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Abstract

The Higgs boson mass and top quark mass imply that the Higgs quartic coupling vanishes
around the scale of 109 − 1013 GeV, depending on the precise value of the top quark mass.
The vanishing quartic coupling can be naturally addressed if the Higgs field originates from a
5-dimensional gauge field and the 5th dimension is compactified at the scale of the vanishing
Higgs quartic coupling, which is a scenario based on gauge-Higgs unification. We present a
general prediction of the scenario on the proton decay process p → π0e+. In many gauge-Higgs
unification models, the 1st generation fermions are localized towards an orbifold fixed point
in order to realize the realistic Yukawa couplings. Hence, four-fermion operators responsible
for the proton decay can appear with a suppression of the 5-dimensional Planck scale (not
the 4-dimensional Planck scale). Since the 5-dimensional Planck scale is connected to the
compactification scale, we have a correlation between the proton partial decay width and the
top quark mass. We show that the future Hyper-Kamiokande experiment may discover the
proton decay if the top quark pole mass is larger than about 172.5 GeV.
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The determination of the Higgs boson mass at mh = 125.09 ± 0.24 GeV [1], together with

the top quark mass measurment [2, 3], has introduced a new energy scale to the Standard Model

(SM): the scale at which the Higgs field quartic coupling vanishes through its renormalization

group (RG) running, hereafter denoted by Λcr, which is located about 109−1013 GeV depending

sensitively on the top quark mass. The SM can remain viable above the scale Λcr, since the

Universe is sufficiently long-lived even if the Higgs quartic coupling turns negative above Λcr [4].

However, the scale Λcr may indicate some new physics beyond the SM, in which the Higgs

quartic coupling vanishes above Λcr, and below Λcr, the theory is effectively described by the

SM where the RG running induces a non-zero Higgs quartic coupling.

Gauge-Higgs unification [5] in a 5-dimensional (5D) Minkowski spacetime generally predicts

the vanishing of the Higgs quartic coupling above the compactification scale of the 5th dimen-

sion, namely, the Kaluza-Klein (KK) scale. This is because the Higgs field is embedded in

the 5th dimensional component of a gauge field and the gauge symmetry forbids a tree-level

potential for the Higgs field. The gauge symmetry is explicitly broken in an orbifold compact-

ification of the 5th dimension and the resultant KK modes of gauge fields and bulk fermions

induce the Higgs potential radiatively. By matching the effective potential generated by the

tower of KK modes with that generated by the zero mode, Ref. [6] has proved the so-called

”gauge-Higgs condition”, which states that the Higgs quartic coupling vanishes at the KK scale

in general gauge-Higgs unification models. Hence Λcr of the SM may suggest the KK scale of

a gauge-Higgs unification model.

As a common prediction of 5D gauge-Higgs unification models where Λcr of the SM corre-

sponds to the KK scale, we focus on the proton decay process p → π0e+ induced by Planck-

suppressed operators. At the orbifold fixed points, quantum gravity can induce four-fermion

operators suppressed by the Planck scale of the 5D spacetime, M5. Since fermions in the 5D

spacetime couple with the Higgs field with the strength of the weak gauge coupling, the SM

1st generation quarks and leptons are necessarily localized towards an orbifold fixed point to

avoid too large Yukawa couplings. Hence four-fermion operators involving the 1st generation

fermions, which are responsible for the p → π0e+ process, naturally arise with a factor of 1/M2
5 .

This is in contrast with fermions that reside totally in the bulk, for which, after integrating

over the 5th dimension, four-fermion operators arise with a factor of 1/M2
4 in the 4-dimensional

(4D) effective theory, where M4 ≃ 2.44 × 1018 GeV is the reduced Planck mass of the 4D

spacetime. M5 is tied with the compactification scale L by M3
5L = M2

4 and hence with the KK

scale ∼ 1/L. We thus find a correlation between Λcr of the SM and the partial decay width

for the p → π0e+ process. Furthermore, since Λcr is sensitive to the top quark mass, the above

correlation is translated into that between the top quark mass and the proton decay rate, which

2



we will present in this letter.

The above correlation holds in general models of gauge-Higgs unification provided the 1st

generation fermions are localized towards an orbifold fixed point. In this letter, however, we

first present a concrete model of gauge-Higgs unification where the 1st generation matter is

localized, to prove that such models exist, and then work in this particular model to illustrate

how the correlation is derived. For this purpose, we consider the minimal setup for gauge-Higgs

unification, which is similar to models in Refs. [7, 8]. The model is based on a 5D flat spacetime

compactified on S1/Z2 and contains SU(3)w ×U(1)v gauge group that is explicitly broken into

SU(2)L × U(1)Y at the orbifold fixed points. The massless component of the 5th dimensional

SU(3)w gauge field is identified with the SM Higgs field. In the setup, the simplest mechanism

is adopted to derive the SM Yukawa couplings. We introduce 4D Weyl fermions localized at an

orbifold fixed point, and bulk Dirac fermions in the 5D spacetime, whose left or right-handed

components satisfy Neumann condition at the orbifold fixed point and mix with the localized

fermions through 4D Dirac mass terms. The SM fermions are given as mixtures of the 4D and

5D fermions, and their couplings with the Higgs field are controlled by the 4D Dirac mass. We

further introduce 4D localized operators involving four 4D fermions at the orbifold fixed point

suppressed by the 5D Planck scale M5, which are responsible for the proton decay.

This letter is organized as follows: We first describe the minimal setup for gauge-Higgs

unification with emphasis on the fermion sector. Next we review the effective theory approach

to gauge-Higgs unification studied in Ref. [6], and derive the relation between Λcr and the

KK scale. We then introduce 5D Planck-suppressed operators that induce the proton decay.

Eventually, we derive a correlation between Λcr and the partial width of the p → e+π0 process,

and present a plot of the top quark pole mass versus the proton partial decay width.

We present the minimal setup for gauge-Higgs unification. However, the following argument

can be extended to general models of gauge-Higgs unification. Note that since the KK scale is

as high as 109− 1013 GeV, no experimental constraints other than the proton decay rate apply

to the setup. We consider a 5D flat spacetime whose 5th dimension is compactified on the

orbifold S1/Z2. The 5th dimension is parametrized by y in the range πR ≥ y ≥ −πR with the

points of y = πR and y = −πR identified. The orbifolding identifies y with −y, which gives

the orbifold fixed points at y = 0, πR. In the bulk, we introduce SU(3)C × SU(3)w × U(1)v

gauge group, where SU(3)C is the color in the SM.

We demand that the 4D and 5D components of the SU(3)w gauge field (wµ, w5) and those
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of U(1)v gauge field (vµ, v5) transform under the orbifolding as

wµ(y) = P †wµ(−y)P, w5(y) = −P †w5(−y)P, vµ(y) = vµ(−y), v5(y) = −v5(−y)

with P =





−1 0 0
0 −1 0
0 0 1



 , (1)

where P acts in the SU(3)w gauge space. It follows that the boundary conditions at y = 0, πR

explicitly break SU(3)w into SU(2)L × U(1)X and accordingly the gauge boson is decomposed

as 8 → 30 + 2√
3/2 + 2−

√
3/2 + 10, where the subscripts denote U(1)X charge. 30 + 10 of wµ,

2√
3/2 + 2−

√
3/2 of w5 and vµ satisfy Neumann conditions at y = 0, πR and thus have the zero

mode in the KK expansion, while the rest of the gauge fields satisfy Dirichlet conditions and

have no zero mode. We identify SU(2)L with the SM weak gauge group and 2√
3/2 + 2−

√
3/2

of w5 with the SM Higgs field, and further assume that U(1)X × U(1)v breaks into the SM

hypercharge U(1)Y leading to the correct Weinberg angle.

In the bulk, we introduce three copies of 5D Dirac fermions Ψ’s in (3, 3), (3, 6̄) and (1, 10)

representations of SU(3)C × SU(3)w with no U(1)v charge (they are in the fundamental, sym-

metric and rank-three symmetric representations of the SU(3)w), and their partners Ψ̃’s with

the same gauge charge. We will see that the only role of Ψ̃ is to allow Z2 invariant Dirac mass

term between Ψ and Ψ̃ which turns the KK zero modes of Ψ and Ψ̃ to be massive and makes the

model phenomenologically viable. The bulk fermions always transform under the orbifolding

as Ψ̄Ψ(y) = −Ψ̄Ψ(−y), ¯̃ΨΨ̃(y) = − ¯̃ΨΨ̃(−y). We impose the following boundary conditions:

Ψ(y = 0) = −γ5R(P )Ψ(y = 0), Ψ(y = πR) = −γ5R(P )Ψ(y = πR),

Ψ̃(y = 0) = γ5R(P )Ψ̃(y = 0), Ψ̃(y = πR) = γ5R(P )Ψ̃(y = πR), (2)

where R(P ) denotes P in the representation of SU(3)w to which Ψ and Ψ̃ belong. Along

the breaking of SU(3)w → SU(2)L × U(1)X at y = 0, πR, each representation of SU(3)w is

decomposed as 3 → 21/2
√
3+1−1/

√
3, 6̄ → 3−1/

√
3+21/2

√
3+12/

√
3 and 10 → 4√

3/2+30+2−
√
3/2+

1−
√
3. Among the components of Ψ, the right-handed components of the two (3, 2)1/2

√
3’s,

(1, 4)√3/2 and (1, 2)−
√
3/2 and the left-handed components of (3, 1)−1/

√
3, (3, 3)−1/

√
3, (3, 1)2/

√
3,

(1, 3)0 and (1, 1)−
√
3 (each bracket denotes the SU(3)C × SU(2)L charge and each subscript

the U(1)X charge) satisfy Neumann condition at the boundaries. As to Ψ̃, the same gauge

components with the opposite chirality satisfy Neumann condition.

At the orbifold fixed points, the gauge symmetry is SU(3)C ×SU(2)L ×U(1)X ×U(1)v. At

y = 0, we introduce three copies of 4D localized left-handed Weyl fermions χ’s in (3, 2)1/2
√
3 and

(1, 2)−
√
3/2 representations and right-handed Weyl fermions χ̃’s in (3, 1)−1/

√
3, (3, 1)2/

√
3 and

(1, 1)−
√
3 representations of the SU(3)C ×SU(2)L×U(1)X gauge group, without U(1)v charge.
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They exactly correspond to the SM fermions. They have 4D Dirac mass terms with the right-

handed components of the two (3, 2)1/2
√
3’s and (1, 2)−

√
3/2 and the left-handed components

of (3, 1)−1/
√
3, (3, 1)2/

√
3 and (1, 1)−

√
3 of Ψ’s, since they satisfy Neumann condition. On the

other hand, the SM fermions do not couple with any components of Ψ̃’s.

With the field content above, the action is schematically written as

S =

∫

d4x

∫ πR

−πR

dy

[

1

2
M3

5R−
1

2
tr[wMNw

MN ]−
1

4
vMNv

MN

+ iΨ̄γMDMΨ+ i ¯̃ΨγMDMΨ̃− M̂Ψ̄Ψ̃− h.c.

+ δ(y)
(

iχ̄σµDµχ+ i ¯̃χσ̄µDµχ̃+m1Ψ̄Rχ+m2Ψ̄Lχ̃+ h.c.
) ]

(3)

where M,N = 0, 1, 2, 3, 5 are 5D spacetime indices, and wMN and vMN denote the field strength

of the SU(3)w gauge field (wµ, w5) and the U(1)v gauge field (vµ, v5), respectively. M̂ denotes

Z2 invariant 5D Dirac mass for the bulk fermions, which gives Dirac mass to all the KK modes

including the zero mode. The second line represents the Lagrangian localized at y = 0, in which

ΨR,ΨL denote the components of Ψ that satisfy Neumann condition at y = 0 andm1, m2 denote

Dirac mass terms between them and the 4D localized fermions. We write the massless mode of

2√
3/2 + 2−

√
3/2 component of w5, which we identify with the SM Higgs field, as H . Then the

action contains the following term:

S ⊃

∫

d4x 2πR
[

ig5(Ψ̄LHΨR − Ψ̄RH
†ΨL) +m1Ψ̄Rχ+m2Ψ̄Lχ̃ + h.c.

]

, (4)

from which we obtain the SM Yukawa coupling ¯̃χHχ+ h.c. after integrating out ΨR,ΨL.

In Eq. (3), R denotes the scalar curvature and M5 the 5D Planck mass, which is related to

the 4D reduced Planck mass M4 ≃ 2.44× 1018 GeV as

2πRM3
5 = M2

4 . (5)

The potential for the Higgs field H is zero at tree level because it is a component of the

gauge field w5. The potential is generated through radiative corrections from KK modes of the

gauge bosons and bulk fermions. Ref. [6] has investigated the general model of gauge-Higgs

unification and has proved that, if the effective potential for the Higgs field is induced by bulk

fermions satisfying Neumann condition at both boundaries, the running Higgs quartic coupling

constant λ(µ) should fulfill the following condition at the scale 1/(2πR):

λ

(

1

2πR

)

= 0, (6)
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which remains true even when the bulk fermions obtain Dirac mass below the KK scale 1/R

from a Z2 invariant 5D Dirac mass term. The above statement applies to our setup as long

as we take M̂ in Eq. (3) below 1/R, since some components of Ψ, Ψ̃ that satisfy Neumann

condition at y = 0, πR are responsible for generating the Higgs potential. Then the scale at

which the Higgs quartic coupling vanishes, Λcr, coincides with 1/2π times the KK scale 1/R.

We introduce 5D Planck-suppressed operators localized at the orbifold fixed point y = 0.

The 1st generation quarks and leptons are mostly composed of 4D fermions localized at y = 0,

namely, the corresponding 4D Dirac mass terms m1, m2 in Eq. (3) are small, because the 1st

generation fermions have tiny couplings with the Higgs field H which is the 2√
3/2 + 2−

√
3/2

component of w5. Hence, we can generally introduce four-fermion operators among them,

which are naturally suppressed by the 5D Planck scale, and in particular, we have

∆S =

∫

d4x

(

h1

M2
5

ǫabǫcd(q
aqb)(qcℓd) +

h2

M2
5

ǫabǫcd(q
aqc)(qdℓb)

+
h3

M2
5

ǫab(q
aqb)(ue) +

h4

M2
5

ǫab(ud)(q
aℓb) +

h5

M2
5

(ud)(ue)

)

(7)

where q, u, d, ℓ, e are the first generation SM fermions, h1, h2, h3, h4, h5 are O(1) coupling con-

stants, a, b, c, d are isospin indices and we take a spinor product inside each parenthesis. Here

the contraction of color indices is obvious. The partial width of the p → π0e+ process is given

by [9]

Γ(p → π0e+) =
(m2

p −m2
π0)2

64πf 2
πm

3
p

(1 +D + F )2

{

∣

∣

∣

∣

β
h1

M2
5

+ β
h2

M2
5

+ α
h4

M2
5

∣

∣

∣

∣

2

+

∣

∣

∣

∣

α
h3

M2
5

+ β
h5

M2
5

∣

∣

∣

∣

2
}

(8)

where α and β parametrize the matrix elements for three-quark operators between the vacuum

and the one proton state, and D and F are parameters of the chiral Lagrangian. 1

From Eqs. (5), (6) and (8), we obtain the following relation between the scale Λcr at which

the Higgs quartic coupling vanishes, and the proton decay partial width Γ(p → π0e+):

Γ(p → π0e+) =
(m2

p −m2
π0)2

64πf 2
πm

3
p

(1 +D + F )2(|βh1 + βh2 + αh4|
2 + |αh3 + βh5|

2)

(

1

M2
4Λcr

)4/3

.

(9)

On the other hand, Λcr sensitively depends on the top quark mass, whose connection to Λcr

can be evaluated by solving the RG equations for the Higgs quartic coupling. In our setup, the

massive KK modes of the gauge bosons and bulk fermions have mass equal to or above 1/R.

Additionally, we assume that the Z2 invariant Dirac mass M̂ in Eq. (3) pushes the mass of

1The effects of RG running on the operators are absorbed into the definition of h1, h2, h3, h4, h5, which
remain to be O(1).
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the KK zero mode of the bulk fermions above 1/(2πR). Then the field content below the scale

1/(2πR) is identical with the SM one, and hence we may use the SM RG equations to evaluate

Λcr, as it equals to 1/(2πR).

Note that Λcr and hence Γ(p → π0e+) as determined above crucially rely on the assump-

tion that the Higgs quartic coupling follows the SM RG equation below the scale 1/(2πR).

It is possible that beyond-the-SM fields, such as the dark matter, inflaton and right-handed

neutrinos, couple with the Higgs field and alter the RG running of the Higgs quartic coupling,

thus invalidating our prediction on the proton decay partial width. However, since the SU(3)w

gauge symmetry severely restricts the Higgs field interaction, it is natural to assume that the

dark matter field and inflaton do not directly couple with the Higgs field, so that their contri-

butions to the RG equation arise at two and higher loop levels and are thus tiny. Right-handed

neutrinos with large Majorana mass for type-I seesaw mechanism do couple with the Higgs

field directly. If the Majorana mass is above 1013 GeV, right-handed neutrinos do not affect

the evaluation of Λcr because it is below 1013 GeV in the SM. If the Majorana mass is below

1013 GeV, the Yukawa coupling among the Higgs field, a lepton doublet and a right-handed

neutrino is smaller than about 0.1 when the active neutrino mass is hierarchical, and hence

its impact on the RG equation is negligible. We thus conclude that it is justifiable to use the

SM RG equations for determining Λcr even with the presence of the dark matter, inflaton and

right-handed neutrinos for type-I seesaw.

We numerically derive the correlation between the proton decay partial width Γ(p → π0e+)

and the top quark pole mass mpole
t . The parameters in the proton decay partial width are

set according to Ref. [9] as D + F = 1.267 and |α| = |β| = 0.009 GeV3. The two-loop

SM RG equations in Ref. [10] are used to evaluate Λcr, by fixing the Higgs boson mass at

mh = 125.09 GeV, the W boson mass at MW = 80.384 GeV and the strong gauge coupling

at the Z boson pole at αS(MZ) = 0.1184, while variating the top quark pole mass. The RG

running of the Higgs quartic coupling is shown in Figure 1 for three representative cases with

mpole
t = 171.44 GeV, 172.84 GeV and 174.24 GeV. These values are cited from the 2σ range of

the combined result of the top quark mass measurement by the ATLAS Collaboration [2].
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Figure 1: RG running of the Higgs quartic coupling in the SM, for three cases where the top
quark pole mass is given by mpole

t = 171.44 GeV (upper dashed line), 172.84 GeV (middle solid
line) and 174.24 GeV (lower dashed line). The parameters other than the top quark mass are
fixed as mh = 125.09 GeV, MW = 80.384 GeV and αS(MZ) = 0.1184.

Since the coupling constants h1, h2, h3, h4, h5 are O(1) but unknown, we variate (|βh1 +

βh2 + αh4|
2 + |αh3 + βh5|

2) from 10|α|2 to 0.1|α|2. The result is presented in Figure 2, where

the solid curve corresponds to the case when |βh1 + βh2 +αh4|
2 + |αh3 + βh5|

2 = |α|2, and the

lower and upper dashed curves, respectively, correspond to the cases when it equals to 10|α|2

and 0.1|α|2. Also shown are the current 2σ experimental bound on the proton decay partial

width obtained at the Super-Kamiokande [12], 1/Γ(p → π0e+) > 1.4×1034 yrs, denoted by the

solid horizontal line, and the 2σ sensitivity expected at the Hyper-Kamiokande [13] with a 5.6

Megaton·year exposure, 1/Γ(p → π0e+) > 1.3×1035 yrs, denoted by the dotted horizontal line.

As a reference, we display the 2σ range of the latest combined result of the top quark mass

measurement by the ATLAS Collaboration [2], which has reported mt = 172.84 ± 0.70 GeV,

by the vertical lines, with the solid one corresponding to the central value and the dashed

ones to the 2σ range. The CMS Collaboration has reported a consistent result [3]. Note that

the ATLAS Collaboration has also conducted the determination of the top quark pole mass

by employing the differential cross section for the production of a top quark pair + 1-jet and

has reported mpole
t = 173.7 − 2.1 + 2.3 GeV [11], in agreement with the corresponding CMS

result [14]. The figure tells that if future determinations of the top quark pole mass yield a value

above ∼ 172.5 GeV, we have a chance to observe p → π0e+ events at the Hyper-Kamiokande.
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Figure 2: The correlation between the top quark pole mass mpole
t and the inverse of the proton

decay partial width 1/Γ(p → π0e+). The factor (|βh1 + βh2 + αh4|
2 + |αh3 + βh5|

2) in Eq. 8 is
variated from 10|α|2 to 0.1|α|2 with |α| = 0.009 GeV3, and the lower dashed, solid and upper
dashed curves correspond to the cases when it equals to 10|α|2, |α|2 and 0.1|α|2, respectively.
The 2σ experimental bound on 1/Γ(p → π0e+) obtained at the Super-Kamiokande [12] is shown
by the solid horizontal line, and the 2σ sensitivity expected at the Hyper-Kamiokande [13] by
the dotted horizontal line. The 2σ range of the latest result of the top quark mass measurement
by the ATLAS Collaboration [2] is shown by the vertical lines, with the solid one corresponding
to the central value and the dashed ones to the 2σ range.

To summarize, we have studied a scenario based on gauge-Higgs unification where the scale

at which the Higgs quartic coupling vanishes in the SM corresponds to the KK scale of the

5D compactified spacetime. The KK scale is related with the 5D Planck scale. Since the 1st

generation fermions are mostly localized at an orbifold fixed point, quantum gravity can give

rise to operators involving four 1st generation fermions suppressed by the square of the 5D

Planck scale. Hence, the 5D Planck scale, or equivalently the KK scale, determines the partial

width of the p → π0e+ process induced by 5D Planck suppressed operators. We have thus ob-

tained a correlation between the top quark mass, which controls the RG running of the Higgs

quartic coupling, and the proton partial decay width. The correlation indicates that the future

Hyper-Kamiokande experiment may discover the proton decay if the top quark pole mass is

larger than about 172.5 GeV.
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