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Abstract

The exclusive processes are considered, where a point-like source of heavy quark-

antiquark pairs QQ̄, e.g. their electromagnetic current, produces a pair consisting of

a heavy quarkoniumlike exotic meson (tetraquark) or baryon (pentaquark) and a light

meson or an antibaryon. For a sufficiently large mass of the heavy quark mQ there is

a range of the energy E above the QQ̄ threshold, where E ≪ mQ and still the energy

is large compared to the strong interaction scale, E ≫ ΛQCD. It is shown that in

this energy range, where the heavy quarks are nonrelelativistic, a specific ‘intermediate

asymptotic’ behavior sets in determined by the number n of the pairs of constituent

quarks, with the rate scaling as E1−n.



Studies of the asymptotic high energy behavior of amplitudes of exclusive hadronic pro-

cesses go back to the early days of the development of QCD [1, 2]. In particular, it has

then been derived that in the ultrarelativistic regime, i.e. at the energy that is larger than

any hadron masses and the scale of the strong interaction, the power of the energy in the

scaling law for the fall-off the amplitudes for such processes is determined by the minimal

number of constitutuent quarks in the hadrons involved in such processes. This understand-

ing proved to be of a great practical value in numerous studies, e.g. in constructing models

of hadronic form factors and in the studies of analytic properties of the amplitudes. Lately

there has been a revival of interest to application of the same ideas to processes with the

recently found manifestly exotic hadrons containing a heavy quark-antiquark pair in addition

to light constituents, such as the isovector mesonic resonances Z±

b (10610) and Z
±

b (10650) [3]

in the bottomonium sector, the charmoniumlike charged states ψ±(4430) [4, 5], Z±

c (3900) [6],

Z±

c (4020) [7], and the hidden-charm pentaquarks Pc [8]. In particular it has been argued on

the basis of the constituent counting rules [9, 10, 11] that studies of the kinematic behavior

of processes with exotic hadrons can resolve between theoretical models of their internal

dynamics. These arguments however were critically analyzed in a recent paper [12].

The most basic exclusive process of a practical interest involving a heavy exotic resonance

is the hard production of a pair consisting of the exotic hadron and an ordinary light meson

or baryon. Particularly, the production of such pairs in e+e− annihilation, e+e− → ZQ π or

e+e− → PQp̄ with PQ standing for a heavy pentaquark and p̄ is the antiproton, is potentially

observable in experiments at electron-positron colliders, and in fact has been observed with

the mesonic resonances Zc and Zb. Furthermore, the constituent counting rule in its original

form [1, 2] was applied [13, 14] to description of the analytic properties of the production

amplitudes.

Clearly, the scaling behavior, based on neglecting masses of all hadrons in an exclusive

process, becomes applicable only at very high energies if that process involves a heavy quark-

antiquark pair. In particular, at asymptotically high energies a heavy hidden-flavor quark

pair cannot be counted as ‘constituent’, as is pointed out in Ref. [12], since in the leading order

in the energy scale its production by gluons carries no suppression in comparison with light

quark-antiquark pairs. It is clear however that, although formally correct, this conclusion

appears to be only of an academic as opposed to practical interest. Indeed, the production

amplitude falls off with the energy and becomes extremely small in the asymptotic region

where the ultrarelativistic behavior for heavy quarks sets in. At a ‘moderate’ excitation

energy E above the QQ̄ threshold,
√
s = 2mQ + E, where the amplitudes are possibly
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measurable in practice and where the creation and annihilation of heavy quark pairs is not

essential, the behavior of the amplitudes is determined by relation between E and a hadronic

momentum scale µ that determines the dynamics inside the exotic states and inside ordinary

light hadrons 1. In light hadrons the scale µ is of order ΛQCD, while in the hadrons containing

a heavy QQ̄ pair this scale depends on the QCD parameters and the massmQ. In particular it

becomes proportional to αsmQ in the limit of asymptotically heavy quark. In exotic hadrons

with hidden flavors the characteristic momenta can be a mixture of low scales, that can go

to very low values in loosely bound molecular states. Any detailed discussion of the internal

structure of exotic heavy resonances is beyond the scope of this paper, and the notation µ is

used here for a combination of those low momentum scales. It is important for the present

treatment that µ is considered to be much smaller than mQ, which approximation appears to

be reasonably applicable for the bottomonium sector. In the limit E ≫ µ the behavior of the

amplitudes becomes, to an extent, tractable by the standard in QCD methods of separation

of the short- and long-distance dynamics (see e.g. a discussion of factorization in a similar

context in Ref. [12]).

The treatment is further simplified for sufficiently heavy quarks Q if simultaneously with

the condition of E being large as compared to µ, one can also require that the excitation

energy is much smaller than the heavy quark mass, E ≪ mQ. Clearly, the range of energy

where both these restrictions apply is only marginal for the charmed quarks whose mass

mc is not sufficiently larger than µ, but may well be of relevance for the production of

bottomonium-like exotic resonances. The condition E ≪ mQ allows one to treat the heavy

quarks as nonrelativistic. In what follows it will be shown that under these assumptions

the rate Γ of production by a local source (Q̄ΓQ) of an exclusive state X + h with h being

a light hadron and X – an exotic resonance containing the QQ̄ heavy pair as well as light

(anti)quarks scales as

Γ ∝ E1−n , (1)

where n is the number of constituent light quark-antiquark pairs in the final state X +h. In

particular, for the production cross section in e+e− annihilation this implies the relations

σ(e+e− → ZQ π)

σ(e+e− → µ+µ−)
∝ 1

E
,

σ(e+e− → PQ p̄)

σ(e+e− → µ+µ−)
∝ 1

E2
. (2)

1The effective ‘quenching’ of the heavy quark pairs in the intermediate range of E can be readily effected,

for the purpose of theoretical discussion, by considering the quark and antiquark in the pair as being of

different flavor.
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Figure 1: The graph for production by a virtual photon of QQ̄ quarkonium with radiation of

a real photon. The filled circle denotes the dipole interaction described by the Hamiltonian

(3).

The basic ingredients that lead to the scaling formula (1) can be illustrated starting with

the simplest case n = 0 and then increasing the number of constituent fermions. The case

n = 0 can be considered as corresponding to the process e+e− → (QQ̄) + γ with the pair

(QQ̄) forming a bound (non-exotic) quarkonium state. The graph for this process is shown in

Fig. 1. The propagation of the heavy quark pair is shown by a single thick box, rather than

by individual lines for the quark and antiquark, reflecting the fact that for a nonrelativistic

pair only the relative distance ~r between them (as a function of time) is essential. Also, due to

the condition E ≪ mQ the whole excess energy E is carried away by the emitted photon, and

any recoil of the quarkonium as whole can be neglected. Furthermore, the electromagnetic

vertex for the creation of the quark pair reduces in the nonrellativistic limit to a local δ-

function operator O → Cδ(3)(~r) with the normalization constant C being inessential for the

present discussion of the scaling behavior. Finally, the filled circle in Fig. 1 describes the

interaction of the quark pair with the electromagnetic field. For a nonrelativistic pair this

interaction can be described by the Pauli Hamiltonian

HEM = − 2Q

mQ

(~p · ~A)− Q

2mQ

(σQ − σQ̄)iBi , (3)

where Q is the electric charge of the quark, ~A and ~B are the vector potential and the

magnetic field strength for the emitted photon, ~σQ (~σQ̄) are the spin operators for the quark

(antiquark), and ~p stands for the momentum in the center-of-mass system. It can be noted

that any spatial variation of the field of the emitted photon, set by the distance scale ∼ 1/E,

can be neglected, since the Green’s function for the propagation of the pair between the local
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creation by the virtual photon and the emission vertex constrains the contributing distances

to a much shorter scale ∼ 1/
√

mQE.

The ratio of the amplitudes generated by the first term in the Hamiltonian (3), the

electric dipole E1, and the second term, the magnetic dipole M1, is of order p/E ∼ µ/E.

Thus at E ≫ µ the dominant contribution arises from the M1 interaction 2. It is important

for arriving at this conclusion that it is the momentum p ∼ µ that determines the emission

amplitude rather than the momentum of the photon q ≈ E, due to the gauge condition

(~q · ~A) = 0. Retaining only the M1 term in the interaction, one readily finds that the

amplitude for the process in Fig. 1 is constant in the energy:

Aγ = 〈(QQ̄) γ|O|0〉 ∝ E0 , (4)

since the Green’s function between the vertices in Fig. 1 is of order 1/E. The rate for the

considered process is then evaluated as

σ[e+e− → (QQ̄) γ] ∝
∫

|Aγ |2 2π δ(E − q0)
d3q

(2π)3 2q0
∝ E , (5)

which estimate agrees with Eq.(1) at n = 0.

A somewhat more complex, but still simplified example, corresponding to n = 1 is the

rather artificial process shown in Fig. 2. In this process the vector particle emitted by the

heavy quark pair is virtual and produces a pair of light fermions, of which one (the fermion for

definiteness) forms an ‘exotic’ bound state Xf with the QQ̄ pair and the other (antifermion)

is emitted as a free particle. Since this example, discussed here purely as an illustration, is

not realistic in either QED or QCD the notation ‘vector’ (i.e. neither a photon nor gluon)

and ‘fermion’ (i.e. neither a lepton nor quark) is used. Noting that the fermion in the bound

state has momentum of order µ, while the antifermion carries the energy E, one can conclude

that for the vector propagator q2 ∼ Eµ. Taking into account the spinor normalization factor√
E for the fast antifermion, it can be readily seen that, as far as the scaling with E is

concerned, the amplitude for the process in Fig. 2 contains an extra factor proportional to

1/
√
E in comparison with that for a real photon emission in Fig. 1. Thus the rate for the

(unrealistic) process e+e− → Xf f̄ scales as 1/E also in agreement with Eq.(1).

The simplest process involving production of an actual exotic quarkoniumlike resonance

and a light meson is e+e− → ZQπ. This is the process that, for concreteness, is discussed

2This is opposite to the relation for transitions between states of a nonrelativistic bound system, where

E ∼ µ2/m ≪ m. It can be also noted that in the discussed here process the E1 term describes the production

of P -wave quarkonium, while the dominant M1 term corresponds to the production of S-wave states.
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Figure 2: An (artificial) illustrative process with creation of a pair of light fermions f f̄ with

f forming an exotic bound state with the heavy QQ̄ pair and the antifermion f̄ emitted with

energy E.

here, since the treatment is trivially generalized to any similar production of a heavy exotic

four-quark resonance in association with a light meson. The graphs with hard production of

light quark pairs in this process are shown in Fig. 3. The relevant terms in the interaction

of a nonrelativistic heavy quark pair with gluons are described by the Hamiltonian

HQCD = −
taQ − ta

Q̄

mQ

(~p · ~Aa)−
taQ − ta

Q̄

4mQ

(σQ − σQ̄)iB
a
i + T aAa

0 , (6)

where Aa and Ba are the potential and the magnetic strength of the gluon field, taQ (ta
Q̄
) are

the color generators for the heavy quark (antiquark) and T a = taQ + ta
Q̄

is the total color

generator for the QQ̄ system.

The last term in the Hamiltonian (6) is the monopole term. Unlike the first two terms,

its contribution is not suppressed by the heavy quark mass and it would be dominant for a

color octet pair. However, the source (the electromagnetic current) produces a color singlet

QQ̄ pair, hence the first emission of a hard gluon is possible only due to the first two terms.

These terms contain the operator taQ − ta
Q̄
converting the pair to color octet state, so that in

the subsequent emissions from the heavy system only the monopole term can be retained in

the leading order in mQ. (In particular, the chromomagnetic term proportional to T a, not
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Figure 3: The mechanisms for exclusive production of the pairs ZQπ. The large black filled

circle denotes the color dipole interaction given by the two first terms in the Hamiltonian

(6), while the greyed circle corresponds to the color monopole described by the last term.

shown in Eq.(6), is totally negligible because of its suppression by 1/mQ.) Finally, the graph

in Fig. 3b arises from the quadratic in Aa term in the chromomagnetic field Ba.

It can be further noticed that the large components, proportional to E, of the momenta

of the fast light quarks as well as of the virtual gluons are collinear and proportional to the

momentum of the emitted pion. For this reason the virtuality of each of the gluon propagators

is q2 ∼ Eµ. Another consequence of the collinearity of the large components is that, as in

the previously discussed simplified cases, due to the gauge condition the contribution of the

chromoelectric E1 term from Eq.(6) does not contain a large momentum proportional to E

and is thus suppressed relative to that of the M1 chromomagnetic dipole.

One can readily find that the contribution of the graphs of Figs. 3a and 3b to the ampli-

tude is of the same order in the energy E, and including the spinor normalization factors,

proportional to
√
E for each fast (anti)quark, the energy dependence of this contribution
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can be evaluated as

A(ZQπ) ∼
1

E
, (7)

where it is also taken into account that the three gluon vertex in Fig. 3a is proportional to

E. On the other hand, the contribution from graph in Fig. 3c is only of the order 1/E2

and is thus subdominant. This is because the extra propagator of the heavy pair introduces

the factor 1/E with no energy dependence of the monopole vertex, while an extra hard

gluon propagator and the three gluon vertex (in the graph of Fig. 3a) result in the factor

E/(Eµ) = 1/µ. It can also be readily verified that the graphs where the additional light

quark pair is emitted by a gluon attached to another light quark line are suppressed relative

to (7) by a factor 1/
√
E, and for this reason are not considered in the present discussion.

The E dependence of the rate generated by the amplitude (7) can be estimated as

σ(e+e− → ZQπ) ∝
∫

|A(ZQπ)|2 δ(E − ω1 − ω2)
d3k1 d

3k2
ω1 ω2

∝ 1

E
, (8)

where k1 and k2 (ω1 and ω2) are the momenta (energies) of the fast quark and antiquark.

The large longitudinal components of the momenta cancel against the energies in the de-

nominator, while the integration over the relative transverse momentum is constrained at

µ2 by the condition that the light quark and antiquark make a pion. The only large factor

remaining in the integration arises from the integration over the total momentum of the

pion, and, together with the energy conservation δ function gives a factor of E, i.e. the same

as in the previously considered cases n = 0, and n = 1. The final estimate of the energy

dependence in Eq.(8) is obviously the one given by the general formula (1).

The generalization of the derivation of Eq.(1) to the case of arbitrary n is quite straight-

forward. Indeed, as argued for the case of n = 2, the dominant E dependence arises from a

single hard M1 interaction on the line of the heavy pair, while graphs with any additional

vertices on this line produce only a subdominant contribution. Thus emission of additional

constituent light quark pairs proceeds through the branching of the gluons in the graphs of

Figs. 3a and 3b. Each such branching gives in the amplitude an extra factor proportional

to 1/
√
E. On the other hand, the phase space integration does not introduce new energy

dependence once the condition that n produced fast (anti)quarks are constituents in a fast

hadron. Thus one concludes that each extra pair of produced constituent light quarks brings

the factor 1/E in the rate, and thus arrives at the general formula (1).

Before concluding, two points related to the derived here scaling rule and the mechanism

leading to the derivation merit a brief discussion. One point is regarding the spin state

of the heavy quark pair corresponding to the dominant at large E production mechanism
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in e+e− annihilation. Namely, the electromagnetic current produces the QQ̄ pair in the

spin triplet state. The spin operator (~σQ − ~σQ̄) flips the total spin into the siglet state.

Thus the dominance of the M1 interaction in the considered energy region implies that

in the exclusive production of the heavy exotic resonances in a pair with a light hadron

there should be mostly the states with a spin singlet heavy quark pair. It is not clear at

present whether this behavior can be studied in experiments. Indeed, the only so far known

bottomoniumlike exotic resonances Zb(10610) and Zb(1065) are mixed states with regards

to the total spin of the bb̄ pair [15], and can thus be produced through the spin singlet

component. It would however be possible to study the predicted behavior if some or all

of the expected [16] isovector G-negative bottomoniumlike resonances WbJ are found and

become accessible to observation in e+e− annihilation through e+e− → WbJρ. Two of these

resonances with J = 0: Wb0 and W ′

b0, also contain a spin singlet heavy quark component

and thus their exclusive production at energy well above the threshold, should have a higher

yield than for the resonances Wb1 and Wb2 containing only pure spin triplet bb̄ quark pair.

Another point that merits mentioning is that the rather slow 1/E fall off of the cross

section for e+e− → Zb π generally implies that there should be some production of this

exclusive final state in the continuum at energies above the region of the Υ(nS) resonances.

At present it does not appear possible to reliably estimate the rate beyond the simple remark

that it contains an extra suppression by the inverse of the mass mb inherent in the M1

interaction in Eq.(6). Namely, the relations (2) with proper dimensional parameters restored

should read as

σ(e+e− → ZQ π)

σ(e+e− → µ+µ−)
∼ µ3

m2
QE

,
σ(e+e− → PQ p̄)

σ(e+e− → µ+µ−)
∼ µ4

m2
QE

2
. (9)

As of yet the production of the final states Zb π has been observed [17] only in the Υ(5S)

and Υ(6S) resonances. It would thus be quite interesting if a nonresonant production of the

Zb π pairs could be studied experimentally at energies above the Υ(6S) resonance.

This work is supported in part by U.S. Department of Energy Grant No. DE-SC0011842.
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