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We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and
neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different
pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron
at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence
on the quark mass is also mild and a reliable chiral extrapolation can be performed along with
the infinite volume extrapolation. Our result is αphys

K0 = 0.356(74)(46) × 10−4 fm3. In contrast, for
neutron the electric polarizability depends strongly on the volume. After removing the finite volume
corrections, our neutron polarizability results are in good agreement with χPT. For the connected
part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume
effects, but likely sea quark charging effects.

PACS numbers: 12.38.Gc

I. INTRODUCTION

Hadron electromagnetic polarizabilities encode impor-
tant information about the distribution of charge and cur-
rent densities inside the hadrons. Experimentally these
parameters are extracted using cross-sections measured in
Compton scattering reactions with theoretical input from
effective models and dispersion relations. Lattice QCD
can provide first-principles-based results for static polar-
izabilities directly as predicted by quark-gluon dynamics.
This input is particularly important for unstable hadrons,
where experimental and theoretical uncertainties in the
effective models are large.

At the lowest order the effects of an electromagnetic
field on hadrons can be parameterized by the effective
Hamiltonian:

Hem = −~p · ~E − ~µ · ~B − 1

2

(
αE2 + βB2

)
+ · · · , (1)

where p and µ are the static electric and magnetic dipole
moments, respectively, and α and β are the static elec-
tric and magnetic polarizabilities. Due to time reversal
symmetry of the strong interaction, the static dipole mo-
ment, ~p, vanishes. In the presence of a constant electric
field only, the leading contribution to the electromagnetic
interaction comes from the electric polarizability term at
O(E2).

Lattice QCD calculations of electromagnetic polariz-
abilities are challenging since the electromagnetic effects
are small compared to the natural hadronic scale. A good
understanding of all systematic effects is required to en-
sure that the parameters extracted from these calculations
are reliable. To that end, our first goal was to validate our
method by focusing on the neutron electric polarizability.
For neutral hadrons lattice QCD calculations are more
reliable than for charged hadrons since neutral particles
are not accelerated by the external field. On the experi-
mental side results for the neutron are reasonably precise

and effective model predictions are in good agreement
with the experimental data. This makes the lattice QCD
extraction of the electric polarizability of the neutron a
good benchmark study.

In a previous study we computed the electric polar-
izability of the neutron, neutral pion, and neutral kaon
for two different pion masses (306 and 227 MeV) with
a fixed box size of L ' 3 fm [1]. The results we found
were a bit puzzling: the pion polarizability exhibited the
same negative trend observed in other studies both with
dynamical [2] and quenched ensembles [3] and the neu-
tron polarizability was in disagreement with predictions
from chiral perturbation theory [4–7]. We speculated
that corrections due to electrically neutral sea quarks
or finite-volume effects could explain these discrepancies.
A calculation of the polarizability, with the inclusion of
the charged sea quarks, was done on the 306 MeV en-
semble [8, 9]. It was found that charging the sea quarks
does not change the polarizability significantly, which is
aligned with expectations from chiral perturbation theory.
Thus, the discrepancy between our lattice calculation
of the neutron polarizability and the calculation from
χPT remained. In this paper we study the finite-volume
corrections for this quantity.

The paper is organized as follows: In Section II we
present the method used to extract the polarizability
from the lattice for mesons and baryons. This includes
a discussion of our fitting procedure. In Sections III we
present our results of the polarizability for the neutron,
pion, and kaon and discuss the finite-volume corrections.
In Section IV we discuss the quark mass dependence
for the infinite volume extrapolated polarizability and
compare our results with predictions from χPT. Lastly,
in Section V we summarize our results and outline our
plans for future investigations.
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II. METHODOLOGY

A. Background field method

In lattice QCD polarizabilities can be computed using
the background field method [10]: the energy shift induced
by a constant electric field is directly related to the static
electric polarizability. A static electromagnetic field can
be introduced by coupling the vector potential (Aµ) to the
covariant derivative of the Euclidean QCD Lagrangian,

Dµ = ∂µ − igGµ − iqAµ, (2)

where Gµ is the gluon field. On the lattice this is imple-
mented by a multiplicative U(1) phase factor to the gauge
links i.e.,

Uµ → e−iqaAµUµ. (3)

For a constant electric field, one choice for the vector
potential is Ax = Et, where we have used an imaginary
value for the electric field leading to a U(1) multiplica-
tive factor that keeps the links unitary. When using an
imaginary value of the field, the energy shift due to the
polarizability acquires an additional negative sign so that
a positive energy shift corresponds to a positive value of
the polarizability [11].

In this study we use very weak electric fields to extract
the polarizability, so that the energy shift is due to polar-
izabilities rather than higher order terms in the effective
Hamiltonian in Eq. 1. It is possible of course to extract
the polarizability using stronger fields, but this would
require the evaluation of the energy shifts for different
electric field strengths to reliably separate the higher order
corrections. We use Dirichlet boundary conditions (DBC)
for the valence quarks in both the time direction and the
direction of the electric field. This choice of boundary
conditions allows us to chose an arbitrarily small value of
the electric field. In our analysis we use a value of

η ≡ a2qdE = 10−4, (4)

where a is the lattice spacing and qd is the magnitude of
the electric charge for the down quark. One bound on η is
determined by looking at a ±E-symmetrized hadron cor-
relator (see below) at various time slices and determining
the range of η values which exhibit quadratic scaling [1].
A more stringent constraint on η appears when we take
into account the effect of the sea-quark charge via pertur-
bative reweighting [8]. The latter constraint forces us to
use this low η value. In physical terms, this value of η
corresponds to an electric field that an electron would gen-
erate at a distance of 0.5 fm. The value is well within the
quadratic scaling region. Note that the value is about 50
times lower than the lowest quantized value 2π/(Nx×Nt)
corresponding to one unit of electric flux; thus the induced
energy shift is thousands of times smaller. In our study,
the energy shift for the neutron is on the order of keV
out of 938 MeV.

Due to the boundary conditions, the quark and hadrons’
correlators close to the boundaries will behave differently
than in the bulk. These effect are enhanced when the
source is placed close to the walls (see for example the
discussion about correlators with sources close to discon-
tinuities in the non-quantized background fields [2, 13].)
To minimize these effects, we placed the source for our
quark correlators at maximal distance from the spatial
walls and six lattice units from the temporal wall. In
any case, the hadron propagator will be affected by the
walls since the particle in the lowest momentum state will
have a non-zero probability to be within the distortion
region due to the hard walls. Since this region is expected
to have finite range, the corrections will be proportional
with the probability to be in this region, which is will
vanish as we increase the distance L between the walls as
1/L (recall that we only have hard walls in one spatial di-
rection.) These corrections will appear as a finite volume
correction.

To determine the energy shift δE on the lattice we calcu-
late the zero-field (G0), plus-field (G+E), and minus-field
(G−E) two-point correlation functions for the interpolat-
ing operators of interest. The combination of the plus
and minus field correlators allows us to remove any O(E)
effects, which are statistical artifacts, when the sea quarks
are not charged. For neutral particles in a constant elec-
tric field the correlation functions still retain their single
exponential decay in the limit t→∞,

〈GE(t)〉 ≈
t→∞

A(E)e−E(E)t, (5)

where E(E) has the perturbative expansion in the electric
field given by

E(E) = m+
1

2
αE2 + ... . (6)

By studying the variations of the correlation functions
with and without an electric field one can isolate the
energy shift to obtain α.

For spin-1/2 hadrons, the energy shift in a constant
electric field receives a contribution due to the magnetic
moment of the hadron at order O(E2). Thus the static
polarizability α defined by Eq. 6, is not identical to the
Compton polarizability ᾱ that enters the effective La-
grangian for spin-1/2 systems [14]. The relation between
these polarizabilities can be computed [1, 2]. For these
systems the energy expansion reads,

E(E) = m+
1

2
E2

(
ᾱ− µ2

m

)
+ ... , (7)

where ᾱ is the Compton polarizability that we wish to
compute. To account for the magnetic moment we use
the same procedure as we did in a previous study [1].

Since we use Dirichlet boundary conditions, the lowest
energy state corresponds to a hadron moving with a
momentum roughly equal to π/L, which vanishes in the
limit L→∞. When we extract the energy shift from the
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hadron we need to account for the induced momentum
because the energy shift (δE) is not equal to the mass
shift (δm). The two are related via the dispersion relation

E =
√
m2 + p2 by

δm = δE
E

m
, (8)

where m is the zero-momentum mass of the particle which
we calculate using periodic boundary conditions (PBC).
The mass shift δm is then used in Eq. 6 or Eq. 7, to
extract the polarizability.

B. Fitting Method

Since the correlation functions G0, G+E , and G−E are
dominated by a single exponential at large times, we can
use standard spectroscopy techniques to measure the shift
in a hadron’s energy. The only caveat is that the shift is
very small at the field strength used in this study, smaller
than the statistical errors if they were fitted separately.
To overcome the difficulty, we take advantage of the fact
that the three correlators are highly correlated since they
are computed on the same set of gauge configurations. To
do this we construct the combined residue vector from
the individual residue vectors in each sector,

vi ≡ f(ti)− 〈G0(ti)〉,
vN+i ≡ f̄(ti)− 〈G+E(ti)〉, (9)

v2N+i ≡ f̄(ti)− 〈G−E(ti)〉,

where i = 1, · · · , N labels the time slices in the fit window,
f(t) = A e−Et the fitting function in the absence of the
field, and f̄(t) = (A+ δA) e−(E+δE)t the fitting function
in the presence of the field. We minimize the χ2 function,

χ2 = vTC−1v, (10)

for four parameters (A, E, δA, δE) in the usual fashion,
where C is the 3N × 3N jackknifed covariance matrix
which takes into account the correlations both in time
and in the electric field. Specifically, the matrix has a
3× 3 block structure

C =

 C00 C0+ C0−
C+0 C++ C+−
C−0 C−+ C−−

 ,

where 0,+,− represent G0, G+E , and G−E respectively.
Each block is a N × N matrix. The correlations are
encoded in the off-diagonal blocks. Note that the sym-
metrization in the electric field is done implicitly in this
procedure, since f̄ is the same for G+E , and G−E . The
statistical errors on the parameters are derived from the
Hessian of the χ2. This method is used to extract all
parameters presented in this work.

To illustrate the importance of accounting for these cor-
relations, we consider the energy shift δE for the neutron
for one of the ensembles used in this work. Using the full

Label Lattice a (fm) κ Nc Ns

EN1 16 × 162 × 32 0.1245 0.12820 230 11
EN2 24 × 242 × 48 0.1245 0.12820 300 25
EN3 30 × 242 × 48 0.1245 0.12820 300 29
EN4 48 × 242 × 48 0.1245 0.12820 270 37

EN5 16 × 162 × 32 0.1215 0.12838 230 16
EN6 24 × 242 × 64 0.1215 0.12838 450 23
EN7 28 × 242 × 64 0.1215 0.12838 670 33
EN8 32 × 242 × 64 0.1215 0.12838 500 37

TABLE I. Details of the lattice ensembles used in this work.
Nc and Ns label the number of configurations and number
of sources on each configuration, respectively. The top four
ensembles correspond to mπ = 306(1) MeV and the bottom
four mπ = 227(2) MeV.

covariance matrix we find a δE = (4.3± 1.2)× 10−7. If
we neglect the correlations, which is equivalent to using
only the diagonal blocks of the covariance matrix, we find
a δE = (8.15± 150000)× 10−7, which has huge errors.

C. Calculation details

We calculate the electric polarizability for the neutron,
neutral pion, and neutral kaon on eight dynamically gen-
erated ensembles using 2-flavor nHYP-clover fermions [15].
For the neutral pion polarizability we are computing only
the connected contribution to the pion correlation func-
tion, as we had also done in [1]. We used two quark
masses, corresponding to pion masses of 227(2) MeV and
306(1) MeV. For each mass we performed simulations on
four different volumes, to study finite volume effects.

To save time, we varied the dimension of the lattice
only along the electric field (x-direction). We expect that
the finite-volume corrections vanish exponentially in the
transverse directions, and that our lattice is large enough
for these corrections to be negligible at the current preci-
sion level. On the other hand, the corrections associated
with the direction parallel with the electric field are ex-
pected to vanish only as a power law in 1/L. We will
show that our results agree with these expectations.

Details of the ensembles are given in Table I. The
determination of both the lattice spacing and κs, the
hopping parameter for the strange quark that is required
to compute the kaon polarizability, is discussed in detail
in our previous study [1]. We use the same values here:
κs = 0.1266 for ensembles EN1 to EN4; κs = 0.1255 for
ensembles EN5 to EN8.

To reduce the statistical uncertainties we computed
quark propagators at multiple point sources for each con-
figuration. Since the presence of the Dirichlet walls breaks
translational symmetry in the x and t directions, the point
sources have to be picked carefully; they were displaced
with respect to each other using translations in the y and
z directions, which have periodic boundary conditions.

To determine the appropriate time window to fit the cor-
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FIG. 1. Infinite volume extrapolation for neutron polarizability. The left panel shows our results for the mπ = 306 MeV
ensembles and the right panel for the mπ = 227 MeV ensembles. On each plot we overlay the infinite volume extrapolations
using a linear (solid line) or quadratic (dashed line) fit.

relation functions, we varied the start time, tmin and kept
the maximum fit time fixed. For each case we performed
a fit and extracted the hadron’s energy shift, δE, and
the associated χ2/dof. Following the procedure discussed
in [1], we choose the largest fit window that produces
a good quality fit. The fit windows used for each of
the hadrons studied in this paper are listed in Table II.
The computed values for the polarizability of the three
hadrons are presented in Tables VI. In the same table
we include the energy shifts due to the field, the ener-
gies measured in the absence of the field with Dirichlet
boundary conditions, and the masses as extracted using
periodic boundary conditions.

Since we use dozens of point sources for each ensemble,
and for each point source we need to compute the quark
propagator for five different couplings to the background
electric field, we have to compute hundreds of inversions
for each configuration. To compute these efficiently, we
use our implementation of a multi-GPU Dslash opera-
tor [16] and an efficient multi-mass inverter [17].

Ensemble Pion Kaon Neutron

EN1 [10, 19] [10, 19] [8, 21]
EN2 [14, 30] [14, 30] [8, 21]
EN3 [13, 30] [13, 30] [9, 21]
EN4 [14, 30] [14, 30] [8, 21]

EN5 [10, 19] [10, 19] [9, 21]
EN6 [15, 36] [15, 37] [9, 21]
EN7 [15, 37] [15, 37] [10, 21]
EN8 [15, 37] [15, 36] [9, 21]

TABLE II. Fit ranges used in extracting the energy shifts for
the pion, kaon, and neutron.

III. VOLUME DEPENDENCE ANALYSIS

Finite volume corrections have been estimated using
χPT. For periodic boundary conditions these effects were
calculated for electric polarizabilities [18] and magnetic
polarizabilities [19]. At mπ around 250 MeV and L =
3 fm it was estimated that the correction to the neutron
polarizability is about 7% [18]. For Dirichlet boundary
conditions used in this work, no direct χPT predictions
are available. The only estimate comes from sigma model
studies of the chiral condensate in the presence of hard
walls [20]. This choice of boundary conditions is expected
to introduce larger finite volume effects that are expected
to vanish algebraically with 1/Lx in the infinite volume
limit. The expectation is based on the idea that the
corrections are mainly driven by the hadron momentum
π/Lx. To thoroughly analyze the volume dependence we
performed our calculations on four different lattice sizes
for both pion masses.

Since we do not know the analytical form for the finite
volume effects, we fit the polarizability as a function of 1/L
to three different models: constant, linear, and quadratic.
We cannot go beyond the quadratic since we only have
four different lattice sizes. To determine which model fits
the data best we compute the χ2 to gauge the overall
goodness of the fit. In conjunction with the goodness of fit
criteria we use Akaike Information Criterion (AIC) [21],

306 MeV 227 MeV
ᾱn χ2 AIC ᾱn χ2 AIC

Constant 2.18(11) 17.4 19.40 2.77(22) 11.76 13.76
Linear 3.67(38) 0.298 4.30 5.62(91) 1.28 5.28
Quadratic 4.1(1.1) 0.141 6.14 8.9(6.1) 0.99 6.99

TABLE III. Infinite volume extrapolation results for the neu-
tron with three different fit models. The polarizabilities ᾱn
are reported in units of 10−4 fm3.
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which measures the relative quality between different
statistical models and helps in determining whether or
not a model is overfitting the data. The AIC value is
given by

AIC = 2k + χ2, (11)

where k is the number of parameters in the model. For a
given fit model we will sum the values of the AIC for both
pion masses. The model with the smallest AIC value will
be our fit model used subsequently.

A. The Neutron

The extrapolation results for the neutron polariability
are tabulated in Table III. Figure 1 plots our polarizability
results along with the linear and quadratic fits which
had the smallest values for the AIC and good χ2 values.
Both the linear and quadratic models produced consistent
results. However, the linear model produces a smaller
value for the AIC which indicates that the quadratic
model may be overfitting the data. We will use the linear
infinite volume results when discussing the chiral behavior
of the neutron.

The volume dependence analysis assumes that the finite
size effects, due to the electric field, are determined by
the size of the lattice parallel to the applied field (which
is in x-direction for this work). To verify this, we take our
EN4 lattice which has the spatial dimension 48× 242 and
place the electric field along the y-direction which has
only 24 lattice units. We choose this ensemble because the
difference in the x and y directions are the largest which
gives us the best comparison. We expect our results
to be comparable to the results of the EN2 ensemble
which has the spatial dimension 24× 242. We find ᾱn =
2.25(25)× 10−4 fm3, which is statistically equivalent to
the polarizability for the EN2 and significantly different
from the case where we place the field along the Nx = 48
direction. Fig. 2 displays the comparison. We conclude
that the finite volume effects associated with the directions
perpendicular to the field are negligible.

B. Pion and Kaon

The volume dependence analysis for the pion and kaon
proceeds in the same way as the neutron. Fig. 3 shows
our extracted polarizabilities as a function of 1/L for
the pion (top plots) and kaon (bottom plots). We also
plot the results of the constant and linear extrapolations
which were the two models with the smallest values for
the AIC. The results of the extrapolation are tabulated in
Tables IV and V. For the pion we find that the constant
fit model gives the smallest combined AIC values. For the
kaon at mπ = 306 MeV the constant model gives a smaller
value of the AIC than the linear model. However, the
combined result for both pion masses—the AIC coefficient
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FIG. 2. Comparison of the EN2 spatial lattice (24× 242) with
the electric field in the x-direction to the results of the EN4
spatial lattice (48 × 242) with the electric field in both x- and
y-directions. The results confirm that the finite size effects
associated with the directions transverse to the electric field
are negligible.

for the combined fit is the sum of coefficients for the
individual fits—are smaller for the linear model. We
therefore use the linear model for the kaon.

IV. DISCUSSION

In this section we discuss our infinite volume results
for the polarizability of the neutral pion and kaon and
neutron in the context of other calculations on the lattice,
chiral perturbation theory (χPT), and experiment.

For the neutral pion, the results are summarized in
the top panel of Fig. 4. In addition to our dynamical
results, we also show the infinite volume results from our
quenched study [3]. Since the finite volume corrections
are insignificant, the conclusions from our recent study [1]
are unchanged: the polarizability depends very little on
the mass of the sea quarks, but it changes as we vary
the mass of the valence quarks. The puzzling feature
persists: the neutral pion polarizability becomes negative
for mπ ≈ 350 MeV, and its magnitude increases as we
approach the physical point. The negative trend was also
observed by Detmold et al. [2] as indicated by their result
(the blue triangle) at mπ = 400 MeV on the same plot.
It was pointed out in Ref. [2] that the negative value is

306 MeV 227 MeV
απ χ2 AIC απ χ2 AIC

Constant -0.16(6) 0.27 2.27 -0.486(94) 1.67 3.67
Linear -0.20(20) 0.23 4.23 -0.08(36) 0.29 4.29
Quadratic -0.44(61) 0.06 6.06 -1.1(2.5) 0.12 6.12

TABLE IV. Infinite volume extrapolation results for the pion
with three different fit models. The polarizabilities απ are
reported in units of 10−4 fm3.
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FIG. 3. Infinite volume extrapolation for pion (top) and kaon (bottom) polarizability for mπ = 306 MeV (left) and mπ =
227 MeV (right). The two lines are infinite volume extrapolations using a constant (solid line) or a linear (dashed line) fit.

inconsistent with expectations from χPT when only the
connected part of the correlator is included, as is the case
in both lattice calculations. It was speculated in Ref. [2]
that the negative value could arise due to finite volume
effects. Our infinite volume results demonstrate that it
does not seem to be the case. Other effects might be
at play. One possible contribution to this discrepancy
is the fact that the sea quarks are electrically neutral in
these studies. We have investigated the effects of charging
the sea quarks [8], and our initial results hint at this
scenario: we found that the neutral pion polarizability
changes sign as we charge the sea quarks, albeit still with
large statistical errors. Efforts are under way to reduce
the errors. Note that there remains a bit of disagreement

306 MeV 227 MeV
αK0 χ2 AIC αK0 χ2 AIC

Constant 0.132(15) 3.45 5.45 0.197(14) 4.65 6.65
Linear 0.186(47) 1.98 5.98 0.289(55) 1.71 5.71
Quadratic 0.12(15) 1.80 7.8 0.29(42) 1.71 7.71

TABLE V. Infinite volume extrapolation results for the kaon
with three different fit models. The polarizabilities αK0 are
reported in units of 10−4 fm3.

between the trend suggested by our results and the data
from Ref. [2]. It is not clear whether the disagreement is
due to finite volume effects, discretization errors (we use
different actions), or statistical fluctuations. Recently it
was suggested that discretization errors present for Wilson-
type fermions used in this study and the other mentioned
above might be responsible for these puzzles [22]. The
background field changes the value of the additive mass
renormalization and this might lead to energy shifts in
hadron mass unrelated to polarizabilities. A continuum
limit study is required to determine whether this effect
is large enough to explain these puzzles. Ultimately,
the disconnected contribution must also be included to
complete the picture for the neutral pion polarizability.

For neutral kaon our results are presented in the bottom
panel of Fig. 4. In contrast to the pion case, neutral
kaon has a stronger dependence on the sea quarks. In
our previous study we performed a chiral extrapolation
and we found αK0 = 0.269(43) in units of 10−4 fm3 [1].
We perform the same chiral extrapolation using a linear
ansatz in mπ but now using our infinite volume values. We
include the value determined by Detmold et al. [2] since
the finite volume corrections decrease with increasing mπ

and we expect it to be negligible at 400 MeV. We find
αK0 = 0.356(74) × 10−4 fm3, only slightly higher than
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FIG. 4. Top: Neutral pion polarizability as a function of the
quark mass. The circles are quenched results found in [3] and
the triangle is the value determined in [2]. Bottom: Neutral
kaon polarizability along with a chiral extrapolation which
includes the value determined in [2].

the finite volume value, suggesting that the finite volume
corrections are small for the kaon. The relative smallness
of the neutral kaon polarizability is consistent with χPT
which predicts a vanishing value at the one-loop level,
even with electrically neutral sea quarks [23].

We turn the discussion now to the neutron. In the
top panel of Fig. 5 we display the neutron electric polar-
izability as a function of mπ. We compare our results
to two different χPT curves: a N2LO calculation us-
ing a nonrelativistic form for some of the propagators
(HBχPT-NNLO) [7], and a NLO result that uses relativis-
tic propagators (BχPT-NLO) [4]. We see that the value
for mπ = 227 MeV computed on a box with L ≈ 3 fm
disagrees with both curves. After correcting for the fi-
nite volume effects, our results agree very well with the
HBχPT-NNLO curve. In the right panel of Fig. 5 we
show our results together with the experimental value
and compare them with two other lattice results [24, 25]
obtained on finite lattices. We see that our results have
significantly smaller statistical errors even though they
are computed using smaller pion masses and they are
extrapolated to infinite volume.

This analysis demonstrates that finite volume effects
are very important for neutron polarizability. We expect
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FIG. 5. Top: Neutron polarizability as a function of quark
mass. The black empty circles are our finite volume results
presented in [1] and the full circles are our infinite volume
results. The dashed lines are two different χPT calculations:
HBχPT-NNLO [7] and BχPT-NLO [4]. The uncertainties
in the curves are indicated by the shaded regions. Bottom:
Comparison with the experimental value and two other lattice
calculations [24] and [25].

that any other systematic effects are small and that the
calculation, for the pion masses used in this study, is nearly
complete. The discretization effects are expected to be
of the order of one percent as experience with similar
actions indicates [26]. The only remaining significant
systematic error comes from neglecting the charge of
the sea quarks. For the EN2 ensemble, the correction
was already computed [27]. The effect was found to be
small, similar to the size of statistical errors. This is also
supported by a partially quenched χPT calculation [18]:
using the formulas derived in that paper, we find that for
140 MeV ≤ mπ ≤ 300 MeV, neutron electric polarizability
increases by a value of 1.5 to 2 in units of 10−4 fm3, when
the sea quark charges are turned on. This prediction is
shown in Fig. 6. To produce these curves we used the
parameters suggested in the paper, but we had to set
|gN∆| = 0.25 (a value outside the expected range) to
make the “charged” curve go through the experimental
point. Our results, which were derived using neutral sea
quarks, agree very well with the “neutral” curve.
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FIG. 6. Expected sea quark charging effects in the neutron
polarizability. Our infinite volume results are plotted along
with the χPT predictions from [18] with neutral and charged
sea quarks.

Before we conclude, we would like to discuss the sys-
tematic error associated with the choice for the fitting
window. To gauge this error, we extract the energy shift
using two other fit windows—one shifted by one unit in
positive time direction and one shifted in the negative
direction—and repeated the analysis. For the infinite
volume extrapolations we use a linear fit for neutron and
kaon, and a constant fit for the pion. The systematic
error quoted here is the standard deviation of the final
results extracted using our three fit windows. For the
neutron we have ᾱn = 3.67(38)(27) and ᾱn = 5.62(91)(89)
for mπ = 306 MeV and 227 MeV respectively. Similarly,
for neutral pion we have απ = −0.16(6)(6) and απ =
−0.486(94)(46) and for neutral kaon αK0 = 0.186(47)(29)
and αK0 = 0.289(55)(52). The polarizability for neutral
kaon at the physical point is αK0 = 0.356(74)(46). All
the results here are presented in natural units for hadron
polarizabilities of 10−4 fm3, with the first error being
stochastic and the second the systematic due to fit win-
dow. Note that this systematic is smaller or comparable
with the stochastic error.

V. CONCLUSION

We have analyzed the volume dependence of the elec-
tric polarizability α for the neutral pion, neutral kaon,
and neutron on four different lattice volumes at two light
quark masses corresponding to pion masses of 306 and
227 MeV, in the mass region where chiral perturbation
theory predictions are most likely reliable. The novel
aspect of this calculation is that it is the first systematic
study of finite volume effects on polarizability in the pres-
ence of Dirichlet boundaries. These boundary conditions
allow for very weak electric fields in order to avoid a pos-
sible vacuum instability. We also estimate the effects of
charging the sea quarks.

For the neutral pion, our results confirm that the nega-

tive trend in the polarizability is not due to finite volume
effects. Rather, preliminary results indicate that the be-
havior is most likely due to the neglecting of the charge
in the sea quarks. To compare with experiment, the dis-
connected contribution to the neutral pion polarizability
will have to be included.

For the neutral kaon, we performed a similar chiral
extrapolation to the physical point as was done in [1] but
now using the infinite volume extrapolations for αK0 . We
find αK0(mphys

π ) = 0.356(74) × 10−4 fm3 which is only
slightly higher than the value determined on box sizes
L ' 3 fm. This indicates that the volume effects for the
kaon polarizability are relatively mild.

For the neutron we find that the finite volume correc-
tions are important. After removing them, our results are
now in excellent agreement with predictions from chiral
perturbation theory. We have not yet performed a chiral
extrapolation for the neutron since we still need to in-
clude the corrections due to the interactions between the
sea-quarks and the background field. We are currently
investigating the best method to do the extrapolation
using input from χPT.

We are in the process of including the effect of charged
sea quarks in the analysis for all our ensembles. Along
with the infinite-volume extrapolation done here, this
is part of our program geared toward determining the
polarizabilities at the physical point.
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Hadron EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8

α
[10−4 fm3]

π -0.160(10) -0.15(11) -0.13(15) -0.24(0.17) -0.66(17) -0.43(18) -0.35(19) -0.46(23)
K 0.110(22) 0.176(34) 0.120(33) 0.164(40) 0.164(24) 0.222(29) 0.191(28) 0.256(42)
n 1.66(19) 2.23(18) 2.69(37) 3.05(31) 1.86(38) 3.06(37) 3.00(59) 4.26(65)

aδE
[×10−8]

π -3.15(2.00) -3.69(2.77) -3.40(4.13) -7.13(5.09) -11.92(3.07) -10.01(4.24) -9.0(4.8) -12.50(6.27)
K 2.83(57) 5.14(99) 3.47(1.00) 5.22(1.28) 4.84(72) 7.14(94) 6.22(91) 8.82(1.47)
n 33.1(5.0) 53.4(5.4) 72.6(12) 78.9(9.1) 41.65(11.2) 86.2(12.5) 87.8(20.0) 125.3(20.7)

aE
π 0.322(35) 0.251(9) 0.2362(9) 0.2084(9) 0.276(6) 0.207(1) 0.184(1) 0.176(1)
K 0.401(2) 0.3515(8) 0.3566(8) 0.3241(7) 0.433(1) 0.3952(6) 0.392(2) 0.3711(10)
n 0.768(16) 0.696(9) 0.658(10) 0.689(2) 0.710(6) 0.634(4) 0.610(4) 0.619(7)

am
π 0.1986(22) 0.1932(7) 0.1934(8) 0.1938(8) 0.145(3) 0.140(1) 0.138(1) 0.1391(8)
K 0.3235(15) 0.3220(7) 0.3228(8) 0.3229(7) 0.372(1) 0.3698(6) 0.371(2) 0.372(1)
n 0.642(11) 0.644(6) 0.657(8) 0.647(4) 0.622(20) 0.618(13) 0.620(23) 0.60(3)

TABLE VI. Electric polarizabilities, energy shifts due to the field, energies computed with no external field, and masses extracted
from boxes with periodic boundary conditions for the pion, kaon, and neutron for the 8 ensembles used in this study.
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