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In the era of precision physics measurements at the LHC, efficient and exhaustive estimations
of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC)
event generators, the estimation of such uncertainties traditionally requires independent MC runs
for each variation, for a linear increase in total run time. In this work, we report on an automated
evaluation of the dominant (renormalization-scale and non-singular) perturbative uncertainties in
the PYTHIA 8 event generator, with only a modest computational overhead. Each generated event
is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set
separately preserving the total cross section. Explicit scale-compensating terms can be included,
reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations.
The formalism also allows for the enhancement of rare partonic splittings, such as g → bb̄ and q → qγ,
to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov
factors.

I. INTRODUCTION

Event generators [1] are used in almost all tests of the
Standard Model at colliders. The current state-of-the-
art allows for fixed-order corrections to the matrix ele-
ments used in these predictions and a consistent match-
ing or merging between the matrix element and parton
shower contributions. The components of such predic-
tions are based on approximation, and it is necessary to
estimate their reliability. For the fixed–order (matrix ele-
ment) piece of these calculations, estimates of the uncer-
tainty come from varying a common factorization (µF )
and renormalization (µR) scale and simultaneously con-
sidering the correlation with the parton distribution func-
tions (PDFs). While these uncertainty estimates may be
tedious to compute, it is a relatively simple procedure
to calculate the relative weight of an event after scale
and PDF variations. There is an additional simplicity to
these uncertainty estimates. The rest of the event devel-
opment is usually unchanged by these variations. There-
fore, each particle-level prediction can be recycled after
applying the weight correction for that event. This is
particularly important if the entire event has been folded
with a (time-consuming) detector simulation.

The uncertainty on the other components of the predic-
tion, such as parton showering, multiparton interactions,
and hadronization, is more challenging to estimate. This
is because of the algorithms applied to sample probability
distributions and the iterative nature of the algorithms.
The state-of-the-art is to select a (small) number of event-
generator parameters and make entirely new predictions
based on them, as e.g. in the “Perugia” tune variations [2]
and/or “eigentune” variations [3–6]. Since each of these
new predictions makes different particle-level predictions,
each generated event must be passed through a detector
simulation as part of a realistic analysis. This fact greatly
reduces the number of parameter variations than can be

performed.
In this paper, we present a method to estimate the ef-

fect of parameter variations in the parton shower for a
given kinematic configuration. This is similar to what
was done previously in VINCIA for final-state radiation
(FSR) [7], but is here extended to initial state radiation
(ISR) and adapted to PYTHIA’s parton-shower frame-
work [8–10].

We also show how to use the same method to generate
a weighted sample enhanced in the occurrence of specific
shower branchings, such as g → bb̄, with correctly calcu-
lated weights (including correct physical Sudakov form
factors). This could be useful, e.g., for the B physics
community. (We note that equivalent proposals for “bi-
asing” or “boosting” specific shower splitting probabili-
ties were also made in [11, 12].) The two methods can be
combined, so one can also get uncertainties on a biased
sample, although this latter capability has not yet been
implemented in the current PYTHIA code.

II. METHOD

The probability for a branching in the parton shower
is encapsulated in the Sudakov form factor that, for re-
alistic applications, must be evaluated numerically. A
practical numerical method for this is the veto algo-
rithm, known in computer science as the ”thinning al-
gorithm” [13, 14], which involves rejecting (or thinning
out) trial branchings. We start with a brief review of
this method as applied to parton showers in section II A.
We then turn to the main focus of this paper: incor-
porating systematic variations of the branching proba-
bilities. For a unitary (probability-conserving) shower,
such variations necessarily imply opposite variations in
the non-branching probabilities through the rejections.
The specific form these variations must have to preserve
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the unitarity of the shower are derived in section II B. A
further interesting application of the same framework is
presented in section II C, allowing to generate correctly
weighted showers with biased kernels, as was already pro-
posed for q → qγ splittings in [11]. With the general for-
malism now in hand, sections II D and II E describe the
specific application of the framework to renormalisation-
scale and non-singular term variations in the shower, re-
spectively.

At the technical level, in the original VINCIA imple-
mentation [7], the set of variations that could be per-
formed were defined by the authors (hardcoded), with
limited options for users to modify e.g. by which fac-
tor to vary the renormalisation scale up and down. The
PYTHIA implementation has been made significantly
more general, allowing users considerable flexibility to de-
fine any number of simultaneous or separate variations,
as documented in detail in PYTHIA’s online HTML doc-
umentation, with a set of default variations chosen by the
authors.

As in VINCIA, the modification to the rejection
and acceptance probabilities are accumulated during the
shower evolution and presented after the shower has fin-
ished as (a set of) alternative global event weights; one
for each variation. The relative probability for each event
to occur under different showering assumptions (repre-
sented by the variations) is given by the weight calculated
for the given variation relative to the nominal (unvaried)
event weight.

We note that, since unitarity is strictly imposed on
these variations, each set of weights should integrate to
the same total cross section. Bear in mind, however,
that this will only really be true in the limit of infinitely
many events. Depending on the magnitude of each vari-
ation and how “long” the shower evolutions are (bigger
phase spaces imply more room for changes to accumu-
late), the variation weights will fluctuate around their
mean values. This will reduce the statistical precision on
the uncertainty variations relative to the nominal sam-
ple. To exemplify, take a sample of 100 identical hard
4-jet events, and say that one of them experienced a very
unlikely branching somewhere deep in the shower, say
at the 20th branching (i.e. with minimal impact on 4-jet
distributions). These 100 events would all enter with the
same weight in the nominal sample. But the event that
happened to contain the unlikely 20th branching can ac-
quire a much larger weight in one of the variations if the
probability for that branching to occur is much larger for
that variation. The 4-jet cross section computed from
the variation weights would then be dominated by the
single event with large weight, corresponding to a much
worse statistical precision, in spite of the fact that the
actual weight change occurred not at the 4-jet level but
much deeper in the shower. This is a simple consequence
of accumulating the variations through the shower his-
tory, which — depending on future uses of the algorithm
— may make it desirable to introduce further options for
controlling the amount of variation performed at each

stage of the shower. For the time being, for practical
applications, we advise to monitor the variations of the
uncertainty weights in each histogram bin so that any
issues due to very rare events with very large variation
weights do not go unnoticed.

A. Proof of the Standard Veto Algorithm

Given a differential branching probability, P (t, z), with
t ∝ Q2 the shower evolution variable and z a complemen-
tary phase-space invariant (which in the DGLAP picture
can be identified with the collinear energy-sharing frac-
tion), a standard parton-shower algorithm generates the
scale of the next branching by solving the following equa-
tion for t,

Rt = ∆(t0, t) = exp

(
−
∫ t0

t

dt1

∫
dz1P (t1, z1)

)
, (1)

with t0 the starting scale for the evolution, Rt ∈ [0, 1]
a uniformly distributed random number, and ∆ the Su-
dakov factor, or no-branching probability. In the specific
case of PYTHIA’s transverse-momentum-ordered show-
ers [8], the differential branching probability is

P (t, z) =
αs(t)

2π

P (z)

t
, (2)

with t = p2
⊥evol [8], and P (z) a DGLAP splitting ker-

nel [15–17]. We emphasize, however, that the formalism
presented here is valid for arbitrary P (t, z) and could be
applied equally well to dipole/antenna-showers.

After the selection of t, a value for z is then selected
according to a second random number, by solving for z
in the following equation

Rz =

∫ z

zmin
dz1 P (t, z1)∫ zmax

zmin
dz1P (t, z1)

, (3)

with Rz ∈ [0, 1] a different uniformly distributed ran-
dom number. This generates the resummed probability
distribution,

dP
dt dz

= P (t, z) ∆(t0, t) . (4)

However, since P (t, z) can be complicated to integrate
(especially in the presence of matrix-element or higher-
order corrections to P ) and Eq. (1) & Eq. (3) can be
difficult to invert analytically for t and z, a simple and
powerful trick is normally used to transform the prob-
lem: the “veto algorithm”. Instead of using the exact P
in Eq. (1) & Eq. (3), one instead uses a simpler “trial”

overestimate, P̂ (t, z) > P (t, z), constructed specifically
such that it can be easily integrated and inverted. (The
integration boundaries in z can also be extended to cover
a larger region than the physical one, though such details
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are not important here.) Trial branchings generated ac-

cording to P̂ (i.e. with a Sudakov ∆̂ based on P̂ ) are
then accepted with the probability

Pacc(t, z) =
P (t, z)

P̂ (t, z)
, (5)

with P (t, z) = 0 outside the boundaries of the physi-

cal phase space, and Pacc < 1 guaranteed by P̂ > P .
If the trial is accepted, physical momenta are generated
corresponding to the chosen values of t and z, and the
pre-branching partons are replaced by the post-branching
ones, including the effects of recoils etc. If the trial is
rejected (with probability Prej = 1 − Pacc), the parton
system remains in its original state. In either case, the
scale of the (accepted or rejected) trial becomes the new
value for t0, from which the evolution is restarted to find
the next (lower) trial scale. The procedure ends when
t < tmin.

Before considering how to modify this algorithm to
produce uncertainty variations and bias weights, we first
demonstrate the all-orders proof of why the veto algo-
rithm does end up producing the correct form of the
physical resummed distribution, Eq. (4). This will be
useful as the main starting point below, and is often ne-
glected in the literature. (The oldest equivalent explicit
treatment we are aware of in the particle-physics litera-
ture is given by Sjöstrand and van Zijl in the context of
their Sudakov-based approach to multiple-parton inter-
actions [18], proving that the sum over p⊥-ordered MPI
reproduces the naive (inclusive, unordered) cross sections
when summed over all possible orderings. The standard
veto algorithm applied to parton showers is also described
in Ref. [19] and is further discussed in Refs. [12, 20, 21].
However, as mentioned above, the basics of the algorithm
can be found in Refs. [13, 14].)

Consider the probability distribution for the first ac-
cepted branching. For the specific case of zero rejected
trials preceding it (suppressing the z dependence for clar-
ity), it is:

dP0

dt
= Pacc(t) P̂ (t) ∆̂(t0, t) = P (t) ∆̂(t0, t) , (6)

hence for zero rejected trials the accept-probability factor
results in the correct P (t) but it is associated with the

wrong (trial) Sudakov factor, ∆̂ < ∆. For one rejected
trial preceding the accepted branching, we have:

dP1

dt
= P (t)

∫ t0

t

dt1P̂ (t1) (1− Pacc(t1)) ∆̂(t0, t1)∆̂(t1, t)

= P (t) ∆̂(t0, t)

∫ t0

t

dt1

(
P̂ (t1)− P (t1)

)
, (7)

where we have used the fact that Sudakov products
combine trivially when the underlying system doesn’t
change, ∆(t1, t2) = ∆(t1, t)∆(t, t2) and we again find the
“wrong” (trial) Sudakov but now it is accompanied by a
factor that depends explicitly on the difference between

P̂ and P . For two rejected trials preceding the accepted
branching,

dP2

dt
= P (t) ∆̂(t0, t)

∫ t0

t

dt1

(
P̂ (t1)− P (t1)

)
×∫ t1

t

dt2

(
P̂ (t2)− P (t2)

)
, (8)

and similarly for n rejected trials preceding the accepted
branching. The crucial point in the proof is to recognize
that the double integral in Eq. (8) is in fact a triangle
integral with a factorized integrand symmetric under in-
terchange of the two integration variables, hence it can
be written∫ 1

0

dxf(x)

∫ x

0

dyf(y) =
1

2

∫ 1

0

dxf(x)

∫ 1

0

dyf(y)

=
1

2

(∫ 1

0

dxf(x)

)2

, (9)

and similarly for the higher-n terms that yield hyper-
triangle integrals that can always be written on product
form, prefaced by a factor 1/n! that gives the fractional
volume occupied by a single ordered slice t0 > t1 > t2 >
. . . > tn > t of the full n-hypercube.

Thus, the densities for each possible number of rejected
trial branchings form nothing but the terms of an ex-
panded exponential. The sum over all possible numbers
of preceding failed trial branchings is therefore,

dP
dt

= P (t) ∆̂(t0, t)×[
1 +

∞∑
n=1

1

n!

(∫ t0

t

dt1

(
P̂ (t1)− P (t1)

))n
]

= P (t) exp

(
−
∫ t0

t

dt1P̂ (t1)

)
×

exp

(∫ t0

t

dt1

(
P̂ (t1)− P (t1)

))
= P (t) exp

(
−
∫ t0

t

dt1P (t1)

)
= P (t) ∆(t0, t), (10)

where we inserted the definition of the trial Sudakov, ∆̂,
in the second line, cancelled it against the P̂ term from
the failed-branching exponential, and finally used the def-
inition of the physical Sudakov, Eq. (1). The last line is
the desired expression, which now gives the physical re-
summed branching probability, independently of the trial
function. This expression is identical to Eq. (4), proving
the correctness of the veto algorithm and in particular
that the final result is independent of the choice of trial
function, as long as P̂ > P .

B. Veto Algorithm with Uncertainty Variations

The main part of our paper consists of the proof, to all
orders in perturbation theory, of a conjecture developed
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by one of us in Ref. [7] in the context of the VINCIA
shower generator [22]. According to this proposal, the
veto algorithm discussed above can be modified to simul-
taneously compute several alternative sets of weights for
each event, answering roughly: what would the weight
of this event have been, if we had used, for instance, an
alternative value for the strong coupling or an alternative
splitting function? The number of variations that can be
included is in principle infinite (each requiring very little
computing and memory resources), hence several alter-
native definitions of the same source of uncertainty can
be evaluated simultaneously (e.g., renormalisation-scale

variations by factors
√

2, 2, and 4 can all be included) and
final plots can be made using only a subset of these. We
here prove the validity of the algorithm to all orders in
perturbation theory, and implement it in the PYTHIA 8
event generator [10].

Consider a parton shower based on the veto algorithm
discussed above, with the physical trial-accept probabil-
ity, Pacc, given by Eq. (5). Consider further an alter-
native shower algorithm, defined by a different physical
trial-accept probability, P ′acc,

P ′acc(t, z) =
P ′(t, z)

P̂ (t, z)
, (11)

where the difference between the alternative radiation
kernel P ′ and the original P can be, for instance, dif-
ferent αs scale choices, different non-singular terms in
the splitting kernels, and/or different effective higher-
order contributions to the splitting kernels. Note how-
ever that we assume that the t and z definitions remain
the same. Translations between different t choices are
discussed in [23] (and the resulting equations are used in
VINCIA to provide an uncertainty variation correspond-
ing to the difference between virtuality-ordered and p⊥-
ordered showers) while exploring different z definitions
(and more generally, different recoil strategies) would re-
quire a future generalisation of the algorithm presented
here.

The proposal to compute the probability of an event
generated by P ′ based on an event generated using P is
as following [7] (suppressing again the z dependence for
clarity):

1. Start the event evolution by setting all weights
(nominal and uncertainty-variation ones) equal to
the input weight of the event, w′ = w.

2. If the trial branching is accepted, multiply the al-
ternative weight w′ by the relative ratio of accept
probabilities,

R′acc(t)
P ′acc(t)

Pacc(t)

P ′(t)

P (t)
. (12)

3. If the trial branching is rejected, multiply the al-
ternative weight w′ by the relative ratio of reject-

probabilities,

R′rej(t) =
P ′rej(t)

Prej(t)
=

1− P ′acc(t)

1− Pacc(t)
=
P̂ (t)− P ′(t)
P̂ (t)− P (t)

. (13)

4. If desired, the detailed balance between the ac-
cept and reject probabilities could optionally be al-
lowed to be broken by up to a non-singular term,
P ′acc 6= 1 − P ′rej, to represent uncertainties due

to genuine (non-canceling) higher-order corrections
that would modify the total cross sections. For the
current implementation in PYTHIA, however, we
do not consider this possibility further.

Step 2 is responsible for adjusting the naive splitting
probabilities, while Step 3 is responsible for adjusting
the no-splitting Sudakov factors. The result is that the
set of weights w′ represents a separately unitary event
sample, with 〈w′〉 = 〈w〉; i.e., the samples integrate to
the same total cross section. We already know that the
probability distribution of the generated event sample,
when applying the nominal set of weights, w, is the dis-
tribution defined by Eq. (4). We shall now prove that
the probability distribution obtained from the same gen-
erated event sample, when applying the set of weights w′,
is the correct resummed distribution for the P ′ radiation
kernels,

dP ′

dt dz
= P ′(t, z) ∆′(t0, t) , (14)

where the apostrophes on both P ′ and ∆′ emphasize that
the modified radiation probability enters in both places.

For zero rejected trials, the modified weight distribu-
tion is:

dP ′0
dt

= R′acc(t)︸ ︷︷ ︸
reweight

Pacc(t)︸ ︷︷ ︸
accept trial

P̂ (t) ∆̂(t0, t)︸ ︷︷ ︸
generate trial

= P ′(t) ∆̂(t0, t) , (15)

for one rejected trial,

dP ′1
dt

= R′acc(t)︸ ︷︷ ︸
reweight

Pacc(t)︸ ︷︷ ︸
accept trial

P̂ (t)∆̂(t0, t)×

∫ t0

t

dt1 R′rej(t)︸ ︷︷ ︸
reweighting

(
P̂ (t1)− P (t1)

)
︸ ︷︷ ︸

reject trial

= P ′(t) ∆̂(t0, t)

∫ t0

t

dt1

(
P̂ (t1)− P ′(t1)

)
, (16)

and for two rejected trials,

dP ′2
dt

= P ′(t) ∆̂(t0, t)

∫ t0

t

dt1

(
P̂ (t1)− P ′(t1)

)
×∫ t1

t

dt2

(
P̂ (t2)− P ′(t2)

)
, (17)
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hence exactly the same structure emerges for the
reweighted sample as for the underlying veto algorithm
above, just with P replaced by P ′. The proof that
Eq. (14) results from the sum over all possibilities is
therefore identical to the proof of the original (un-
weighted) veto algorithm above.

Two remarks are in order. First, we emphasize that
the relative reject-ratio, Eq. (13), contains the differ-

ence P̂ − P in the denominator. This means that, if the
trial overestimate, P̂ , is “too perfect” (meaning it is very
close to P ), the denominator can become close to singu-
lar, resulting in large and possibly numerically unstable
weights. Algorithmically, what happens is that there are
very few failed trials, hence the modifications to the Su-
dakov factor are not mapped out very well; each failed
trial will have a very large job to do. Technically, we ad-
dress this by applying a “headroom factor” to the trial
functions when automated uncertainty-variations are re-
quested, ensuring that there is always a non-negligible
probability for trials to be rejected at the cost of compu-
tational speed. By default, we choose a headroom factor
of 2. For the representative example of hadronic Z de-
cays, this results in a slowdown of the code of only about
20%.

Secondly, the final event weight, w′, after the full
shower evolution, is the product of many such factors,
one R′acc for each accepted trial and one R′rej for each
rejected one,

w′ =
∏

i∈accepted

P ′i,acc

Pi,acc

∏
j∈rejected

P ′j,rej

Pj,rej
. (18)

Given enough phase space for evolution, this factor
can become arbitrarily different from unity, representing
that, e.g., a very active shower history is exponentially
more likely to occur in a shower with a large value of αs

than in one with a small value. In principle, this is both
physically and mathematically correct. In practice, how-
ever, it is not desirable that branchings at low evolution
scales in the shower should significantly alter the modi-
fied event weights. Technically, we treat this by imposing
a few limiting factors on the variations, as detailed below.

C. Veto Algorithm with Biased Kernels

A second important use case for shower algorithms is
to evaluate the fragmentation contributions to processes
like photon and B hadron production, via splittings like
q → qγ and g → bb̄ respectively. (π0 → γγ and simi-
lar hadron decay processes obviously contribute substan-
tially to the former as well; our focus here is on the
perturbative contributions only.) Since these processes
are relatively rare (αem � αs and Pg→bb̄ � Pg→gg),
the generation of adequate event samples featuring these
processes can suffer from substantial inefficiencies. A
complementary case is the generation of high-multiplicity
minimum-bias samples in pp collisions, for which events

enriched in the number of perturbative MPI could help to
improve the generation efficiency (though of course there
is also a contribution from events with few MPI but very
active hadronization steps).

A similar line of argument as above allows us to
construct weighted samples enriched in these processes,
while preserving the exact Sudakov factors. We note that
this method is formally identical to the one presented for
q → qγ branchings in Ref. [11]; we include its definition
and all-orders proof here mostly for completeness, and to
have it presented in the same notation as above.

Consider that we wish to enhance the rate of g → bb̄
splittings by a factor of 10 (for example), until we have
obtained at least one such splitting, after which we would
normally want to let the probability to have a second
g → bb̄ splitting in the same event drop back down to
the normal level. We can achieve this by first increasing
the rate of trials for the corresponding splitting function
by a factor of 10 by using a larger (biased) trial function
(suppressing the dependence on both t and z),

P̂bias = 10P̂ . (19)

We then keep the accept probability the same as normal,
but reweight each accepted biased trial branching by the
inverse of the biasing factor,

Pacc
P

P̂
; Racc

P̂

P̂bias

1

10
, (20)

so that the product RaccPaccP̂bias = P is the desired
physical distribution. For each rejected biased trial
branching, we use the same technology as above to
reweight the event,

Rrej =
1− PaccRacc

1− Pacc
=

P̂

P̂ − P

(
1− P

P̂bias

)
P�P̂bias→ P̂

P̂ − P
, (21)

where the last asymptotic shows that the reweighting fac-
tor becomes independent of the bias in the limit that the
bias factor is very large. Nonetheless, the difference is im-
portant since, as we shall see below, this is what allows
us to recover the physical Sudakov factor.

We note that if one is interested only in enhancing a
single branching of the given type, all events featuring the
branching will be accompanied by a single power of the
constant inverse-bias factor, Eq. (20), hence that weight
can alternatively just be applied to the event sample as
a whole, and will cancel in any normalized distributions.
The important part is thus the application of Eq. (21)
to each rejected trial branching, in order to recover the
physical Sudakov factor. Similarly to above, this is a
procedure that will only work well when there is at least
a minimal number of rejected trial branchings, ensured
e.g., by choosing P̂ > 1.2P .
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The proof is as follows. For zero rejected trials, the
distribution obtained by the above procedure is:

dP0

dt
= Racc(t)︸ ︷︷ ︸

reweight

Pacc(t)︸ ︷︷ ︸
accept trial

P̂bias(t) ∆̂bias(t0, t)︸ ︷︷ ︸
generate biased trial

= P (t) ∆̂bias(t0, t), (22)

for one rejected trial,

dP1

dt
= P (t) ∆̂bias(t0, t)×∫ t0

t

dt1P̂bias(t1) (1− Pacc(t1))Rrej(t1)

= P (t) ∆̂bias(t0, t)×∫ t0

t

dt1

(
P̂bias(t1)− P (t1)

)
, (23)

where the second equality follows from the exact defini-
tion of Rrej in Eq. (21), while the asymptotic version of it
would only generate the first term in the integrand. For
two rejected trials,

dP2

dt
= P (t) ∆̂bias(t0, t)

∫ t0

t

dt1

(
P̂bias(t1)− P (t1)

)
×∫ t1

t

dt2

(
P̂bias(t2)− P (t2)

)
. (24)

As required, the nested integrals translate between P̂bias

and the physical branching probability, P , such that the
produced Sudakov factors will depend only upon P , not
Pbias.

D. Renormalization-Scale Variations

The first major class of variations we include are vari-
ations of the shower renormalization scales. This can be
done for both QED and QCD, with the latter normally
dominating the overall uncertainty. It is worth noting,
however, that for a coherent shower algorithm, a scale
choice of p⊥ accompanied by the so-called CMW scale
factor [24, 25] absorbs the leading second-order correc-
tions to the splitting functions for soft-gluon emission. A
brute-force scale variation would destroy this agreement.
We therefore provide an option to allow an explicit O(α2

s)
compensating term to accompany each scale variation,
driving the effective scale choice back towards p⊥ at the
NLO level, while leaving the higher-order components of
the scale variation untouched.

Specifically, if the baseline gluon-emission density is

P (t, z) =
αs(p⊥)

2π

P (z)

t
, (25)

with P (z) the DGLAP radiation kernel, then we may
define a renormalisation-scale variation, µ = p⊥ → µ′ =
kp⊥, with an NLO-compensating term (see, e.g., [23])

P ′(t, z) =
αs(kp⊥)

2π

(
1 +

αs

2π
β0 ln k

) P (z)

t
, (26)

with β0 = (11NC − 2nF )/3, NC = 3, and nF the num-
ber of active flavours at the scale µ = p⊥. Note that,
if there are any quark-mass thresholds in-between p⊥
and kp⊥, then αs(p⊥) and αs(kp⊥) will not be evaluated
with the same nF . Matching conditions are applied in
PYTHIA to make the running continuous across thresh-
olds, so this effect should be small for reasonable values
of k. Nonetheless one could in principle add an addi-
tional term αs/(2π) ln(mq/(kp⊥))/3 to compensate for
the different β0 coefficients used in the region between
the threshold and kp⊥; however since the variation is
numerically larger without that term, and since the am-
biguities associated with thresholds are anyway among
the uncertainties one could wish to explore, for the time
being we consider it more conservative to not include any
such terms.

Note also that the scale and scheme of the αs fac-
tor in the compensation term, inside the parenthesis in
Eq. (26), is not specified, as this amounts to an effect of
yet higher order, beyond NLO. To make the compensa-
tion as conservative as possible (and to avoid the risk of
over-compensating), we choose the scale of the compen-
sation term to be the largest local scale in the problem,
namely the invariant mass of the emitting colour dipole
mdip, thus making the correction term as numerically
small (and hence as conservative) as possible; specifically
µmax = max(mdip, kp⊥). Furthermore, since the analy-
ses of [24, 25] only pertain to the soft limit, our estimate
of the compensation would be too optimistic if applied
undiminished over all of phase space. To be more conser-
vative, we therefore multiply the compensation term by
an explicit factor (1− ζ), defined so as to vanish linearly
outside the soft limit,

ζ =


singularity of splitting:

z 1/z
1− z 1/(1− z)

min(z, 1− z) 1/(z(1− z))
. (27)

Combined, these arguments lead us to the follow-
ing modified accept probability for a robust shower
renormalisation-scale variation compatible with the
known second-order leading-singular structure:

P ′(t, z) =
αs(kp⊥)

2π
×(

1 + (1− ζ)
αs(µmax)

2π
β0 ln k

)
P (z)

t
, (28)

hence

R′acc(t, z) =
P ′acc(t, z)

Pacc(t, z)
=
αs(kp⊥)

αs(p⊥)
×(

1 + (1− ζ)
αs(µmax)

2π
β0 ln k

)
. (29)

We emphasize that the compensation term in the ex-
pressions above is only included for gluon emissions, not
for g → qq̄ splittings. The latter are subjected to the full
(uncompensated) variation, αs(kp⊥)/αs(p⊥).
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Finally, we impose an absolute limit on the allowed
amount of αs variation, by default

|∆αs| ≤ 0.2 . (30)

This does not significantly restrict the range of varia-
tion for perturbative branchings (even when αs ∼ 0.5, a
full 40% amount of variation is still allowed), but it does
prevent branchings very near the cutoff from generating
large changes to the event weights. Removing this bound
would not significantly affect the perturbative physics
uncertainties, but would cause much larger weight fluc-
tuations (between events with and without some very
soft branching near the end of the evolution), mandating
much longer run times for the same statistical precision.

At the technical level, the user decides whether to per-
form scale variations of ISR and FSR independently, or
whether to vary the respective αs factors in a correlated
manner. It is even possible to include both types of vari-
ations (independent and correlated), and compare the
results obtained at the end of the run. From a practical
point of view, the FSR αs choice mainly influences the
amount of broadening of the jets, while the ISR αs choice
influences resummed aspects such as the combined recoil
given to a hard system (e.g., a Z, W , or H boson, or
a tt̄, dijet, or γ + jet system) by ISR radiation and also
how many extra jets are created from ISR. The latter
of course also depends on whether and how corrections
from higher-order matrix elements are being accounted
for.

An illustration and validation of the automated
renormalisation-scale variations is given in Fig. 1, for
the case of FSR and the distribution of 1-Thrust in
e+e− → hadrons events at the Z pole, compared to
a measurement by the L3 experiment [26]. (QED ISR
is switched off and b-tagged events are excluded in this
comparison.) First, we perform three separate dedicated
runs, using µR = 2p⊥ (solid yellow lines with square sym-
bols), µR = p⊥ (the default choice, solid blue lines with
dot symbols), and µR = 0.5p⊥ (dashed red lines with
open + symbols). For the central run, we also included
the automated weight variations presented here, for the
same factor-2 µR variations. The range spanned by the
reweighted central distribution is shown by the blue ///
hashed areas. On the left-hand side of Fig. 1, the NLO
scale-compensation term is switched off, and we see that
the results of the independent runs are faithfully repro-
duced by the reweighted central-run distributions. (The
small difference in the first bin is due to the absolute
limit of |∆αs| ≤ 0.2 that we impose in the reweighting
framework.) On the right-hand side of Fig. 1, the same
distributions are shown, but now with the NLO scale-
compensation term switched on. The difference between
the standalone runs (where no compensation is applied)
and the reweighted distributions illustrates the effect of
the compensation term.

A corresponding validation for the initial-state shower
renormalisation-scale variations is given in Fig. 2, where
we have chosen the transverse momentum of the lepton

pair in Drell-Yan events as the test observable. The peak
region below p⊥Z = 40 GeV is shown in the top row of
plots (on a linear scale) while the bottom row shows the
tail of the spectrum (on a log-log scale). As in Fig. 1,
the hashed area in the plots in the left-hand (right-hand)
column shows the uncertainty band with the NLO scale-
compensation term switched off (on). The effect is here
less than in the FSR case, cf. Fig. 1, presumably due to
the compensation term being proportional to αs(mdip)
where mdip can be very large in the ISR case.

Note to experimentalists: rather than performing ded-
icated runs for µR variations, we recommend using the
uncertainty weights instead, since the renormalisation-
scale compensation term is only available for the latter
and allows slightly more aggressive (smaller) uncertainty
estimates.

E. Splitting-Kernel Variations

All shower formalisms are based upon the universal
nature of the singular infrared (soft and/or collinear)
limits of QCD. In these limits, the exact form of the
splitting functions are known (to a given order), re-
gardless of whether we express them as DGLAP ker-
nels, dipole/antenna functions, or by any other means.
Away from these limits, however, in the physical phase
space on which the kernels will be applied as approxima-
tions, there are in principle infinitely many different radi-
ation functions to choose from, sharing the same singular
terms but having different nonsingular ones. This rep-
resents a fundamental ambiguity for shower algorithms
that cannot be evaded by, e.g., setting the non-singular
terms to zero. First, any such (arbitrary) choice would
not address the underlying issue. Secondly, it would
not be stable against reparametrisations of the radiation
functions themselves. For example, zero in one dipole
parametrisation does not correspond to zero in another,
see e.g. [7, 28].

Moreover, varying the splitting kernels by nonsin-
gular (a.k.a. “finite”) terms produces uncertainty en-
velopes that are quite complementary to those produced
by renormalisation-scale variations [7]. The reason is
that renormalisation-scale variations are by construc-
tion proportional to the (default) shower radiation func-
tions, while nonsingular terms vary the radiation func-
tions themselves. In regions far from the singular lim-
its, the pole terms are highly suppressed and the default
shower radiation functions may not bear much resem-
blance to the matrix elements for the process at hand. In
such regions, process-dependent nonsingular terms dom-
inate, and corresponding nonsingular-term variations in
the shower radiation functions can therefore easily pro-
duce much larger (and more realistic) uncertainty esti-
mates than renormalisation-scale changes.

We therefore believe that an exhaustive exploration of
parton-shower uncertainties should at least grant the ca-
pability to perform nonsingular variations of the shower
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FIG. 1. Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction. The central
(default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range spanned by the variation
weights. The dashed (red) and solid (yellow) lines represent the results of standalone runs with µR = 0.5p⊥ and µR = 2p⊥
respectively. Left: without the NLO scale-compensation term. Right: with the NLO scale-compensation term (the default
setting). Distribution of 1-Thrust for e+e− → hadrons at the Z pole, excluding b-tagged events; ISR switched off; data from
the L3 experiment [26].

kernels, while the final decision whether and how to use
them can still be left up to the user. An observation
of large nonsingular-term uncertainties in the context of
a physics study would be a direct indication of a need
to incorporate further corrections from matrix elements,
e.g. via one of the many matching/merging strategies
available in PYTHIA 8. This is because the matrix
elements contain the correct (process-dependent) non-
singular terms for the process at hand, thus nullifying
the nonsingular-term uncertainties at least in any phase-
space regions populated by the matrix elements. This is
also true of PYTHIA’s internal LO matrix-element cor-
rections (MECs), which by default are applied to the first
emission in most resonance decays and some production
processes [29, 30, 36]. Effects of non-singular term vari-
ations will then only appear starting from the second
emission1. Below, we include validation plots both with
and without MECs, to illustrate the effects.

1 Note that, at the technical level, default PYTHIA applies MECs
throughout the shower in some cases, for instance to ensure
the correct “dead-zone” suppression for radiation off massive
quarks [29]. In such cases, although a MEC is technically ap-
plied to every emission, it is only LO exact for the first one,

To implement nonsingular-term variations in the con-
text of a DGLAP approach, we allow for the following
modification of the shower splitting kernels,

P (z)

Q2
dQ2 →

(
P (z)

Q2
+

cNS

m2
dip

)
dQ2

=

(
P (z) +

cNS Q
2

m2
dip

)
dt

t
, (31)

where mdip is the invariant mass of the dipole in which
the splitting occurs, cNS is a dimensionless constant of
order unity that parametrises the amount of (nonsin-
gular) splitting-kernel variation, and in the last equal-
ity we used the identity dQ2/Q2 = dt/t that holds for
any t = f(z)Q2, including in particular all the PYTHIA
evolution variables. Note that, for gluon emission off
timelike massive quarks, Q2 should be the virtuality,
or off-shellness of the massive quark, defined as Q2 =
(pb + pg)2 −m2

b = 2pb · pg [29], with pb the 4-momentum

hence non-singular term variations are still enabled for the sec-
ond and subsequent ones.
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FIG. 2. Illustration of the default renormalisation-scale variations for ISR, by a factor of 2 in each direction. The central
(default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range spanned by the variation
weights. The dashed (red) and solid (yellow) lines represent the results of standalone runs with µR = 0.5p⊥ and µR = 2p⊥
respectively. Left: without the NLO scale-compensation term. Right: with the NLO scale-compensation term (the default
setting). Distribution of the p⊥ spectrum of the lepton pair in pp → Z → e+e−/µ+µ− at the Z pole (66 < m``/GeV < 116),
for leptons in the phase-space window |η`| < 2.4, p⊥` > 20 GeV; data from the ATLAS experiment [27].
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of the massive quark and pg that of the emitted gluon.
(For spacelike virtual massive quarks, the mass correc-
tion has the opposite sign [8].) Thus,

P ′(t, z) =
αs

2π
C

(
P (z) + cNS Q

2/m2
dip

t

)
, (32)

where C is the colour factor. The variation can therefore
be obtained by introducing a spurious term proportional
to Q2/m2

dip in the splitting kernel used to compute the
accept probability, hence

R′acc =
P ′acc

Pacc
= 1 +

cNS Q
2/m2

dip

P (z)
, (33)

from which we also immediately confirm that the relative
variation explicitly vanishes when Q2 → 0 or P (z)→∞.

To motivate a reasonable range of variations, we take
the nonsingular terms that different physical matrix el-
ements exhibit as a first indicator, and supplement that
by considering the terms that are induced by PYTHIA’s
matrix-element corrections (MECs) for Z boson de-
cays [30]. In particular, the study in [28] found order-
unity differences (in dimensionless units) between differ-
ent physical processes and three different antenna-shower
formalisms: Lund dipoles à la ARIADNE [31, 32], GGG
antennae à la VINCIA [7, 33, 34], and Sector antennae à
la Kosower [28, 35]. Therefore, here we also take varia-
tions of order unity as the baseline for our recommenda-
tions.

In Fig. 3, we illustrate the splitting-kernel variation
taking cNS = ±2 as a first guess at a reasonable range of
variation. As can be observed by comparing the left-
and right-hand panes of the figure, where PYTHIA’s
MECs are switched off and on respectively, this vari-
ation, labeled P (z) and shown in red with \\\ hash-
ing, roughly spans the range between PYTHIA with and
without matrix-element corrections. In the right-hand
pane, where PYTHIA’s internal MECs for Z → 3 jets [30]
are switched on, the splitting-kernel uncertainty is essen-
tially zero in the 3-jet region 1−T ≤ 0.33, since the non-
singular terms are there provided by the matrix elements.
There are in principle still nonsingular-term uncertain-
ties starting from the 4-jet level, beyond 0.33. Note that
the ratio panes in Fig. 3 have a larger range than those of
Fig. 1 and that, for comparison, the renormalisation-scale
uncertainty, with the scale-compensation term switched
on, is still shown in blue with /// hashing.

The case of nonsingular-term variations for the ISR
splitting kernels is shown in Fig. 4, again compared to the
renormalisation-scale variations (with the NLO compen-
sation term switched on), for the same p⊥Z distributions
as were shown in Fig. 2. For this specific case, PYTHIA’s
matrix-element corrections [36] do not have as dramatic
an effect on the central prediction as they did for FSR,
as can be seen by comparing the central lines of the plots
in the left-hand column of the figure (MECs OFF) to the
ones on the right (MECs ON). The variation of nonsingu-
lar terms, however, is completely cancelled when MECs

are switched on, as expected for a distribution dominated
by a single emission.

For completeness, we remark that the reweighting
strategies presented here, and parton showers in gen-
eral, are based on exact cancellation between real and
virtual corrections. This is called detailed balance and is
also referred to as unitarity in the parton-shower context.
However, the KLN theorem [37, 38] allows for violations
of this balance by non-singular terms. Hence a realis-
tic assessment of the full uncertainties of parton-shower
calculations should take into account that non-singular
terms can contribute not only in the radiation functions,
as above, but also at the level of breaking detailed bal-
ance. This would amount to an estimate of the possible
size of NLO (and higher) K-factors. To accomplish this
consistently, however, several further aspects would need
to be addressed, including variations already at the Born
level and ensuring that weight modifications at the n-th
branching in the shower don’t change the total cross-
section by more than factors proportional to αBorn+n

s .
These considerations are beyond the scope of this work,
but we emphasize that they should be investigated.

III. SUMMARY

We have described the mathematical formalism and
practical validation for a new way of calculating pertur-
bative uncertainty estimates in the PYTHIA 8 Monte
Carlo event generator, following the proposal made in [7].
Instead of performing independent Monte Carlo runs for
each (set of) parameter variation(s), we effectively recy-
cle the vetoed trials of the Sudakov veto algorithm to
provide a numerical mapping of the probability-density
changes resulting from different choices of renormaliza-
tion scales and non-singular terms. The result is cast
as a vector of weights for each event whose zero element
corresponds to the nominal (user) settings, with the un-
certainty variations telling how much the probability to
obtain that event would have changed under different
showering assumptions.

Each set of weights is separately unitary, in the sense
that they integrate to the same total inclusive cross sec-
tion for the process at hand. It is therefore important to
note that non-unitary changes, such as “K-factor” vari-
ations, are not accessed by this framework, but would
have to be estimated separately. The same is true for
PDF variations and for variations of the non-perturbative
fragmentation parameters.

The variation weights can be interpreted as follows:
branching sequences dominated by well-controlled loga-
rithmically enhanced splittings will produce small weight
variations, while events containing one or more branch-
ings for which PYTHIA’s underlying assumptions may be
compromised will exhibit large weight variations. Large
non-singular-term uncertainties should be taken as in-
dicating a need for including more matched matrix ele-
ments in the calculation, since even LO matrix elements
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FIG. 3. Illustration of the default nonsingular variations for FSR splitting kernels, corresponding to cNS = ±2 (shown in red
with \\\ hashing), compared with the default renormalisation-scale variations by a factor of 2 with the NLO compensation
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ON. Note that the range of the ratio plot is greater than in Fig. 1. Distribution of 1-Thrust for e+e− → hadrons at the Z pole,
excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

contain the correct (LO) finite terms for the process at
hand. Large renormalisation-scale uncertainties could
only be ameliorated by including more NLO matrix ele-
ments, and/or by improving or matching the underlying
shower formalism to higher-logarithmic accuracy. Sev-
eral approaches for the former are now emerging (and
are available in PYTHIA, the most advanced being UN-
LOPS [39]), while the latter remains a long-standing and
highly non-trivial problem.

Our approach is based on a proposal first made in
Ref. [7], which we have here proved to be valid to all or-
ders in perturbation theory [40]. We have also included
several validations illustrating that the automated weight
variations produced by our implementation do indeed re-
produce the results of independent runs with the corre-
sponding parameter changes. The formalism shares qual-
itative features with the proposal for ”boosting” splitting
probabilities in [12] and with the proposal for biasing
photon emissions made in Ref. [11], and indeed for those
purposes our approach reduces to those of [11, 12].

Recently, two techniques for fast uncertainty variations
for NLO calculations were presented [41] in the context of
the SHERPA event generator [42], one based on interpo-
lation grids and another based on analytically calculable
weights. Our approach differs in several respects from

both of these. Most importantly, our formalism applies
to all orders rather than just to the first order of cor-
rections, hence variations are performed all throughout
the shower. Secondly, as we have shown, our strategy is
formally exact (in the limit of infinitely many generated
events), while the weights computed in [41] are only ap-
proximate in the shower context. An extensive study of
parton-shower uncertainties was also recently performed
in the HERWIG context, using conventional methods (in-
dependent runs) [43].

We end by remarking on possible pathologies that can
arise, and how best to deal with them. If an event is
very rare in the baseline sample but much more likely
in a variation, the result will necessarily be a very large
weight for that variation. Especially after cuts the statis-
tical precision of the weighted samples can therefore be
much lower than for the nominal ones. To address this,
we recommend biasing the nominal sample to make the
relevant rare occurrences more frequent. This has the
additional benefit of improving the statistical precision
also of the nominal weights in the tails of the distribu-
tions. Note however that the technology for combining
the uncertainty variations with biases has not yet been
implemented at the time of writing; we eagerly await
feedback from the community on issues encountered in
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practical studies, on which to base the development of
future capabilities and recommendations.

Details of how to switch on the new automated frame-
work in PYTHIA and how to define the list of un-
certainty variations to be performed in an actual run
have been included in a new HTML documentation
file in the online set of PYTHIA documentation files.
These technical specifications may change as the code
evolves. The current version of these descriptions can
be consulted at: http://home.thep.lu.se/~torbjorn/
pythia82html/Welcome.html, under the index heading
“Automated Shower Variations”.

Note added in proof: during the completion of this
work, we became aware of two complementary projects
that allow renormalisation-scale and PDF variations in

a manner analogous to ours, implemented in the HER-
WIG and SHERPA generators respectively; see [44, 45]
for details.
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