interest,
the axion can oscillate before or after QCD phase transition; in the former case, the use of
Eq. (5.6) is needed. The axion oscillation temperature in Eq. (5.12) leads to

ξ−1 =

(√
10

π

ma(0)MPlT
2
R

Λ4
√
g∗(TR)

) n
4+n

for T (a)
osc ≥ Λ (5.14)

which together with Eq. (5.10) gives the axion dark matter abundance for any scenario.

In the analytic and numerical analyses, we have assumed TNA > T
(a)
osc so that axions oscillates

in the MDNA era. For a choice of TR, σi and ms, TNA = (TMT
4
R)1/5 [27] can be calculated using

Eq. (5.3). Similarly, for a given TR and fa, one can find T
(a)
osc from Eq. (5.12). These results

for TNA and T
(a)
osc are shown in Fig. 3, where the blue band is TNA with ms varying from 250

GeV to 10 TeV, each for a difference value of σi, while the yellow band is T
(a)
osc with fa ranging

from 3× 1014 GeV to 3× 1016 GeV. Fig. 3 clearly justifies the assumption that the axion always
starts to oscillate during the MDNA era. Fig. 3 also shows that T

(a)
osc is sufficiently small for the

validity of the lattice results of [28] and [29].

5.2 Numerical Analysis and Results

We begin by giving the equations for the evolution of the cosmological background, of radiation
and matter, during the epoch where axion field oscillations turn on and undergo dilution. We
include the temperature dependence of g∗(T ) which is strong near the QCD phase transition.

The starting point is entropy production from the matter decay

dS = d(sa3) = d

(
2π2

45
g∗(T )T 3a3

)
=

dQ

T
=
ρMΓMa

3dt

T
(5.15)

and by the chain rule we obtain

2π2

45
T 3

(
dg∗(T )

dT
T + 3g∗(T )

)
dT

dt
= ρMΓM −

2π2

15
g∗(T )T 4H. (5.16)
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Figure 3: Left Panel: the two blue bands represent TNA with ms varying from 250 GeV to
10 TeV, each with a different choice of σi. The yellow band is the possible range of the axion
oscillation temperature with black lines referring to different fa used in the calculation. The
red shaded region is excluded by BBN. Right Panel: The value of µ(µ/ms)

1/3 needed for a
given TR using Eq. (5.5) with different values of (qµ/c)

√
D/4. The black dashed lines are for

V5 = 2× 1016 GeV while the color bands are created from varying V5 by a factor of 2 each way.
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The matter energy density ρM evolves according to

ρ̇M + 3HρM = −ΓMρM , (5.17)

where ΓM is the matter decay rate, and the Friedman equation is

H =

√
ρM + π2

30
g∗(T )T 4

√
3MPl

. (5.18)

In the case of constant g∗, Eq. (5.16) reduces to ρ̇R + 4HρR = ΓMρM where ρR = π2

30
g∗(T )T 4 is

the radiation energy density. In our numerical calculation, g∗(T ) is computed using the masses of
the SM particles and of the SUSY particles, assumed degenerate at 1 TeV. The initial condition
for ρM is set at some high temperature Ti = 1016 GeV, which does not affect the axion dark
matter density as long as T

(a)
osc < TNA (see Ref. [27]),

ρMi =
π2

30
g∗(TM)TM T 3

i (5.19)

where TM is defined in Eq. (5.3) and g∗(Ti) = g∗(TM) = 228.75. The majority of the saxions
decay when the Hubble constant is comparable to its decay rate. Since ΓM ' Γs→visible, we can
trade ΓM for the reheat temperature TR using Eq. (5.5). The above equations allow a numerical
evaluation of the cosmological background, in particular of H(T ).

The axion field oscillation and energy density equations are

ϕ̈+ 3Hϕ̇ = −m2
afa sin(ϕ/fa) (5.20)

ρa(t) =
1

2

(
m2
a(t)ϕ

2(t) + ϕ̇2(t)
)

(5.21)

with H(T ) determined above and ma(T ) given in Eq. (5.7). These are evolved from initial
conditions ϕi = fa θi and ϕ̇i = 0. Since the axion starts to oscillate in the MDNA era, TM is
irrelevant [27]. Furthermore, Eq. (5.3) implies that the saxion initial oscillation amplitude σi
does not affect the axion oscillation either. As a result, in this calculation, the free parameters
are TR, fa, and, θi. Requiring the axion abundance to be equal to the observed dark matter
abundance

ρa
s

∣∣∣
TR

= Te, (5.22)

determines the misalignment angle for each given (TR, fa), giving the contour plot of Fig. 4. For
θi of order unity, fa can be as high as 2 × 1015 GeV without upsetting the BBN bound, which
then allows VPQ to be as high as the GUT scale with NDW ∼ 10.

Since PQ breaking occurs before inflation, the initial axion field misalignment angle θi has
a flat prior distribution between −π and π. As a result, the probability of having |θi| ≤ xπ (for
0 ≤ x ≤ 1) is x; in other words, the medium value of θi is π/2. In particular, the range of θi(

1

2
− 1

2
√

3

)
π ≤ θi ≤

(
1

2
+

1

2
√

3

)
π (5.23)
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Figure 4: Contour lines of the misalignment angle that give the observed dark matter abundance;
the left (right) panel is for 2n = 2.7 (6.8) for Eq. (5.6). The green band refers to the 1σ range
of θi of Eq. (5.23). The orange (blue) band, for NDW/c = 10 (50), shows the range of fa
corresponding to V5 = (1− 4)× 1016 GeV.

corresponds to 1σ deviation around the medium value, covering 58% probability. Using this
range, and trading TR for µ(µ/ms)

1/3 using Eq. (5.5) for specified qµ/c, we can turn our results
into a prediction for Ωah

2 as a function of µ(µ/ms)
1/3 for VPQ = cV5, as shown in Fig. 5. Hence

µ is expected to be of order (1 − 10) TeV unless θi is fine-tuned. The lower panels show that
larger values of qµ/c allow µ less than 1 TeV. It is important to note that this prediction is
insensitive to the µ/ms ratio, due to its appearance as the 1/3 power.

6 Dark Radiation

The decays of the saxion to the axion will contribute to dark radiation [30]. The effective number
of neutrino species Neff is defined as follows.

ρR = ργ + ρν + ρa =

(
1 +

7

8

(
4

11

)4/3

Neff

)
ργ (6.1)

∆Neff ≡ Neff −Nν =
8

7

(
11

4

)4
3 ρa
ρν

ρν
ργ

= Nν
ρa
ρν

= 3
ρa
ρν
, (6.2)
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Figure 5: Axion dark matter abundance as a function of µ(µ/ms)
1/3. The horizontal grey band

is the observed abundance, while the color bands correspond to the 1σ range of θi given in
Eq. (5.23). Here µ/ms has been set to 1 for calculating the phase space of the saxion decay and
we assume the saxion can only decay to the SM Higgs and gauge bosons, i.e. D = 4.
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where we know the number of neutrino species Nν = 3 and ρa is the additional contribution
from other relativistic species – the axion in this case. Eq. (6.2) is to be evaluated at Tν dec ∼ 1
MeV, the temperature of neutrino decoupling. The neutrino energy density can be obtained
from that of SM,

ρν(T ) = 3× 2× 7

8

ρSM(T )

g∗(T )
, (6.3)

which holds for T ≥ 1 MeV. We define εa as the ratio of the axion energy density ρa to that
of the standard model ρSM . We assume the saxion energy only goes to those of the axion and
SM via saxion decay. Since the saxion decay is the dominant source of both ρa and ρSM , εa is
simply given by the branching ratios of the saxion,

εa ≡
ρa(TR)

ρSM(TR)
=

Γs→aa
Γs→visible

=
1

4D

(
κ

qµ

)2(
ms

µ

)4

. (6.4)

Furthermore, we ignore the mild change of g∗ from TR to Tν dec and this allows us to use Eq. (6.4)
for Tν dec. Using the above axion and neutrino energy densities, one finds

∆Neff =
4

7
εa g∗(Tν dec) =

g∗(Tν dec)

7D

(
κ

qµ

)2 (
ms

µ

)4

(6.5)

=
43

112

(
4

D

)(
g∗(1 MeV)

10.75

)(
κ

qµ

)2 (
ms

µ

)4

. (6.6)

The Planck experimental bound [31] is ∆Neff < 0.6, which equivalently gives a constraint on
the ratio µ/ms

µ

ms

> 0.9

(
κ

qµ

)1
2
(

4

D

)1
4
(
g∗(1 MeV)

10.75

)1
4
. (6.7)

The proposed experiment Stage-IV CMB [32] can be sensitive to ∆Neff = 0.04. This result is
plotted in Fig. 6.

7 Proton Decay

In supersymmetric theories violation of baryon number can occur via operators of dimension 4
and 5. In SU(5) theories superpotential interactions of the form T F̄ F̄ and TTT F̄/M∗ must be
very highly suppressed to avoid disastrous proton decay, where T, F̄ are the 10 and 5 dimensional
representations of matter, even when M∗ is taken to be the Planck scale. In SaxiGUTs the PQ
charge of the operator TTT F̄ is determined to be qµ and since this is necessarily non-zero the
PQ symmetry always forbids this operator. The operator T F̄ F̄ is also forbidden by the PQ
symmetry as long as F̄ and H̄ have different PQ charges. Indeed, this PQ charge difference
between F̄ and H̄ provides a distinction between lepton and Higgs doublets, forbidding the
operator HF̄ and ensuring that R parity is conserved. Once PQ is spontaneously broken
the color triplets in H and H̄ acquire a mass and their exchange generates the dimension 5
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0.6, for κ/qµ = 1 (0.1). Future Stage-IV CMB experiments reaching a sensitivity of ∆Neff = 0.04
will probe the theory to the corresponding dashed lines. The saxion decay branching ratios are
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operator TTT F̄ . Even though the corresponding proton decay amplitude is suppressed by small
Yukawa couplings, this leads to excessive proton decay in the minimal supersymmetric SU(5)
theory. However, in SaxiGUTs this contribution to proton decay can easily be reduced below
the experimental limit by a combination of raising the Higgs triplet mass, raising superpartner
masses and flavor suppression. The resulting signal may be close to the present limit, but is
highly model-dependent.

Hence we focus on proton decay from dimension-six operators, induced by the exchange of
SU(5) X gauge bosons, that are tightly constrained in SaxiGUTs. The inverse decay rate for
p→ e+π0 is given by [33]

τp = Γ−1(p→ e+π0) = 1.6× 1035 yrs

(
0.012 GeV3

αH

)2(
1/25

αG

)2(
2.5

AR

)2(
MX

1016 GeV

)4

(7.1)

where αH ' 0.01 GeV3 is the nuclear matrix element relevant for proton decay, αG = g2
5/4π

with g5 the unified gauge coupling. The renormalization factor of the effective dimension-six
proton decay operator is AR, and MX is the mass of X

MX = g5V5 = g5
VPQ
c

=
g5NDW√

2 c
fa. (7.2)

A probabilistic prediction of this decay width is obtained by converting the fa axis of Fig. 4 into
τp using Eqs. (7.1) and (7.2). The result is given in Fig. 7 for g5 = 0.7, which also includes the
experiment bound of 8.2× 1033 years from Super-Kamiokande [34].
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8 Isocurvature Perturbations and CMB Tensor Modes

In SaxiGUTs both PQ and unified gauge symmetries are broken at a scale near 2× 1016 GeV.
Here we investigate whether the energy scale of inflation, EI = ρ

1/4
I , could also be of this size so

that unified, axion and inflation physics all occur at the same scale. This is further motivated
by the observation that if the observed tilt, ns − 1, in the scalar density perturbations, As, has
a significant contribution from the slow roll parameter ε, requiring ε ∼ 10−2, then consistency
with the magnitude of As leads to EI ∼ 2× 1016 GeV.

The energy scale of inflation is a key quantity for two cosmological observables, the ratio of
tensor to scalar density perturbations

r =
At
As
' 0.2

(
EI

2× 1016 GeV

)4

(8.1)

and the isocurvature density perturbation in theories with axion dark matter and PQ symmetry
broken during inflation

Piso =

(
2δθ

θi

)2

with δθ ' E2
I

2π
√

3f IaMPl

(8.2)

where f Ia is the axion decay constant during inflation and MPl = 2.4 × 1018 GeV. These two
observables arise from quantum fluctuations in the metric and axion fields during inflation, and
the observational limits are r < 0.2 [35] and Piso < 7× 10−11 [35].

In theories of misalignment axion dark matter with PQ symmetry broken before inflation
and f Ia = fa Eq. (8.2) gives Piso ∝ (E2

I /θifaMPl)
2. In the absence of axion dilution from the

decay of a condensate, all values of θi and fa that yield the observed dark matter abundance
lead to a bound EI � 1016 GeV from the observational limit on Piso. Eq. (8.1) then implies
there is no prospect of discovering B-modes in the microwave background. Furthermore, the
resulting low value of ε may require a high degree of tuning in the inflaton potential.

In SaxiGUTs two effects allow much larger values of EI to be consistent with Piso. First,
dilution of the axion abundance by saxion decays allows θi of order unity for large values of fa of
order 1015 GeV. Second, evolution of the saxion field after inflation allows f Ia > fa [36] . Using
f Ia = (

√
2/NDW)σi, where σi is the initial saxion field value during inflation, the limit from Piso

becomes

EI < 1016 GeV

(
θi
2

)1
2
(

10

NDW

)1
2
(

σi
3.2× 1018 GeV

)1
2

(8.3)

allowing EI ∼ (VPQ, V5) for σi ∼ M∗ ∼ 1018−19 GeV. From the analysis of Sec. 3 for the initial
condition from inflation, case 2 with σi ∼ M∗ allows a larger EI compared to case 1 with
σi ∼ VPQ. While observation of r is not possible in conventional theories of axion dark matter,
it becomes an exciting prospect for SaxiGUTs. Furthermore, SaxiGUTs with EI ∼ (VPQ, V5)
and large σi predict isocurvature perturbations close to the present limit

Piso ' 7× 10−11

(
EI

1016 GeV

)4(
2

θi

)2(
NDW

10

)2(
3.2× 1018 GeV

σi

)2

. (8.4)
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9 A Summary of Predictions

We have introduced a class of supersymmetric grand unified theories having PQ symmetry
broken at VPQ = cV5, where V5 is the SU(5) breaking scale of gauge coupling unification and c
is order unity. The PQ phase transition occurs before inflation, which sets the saxion field to
a value generically of order VPQ or larger relative to its present value. This leads to an era of
saxion oscillations with a reheat temperature of order 10 MeV, implying that axion oscillations
from misalignment occur in a matter-dominated era and are significantly diluted. SaxiGUTs
predict the observed dark matter abundance for a supersymmetry breaking scale of order 1-10
TeV and a domain wall number NDW ∼ 10 − 100, typical for such unified theories. These and
other predictions are summarized below.

• A low reheat temperature. The decay of the saxion condensate via interactions proportional
to the µ term, which has non-zero PQ charge qµ, leads to a reheat temperature

TR ' 3.5 MeV
qµ
c

(
D
4

)1
2 ( µ

3 TeV

)3
2

(
µ

ms

)1
2
(

2× 1016 GeV

V5

)
(9.1)

where D counts the number of final states in saxion decay and is 4 for decays to h, W±

and Z bosons, and ms is the saxion mass. This correlation between TR and µ is shown in
the right panel of Fig. 3.

• High fa. The axion dark matter abundance is closely related to fa, as shown in Eq. (5.10),
as fa determines the present value of the axion mass. The resulting prediction for fa is
shown in Fig. 4. For θi ' 1, fa varies in the interval (0.2− 2)× 1015 GeV as TR decreases
from 100 MeV to 3 MeV. However, consistency with VPQ ∼ V5 favors low TR, and for
NDW/c < 50 we find the 1σ range of θi gives fa in the range (0.4− 3)× 1015 GeV. Smaller
θi allows larger fa: θi = 0.1 allows fa as large as 1016 GeV.

Axion dark matter leads to oscillating nuclear electric dipole moments that could be de-
tected via nuclear spin precession [37]. With established techniques, phase 2 of the pro-
posed CASPEr experiment could probe fa >∼ 6×1015 GeV, and the entire range of interest
to SaxiGUTs could be tested in further experiments if technical challenges can be over-
come [37]. A new detection method was proposed in Ref. [38] by exploiting the axion
response in a static magnetic field. This new idea probes the axion coupling to photons,
and the estimated reach is fa >∼ 1013 GeV. Black hole superradiance already suggests a
limit fa <∼ 2×1017 GeV [39, 40] and, with the discovery of gravitational waves from collid-
ing black holes, the prospect of searching for signals at lower fa is exciting. For black hole
masses of 2M�, Advanced LIGO could probe down to fa of around 2× 1016 GeV [39, 40]
and, if black holes of mass M�/3 are produced, future gravity wave detectors could probe
fa as low as 3× 1015 GeV.

• Axion dark matter. Axion misalignment with initial angle θi, followed by dilution from
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saxion decay, leads to a prediction for the amount of axion dark matter

Ωah
2 ' 0.11 θ2

i qµc

(
D
4

)1
2
(

35

NDW

)2 ( µ

3 TeV

)3
2

(
µ

ms

)1
2
(

V5

2× 1016 GeV

)
. (9.2)

For θi, qµ and c of order unity, this is consistent with providing the entire observed dark
matter abundance for µ ∼ 1 − 10 TeV and NDW ∼ 10 − 100. The numerical result for
Ωah

2 is shown over the parameter space in Fig. 5.

• TeV-scale supersymmetry. Supersymmetry breaking is connected via electroweak symme-
try breaking to µ, which is predicted from Eq. (9.2) and has leading scaling behavior

µ ' 3 TeV
1

θi
√
qµc

(
NDW

30

)
. (9.3)

The power law dependence of Eq. (9.2) on µ provides a more powerful constraint on
raising the supersymmetry breaking scale than is provided by logarithmic gauge coupling
unification. A large misalignment angle in a simple SaxiGUT with low NDW may lead to
signals at Run-2 of LHC. As µ is lowered, consistency of Eq. (9.1) with BBN requires a
raising qµ/cV5.

• Dark Radiation. Saxion decay to axions leads to a contribution to dark radiation that
depends on κ/qµ, where κ is defined in Eq. (4.6). The constraint from Planck of ∆Neff <
0.6 is shown in Fig. 6 together with the parameter space that will be probed by future
experiments reaching ∆Neff < 0.04. The region that can be probed is not large; however,
it corresponds to the lowest values of µ currently allowed (for any fixed values of the other
parameters).

• Proton Decay. The prediction for Γ−1(p → e+π0) from X gauge boson exchange as a
function of TR is shown in Fig. 7 for the 1σ range of θi and αG = 1/25. This prediction is
obtained by normalizing MX to the observed abundance of dark matter, not from gauge
coupling unification. The only other parameter relevant for this prediction is NDW/c. For
NDW/c < 10 and the 1σ range of θi, consistency between the dark matter abundance and
gauge coupling unification requires TR <∼ 10 MeV, and Fig. 7 shows that such parameters
will give a signal in the next generation of experiments searching for proton decay.

• Cosmic Microwave Background. SaxiGUTs with a large saxion condensate during infla-
tion, σi ∼ 1018−19 GeV, allow an energy scale of the vacuum energy during inflation is of
EI ∼ 1016 GeV, close to the symmetry breaking scales V5 and VPQ. Future experiments
may then discover both isocurvature density perturbations that arose during inflation from
quantum fluctuations in the axion field, as in Eq. (8.1), and B-mode polarization of the
CMB radiation, as in Eq. (8.4).

These diverse phenomena are correlated because SaxiGUTs provides a unified framework for
dark matter, the strong CP problem, the TeV scale, gauge unification and inflation.
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A Axion Supermultiplet Interactions and Saxion Decays

In this Appendix we give details about the EFT introduced in Sec. 4. We give the EFT La-
grangian and then we use these interactions to compute the saxion decay widths given in the
main text of this work. The interactions of the axion supermultiplet described by Eq. (4.2) of
Sec. 4 must respect the shift symmetry described by Eq. (4.3). We divide the interactions into
three categories: Kähler potential, superpotential and SUSY breaking.

We work in the basis where the fields Φi are canonically normalized

K =
∑
i

Φ†iΦi . (A.1)

The Kähler potential interactions for the axion superfield A are derived by substituting the PQ
breaking fields expansion (4.4) around the vacuum into Eq. (A.1)

K =
∑
i

v2
i exp

[
qi

(
A+A†

VPQ

)]
= A†A+

1

2

∑
i

q3
i v

2
i

V 3
PQ

A†A (A+A†) + . . . . (A.2)

The first equality does not contain any approximation, and we observe that the Kähler potential
depends only on the combination A+A†, consistently with the shift symmetry in Eq. (4.3). The
second equality involves the Taylor expansion up to cubic terms. The quadratic piece ensures
that the axion superfield is canonically normalized. The cubic terms gives the interaction in
Eq. (4.5) responsible for the saxion decay to two axions with decay width as in Eq. (4.7).

Superpotential interactions for the axion superfield alone are forbidden. Holomorphy imposes
that we can only have functions of A and not A†, which are not PQ invariant. However, we are
interested in DFSZ theories where the combination HuHd is PQ charged and therefore a µ is
obtained only through PQ breaking. Defining qµ as the PQ charge of the µ term, we have the
superpotential interaction

W = µ exp

[
qµ
A

VPQ

]
HuHd = µHuHd + qµ

µ

VPQ
AHuHd + . . . . (A.3)

The cubic term in the Taylor expansion induces saxion decays to Higgs bosons through the
scalar potential interactions

V
(SUSY)
sHuHd

=
√

2 qµ
µ2

VPQ
s
(
H†uHu +H†dHd

)
. (A.4)
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Finally, a soft SUSY breaking Bµ term must be present in our theory in order to break the
electroweak symmetry. Moreover, this scalar potential term alone also violates PQ. We introduce
the SUSY breaking spurion superfield X = θ2Bµ, and we write down the PQ invariant and
SUSY breaking interaction

W���SUSY = −X exp

[
qµ
A

VPQ

]
HuHd . (A.5)

Neglecting for a moment the axion superfield, this operator induces the B-term

V���SUSY = −
∫
d2θW���SUSY + h.c. = BµHuHd + h.c. (A.6)

The same operator also generates an interaction between the saxion and two Higgs bosons. As
usual, we Taylor expand to linear terms in the A superfield and we find the scalar potential
contribution

V
(���SUSY )
sHuHd

= qµ
Bµ

VPQ

s√
2

(HuHd + h.c.) . (A.7)

The visible decay channels for the saxion are to Higgs bosons. The Higgs doublets Hu and
Hd contain a total of 8 real scalar degrees of freedom, with 3 Goldstone bosons (G± and G0)
eaten up by the EW gauge bosons. The remaining spectrum consists of two CP-even neutral
scalar (h and H), one CP-odd neutral scalar (A) and one charged scalar (H±). We organize
these degrees of freedom by introducing the two doublets

HSM =

(
G+

v + h+iG0
√

2

)
, (A.8)

HHeavy =

(
H+iA√

2

H−

)
. (A.9)

The field HSM is just the SM Higgs doublet, which includes the EWSB vev v = 174 GeV. The
extra scalars all reside inside HHeavy. The pseudo-scalar mass

m2
A =

2Bµ

sin 2β
, (A.10)

with tan β = vu/vd, is the parameter controlling how far we are from recovering the SM. In the
decoupling limit mA � mZ , which is always the case we are interested in, the gauge eigenstates
can be compactly expressed in terms of the mass eigenstates

Hu = sin β HSM + cos β H̃Heavy , (A.11)

Hd = cos β H̃SM + sin β HHeavy , (A.12)

where we define H̃SM = iσ2H∗SM and the same for H̃Heavy.
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Saxion visible decays are described by the operators in Eqs. (A.4) and (A.7). We express
these interactions in terms of the mass eigenstates, and the final results of this procedure read

VsHH =
√

2 qµ
µ2

v
s
[
H†SMHSM +H†heavyHheavy

]
+

− qµ
Bµ

v

s√
2

sin 2β

[
H†SMHSM −H†heavyHheavy +

1

tan 2β
(HSMHheavy + h.c.)

]
.

(A.13)

The first and second rows give the SUSY preserving and breaking contribution, respectively.
There are three different types of decays to Higgs bosons, according to the multiplicity of SM
particles in the final state, which can range from zero to two. For decays to SM final states

Γs→hh = Γs→ZZ =
1

2
Γs→WW =

q2
µµ

4

16πmsV 2
PQ

(
1− 1

4

m2
A

µ2
sin2 2β

)2

, (A.14)

where we have used Eq. (A.10) to trade B with mA. Here, decays to electroweak gauge bosons
are evaluated in the Goldstone equivalence limit. Likewise, the decay to a pair of heavy Higgs
bosons can be computed from the interactions in Eq. (A.13), giving a decay width

Γs→HH = Γs→AA =
1

2
Γs→H+H− =

q2
µµ

4

16πmsV 2
PQ

(
1 +

1

4

m2
A

µ2
sin2 2β

)2

. (A.15)

Finally, the saxion has also the option of decaying to final states composed of one SM particle
and one heavy Higgs boson. The decay widths for these cases read

Γs→hH = Γs→AZ = Γs→W+H− = Γs→W−H+ =
q2
µm

4
A

512πmsV 2
PQ

sin2 4β . (A.16)

To summarize, saxion decay rates to visible matter are quantified by Eqs. (A.14), (A.15)
and (A.16). These expressions are completely general and they only assume the validity of the
decoupling limit regime mA � mZ . The total width for visible channels depends on the saxion
mass with respect to mA, which determines how many channels are kinematically available. For
saxion mass values such that only SM final states are possible we have the saxion visible width

Γs→ visible|D=4 =
q2
µµ

4

4πmsV 2
PQ

(
1− 1

4

m2
A

µ2
sin2 2β

)2

, ms . 2mA . (A.17)

Here, D = 4 denotes the number of allowed particles in the final states. On the contrary, for
saxion mass above the heavy Higgs bosons threshold we have the saxion visible width

Γs→ visible|D=8 =
q2
µµ

4

2πmsV 2
PQ

(
1 +

m4
A

16µ4
sin2 2β

)
, ms & 2mA . (A.18)

In this work we use the large tan β limit of these expressions, which gives Eq. (4.9).
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