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A class of Polyakov-loop-modified Nambu–Jona-Lasinio (PNJL) models have been used to support
a conjecture that numerical simulations of lattice-regularized quantum chromodynamics (QCD)
defined with a chiral chemical potential can provide information about the existence and location
of a critical endpoint in the QCD phase diagram drawn in the plane spanned by baryon chemical
potential and temperature. That conjecture is challenged by conflicts between the model results
and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-
constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of
the lQCD and DSE predictions when both a physically-motivated regularization is employed to
suppress the contribution of high-momentum quark modes in the definition of the effective potential
connected with the PNJL models and the four-fermion coupling in those models does not react
strongly to changes in the mean-field that is assumed to mock-up Polyakov loop dynamics. With
the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with
µ5 > 0 can shed any light on a critical endpoint in the regular QCD phase diagram.

PACS numbers: 12.38.Mh, 12.39.-x, 25.75.Nq, 12.38.Aw

I. Introduction. One of the most basic questions in the
Standard Model refers to unfolding the state of strongly-
interacting matter at extreme temperature and density:
the former existed shortly after the Big-Bang and the
latter is thought to exist in the core of compact astro-
physical objects. Quantum chromodynamics (QCD) is
supposed to provide the answer, which hinges on the ex-
istence and interplay between color confinement and dy-
namical chiral symmetry breaking (DCSB), two emergent
phenomena whose domains of persistence and disappear-
ance characterize a potentially very rich phase structure.
Confinement is most simply defined empirically: those
degrees-of-freedom used in defining the QCD Lagrangian
(gluons and quarks) do not exist as asymptotic states, i.e.
these partonic excitations do not propagate with integrity
over length-scales that exceed some modest fraction of
the proton’s radius. The forces responsible for confine-
ment appear to generate more than 98% of the mass of
visible matter [1, 2]. This is DCSB, a quantum field
theoretical effect that is expressed and explained via, in-
ter alia, the appearance of momentum-dependent mass-
functions for quarks [3–6] and gluons [7–12], and helicity-
flipping terms in quark–gauge-boson vertices [13–18], all
in the absence of any Higgs-like mechanism.
Owing to the complexity of strong interaction theory,

attempts are often made to develop insights concerning
confinement, DCSB, and the associated phase diagram in
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the plane spanned by quark chemical potential (µ) and
temperature (T ) by using simple, tractable models. The
properties and predictions of one such class of models
are the subject of our analysis; namely, the Polyakov-
loop-modified Nambu–Jona-Lasinio (PNJL) models [19],
which introduce a mock-up of color confinement into the
Nambu–Jona-Lasinio (NJL) model through the expedi-
ent of a static potential whose behavior is tuned to em-
ulate Polyakov loop dynamics [20].

Chiral symmetry restoration in QCD is a second or-
der transition in the chiral limit at nonzero temper-
ature and small chemical potential. This transforms
into a crossover at realistic values of the current-quark
masses; and numerous analyses suggest that it becomes
a first-order transition when the chemical potential ex-
ceeds a certain minimum value, so that a critical endpoint
(CEPχ) should be a salient feature of the phase diagram
[21]. Although the existence and location of CEPχ is cur-
rently both a model-dependent statement, as reviewed,
e.g. in Refs. [22–24], and a problem that is intractable us-
ing contemporary lattice-QCD (lQCD) algorithms [25],
an experimental search is underway [26, 27].

In connection with theoretical analyses aimed at locat-
ing CEPχ, it has been conjectured that numerical simu-
lations of lQCD defined with a chiral chemical potential,
µ5, which can be performed without complications [28],
may serve as a surrogate for simulations with µ 6= 0, in-
sofar as a critical endpoint in the (µ = 0, µ5, T )-plane,
CEP5, entails the simultaneous existence of CEPχ in the
(µ, µ5 = 0, T )-plane and might also provide a means
of determining the approximate location of CEPχ [29].
The argument was supported therein by results obtained
using a PNJL model. Notably, a CEP5 is also located
in other models with similar qualitative features [30–32]
and µ5 > 0 was typically found to decrease the tem-
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perature associated with chiral symmetry restoration:
T χ
µ5>0 < T χ

µ5=0.
Taking this suggestion seriously, lattice simulations

were performed at µ5 6= 0, with a surprising outcome,
viz. no CEP5 was found and, moreover, T χ

µ5>0 > T χ
µ5=0

[28, 33, 34]. Both results contradict the model studies. In
another curious twist, the lQCD results were confirmed
in studies [35, 36] that produced solutions of the dressed-
quark gap equation at (µ, µ5, T ) > 0 using an interaction
kernel which has typically produced sensible results for
hadron properties in-vacuum [37, 38].
We are thus presented with a quandary: how might

one understand and reconcile this marked contradiction
between simple, but apparently robust chiral-model pre-
dictions on one hand, and lQCD and well-constrained
Dyson-Schwinger equation (DSE) studies on the other?
Resolving this predicament is the subject of our discus-

sion. We introduce the PNJL model in Sec. II, placing
particular emphasis on the issue of ultraviolet regular-
ization, which always plays a crucial role in any appli-
cation of a contact interaction [39–45]. Section III up-
dates DSE predictions for the phase diagram of QCD
with µ5 ≥ 0. That establishes a context for the discus-
sion in Sec. IV, which canvasses the impact of different
regularization schemes for the PNJL model on the exis-
tence, location and evolution of CEP5 and CEPχ in that
model, with very instructive consequences. We summa-
rize and conclude in Sec.V.

II. PNJL Model and Effective Potential. The
PNJL model for two flavors of equal-mass quarks may
be defined by the following Lagrangian density:

L = q̄(γ ·D +m)q

−G
[

(q̄q)2 + (q̄iγ5τq)
2
]

+ U(Φ, Φ̄;T ) , (1)

where: m is the common current-quark mass; Dµ =
∂µ+ iAµ, with Aµ(x) = gsA

a
µλ

a/2 describing the matrix-
valued gluon field configuration appropriate to the model;
G is the four-fermion interaction strength; and U is a
Polyakov-loop effective potential.
In general, the Polyakov loop is defined as the following

matrix in color space, SUc(Nc = 3):

L(x) = P exp[−i
∫ β

0
dx4 A4(x4, ~x)] , (2)

where P is a path-ordering operator and β = 1/T . How-
ever, in connection with the PNJL model, it is custom-
ary to define L(x) in Polyakov gauge, which sets A4 static
and diagonal in color space, and require L† = L (without
material implications [29]). With these conventions [19],
the model’s mean-field effective-potential can be written
solely in terms of

Φ = 1
Nc

Trc L = Φ̄ , (3)

which evolves with the intensive thermodynamic vari-
ables characterizing the medium. The domain of con-
finement in the pure-gauge theory is expressed via Φ = 0,
whereas Φ = 1 defines the deconfined domain.

TABLE I. Parameter values used herein to define the PNJL
model. Upper panel – Polyakov-loop potential, Eqs. (4), (5)
[46, 47]. Lower panel – NJL part of the Lagrangian density,
Eqs. (1), (6) [47], with dimensioned quantities in MeV.

a0 a1 a2 b3 T0

3.51 -2.47 15.2 -1.75 190

m Λ gΛ2 α1 α2

5.5 631.5 2.2 0.2 0.2

In terms of the classical background field in Eq. (3), an
efficacious representation of the Polyakov-loop effective
potential is provided by [46]:

β4U(Φ̄,Φ;T ) = β4U(Φ;T )

= − 1
2
a(T )Φ2 + b(T ) ln[1− 6Φ2 + 8Φ3 − 3Φ4], (4)

with (t̄ = T0/T )

a(t̄) = a0 + a1t̄+ a2t̄
2 , b(t̄) = b3t̄

3 , (5)

where the parameters, listed in Table I, were chosen [46]
in order to reproduce lattice results for pure-gauge QCD
thermodynamics and the T -dependence of the Polyakov
loop. Following Ref. [29], however, the value of T0 is ad-
justed to account for the presence of dynamical quarks.
It is appropriate at this point to reflect upon the four-

fermion coupling, G, in Eq. (1), which is supposed to
contain information about gauge-sector dynamics. Since
that dynamics is also expressed in Φ, it can be argued,
e.g. Refs. [48, 49], that a realistic model would replace
G → G(Φ). Naturally, however, any such statement in-
troduces additional model dependence. Herein, we there-
fore explore two possibilities, viz.

Ref. [19] : G = g = constant, (6a)

Refs. [29, 32] : G = g[1− α1Φ
2 − 2α2Φ

3] , (6b)

with the parameters in Table I chosen such that addi-
tional aspects of the PNJL model are consistent with
simulations of lQCD [47].
Finally, in order to study the interplay between T , and

regular and chiral chemical potentials, we define the ac-
tion with an upper bound β on the dx4 integral and add
the following term to Eq. (1):

− q̄γ4[µ+ µ5γ5]q . (7)

Adopting the mean-field approximation, one obtains
the following effective potential for the PNJL model we
have described [29]:

Ω = Ω(M,Φ;T, µ, µ5)

= U(Φ;T ) +
(M −m)2

4G
− 2Nc

∑

s=±1

∫

d3~p

(2π)3
ωs

−
2

β

∑

s=±1

∫

d3~p

(2π)3
ln[F+ F−] , (8)
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FIG. 1. Comparison between ΩΛ

F (dashed, purple curve) and
Ω∞

F (solid blue curve), evaluated with (T = 0.1, µ = 0.2) GeV.
This comparison is not qualitatively sensitive to the precise
values of (T, µ); and similar differences are also evident if one
chooses T or µ as the independent variable.

where M is the DCSB-induced mass gap,

ωs =
√

(s|~p| − µ5)2 +M2 , (9)

F± = 1 + 3Φ[e−βω±
s + e−2βω±

s ] + e−3βω±
s , (10)

ω±
s = ωs ± µ. At this point one can determine the evo-

lution of the quark mass-gap with intensive parameters
via simultaneous solution of the extremal conditions:

∂Ω

∂M
= 0 =

∂Ω

∂Φ
. (11)

It is worth noting that s in Eqs. (8) – (10) is a chirality
label, the sum over which appears owing to the presence
of µ5 in the model. Furthermore, the coupling between
quarks and the Polyakov loop is prominently expressed
through F± in Eq. (10): in the gauge-confined phase,
Φ = 0 and one has a standard NJL-model effective-
potential; but for Φ 6= 0, Ω contains couplings ∼ Φe−βM ,
and consequently the deconfinement transition encoded
in the Polyakov-loop can influence the chiral transition,
expressed in the behavior of the quark mass-gap.
Hitherto we have not explicitly addressed the question

of regularization for the PNJL model. The last term in
the second line of Eq. (8),

ΩV = 2Nc

∑

s=±1

∫

d3~p

(2π)3
ωs , (12)

is plainly divergent so that Ω is meaningless as written.
A regularization procedure must be introduced. We em-
ploy a hard cutoff, viz. Λ in the lower panel of Table I.
Using that value, and m and g listed therewith, a good
description of in-vacuum pion properties is obtained.
The question which now arises, however, is what to do

with the remaining integral in Eq. (8)? The quantity

ΩF =
2

β

∑

s=±1

∫

d3~p

(2π)3
ln[F+ F−] (13)

FIG. 2. DSE predictions for the location of the critical
endpoint associated with the chiral symmetry restoring tran-
sition, (µ(µ5), T (µ5)): T (µ5), upper panel; and µ(µ5) lower
panel, computed with two different values of the mass-scale,
σ, which determines the interaction strength in Eq. (14). All
curves in both panels were computed as described in Ref. [36].

is finite, so a cutoff is not strictly necessary and none is
used in Refs. [19, 29–32, 46]. However, we question the
spirit of this choice.
One justifies a regularization of ΩV , Eq. (12), by

observing that QCD is asymptotically free, so high-
momentum modes should not materially influence non-
perturbative strong interaction phenomena. Indeed, the
contact interaction itself can broadly be reconciled with
QCD by imagining that the necessary regularization
function is a coarse but useful representation of the
transition between nonperturbative infrared dynamics,
such as gluon mass-generation [7–12], and the domain of
asymptotic freedom. Adopting this perspective, it seems
that internal consistency requires one to use a definition
of ΩF which employs the same (or similar) cutoff used in
connection with ΩV .
We will subsequently, therefore, compare results ob-

tained with two procedures: (i) (ΩΛ
V ,Ω

Λ
F), also explored

in Refs. [50–53],1 and (ii) (ΩΛ
V ,Ω

Λ→∞
F ). The difference

between these two definitions is depicted in Fig. 1. Given
that the discrepancy grows with increasing µ5 (and T , µ),
it should not be surprising if considerable disparity were

1 A more sophisticated expression of this idea was exploited in
Ref. [44] in order to reconcile NJL and lQCD results relating to
the pseudocritical temperature in magnetized quark matter.
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FIG. 3. Location of the critical endpoint associated with
the chiral symmetry restoring transition, (µ(µ5), T (µ5)), com-
puted using the PNJL model defined with Ω∞

F : T (µ5), upper
panel; and µ(µ5) lower panel. The dashed curves are obtained
using a constant NJL coupling, Eq. (6a) and the solid curves
with a Φ-dependent coupling, Eq. (6b).

to emerge between the predictions made by (i) and (ii)
concerning the existence and location of CEPχ,5, which,
if at all, are likely to be found at larger values of the
intensive parameters. Indeed, in the context of the prob-
lem we study, marked sensitivity to a model’s definition,
as expressed in the regularisation scheme, was found in
Refs. [54–57].

III. DSE Predictions. As a prelude to detailing re-
sults obtained with the PNJL model, we recapitulate
and update predictions for the location of the critical
endpoint, (µ(µ5), T (µ5)), associated with the chiral sym-
metry restoring transition, which have been obtained us-
ing DSE methods. In this, we follow Ref. [36], using the
rainbow-ladder truncation [58] of the dressed-quark gap
equation with the interaction in Ref. [22]:

g2Dµν(kn) = D0

4π2

σ6
k2ne

−k2

n
/σ2

, (14)

whereD0 = (0.96GeV)2, kn = (~k, ωn), and ωn = 2nπT is
a boson Matsubara frequency. Here and in the following
we locate the CEP by studying the behaviour of the chiral
susceptibility, χM , defined via the dressed-quark mass-
function [59, 60]: the CEP is positioned at that set of
intensive parameters for which [1/χM ] → 0 [22].
The results of this analysis, obtained with current-

quark mass m = 5MeV, are depicted in Fig. 2. We
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FIG. 4. Location of the critical endpoint associated with
the chiral symmetry restoring transition, (T (µ5), µ(µ5)), com-
puted using the PNJL model defined with ΩΛ

F : T (µ5), upper
panel; and µ(µ5) lower panel. The dashed curves are ob-
tained using a constant NJL coupling, Eq. (6a) and the solid
curves with a Φ-dependent coupling, Eq. (6b). The vertical
lines mark the point µ5 = Λ, viz. the upper boundary for any
sensible interpretation of the model’s results.

used two values of the strength-parameter, σ: in the
limit σ → 0, the interaction approaches a δ-function
[61]. Plainly, the temperature associated with the critical
endpoint increases with µ5; but, although the correlated
chemical potential does initially decrease with µ5, it fails
to reach µ = 0 and hence there is no CEP5. The DSE
predictions are evidently in qualitative agreement with
those obtained using lQCD [28, 33, 34]; but therefore
differ markedly from the PNJL model results [29–32].

The lower panel of Fig. 2 exhibits some curious fea-
tures. First, with decreasing σ, the value of µ at the
CEP in the (µ, µ5, T )-hyperplane decreases on a measur-
able domain containing µ5 = 0. This is explained by the
fact that in the limit σ → 0, CEPχ lies at µ = 0 for
m = 0 [62]. The second curious feature is that for each
value of σ there is a critical value of µ5 = µi

5(σ) such that
∀µ5 > µi

5(σ) the value of µ associated with the critical
endpoint in the (µ, µ5, T )-hyperplane is independent of
µ5. We have established that this constant value of µ =
µi is determined by the current-quark mass, µi = µi(m):
with m = 5MeV, µi ≈ 40MeV; and µi ≈ 90MeV for
m = 15MeV. Accordingly, ∀µ < µi(m 6= 0), the chiral
transition is a crossover. The existence and evolution of
µi(m) can be understood by exposing the impact of m
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FIG. 5. Trajectories of the chemical potential associated
with the chiral transition’s critical endpoint, µ(µ5), computed
with G = g =constant, Eq. (6a), in PNJL models defined
using various different values for the cutoff on the last term in

the effective potential, Eq. (13): ΩΛ
′

F : Λ/Λ′ = 0, 0.92, 0.99, 1.

on the analytic structure of the dressed-quark propagator
[63, 64]; and in this, too, the algebraic model of Ref. [62]
can be used profitably.

IV. PNJL Model: Results and Remarks. We turn
now to a discussion of results obtained using the PNJL
model. In Fig. 3 we depict trajectories of the critical
endpoint for the chiral symmetry restoring transition ob-
tained when the PNJL model is defined using Ω∞

F , i.e.
eschewing a limitation on the high-momentum modes in
the last term of the effective potential [19, 29–32, 46],
and with both choices of the NJL four-fermion coupling
identified in Eqs. (6). Evidently, irrespective of the lat-
ter choice, and in contradistinction to lQCD and DSE
results, a CEP5 exists. On the other hand, it is apparent
that if one uses G = g =constant, Eq. (6a), then the tem-
perature associated with the critical endpoint for the chi-
ral symmetry restoring transition does increase with µ5,
in agreement with lQCD and DSE analyses. This, how-
ever, is not the definition employed in Refs. [29, 32, 47]:
they employed Eq. (6b).

In Fig. 4 we depict trajectories of the critical endpoint
obtained with the ΩΛ

F -PNJL model, i.e. produced by
introducing a physically-motivated cutoff on the high-
momentum modes in the last term of the effective poten-
tial, and with both choices of the four-fermion coupling
identified in Eqs. (6). We observe first that when using
ΩΛ

F , one should restrict the domain of model applicability
to values of the intensive parameters which lie below the
cutoff, i.e. µ5 . Λ in the present instance: results on this
domain can reasonably be expected to be sensible. (This
limitation can be eliminated by using a better regulariza-
tion scheme [39–45]; but such improvements have no ma-

terial implications for the present discussion.) Bearing
the restriction in mind, it then becomes apparent that
the ΩΛ

F -defined PNJL-model predictions obtained with
G = g =constant, Eq. (6a), are qualitatively in agree-
ment with lQCD and DSE results: the temperature as-
sociated with the critical endpoint of the chiral transition
increases with µ5 and there is no CEP5.
Evidently, as anticipated in the conclusion to Sec. II,

the differences highlighted by Fig. 1 have a significant im-
pact on the PNJL model’s qualitative features. This is
illustrated further by Fig. 5, which shows that there is
a critical value for the physically motivated cutoff em-
ployed in connection with ΩF , Λ

c, such that no CEP5

exists for any Λ < Λc. The result Λc ≈ Λ highlights
again the importance of an internally-consistent limita-
tion on the contribution to the effective potential from
high-momentum quark modes.

V. Conclusion. We set out to reconcile marked differ-
ences between predictions made by a class Polyakov-loop-
modified Nambu–Jona-Lasinio (PNJL) models for the
behavior of the chiral symmetry restoring transition in
the presence of a chiral chemical potential, µ5, and those
produced by lattice-QCD (lQCD) and Dyson-Schwinger
equation (DSE) studies which provide a good description
of low-energy π- and ρ-meson properties. We found that
the resolution lies with the nature of the regularization
scheme employed to define the PNJL models. All ap-
proaches are in qualitative agreement [Fig. 4 cf. Fig. 2] so
long as both (i) a regularization procedure is employed to
suppress high-momentum quark-modes in all terms that
appear in the definition of the effective potential con-
nected with the PNJL models, which seems a physically
sensible requirement, and (ii) the four-fermion coupling
in those models does not react very strongly to changes
in the mean-field that is assumed to mock-up Polyakov
loop dynamics. If one accepts this as providing the more
realistic definition of PNJL models, then, on their do-
main of validity, the model predictions agree with those
made by lQCD and DSE studies; and consequently there
is no longer reason to expect that simulations of lQCD
with µ5 > 0 will shed any light on the existence and loca-
tion of a critical endpoint in the phase diagram of QCD
in the (T, µ)-plane.
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