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We present the nuclear transverse momentum broadening for Drell-Yan lepton pair production
in p+A collisions at next-to-leading order (NLO) in powers of strong coupling constant αs. We
verify that the transverse momentum weighted differential cross section in NLO perturbative QCD
(pQCD) at twist-4 can be factorized into the convolution of parton distribution function of an active
parton in the projectile proton, a twist-4 multiparton correlation function of the target nucleus,
and perturbatively calculable hard coefficient function. We identify a QCD evolution equation for
such a twist-4 nuclear gluon-quark correlation function, and verify its universality – its process
independence. This finding demonstrates the prediction power of pQCD factorization approach for
studying parton multiple scattering in nuclear medium.

I. INTRODUCTION

Transverse momentum broadening is commonly defined as the difference between the average transverse momentum
square for the particles produced in nuclear collisions and that in hadronic collisions. Such a quantity plays an
important role in understanding QCD dynamics of parton multiple scattering in the large nuclei, as well as in using
hard processes to probe the properties of the nuclear medium [1–4]. This observable has been studied extensively
in theory for various processes in proton-nucleus (p+A) and lepton-nucleus (e+A) collisions [5–13]. It has also been
measured in deeply inelastic scattering (DIS) at Jefferson Lab (JLab), HERA and p+A experiments at the Fermilab
(FNAL), the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). These measurements
include hadron production in e+A collisions [14, 15], dijet production in γ/π+A [16] and p+A collisions [17–19], as
well as for vector boson (such as Drell-Yan (DY), J/ψ, and Υ) production in p+A collisions [20–29].
In this paper we study the transverse momentum broadening for Drell-Yan lepton pair production in p+A collisions.

This is an ideal process to probe the QCD dynamics of initial-state parton multiple scattering since the final-state
virtual photon γ∗ (or the decayed lepton pair ℓ+ℓ−) does not interact with the nuclear medium via strong interaction.
This process is complementary to the single hadron production in semi-inclusive deep inelastic scattering (SIDIS),
where the transverse momentum broadening of the observed hadron is sensitive to the final-state parton multiple
scattering [30]. Experimentally, the E772 and E866 collaborations at Fermilab have analyzed transverse momentum
broadening of DY process in p+A collisions with various nuclear targets [20, 21, 26], where consistent and relatively
large transverse momentum broadening was observed. With the advent of new experimental opportunities from
Fermilab-E906 [31], RHIC and the LHC, transverse momentum broadening for DY production will be measured to
wider kinematic regions at different center-of-mass energies. This will further illuminate the QCD dynamics for parton
multiple scatterings, and provide new insights into the nuclear medium properties.
Previous calculations of DY transverse momentum broadening have been limited to the leading order (LO) in the

expansion of the strong coupling constant [5, 10, 12]. The initial-state parton double scattering in the large nucleus is
the main source that generates the broadening and can be treated as power corrections within a generalized high-twist
factorization formalism [32–34]. However, a complete next-to-leading order (NLO) analysis is still lacking for high
precision determination of the medium properties. Such a NLO analysis is the main focus of our current paper. We
will follow the same high-twist factorization approach to perform the calculations, which has the advantage to readily
quantify the radiative corrections in powers of strong coupling constant. The application of this approach to Drell-Yan
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process has been extensively discussed in Ref. [35]. For other different approaches in studying multiple scattering and
the associated transverse momentum broadening, see, e.g., Refs. [36–40].
Within the high-twist formalism, we have previously computed the transverse momentum broadening for SIDIS

process at the NLO, where we have verified the validity of the high-twist factorization for final-state double scattering
inside a large nucleus at the one-loop order [41, 42]. In this paper, we extend our previous calculations for SIDIS to DY
process. We will evaluate at the NLO the initial-state double scattering contributions to the transverse momentum
broadening for the lepton pair production in DY process in p+A collisions. We believe that this paper is a valuable
addition to our previous work on SIDIS [30, 41], not only because of the great interest relevant to the experiments
at FNAL, RHIC, and LHC facilities, but also the theoretical significance in further testing the QCD factorization at
twist-4 level for initial-state double scattering, as well as demonstrating the universality of the associated high-twist
multi-parton correlation functions [41].
The rest of our paper is organized as follows. In Sec. II, we introduce our notations, and review the LO result

for transverse momentum broadening. In Sec. III, we present our NLO results for transverse momentum broadening
by including both the gluon-quark and gluon-gluon double scattering, and will leave the calculation of the quark-
quark double scattering to a future publication. We show explicitly how the soft divergences cancel out between
real and virtual corrections, how the remaining collinear divergences can be absorbed into the corresponding parton
distribution functions from the beam proton, and/or the twist-4 parton correlation functions of the colliding nucleus,
as well as how the evolution equations of these correlation functions on the factorization scale can be derived. We
conclude our paper in Sec. IV.

II. TRANSVERSE MOMENTUM BROADENING AT LEADING ORDER

We consider Drell-Yan dilepton production in p+A collisions,

P (p′) +A(p) → [γ∗ →]ℓ+ℓ−(q) +X, (1)

where q is the four-momentum of the lepton pair (or virtual photon γ∗) with invariant mass Q2 = q2, p′ is the
momentum of the projectile proton, and p is the momentum per nucleon of the target nucleus with atomic number
A. The transverse momentum broadening of the lepton pair in DY process is defined as the difference between the
averaged transverse momentum square of the observed dilepton produced in a p+A collision and that in a proton-
proton (p+p) collision,

∆〈q2T 〉 = 〈q2T 〉pA − 〈q2T 〉pp, (2)

where qT is the transverse momentum of the produced dilepton, with 〈q2T 〉 defined as

〈q2T 〉 =

∫

dq2T q
2
T

dσ

dQ2dq2T

/

dσ

dQ2
. (3)
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FIG. 1. The general diagrams for Drell-Yan production in p+A collisions: (a) single scattering contribution with parton
momentum k = xp entering the partonic hard part H (the blue blob on-line), (b) double scattering contribution with parton
momenta k1 = x1p, k2 = (x1 + x3)p+ k2T − k3T , kg = x2p+ k2T , k′

g = (x2 − x3)p+ k3T . Here k2T and k3T are the transverse
momentum kicks from the nucleus.

Let us explore the physical picture behind the transverse momentum broadening for Drell-Yan production in
p+A collisions. In the large target nucleus, the incoming parton (e.g., a quark) from the projectile proton may
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experience additional scatterings with other partons from the nucleus before it annihilates into a virtual photon.
Taking into account these multiple parton scatterings, one can express the Drell-Yan differential cross section as a
sum of contributions from single, double, and higher multiple scatterings. In the single scattering as illustrated in
Fig. 1(a), a single parton with momentum x′p′ from the proton scatters with only one parton with momentum k = xp
from the nucleus participating in the hard collision. Such a single hard scattering is localized in space and time,
and thus does not lead to significant medium size enhanced modification to the production rate from p+p to p+A
collisions, other than a mild A dependence from nuclear parton distribution functions. On the other hand, multiple
scatterings in the presence of a large nucleus could generate nontrivial A dependence, thus need to be considered
accordingly. In the small Bjorken-x limit (for target), the energetic parton from the beam projectile interacts with
the partons in the nucleus coherently, thus all multiple scatterings/higher-twist contributions are equally important
and have to be resummed. This sort of resummation has been calculated in high-twist expansion approach in the
processes of deep inelastic scattering [43] and proton-nucleus collisions [44], as well as in the color dipole model for
forward Drell-Yan process [45]. A detailed phenomenological study for Drell-Yan process in the dipole formalism
has been recently presented to test the onset of distinct nuclear effects [46]. In the relatively large-x region as we
focus in this paper, the strength of additional scattering is small enough and thus double scattering is the dominant
contribution, as illustrated in Fig. 1(b) for Drell-Yan dilepton production, where the single parton from the proton
could scatter off two partons (with momenta k1, kg in the amplitude) simultaneously in the nucleus.
Such a double scattering is usually power suppressed by the hard scale, but it could be enhanced by the nuclear size

∼ A1/3, which arises when two partons come from different nucleons inside the nucleus. It is such double scattering
(as well as higher multiple scattering) that leads to significant difference in 〈q2T 〉 between p+A and p+p collisions,
and thus the major contribution to the transverse momentum broadening ∆〈q2T 〉. In this paper, we will focus on the
double scattering contribution to the transverse momentum broadening,

∆〈q2T 〉 ≈
d〈q2Tσ

D〉

dQ2

/

dσ

dQ2
, with

d〈q2Tσ
D〉

dQ2
≡

∫

dq2T q
2
T

dσD

dQ2dq2T
. (4)

Here the superscript “D” represents the double scattering contribution. That is, we need to calculate the transverse
momentum weighted differential cross section d〈q2Tσ

D〉/dQ2, which is the main focus of our paper. We will calculate
it at both LO and NLO in the expansion of the strong coupling constant αs in QCD perturbation theory.

kg
k1 k2

k′g

x′p′ x′p′

y1 y 0 y2

q

p p

FIG. 2. Feynman diagram for double scattering contribution to transverse momentum broadening at LO. The momenta for
the initial quarks and gluons are k1 = x1p, k2 = (x1 + x3)p, kg = x2p+ kT and k′

g = (x2 − x3)p+ kT , respectively.

All our calculations are performed in a covariant gauge, following our previous calculations [30, 47, 48]. Of course
the final results are gauge-independent. For example, the equivalence of the physical results in light-cone gauge and
covariant gauge has been demonstrated in Refs. [8, 49]. The Feynman diagram for the double scattering contribution
at LO is shown in Fig. 2, where an anti-quark with momentum x′p′ from the proton undergoes an additional scattering
in the nucleus by exchanging a gluon with momentum kg before it annihilates with the quark of momentum k1 into the
virtual photon 1. The part of the diagram on the right hand side of the vertical dashed line in Fig. 2 is the complex
conjugate of the amplitude. The LO computation is rather straightforward, and has been explained in details in
Refs. [5, 8, 10, 11, 13, 30]. Here we present only the final result and neglect all the technical details. To be consistent
with the calculations at NLO, we present the LO result as calculated in n = 4− 2ǫ dimensions:

d〈q2Tσ〉
(LO)

dQ2
= σℓ

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫

dx

x
Tgq(x, 0, 0)δ(1− z), (5)

1 We also consider the case in which the quark from the proton scatters off an anti-quark from the nucleus, and find that the hard parts
of this channel are exactly the same as what we have discussed here for both LO and NLO. Thus these contributions are included in
our final result by understanding

∑
q runs over both quark and anti-quark flavors.
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where

σℓ = σ0

(

4π2αs

Nc

)

, with σ0 =
4πα2

em

9Q2
(1− ǫ), (6)

and αem is the fine structure constant; and
∑

q runs over all quark flavors, fq̄/p(x
′) is the anti-quark distribution

function inside the proton, and Tgq(x, 0, 0) is a twist-4 gluon-quark correlation function of the colliding heavy ion. In
Eq. (5), σℓ, is the lowest order partonic cross section for DY process; δ(1− z) with z = xB/x and the Bjorken variable
of DY process, xB = Q2/2p · q, defines the differential cross section in Q2; and the rest part of the right-hand-side
represents the effective partonic flux and the broadening at the level of double scattering, which was encoded in the
twist-4 gluon-quark correlation function, Tgq, which has the following operator definition [5]

Tgq(x1, x2, x3) =

∫

dy−

2π
eix1p

+y−

∫

dy−1 dy
−
2

4π
eix2p

+(y−

1
−y−

2
)eix3p

+y−

2 θ(−y−2 )θ(y
− − y−1 )

× 〈A|F+
σ (y−2 )ψ̄q(0)γ

+ψq(y
−)F σ+(y−1 )|A〉, (7)

with the θ-functions taking care of the order of the double scatterings in DY process. With the usual partonic
Mandelstam variables for DY process defined as follows:

ŝ = (x′p′ + xp)2, t̂ = (xp− q)2, û = (x′p′ − q)2, (8)

we have the Lorentz invariant variable z = xB/x = Q2/ŝ. Substituting the LO result of the q2T -weighted cross
section as shown in Eq. (5) into the definition of transverse momentum broadening in Eq. (4), and performing the x
integration by using δ(1− z), we obtain ∆〈q2T 〉 at LO:

∆〈q2T 〉 =

(

4π2αs

Nc

)

∑

q e
2
q

∫

dx′

x′
fq̄/p(x

′)Tgq(xB , 0, 0)
∑

q e
2
q

∫

dx′

x′
fq̄/p(x′)fq/A(xB)

. (9)

This result is consistent with earlier calculations in Refs. [5, 8, 10].

III. TRANSVERSE MOMENTUM BROADENING AT NEXT-TO-LEADING ORDER

In this section, we present our NLO calculations of the transverse momentum broadening in DY process. We
first study the double scattering contributions to the antiquark-quark annihilation channel, q̄ + q → g + γ∗, which
involve gluon-quark correlation function Tgq as defined in Eq. (7). We then derive the result for quark-gluon Compton
scattering channel, q + g → q + γ∗, which involves gluon-gluon correlation function Tgg as defined in Eq. (40) below.
The final result will be presented at the end of this section, where a QCD evolution equation involving Tgq and Tgg
will also be identified.
To derive the double scattering contribution to the cross section, i.e. d〈q2Tσ

D〉/dQ2, we follow the well-established
generalized high-twist factorization formalism [32–34]. Within such a formalism, one has to perform the so-called
collinear expansion, i.e., expand the hard scattering contribution around the vanishing parton transverse momentum.
For the generic Feynman diagram as shown in Fig. 1(b), the double scattering contribution to the Drell-Yan cross
section in n = 4− 2ǫ dimensions is given by

d〈q2Tσ
D〉

dQ2
=

1

2s

2αem

3Q2

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫

dy−

2π

dy−1
2π

dy−2
2π

1

2
〈A|F+

σ (y−2 )ψ̄q(0)γ
+ψq(y

−)F σ+(y−1 )|A〉

×

[

−
1

2(1− ǫ)
gαβ
]

[

∂2

∂kα2T∂k
β
3T

Hµν(k2T , k3T , p
′, p, q, {yi})

]

k2T=k3T =0

(−gµν) , (10)

where {yi} = {y−, y−1 , y
−
2 }. In Eq. (10), the factor 2αem/3Q

2 comes from the leptonic decay γ∗ → ℓ+ℓ− [50–52],
(−gµν) is the polarization sum for the virtual photon, and Hµν(k2T , k3T , , p

′, p, q, {yi}) is the Fourier transform of the
hard partonic function Hµν({xi}, k2T , k3T , p

′, p, q),

Hµν(k2T , k3T , p
′, p, q, {yi}) =

∫

dx1dx2dx3e
ix1p

+y−

eix2p
+(y−

1
−y−

2
)eix3p

+y−

2 Hµν({xi}, k2T , k3T , p
′, p, q) dPS(2), (11)
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where {xi} = {x1, x2, x3} are the independent longitudinal momentum fractions carried by the partons from nucleus,

k2T , k3T are the two independent transverse momenta for the initial two gluons from nucleus, and dPS(2) is the
final-state photon-gluon two-particle phase space, which will be defined later in Eq. (14). To preserve momentum
conservation, one has to assign k2T − k3T to one of the initial quarks. We will use gauge invariance to guide the
transverse momentum flow for these expansion momenta k2T and k3T , which are explained in details below for each
different double scattering subprocesses.

A. gluon-quark double scattering

In gluon-quark double scattering, before the hard interaction of quark-antiquark annihilation, the initial antiquark
from the projectile proton undergoes additional scattering with the nuclear medium through the exchange of a gluon,
as illustrated in Fig. 1(b). According to the momentum of this exchanged gluon (i.e., kg and k′g on the amplitude
and complex conjugate of the amplitude in Fig. 1(b), respectively), we classify the gluon-quark double scattering into
four subprocesses: soft-soft, hard-hard, soft-hard and hard-soft double scatterings. For example, soft-hard refers to
the situation where the exchanged gluon has zero and finite momenta in the amplitude and the complex conjugate,
respectively. In other words, kg = 0 and k′g 6= 0 when taking the k2T = k3T = 0 limit in Fig. 1(b). Below we discuss
how to compute these four subprocesses. We first study the central-cut diagrams where exactly one exchanged gluon
is on each side of the cut, and we then perform the calculations for the single-triple scattering interference diagrams
where two exchanged gluons are on the same side of the cut line.

1. soft-soft double scattering

The central-cut diagrams for soft-soft gluon-quark double scattering contributions are shown in Fig. 3, where the
“H”-blobs present the hard 2 → 2 process q̄+ q → g+ γ∗ as shown in Fig. 4. The short bars indicate the propagators
where the soft poles arise, which put the associated quarks on their mass-shell. One thus might consider such a
double scattering as two “factorized” scatterings: the first q̄ + g → q̄ through a soft gluon exchange, followed by
q̄ + q → g + γ∗. To ensure this second q̄ + q → g + γ∗ scattering gauge invariant, the quark from the nucleus has to
be on mass-shell, i.e., k21 = k22 = 0 [53]. The most convenient way in performing twist-4 calculation of soft-soft double
scattering is to set kg = x2p+ kT and k′g = (x2 − x3)p+ kT , following the set-up of the original high-twist expansion
as developed by Qiu and Sterman [33]. In other words, k2T = k3T = kT , therefore no transverse momentum flows
into/out from the initial quark. In this case, the two initial quarks from nucleus have only “ + ” component with
k1 = x1p and k2 = (x1 +x3)p, thus they are on their mass shell and satisfy the requirements for the gauge invariance.
To avoid double counting in symmetrizing the transverse momentum flow, an additional factor 1/2 is needed in the
collinear expansion:

[

∂2

∂kα2T∂k
β
3T

Hµν(k2T , k3T , p
′, p, q, {yi})

]

k2T =k3T=0

→

[

1

2

∂2

∂kαT∂k
β
T

Hµν(kT , p
′, p, q, {yi})

]

kT=0

. (12)

k1 k2

kg k′g

H H

x′p′ x′p′

FIG. 3. The central-cut diagrams for soft-soft gluon-quark double scattering in DY process. The short bars indicate the
propagators where the soft poles arise. The “H”-blobs represent the hard 2 → 2 processes q̄ + q → g + γ∗ as shown in Fig. 4.
The parton momenta for the four initial partons are k1 = x1p, k2 = (x1 + x3)p, kg = x2p+ kT and k′

g = (x2 − x3)p+ kT .
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H

FIG. 4. The representations of hard 2 → 2 processes for q̄ + q → γ∗ + g.

In soft-soft double scattering, the soft-poles arise from the propagators marked by the short bars in Fig. 3, which
can be expressed in the following forms:

1

(x′p′ + kg)2 + iǫ
=
x

ŝ

1

x2 + xc + iǫ
,

1

(x′p′ + k′g)
2 − iǫ

=
x

ŝ

1

x2 − x3 + xc − iǫ
, (13)

with xc = x k2T /ŝ. Performing contour integrations, these two propagators can be used to fix the momentum fractions,
x2 and x3. At the same time, x1 is fixed by the on-shell condition of the unobserved final-state gluon, which is
characterized by the δ-function in the two-body final-state phase space,

dPS(2) =
1

2π

∫

dxδ (x1 + x2 − x− xe)

∫

dnq

(2π)n−2
δ(q2 −Q2)δ[(x′p′ + xp− q)2],

=
1

16π2

∫

dxδ (x1 + x2 − x− xe)

(

4π

Q2

)ǫ
1

Γ(1 − ǫ)
zǫ(1− z)1−2ǫ

∫ 1

0

dv[v(1 − v)]−ǫ. (14)

Here xe = x (k2T − 2q · kT )/û, and v = (1 + cos θ)/2 with θ the partonic center-of-mass angle. By performing contour
integrations of the un-pinched soft poles as in Eq. (13), and combining with the final state phase space as in Eq. (14),
we then fix all the parton momentum fractions as

x1 = x+ xe + xc, x2 = −xc, x3 = 0 , (15)

with xc = x k2T /ŝ defined earlier. One can immediately see that in the collinear limit kT → 0, the momenta for the
two exchanged gluons are zero: kg → 0, k′g → 0 due to x2 → 0, x2 − x3 → 0 in this limit. This is why we refer to this
process as soft-soft double scattering.
As shown in Eq. (10), the key step in the high-twist factorization formalism is to perform the collinear expansion,

from which we obtain the gauge invariant result for physical double scatterings. In general, the collinear expansion
involves not only the hard part, but also the twist-4 matrix element because of the kT -dependence of momentum
fractions xi as shown in Eq. (15). Taking both into account, we obtain the following generic expression,

∂2[Tgq({xi})H({xi}, kT )]

∂kαT∂k
β
T

=

{

x2
d2Tgq(x, 0, 0)

dx2

[

(

2

û

)2
q2T
n− 2

H

]

+ x
dTgq(x, 0, 0)

dx

[

2

(

1

û
+

1

ŝ

)

H −
4

û

q2T
n− 2

∂H

∂w1

]

+ Tgq(x, 0, 0)

[

q2T
n− 2

∂2H

∂w2
1

+ 2
∂H

∂w2

]

}

gαβT , (16)

where n = 4− 2ǫ is the dimension of the space-time, w1 = q · kT , w2 = k2T and the arguments in the hard function H
are suppressed.
The next step is to perform the ǫ-expansion and identify the divergences. Realizing the partonic Mandelstam

variables defined in Eq. (8) can be written as

ŝ =
Q2

z
, t̂ = −

Q2(1− z)(1− v)

z
, û = −

Q2(1 − z)v

z
, (17)

as well as q2T = t̂û/ŝ, from the final-state phase space in Eq. (14), one simply has to pay extra attention to the
expansion around z → 1, v → 1 and v → 0, where divergences could be encountered. It is instructive to realize
that z → 1 corresponds to the phase space where the radiated gluon is soft and leads to a soft divergence. Such
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a soft divergence cancels out between real and virtual diagrams as we will demonstrate below. On the other hand,
v = (1 + cos θ)/2 → 1 corresponds to θ → 0, i.e., the radiated gluon is collinear to the projectile proton; while v → 0
(or θ → π) stands for the situation where the radiated gluon is collinear to the colliding nucleus. That is, both limits
of v lead to perturbative collinear divergences. For later convenience, let us present the weighted cross section in the
following generic form:

d〈q2Tσ
D〉ij

dQ2
= σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

∫ 1

0

dv

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)

{

1

ǫ2
δ(1− z) [δ(v) + δ(1− v)] Tgq ⊗Hij

d2

−
1

ǫ
δ(1 − v)Tgq ⊗Hij

d1 −
1

ǫ
δ(v)Tgq ⊗ H̃ij

d1 + Tgq ⊗Hij
gq−C

}

, (18)

where the superscript “i” and “j” represent “s” and “h”, indicating contributions from soft and hard rescatterings.
Notice that one can easily perform the integral over v for the divergent terms, but here we still keep it unintegrated,
so that we can keep track of different phase spaces for the radiated gluon, and regularize them accordingly in the
factorization step. For the derivative terms (the first and second terms in Eq. (16)), we further perform integration
by parts to convert them into the form of non-derivative terms, thus we can combine them with the rest of the
non-derivative terms properly. Following the techniques as outlined in Ref. [30], we arrive at the following divergent
terms for soft-soft double scattering,

Tgq ⊗Hss
d2 = Tgq(x, 0, 0)CF , Tgq ⊗Hss

d1 = Tgq(x, 0, 0)CF
z2(1 + z2)

(1 − z)+
, Tgq ⊗ H̃ss

d1 = Tgq(x, 0, 0)CF
1 + z2

(1 − z)+
,

(19)

where the superscript “ss” indicates soft-soft double scattering contributions, and the “plus”-function is defined as
∫ 1

0

dz
f(z)

(1− z)+
≡

∫ 1

0

dz
f(z)− f(1)

1− z
. (20)

On the other hand, the finite contribution at the NLO denoted by Tgq ⊗Hss
gq−C is collected in the Appendix, as given

by Eq. (A.1).

2. hard-hard double scattering

Let us now study the contributions from the hard-hard double scatterings, with the central-cut diagrams given in
Fig. 5 where the “H”-blobs represent the hard 2 → 2 processes q̄+ g → g+ q̄ as shown in Fig. 6. The crosses in Fig. 5
indicate the propagators where the hard poles arise, which put the associated quarks on their mass-shell. Thus one
might consider that the radiated gluon is induced by the first antiquark-gluon hard interaction, q̄+g → g+ q̄, followed
by the annihilation process q̄+ q → γ∗ to generate the virtual photon. In this case, to ensure the gauge invariance for
the physical double scattering, in particular the first q̄+ g → g+ q̄ process, the exchanged gluons have to be on their
mass-shell: at least up to the order of our collinear expansion. In other words, one should have k2g = 0 up to O(k2T )

and k′2g = 0 up to O(k3T ). Thus we can neglect the “minus” components of the momenta for both exchanged gluons,

since they contribute to O(k22T ) and O(k23T ). In other word, we could simply set the momenta of these two exchanged
gluons as kg = x2p+ k2T and k′g = (x2 − x3)p+ k3T . At the same time, to preserve the momentum conservation on
the two sides of the cut, we have to assign a transverse momentum of k2T − k3T to the quark from the nucleus either
on the left or right side of the cut. We have checked that they lead to exactly the same result 2.
In the following, we choose k1 = x1p and k2 = (x1 + x3)p + k2T − k3T to demonstrate our computations for the

hard-hard double scattering. Similar to the soft-soft double scattering case, the parton momentum fractions x1,2,3
can be fixed by the hard poles as well as the on-shell condition of the unobserved parton (i.e. the radiated gluon):

x1 = xd, x2 = x− xd + xh, x3 = xf + xg, (21)

where xd, xf , xg, xh are given by

xd = x
Q2

Q2 − t̂
xf = x

2q · k2T − 2q · k3T

t̂−Q2
, xg = x

2k2T · k3T

t̂−Q2
, xh = x

−2q · k2T
û

. (22)

2 Note that these assignments are different from the previous setup as given in Refs. [8, 54, 55], in which one simply sets k2T = k3T = kT ,
i.e. the same as that in soft-soft double scattering given above. We have checked that our new assignments give the same results as the
previous setup.



8

k1 k2

kg k′g

H H

x′p′ x′p′

FIG. 5. The central-cut diagrams for hard-hard gluon-quark double scattering in DY process. The crosses indicate the
propagators where the hard poles arise. The “H”-blobs represent the hard 2 → 2 processes q̄ + g → g + q̄ as shown in
Fig. 6. The parton momenta for the four initial partons are k1 = x1p, k2 = (x1 + x3)p + k2T − k3T , kg = x2p + k2T and
k′
g = (x2 − x3)p+ k3T , respectively.

H

FIG. 6. The representations of hard 2 → 2 processes for q̄ + g → g + q̄.

In the collinear limit k2T = k3T = 0, we have

x1 = x
z

1 − v(1− z)
, x2 = x

(1 − v)(1 − z)

1− v(1− z)
, x3 = 0, (23)

and thus the momentum fractions of the exchanged gluons (x2 and x2 − x3) are both finite. This is why we refer to
this process as hard-hard double scattering.
Performing the same collinear expansion, we have the following generic result for the hard-hard double scattering:

∂2[Tgq({xi})H({xi}, kT )]

∂kα2T∂k
β
3T

= Tgq(x1, x2, x3)

[

q2T
n− 2

∂2H

∂w3∂w4
+
∂H

∂w5

]

gαβT , (24)

where the parton momentum fractions x1,2,3 on the right hand side are those in Eq. (23), and the variables w3, w4, w5

are given by

w3 = q · k2T , w4 = q · k3T , w5 = k2T · k3T . (25)

Notice that we do not have derivative terms in hard-hard double scattering compared with the soft-soft double
scattering in Eq. (16), because of the following facts:

∂H

∂kα2T

∣

∣

∣

∣

k2T =0

=
∂H

∂kα3T

∣

∣

∣

∣

k3T=0

= H |k2T/3T=0 = 0 , (26)

which are the results of gauge invariance of the hard scattering amplitude, q̄+ g → g + q̄, in Fig. 6, and the fact that
the Lorentz indices of the double scattering gluons of momentum kg and k′g are contracted by the averaged nuclear
momentum vector p that is collinear to the kg and k′g when k2T and k3T → 0. Using the same notation as in Eq. (18),
we present the divergent terms when ǫ→ 0 for hard-hard double scattering as

Tgq ⊗Hhh
d2 = Tgq(x, 0, 0)CA, Tgq ⊗Hhh

d1 = Tgq(x, 0, 0)
1 + z2

(1 − z)+

[

CAz + CF (1 − z)2
]

,

Tgq ⊗ H̃hh
d1 = Tgq(xz, x(1 − z), 0)CA

2

(1− z)+
, (27)

where again the superscript “hh” represents the hard-hard double scattering contributions. On the other hand, the
finite term for hard-hard double scattering denoted by Tgq ⊗Hhh

gq−C is expressed explicitly in Eq. (A.2) in Appendix.

It might be worthwhile mentioning that when v → 1 or z → 1, the gluon-quark correlation function Tgq(x1, x2, x3) →
Tgq(x, 0, 0) in Eq. (24), and we can thus utilize this feature to combine the divergent terms associated with δ(1 − v)
and δ(1 − z) in hard-hard and soft-soft double scattering contributions.
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3. soft-hard and hard-soft double scattering

We will now discuss the interference diagrams between the soft and hard rescatterings. The relevant central-cut
diagrams are shown in Fig. 7, with soft-hard (left) and hard-soft (right) gluon-quark double scatterings, respectively.
We explain in details how to calculate the soft-hard double scattering contributions, and only give the results for
hard-soft double scattering contribution at the end of this section as the calculation is similar.

k1 k2

kg k′g

H

H

x′p′ x′p′

k1 k2

kg k′g

H

H

x′p′ x′p′

FIG. 7. The central-cut diagrams for soft-hard (left) and hard-soft (right) gluon-quark double scattering in DY process. The
“H”-blobs represent the hard 2 → 2 processes q̄ + q → γ∗ + g and q̄ + g → q̄ + g as shown in Figs. 4 and 6, respectively. The
parton momenta for the four initial partons are k1 = x1p, k2 = (x1+x3)p+k2T −k3T , kg = x2p+k2T and k′

g = (x2−x3)p+k3T
for soft-hard double scattering, while k1 = x1p + k3T − k2T , k2 = (x1 + x3)p, kg = x2p + k2T and k′

g = (x2 − x3)p + k3T for
hard-soft double scattering.

For the soft-hard double scattering as shown in Fig. 7 (left), the short bar on the left side of the cut represents the
propagator where a soft pole arises, while the cross on the right side of the cut stands for the propagator where a
hard pole arises. On the left side of the cut (the amplitude), we have first q̄ + g → q̄ through a soft gluon exchange,
followed by q̄ + q → g + γ∗. To ensure the gauge invariance, as we have discussed for soft-soft double scattering
above, we have to make sure the initial quark from the nucleus to be on mass-shell, i.e. k21 = 0 up to the order of our
collinear expansion. At the same time, on the right side of the cut (the complex conjugate of the amplitude), one has
a gauge invariant q̄+ g → g+ q̄ partonic scattering subprocess through a hard gluon exchange, followed by q̄+ q → γ∗

annihilation. To ensure gauge invariance, as we have discussed for hard-hard double scattering above, we have to
make sure that the exchanged gluon to be on mass-shell, i.e. k′2g = 0 up to the order of our collinear expansion. With
both requirements, we can assign

k1 = x1p, k2 = (x1 + x3)p+ k2T − k3T , kg = x2p+ k2T , k′g = (x2 − x3)p+ k3T . (28)

With such momentum assignments, we can use the pole propagators and the on-shell condition of the final-state
radiated gluon, to fix the parton momentum fractions:

x1 = x+ xh, x2 = 0, x3 = xd − x+ xf + xg − xh, (29)

where xh, xd, xf , and xg are defined in Eq. (22). Therefore, the collinear expansion can be expressed as follows,

∂2[Tgq({xi})H({xi}, kT )]

∂kα2T∂k
β
3T

=

{

x
dTgq(x, 0, xd − x)

dx

[

2

−û

q2T
n− 2

∂H

∂w4

]

+ x
dTgq(x, 0, xd − x)

dxd

[

2

t̂−Q2

q2T
n− 2

∂H

∂w4

]

+Tgq(x, 0, xd − x)

[

q2T
n− 2

∂2H

∂w3∂w4
+
∂H

∂w5

]}

gαβT , (30)

where wi with i = 3, 4, 5 are defined in Eq. (25). Unlike the collinear expansion in Eq. (16) for the case of soft-soft
double scattering, the expansion for the soft-hard double scattering in Eq. (30) does not have the term proportional
to d2Tgq/dx

2, due to the fact that H |k2T/3T=0 = 0, an immediate consequence of the gauge invariance of the partonic
hard scattering part of the soft-hard double scattering. For the same reason, unlike the expansion for the hard-hard
double scattering in Eq. (24), the collinear expansion for the soft-hard double scattering in Eq. (30) does have the
terms proportional to the linear derivative of the gluon-quark correlation function. From this collinear expansion
formula in Eq. (30) it is straightforward to derive the divergent terms when ǫ→ 0 for the soft-hard double scattering
contribution. Again using the notation in Eq. (18), we have

Tgq ⊗Hsh
d2 = −Tgq(x, 0, 0)

CA

2
, Tgq ⊗Hsh

d1 = Tgq(x, 0, 0)
z(1 + z2)

(1 − z)+

[

−
CA

2
+ CF (1− z)

]

,
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Tgq ⊗ H̃sh
d1 = −Tgq (x, 0,−x(1− z))

CA

2

[

1 + z

(1 − z)+
− 2δ(1− z)

]

. (31)

On the other hand, the associated finite term as denoted by Tgq ⊗Hsh
gq−C is given explicitly in Eq. (A.3) in Appendix.

Similarly we compute the hard-soft double scattering contributions. It turns out that the divergent terms associated
with δ(1 − z) and δ(1 − v) are exactly the same as those for soft-hard double scattering, while the term associated
with δ(v) can be obtained by the following replacement in the corresponding term of soft-hard double scattering,

Tgq (x, 0,−x(1− z)) → Tgq (xz, x(1 − z), x(1− z)) . (32)

The finite term denoted as Tgq ⊗Hhs
gq−C is given in Eq. (A.4) in Appendix.

4. virtual corrections

In this subsection, we calculate the virtual corrections in gluon-quark double scattering, which have to be included
to ensure unitarity and infrared safety of the partonic hard parts of the factorized gluon-quark double scattering
contribution to the DY transverse momentum broadening. The relevant Feynman diagrams for the virtual corrections
are shown in Fig. 8, with the black blob given by Fig. 9. Two diagrams in Fig. 8 are actually the complex conjugate
of each other, and they have the same results. The actual calculations of the virtual corrections contain significant
amount of tensor reductions and integrations, and are thus quite involved and tedious. Nevertheless, the techniques
are quite clear and straightforward as demonstrated for SIDIS process in our previous paper [30]. The final result is
given by

d〈q2Tσ
D〉(V)

dQ2
= σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)
Tgq(x, 0, 0)CF δ(1− z)

[

−
2

ǫ2
−

3

ǫ
− 8 + π2

]

, (33)

which differs only by the factor of π2 from SIDIS, due to the fact that Q2 < 0 (Q2 > 0) for SIDIS (DY). In other
words, it has exactly the same structure as the virtual correction at leading-twist. Such type of behavior also holds
true at twist-3 level for transverse momentum weighted spin dependent cross sections as shown in [56–58]. For later
convenience, we will define a finite term for the virtual correction, with the following expression:

Tgq ⊗HV
gq−C = CF δ(1− z)

(

−8 + π2
)

Tgq(x, 0, 0). (34)

k1 k2

kg k′g

x′p′
x′p′

k1 k2

kg k′g

x′p′
x′p′

FIG. 8. The virtual diagrams in DY at twist-4, the parton momenta follow the same convention as in Fig. 2, the blob contains
7 diagrams as in Fig. 9.

5. single-triple scattering interference

For real corrections to the gluon-quark double scatterings at NLO, besides the central-cut diagrams considered
above, there are also asymmetric-cut diagrams, as shown in Fig. 10. They represent the interference between single
and triple scattering amplitudes, which also have to be included for the complete contribution at the NLO.
In Fig. 10, the short bars (crosses) again stand for the propagators where the soft (hard) poles arise. These poles

can be both soft as shown in Fig. 10 (left); soft-hard as shown in Fig. 10 (middle); or hard-soft as shown in Fig. 10
(right), respectively. Of course one also has the interference diagrams where two exchanged gluons on the right side of
the cut. We perform the calculations similarly as above, and find several interesting facts. First, for soft-soft double
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FIG. 9. Virtual corrections to q-q̄-γ∗ vertex with gluon rescattering.

scattering, the asymmetric-cut diagrams only lead to a “contact” contribution (thus no nuclear-size enhancement and
can be neglected), similar to the case as demonstrated for SIDIS process previously [30, 33]. On the other hand, the
soft-hard or hard-soft asymmetric-cut diagrams have no divergences but only finite NLO corrections. We collect the
explicit expressions for these finite NLO corrections in the Appendix: Tgq⊗H

sh
gq−R and Tgq⊗H

hs
gq−R in Eqs. (A.5) and

(A.6) stand for the finite terms of soft-hard and hard-soft rescatterings, respectively, with subscript “R” representing
the diagrams where the cut is on the right sdie of the two exchanged gluons. Similarly, Tgq ⊗Hsh

gq−L and Tgq ⊗Hhs
gq−L

in Eqs. (A.7) and (A.8) represent for contributions from those diagrams where the cut is on the left side of the two
exchanged gluons.

k1 k2

k′g

H H

x′p′

x′p′

kg

k1 k2

k′g

kg

H

H

x′p′

x′p′

k1 k2

k′g

kg

H

H

x′p′

x′p′

FIG. 10. Interference diagrams between triple and single scatterings, for soft-soft (left), soft-hard (middle) and hard-soft (right)
rescattering cases, respectively.

6. final result from gluon-quark double scattering

We will now combine all the contributions from the gluon-quark double scattering, which include both real and
virtual diagrams. For real contributions, the divergent terms only come from the central-cut diagrams with soft-soft,
hard-hard, soft-hard and hard-soft double scatterings, and they are given by

d〈q2Tσ
D〉(R)

dQ2

div
=σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

∫ 1

0

dv

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)

{

1

ǫ2
δ(1− z) [δ(1− v) + δ(v)] Tgq(x, 0, 0)CF

−
1

ǫ
δ(1− v)Tgq(x, 0, 0)CF

1 + z2

(1− z)+
−

1

ǫ
δ(v)

[

Tgq(x, 0, 0)CF
1 + z2

(1 − z)+
+ Tgq(xz, x(1 − z), 0)CA

2

(1− z)+

−
(

Tgq (x, 0,−x(1− z)) + Tgq (xz, x(1− z), x(1− z))
)CA

2

1 + z

(1− z)+
+ Tgq(x, 0, 0)CA2δ(1− z)

]

}

,

(35)

where “div” above the equal sign indicates that only the divergent terms are written down on the right hand side of
the equation. As one can see, we have both soft and collinear divergences, as ǫ→ 0. The 1/ǫ2 term is responsible for
the soft divergence in the collinear region, while the terms proportional to 1/ǫ are caused by either the soft or collinear
divergence, but, not both. On the other hand, the virtual contribution is given by Eq. (33). By combining both real
and virtual contributions, we find that all double pole terms cancel out as required by the collinear factorization. The
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single pole term of the virtual contribution, proportional to −3/ǫ δ(1 − z), should also cancel the soft (or infrared)
divergent part of the 1/ǫ terms of the real contribution in Eq. (35), so that we are left with only the collinear divergent
single pole terms. The final result for gluon-quark double scattering has the following expression

d〈q2Tσ
D〉gq

dQ2
=σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

∫ 1

0

dv

(

4πµ2

Q2

)ǫ
1

Γ(1 − ǫ)

[

−
1

ǫ
δ(1 − v)Tgq(x, 0, 0)Pqq(z)

−
1

ǫ
δ(v)Tgq ⊗ Pqg→qg + finite terms

]

, (36)

where we have suppressed the finite terms for now, the subscript “gq” represents the gluon-quark double scattering,
and Pqq is the normal q → q splitting function given by

Pqq = CF

[

1 + z2

(1− z)+
+

3

2
δ(1 − z)

]

. (37)

On the other hand, the short-hand notation Tgq ⊗ Pqg→qg has the following form

Tgq ⊗ Pqg→qg ≡Pqq(z)Tgq(x, 0, 0) +
CA

2

[

4

(1 − z)+
Tqg(xz, x(1 − z), 0)−

1 + z

(1− z)+

(

Tqg(x, 0,−x(1− z))

+ Tqg(xz, x(1 − z), x(1− z))
)

]

+ 2CAδ(1− z)Tgq(x, 0, 0). (38)

As discussed in next section, the two collinear divergent 1/ǫ terms, as ǫ → 0 in Eq. (36), will be absorbed into the
normal twist-2 antiquark distribution of the colliding proton and the twist-4 gluon-quark correlation function of the
colliding heavy ion, respectively, as required by the QCD collinear factorization at the next leading power accuracy.

B. gluon-gluon double scattering

In this subsection, we consider gluon-gluon double scattering in DY production at NLO. The relevant central-cut
Feynman diagrams are shown in Fig. 11, with the “H”-blob given by Fig. 12.

k1 k2

kg k′g

H H

x′p′ x′p′

FIG. 11. The central-cut diagram for soft-soft gluon-gluon double scattering in DY process. The “H”-blob represents the hard
2 → 2 process (q̄ + g → γ∗ + q̄) as shown in Fig. 12.

H

FIG. 12. The representation of hard process for q̄ + g → γ∗ + q̄.

Gluon-gluon double scattering receives only soft-soft rescattering contributions, and thus the short bars in Fig. 11
represent the propagators where the soft poles arise. Such a double scattering happens as follows: first q̄ + g →
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q̄ through a soft gluon exchange, and then a 2 → 2 Compton hard interaction q̄ + g → γ∗ + q̄. Being a soft-
soft contribution, we follow the same method as in soft-soft gluon-quark double scattering as discussed in the last
subsection, and obtain the following result:

d〈q2Tσ
D〉gg

dQ2
= σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

∫ 1

0

dv

(

4πµ2

Q2

)ǫ
1

Γ(1− ǫ)

[

−
1

ǫ
δ(v)Tgg(x, 0, 0)Pqg(z) + Tgg ⊗Hss

gg−C

]

,

(39)

where the subscript “gg” stands for the gluon-gluon double scattering contribution, with the gluon-gluon correlation
function Tgg given by the following operator definition:

Tgg(x, 0, 0) =
1

xp+

∫

dy−

2π
eixp

+y−

∫

dy−1 dy
−
2

2π
θ(−y−2 )θ(y

− − y−1 )〈A|F
+
σ (y−2 )F

+
α (0)F+α(y−)F σ+(y−1 )|A〉. (40)

The expression for the finite term Tgg ⊗Hss
gg−C in Eq. (39) is collected in Eq. (A.9) in the Appendix. On the other

hand, the divergent piece is proportional to Pqg , the usual g → q splitting function,

Pqg(z) = TR

[

z2 + (1− z)
2
]

, (41)

with TR = 1/2 the color factor. It might be instructive to mention that there is only a collinear divergence for gluon-
gluon double scattering at this order. Such a divergence comes from the phase space where the splitted antiquark q̄
of the right diagram in Fig. 12 is radiated collinear to the incoming gluon of the colliding nucleus, as signaled by δ(v)
in Eq. (39). This collinear divergence should be absorbed into the gluon-quark correlation functions, Tgq, due to the
one-loop evolution from the gluon-gluon correlation function Tgg to the gluon-quark correlation function Tgq.
In addition to the central-cut diagram as shown in Fig. 11, one should also take into account the interference

between single and triple scattering amplitudes, i.e. asymmetric-cut diagrams where two exchanged gluons are on the
same side of the cut. However, similar to the soft-soft gluon-quark double scattering above, all of the asymmetric-cut
diagrams lead only to “contact” contributions, which can be neglected due to the lack of nuclear enhancement.

C. Final result and QCD evolution equation for gluon-quark correlation function

We are now ready to combine the NLO perturbative corrections to DY transverse momentum broadening for both
gluon-quark and gluon-gluon double scattering contributions. By adding the expressions in Eqs. (36) and (39), we
obtain the transverse momentum weighted DY cross section from double scattering in p+A collisions as follows:

d〈q2Tσ
D〉

dQ2
=σℓ

αs

2π

∑

q

∫

dx′

x′
fq̄/p(x

′)

∫ 1

xB

dx

x

∫ 1

0

dv

{

(

−
1

ǫ̂
+ ln

Q2

µ2

)[

δ(1 − v)Tgq(x, 0, 0)Pqq(z)

+ δ(v)
(

Tgq ⊗ Pqg→qg + Tgg(x, 0, 0)Pqg(z)
)

]

+ finite terms

}

, (42)

where 1/ǫ̂ = 1/ǫ − γE + ln 4π. The finite terms are collected in the Appendix, and will be specified below. We will
first discuss the divergent pieces.
There are two types of collinear divergences in Eq. (42), which are associated with δ(1− v) and δ(v), respectively.

As we have discussed already in Sec. III A 1, v = 1 corresponds to the situation where the radiated gluon is collinear to
the beam proton, and thus such a collinear divergence should be absorbed into the QCD evolved parton distribution
functions of the projectile proton. At the order of αs in the MS-scheme, we have

fq̄/p(x, µ
2
f ) = fq̄/p(x) −

αs

2π

(

1

ǫ̂
+ ln

µ2

µ2
f

)

∫

dx′

x′
fq̄/p(x

′)Pqq(z), (43)

where z = x/x′, µ and µf are the renormalization and factorization scale, respectively, and fq̄/p(x) denote the bare
LO antiquark distribution in the proton. On the other hand, v → 0 (or θ → π) represents the situation where the
radiated gluon (or antiquark in the case of gluon-gluon double scattering) is collinear to the colliding nucleus, and
the associated collinear divergence should thus be absorbed into the QCD evolved twist-4 gluon-quark correlation
function as follows:

Tgq(xB , 0, 0, µ
2
f) = Tgq(xB , 0, 0)−

αs

2π

(

1

ǫ̂
+ ln

µ2

µ2
f

)

∫ 1

xB

dx

x

[

Pqg→qg ⊗ Tgq + Pqg(z)Tgg(x, 0, 0)
]

, (44)
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where Tgq(xB , 0, 0) is the bare LO gluon-quark correlation function. From Eq. (44), one could derive the following
QCD evolution equation for the gluon-quark correlation function Tgq:

∂

∂ lnµ2
f

Tgq(xB , 0, 0, µ
2
f) =

αs

2π

∫ 1

xB

dx

x

[

Pqg→qg ⊗ Tqg + Pqg(z)Tgg(x, 0, 0, µ
2
f)
]

, (45)

which could also get contributions from other twist-4 parton-parton correlation functions, such as quark-quark corre-
lation functions, Tqq, or quark-antiquark correlation functions, etc. We will come back to this in next section.
Before concluding this section, it is important to point out that the QCD evolved gluon-quark correlation function

at NLO as given in Eq. (44) for DY process (representing initial-state double scattering) has the same form as the
corresponding quark-gluon correlation function at NLO for SIDIS process (representing final-state double scattering)
as given in our previous paper [30, 41] 3. The QCD evolution equation for the gluon-quark correlation function
derived in DY process is also the same as that for the quark-gluon correlation function derived in SIDIS process.
This confirms the collinear factorization for the transverse momentum broadening at the NLO, and demonstrates the
universality of the associated gluon-quark correlation function. This in turn indicates that the properties of nuclear
matter (contained in this twist-4 correlation function) as probed by an energetic parton are independent of the hard
process that creates the energetic parton. Therefore, one can “measure” this correlation funciton in one process (e.g.
SIDIS) and then apply it to some other processes (e.g. DY), which is consistent with the QCD factorization at twist-4
and can be regarded as the prediction power of perturbative QCD for parton multiple scattering in nuclear medium.
After absorbing all the collinear divergences into the QCD evolved nonperturbative distribution or correlation

functions, we obtain the transverse momentum weighted differential cross section for DY process in p+A collisions at
twist-4 up to NLO accuracy:

d〈q2Tσ
D〉

dQ2
=σℓ

∑

q

∫

dx′

x′
fq̄/p(x

′, µ2
f )

{

∫ 1

xB

dx

x
Tgq(x, 0, 0, µ

2
f )δ(1− z)

+
αs

2π

∫ 1

xB

dx

x

[

ln

(

Q2

µ2
f

)

Pqq(z)Tgq(x, 0, 0, µ
2
f)

+ ln

(

Q2

µ2
f

)

(

Tgq ⊗ Pqg→qg + Pqg(z)Tgg(x, 0, 0, µ
2
f )
)

+HNLO

]

}

, (46)

where xB = Q2/2p · q is the Bjorken variable for DY process, z = xB/x, and H
NLO represents finite terms and has

the following expression

HNLO =Tgq ⊗Hss
gq−C + Tgq ⊗Hhh

gq−C + Tgq ⊗Hsh
gq−C + Tgq ⊗Hhs

gq−C

− Tgq ⊗Hsh
gq−R − Tgq ⊗Hhs

gq−R − Tgq ⊗Hsh
gq−L − Tgq ⊗Hhs

gq−L

+ Tgq ⊗HV
gg−C + Tgg ⊗Hss

gg−C . (47)

Here the first line in Eq. (47) stands for the contributions from the central-cut real diagrams, and the second line are
the contributions from asymmetric-cut diagrams, i.e. the interference between single and triple scattering amplitudes.
The first term in the last line is the virtual correction, and the second term in the last line is the contribution from
the gluon-gluon double scattering. Except the virtual correction Tgq ⊗HV

gg−C that is given by Eq. (34), the explicit

expressions for all the other terms in Eq. (47) are collected in the Appendix. Eq. (46) is the main result of our paper.
By dividing this q2T -weighted DY cross section from double scattering in Eq. (46) by the NLO inclusive DY cross
section, as in the definition in Eq. (4), one can then compute the transverse momentum broadening ∆〈q2T 〉 for DY
process in p+A collisions at the NLO accuracy.
One of the advantages to include the high-order O(αs) corrections in the weighted cross sections lies in the fact

that NLO QCD correction usually reduces the factorization scale µf -dependence, and thus increases the stability of
the theoretical result. This can be easily seen from Eq. (46), where µf -dependence in the first line is compensated
by the ln(Q2/µ2

f )-dependence in the second and third lines. To explore the impact of such terms should already be
quite interesting, and we plan to pursue in the near future. To further investigate the numerical impact of the full
NLO corrections, one has to estimate in addition the effects from HNLO in Eq. (47), which contains both diagonal

3 In the operator definitions, the only difference lies in the different θ-functions, with θ(−y−
2
)θ(y− − y−

1
) for DY while θ(y−

2
)θ(y−

1
− y−)

for SIDIS, which are nothing but simply representing the order of double scatterings.
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and off-diagonal twist-4 matrix elements as well as their derivatives. These nonperturbative functions are so far not
well constrained due to the lack of experimental data. Especially for the off-diagonal terms, they only show up in
NLO calculations as they come from the interference between soft and hard rescattering. The currently unknown
off-diagonal twist-4 matrix elements complicate the numerical estimation of NLO contribution to the transverse
momentum broadening. We hope the future data can help us constrain these functions, so that we can improve the
prediction power of perturbative QCD for multiple scatterings in nuclear medium, and obtain the precise information
of medium properties.

IV. SUMMARY

In this paper, we calculate the NLO contributions to the nuclear transverse momentum broadening for Drell-Yan
dilepton production in p+A collisions. Specifically, we evaluated the transverse-momentum-weighted differential cross
section at twist-4 at NLO, by taking into account all the contributions from both gluon-quark and gluon-gluon double
scatterings, as well as the interference between single and triple scattering amplitudes. Through explicit calculations,
we demonstrate that the soft divergences cancel out between real and virtual corrections. The remaining collinear
divergences can be absorbed into either the QCD evolved parton distribution function of the beam proton, or the
QCD evolved twist-4 nuclear gluon-quark correlation function of the colliding nucleus, which leads to a DGLAP-type
evolution equation for the twist-4 gluon-quark correlation function, same as that derived in the NLO calculation
in SIDIS e+A collisions. This verifies the universality of the twist-4 gluon-quark correlation function, and in turn
indicates that the properties of nuclear matter as probed by a hard probe (scattering with a large momentum transfer)
are independent of the the details of the hard process. Such a property also demonstrates the prediction power of
perturbative QCD approach for parton multiple scattering in nuclear medium. After the subtraction of all the
collinear divergences, the transverse-momentum-weighted DY cross section can be factorized into the convolution of a
normal twist-2 parton distribution functions of the colliding proton, convoluted with a gluon-quark (or gluon-gluon)
correlation function of the colliding nucleus and the perturbatively calculated hard coefficient functions accurate up
to one loop order. We expect this improved NLO result for DY transverse momentum broadening in p+A collisions
can be applied phenomenologically to compare with data from ongoing experiments at FNAL, RHIC and LHC, to
test QCD treatment of partonic multiple scatterings beyond the existing LO accuracy.
For the complete NLO contribution to the DY transverse momentum broadening from partonic double scatterings,

we also need to calculate the contributions from (anti)quark-(anti)quark double scattering subprocesses, which will
also have contributions from the soft-soft, hard-hard, soft-hard, and hard-soft double scattering channels. Unlike
the gluon-quark and gluon-gluon double scattering subprocesses, the collinear expansion for (anti)quark-(anti)quark
double scattering is more straightforward, because there is no need for the complication to convert the gluon field
operators into field strength operators in order to define the good twist-4 gluon-quark and gluon-gluon correlation
functions. We will present our calculations of full contributions to the DY transverse momentum broadening from
(anti)quark-(anti)quark double scattering subprocesses in a future publication.
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Appendix: complete list of finite terms

In this appendix, we list the finite terms for the transverse momentum weighted cross section in DY process from
gluon-quark and gluon-gluon double scatterings. For central-cut diagrams in gluon-quark double scattering, the finite
pieces for soft-soft, hard-hard, soft-hard and hard-hard double scatterings are denoted as Tgq ⊗Hss

gq−C , Tgq ⊗Hhh
gq−C ,

Tgq ⊗Hsh
gq−C and Tgq ⊗Hhs

gq−C , respectively. For asymmetric-cut diagrams, we use Tgq ⊗Hsh
gq−R and Tgq ⊗Hhs

gq−R to

represent the finite term for soft-hard and hard-soft rescatterings, respectively. Similarly, Tgq⊗H
sh
gq−L and Tgq⊗H

hs
gq−L

stands for the finite term for soft-hard and hard-soft rescatterings, respectively. Here the subscript “C” represents the
central-cut diagrams, “R” (“L”) stands for the diagrams where the cut is on the right (left) side of the two exchanged
gluons. Finally, the finite term for gluon-gluon double scattering is denoted by Tgg ⊗Hss

gg , which has only soft-soft
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double scattering contributions. These finite terms are given by the following expressions:

Tgq ⊗Hss
gq−C =x2

d2Tgq(x, 0, 0)

dx2
CF

[

1

3
(5z3 − 3z2 + 3z − 5) + ln

(1− z)2

z
(1− z)(1 + z2)

]

+ x
dTgq(x, 0, 0)

dx
CF

×

[

1

3
(−20z3 + 18z2 + 6z + 8)− ln

(1− z)2

z
(−4z3 + 5z2 + 1)

]

+ Tgq(x, 0, 0)CF

{

4δ(1− z)

−
z4 + 4z3 − 6z2 + 8z + 1

(1− z)+
−

1

3
(1 − z)(32z2 − 7z + 5) +

[

2

(

ln(1− z)

1− z

)

+

−
ln z

(1− z)+

]

× (7z4 − 14z3 + 10z2 + 1)

}

, (A.1)

Tgq ⊗Hhh
gq−C =

[

2

(

ln(1− z)

1− z

)

+

−
ln z

(1 − z)+

]{

2CATgq(xz, x(1 − z), 0) + (1 + z2)
[

CAz + CF (1− z)2
]

Tgq(x, 0, 0)

}

+ (1− z)
[

CAz + CF (1− z)2
]

Tgq(x, 0, 0) +

∫ 1

0

dv Tgq(xd, x− xd, 0)

×

[

(1 − v + vz)2 + 1
][

CA(vz − v + 1) + CF v
2(1− z)2

]

(1 − z)+v+(1− v)+
, (A.2)

Tgq ⊗Hsh
gq−C =

∫ 1

0

dv

[

(1 − v + vz)3 + z
][

CA + 2CF v(z − 1)
]

2v+(1− v + vz)
x
d

dx
Tgq(x, 0, xd − x)

+
1

2
CA(1 + z)

[

ln
(1− z)2

z
− 1

]

x
d

dx
Tgq
[

x, 0,−x(1− z)
]

− δ(1− z)2CATgq(x, 0, 0)

−

∫ 1

0

dv

[

(1− v + vz)3 + z
][

CA + 2CF v(z − 1)
]

2(1− v + vz)2
(1 − z)x

d

dxd
Tgq(x, 0, xd − x)

−
1

2(1− z)+

{

CA(z
2 − 3z − 2)Tgq

[

x, 0,−x(1− z)
]

+
[

CA + 2CF (z − 1)
]

(z3 − 4z2 + z − 2)

× Tgq(x, 0, 0)

}

+

[(

ln(1− z)

1− z

)

+

−
ln z

2(1− z)+

]{

CA(z
2 − 2z + 1)Tgq

[

x, 0,−x(1− z)
]

− z(1 + z2)

×
[

CA − 2CF (1 − z)
]

Tgq(x, 0, 0)

}

−

∫ 1

0

dv
CA + 2CF v(z − 1)

2(1− z)+v+(1 − v)+(1 − v + vz)

[

(1− v + vz)4

+ (2v − 1)(z − 1)z + z
]

Tgq(x, 0, xd − x), (A.3)

Tgq ⊗Hhs
gq−C =

∫ 1

0

dv

[

(1 − v + vz)3 + z
][

CA + 2CF v(z − 1)
]

2v+(1− v + vz)
x
d

dx
Tgq(xd, x− xd, x− xd)

+
1

2
CA(1 + z)

[

ln
(1− z)2

z
− 1

]

x
d

dx
Tgq
[

xz, x(1 − z), x(1− z)
]

− δ(1 − z)2CATgq(x, 0, 0)

−

∫ 1

0

dv

[

(1− v + vz)3 + z
][

CA + 2CF v(z − 1)
]

2(1− v + vz)2
(1 − z)x

d

dxd
Tgq(xd, x− xd, x− xd)

−
1

2(1− z)+

{

CA(z
2 − 3z − 2)Tgq

[

xz, x(1− z), x(1− z)
]

+
[

CA + 2CF (z − 1)
]

(z3 − 4z2 + z − 2)

× Tgq(x, 0, 0)

}

+

[(

ln(1− z)

1− z

)

+

−
ln z

2(1− z)+

]{

CA(z
2 − 2z + 1)Tgq

[

xz, x(1− z), x(1 − z)
]

− z(1 + z2)
[

CA + 2CF (z − 1)
]

Tgq(x, 0, 0)

}

−
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0
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[

CA + 2CF v(z − 1)
]

2(1− z)+v+(1− v)+(1− v + vz)

×
[

(1− v + vz)4 + (2v − 1)(z − 1)z + z
]

Tgq(xd, x− xd, x− xd), (A.4)

Tgq ⊗Hsh
gq−R =

∫ 1

0

dv

[

(1 − v + vz)3 + z
][

CA + 2CF v(z − 1)
]

2(1− v + vz)2
(1− z)x

d

dxd
TR
gq(xd, 0, x− xd)

− (1 + z2)
[

CA + 2CF (z − 1)
]

TR
gq(x, 0, 0), (A.5)

Tgq ⊗Hhs
gq−R =−

∫ 1

0
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[

(1− v + vz)3 + z
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CA(1 − v + vz)− 2CF v(z − 1)
]

2(1− v + vz)2
(1− z)

(

x
d

dxd
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gq(xd, x− xd, x− xd)
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+
d

dx2
TR
gq(xd, x2, x− xd)|x2→x−xd

)

, (A.6)

Tgq ⊗Hsh
gq−L =

∫ 1

0

dv
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CA + 2CF v(z − 1)
]

2(1− v + vz)2
(1− z)x

d

dxd
TR
gq(x, xd − x, xd − x)

− (1 + z2)
[

CA + 2CF (z − 1)
]

TR
gq(x, 0, 0), (A.7)
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Tgg ⊗Hss
gg−C =x2
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dx2
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(67z3 − 133z2 + 83z − 17)(1− z) + ln

(1 − z)2

z
(1 − z)2(2z2 − 2z + 1)

]

− x
d

dx
Tgg(x, 0, 0)TR(1 − z)

[

1

12
(381z3 − 605z2 + 253z − 29) + ln

(1 − z)2

z
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(A.9)

where the matrix element TR
gq and TL

gq are given by

TR
gq(x1, x2, x3) =

∫

dy−

2π
eix1p

+y−

∫

dy−1 dy
−
2

4π
eix2p

+(y−

1
−y−

2
)eix3p

+y−

2 θ(y−2 − y−1 )θ(y
− − y−2 )

× 〈A|F+
σ (y−2 )ψ̄q(0)γ

+ψq(y
−)F σ+(y−1 )|A〉, (A.10)

TL
gq(x1, x2, x3) =

∫

dy−

2π
eix1p

+y−

∫

dy−1 dy
−
2

4π
eix2p

+(y−

1
−y−

2
)eix3p

+y−

2 θ(y−1 − y−2 )θ(−y
−
1 )

× 〈A|F+
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−)F σ+(y−1 )|A〉. (A.11)
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