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Multi-center Superstrata

Wukongjiaozi Tian∗

Department of Physics, University at Albany (SUNY), Albany, NY 12222, USA

We construct a new class of superstrata, the regular supergravity solutions describing the mi-
crostates of D1-D5-P black holes. Our solutions are obtained by adding momentum charge to the
D1-D5 geometries based on multiple concentric Kaluza-Klein monopoles.

I. INTRODUCTION

The black hole information paradox is an important
long-standing problem in theoretical physics [1]. Al-
though in the last two decades string theory has ad-
dressed some aspects of this question, starting with the
counting of microscopic states of black holes [2, 3], the
paradox has not been fully resolved. One of the ap-
proaches to the black hole information problem, known
as the fuzzball program [4–8], suggests that microscopic
states of black holes are represented by smooth and hori-
zonless solutions of string theory. Some of such states can
be seen already in the supergravity approximation, and
all the two-charges solutions were constructed in [4, 9].
However, to describe macroscopic black holes, one needs
to find geometries carrying three charges 1, and the last
decade witnessed an impressive progress in this direction
[12–18].
Recently a large class of D1-D5-P microstates geome-

tries has been conjectured in [19, 20]. These solutions
depend on arbitrary functions of two variables, and they
became known as superstrata. Some special superstrata
have been constructed in [21–26] by applying various gen-
erating techniques [12, 27–29] to a two-charge round su-
pertube [30]. We will extend this construction by starting
with a background produced by several concentric super-
tubes.
This paper has the following organization. In section

2 we review the BPS equations governing superstrata. In
section 3 we will find the solutions describing the “dress-
ing” of several concentric supertubes to a three–charge
system, extending the results of [21, 22]. The solution
will contain several free parameters, which will be deter-
mined in section 4 from the requirement of regularity.

II. ANSATZ FOR THE BPS ANSATZ

SOLUTIONS

We work in the six dimensional truncation of type IIB
supergravity on M

4,1 × S
1 × T

4 and study the BPS so-
lutions. The equations governing all supersymmetric ge-

∗ E-mail me at: jtian2@albany.edu
1 Alternatively, one may introduce non-extremality, but unfortu-
nately non–supersymmetric regular geometries remain beyond
reach with an exception of a very special solution found in [10].
See [11] for the recent discussion of properties of this solution.

ometries with trivial dependence on T 4 were written in
[31, 32], where it was shown that the metric must have
the form

ds26 = − 2√
P
(dv + β)(du + ω +

F
2
(dv + β))

+
√
Pds24(B). (1)

Here (P ,F) are functions and (β, ω) are one–forms on the
four–dimensional hyper–Kahler base ds24(B). As demon-
strated in [23], finding solutions with flat base reduces to
a sequence of linear problems, and we will focus on such
bases.
The null coordinates in (1) are defined as

u =
t− y√

2
, v =

t+ v√
2
, y ∼ y + 2πR (2)

where y is the parameter of S1. Using reparameteriza-
tions in (1), one can always choose F to be v-independent
and vanishing at infinity, and later we will see that F is
related to the momentum charge.
We will choose the four dimensional metric of the base,

ds24(B), to be in the Gibbons-Hawking (GH) form:

ds24 = V −1(dτ +A)2 + V (dy21 + dy22 + dy23), (3)

where τ is the periodic parameter, function V and one-
form A satisfy the condition:

⋆3d3 ⋆3 d3V = 0, ⋆3 d3A = d3V, (4)

with d3 the differential and ⋆3 the Hodge dual on R
3. To

fix the supersymmetric background we also need to find
the one-form β which is required to have a self-dual field
strength on the base:

⋆4Dβ = Dβ. (5)

Here the covariant derivative is defined as:

D = d4 − β ∧ ∂

∂v
, (6)

and later we will use dot to denote the derivative respect
to v.
The field contents of this theory can be described in

terms of three warp factors Z1, Z2 and Z4 and three two-
forms field strengths Θ1, Θ2 and Θ4. The BPS equations
determine them are [33]:

Θ2 = ⋆4Θ2, Θ1 = ⋆4Θ1, Θ4 = ⋆4Θ4,

⋆4DŻ1 = DΘ2, D ⋆4 DZ1 = −Θ2 ∧ Dβ,
⋆4DŻ2 = DΘ1, D ⋆4 DZ2 = −Θ1 ∧ Dβ,
⋆4DŻ4 = DΘ4, D ⋆4 DZ4 = −Θ4 ∧ Dβ.

(7)
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After solving these linear differential equations one
should substitute them into another set of BPS equations
to solve ω and F :

Dω + ⋆4Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4,

⋆4D ⋆4 (ω̇ +
1

2
DF) = P̈ − Ż1Ż2 + (Ż4)

2

−1

2
⋆4 [Θ1 ∧Θ2 −Θ4 ∧Θ4], (8)

P = Z1Z2 − Z2
4 .

We will summarize the result of [23] in the Appendix
B.

III. LOCAL STRUCTURE OF THE

MICROSTATE GEOMETRIES

In this section we will construct three-charges BPS so-
lutions describing fluctuating supertubes. A supertube is
a supersymmetric configuration of D2-branes [30], which
is characterized by a closed curve (profile) specifying the
location of D2-branes. Upon duaization to the D1-D5
frame, the supertubes produce regular geometries con-
structed in [4]. In the previous work a momentum charge
has been added to a single circular supertube [21–26], and
here we will extend these results to multiple concentric
supertubes.

A. Geometries with AdS3×S3 asymptotics

We start with a D1-D5 geometry sourced by concentric
circular profiles. In this subsection we will add the mo-
mentum charge to solutions with AdS3×S3 asymptotics,
and this result will be extended to asymptotically-flat ge-
ometries in section 3.2. For the four dimensional base we
will still choose the flat metric:

ds24 = dr2 + r2dθ2 + r2 sin2 θdφ2 + r2 cos2 θdψ2, (9)

but the one-form β is sourced by many concentric circular
supertubes so that the self-duality condition is satisfied
trivially:

β =
R√
2
[(
r2 + a2 − fa

2fa
)dφ+ (

r2 − a2 − fa
2fa

)dψ]

+[a↔ b], (10)

fa =

√

(r2 + a2)2 − 4r2a2 sin2 θ, fb = fa↔b,

here we focus on the case of two concentric circular su-
pertubes with radii a and b to demonstrate the features
of the solutions. More general case can be found in the
Appendix A. It is convenient to define some functions

and self-dual two forms first:

v̂ =

√
2v

R
, ka =

√

a2 + fa − r2

a2 + fa + r2
, kb = ka↔b,

Ω(1) = − r3 sin 2θ

fa(a2 + r2 cos 2θ + fa)

(

dr ∧ dθ

+r sin θ cos θdφ ∧ dψ
)

+
[

a↔ b
]

, (11)

Ω(2) =
−a2 + r2 + fa

2fa
(
dr ∧ dψ

r
+ tan θdθ ∧ dφ)

+
a2 + r2 − fa

2fa
(
dr ∧ dφ

r
− cot θdθ ∧ dψ)

+
[

a↔ b
]

,

and note that Ω(1) ∧ Ω(2) = 0. The BPS equations can
be solved by:

Z1 =
R2

Q
[
a2 + c21
fa

+
b2 + c22
fb

+c2(kakb)
2n cos(2n(v̂ − 2ψ))(

1

fa
+

1

fb
)],

Z2 =
Q

fa
+
Q

fb
, Θ1 = 0,

Z4 =
√
2cR cos(n(v̂ − 2ψ))(kakb)

n(
1

fa
+

1

fb
),

Θ2 =
Rc2√
2Q

4n (kakb)
2n[sin(2n(v̂ − 2ψ))Ω(1)

− cos(2n(v̂ − 2ψ))Ω(2)], (12)

Θ4 = 2 c n(kakb)
n[sin(2n(v̂ − 2ψ))Ω(1)

− cos(2n(v̂ − 2ψ))Ω(2)],

F
2

= −2c2

r2
(1 − (kakb)

2n),

ω = βφdφ− βψdψ

−RFr
2

√
2

(
1

fa
+

1

fb
)(sin2 θdφ + cos2 θdψ),

where c is an integration constant, and c1 and c2 are
added in order to achieve the regularity later. The two
terms in Z2 corresponds two circular supertubes with
D5–charge equal to Q. The solutions have been written
in a particular form in order to compare with the results
in [24]. Note that the supertubes are superposed in a
very simple way, such simplicity persists for an arbitrary
number of centers, and the relevant solution is written in
the Appendix A. For coincident supertubes one recovers
the solution constructed in [21]. Since Z ∼ 1/r2 at large
values of r, solutions (12) and (A1) describe geometries
with AdS3×S3 asymptotics.

Let us demonstrate that solution (12) can be trans-
formed to another frame, where it describes a supertube
with charge oscillation added to a multi-center Gibbons-
Hawking (GH) base. To see this, we apply a spectral flow
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and spectral interchange in sequence:

v̂ → v̂ + τ ; 2v̂ → −τ, τ → −2v̂.

τ = ψ + φ.
(13)

The set of harmonic functions solving the first layer BPS
equations becomes2:

V =
4

fa
+

4

fb
, K1 =

2
√
2

R
(
Q

fa
+
Q

fb
),

K2 =
2
√
2R

Q
(
a2 + c21
fa

+
b2 + c22
fb

), (14)

K3 =

√
2R

r2
, L2 = 0,

L1 =
R2c2

Q

(kakb)
2n

r2
cos(n(τ − 2λ)), λ = ψ − φ.

The oscillating function L1 can be understood as the os-
cillating field strength sourced by the charge density ρ1
at the supertube location r = 0 [34]:

L1 = 4π

∫

d3y′
∫

dτ ′Ĝ(τ, ~y, τ ′, ~y′)ρ1δ
3(~y − ~y′) (15)

where Ĝ is the Green function on the the base, and for
a general GH geometry such function was constructed in
[35]. The answer for our two-center base is

Ĝ =
1

4π2r2
(kakb)

−2

(kakb)−2 − cos(12 (τ − τ ′)− (λ− λ′))
. (16)

The added charge densities can be identified by matching
the Fourier’s modes:

ρ1 =
R2c2

4Q
cosn(τ − 2λ). (17)

We infer that in this frame the solution describes a singly-
wound supertube added charge density ρ1 in a two-center

GH base. We conclude this subsection by observing that
solution (12) can also be generated by procedures pre-
sented in [21], but one needs to introduce an additional
spectral flow like (13).

B. Asymptotically–flat geometries

To extend the solution (12) to the asymptotically–flat
region, we need to make a modification:

Z1 → 1 + Z1, Z2 → 1 + Z2, ω → ω + δω, (18)

where δω has to satisfy [24]:

Dδω + ⋆4Dδω = Θ2, ⋆4 D ⋆4 δω = Ż1. (19)

2 We follow the conventions of [23].

Substituting into the general Z1 and Θ2 with N centers
from the Appendix A, one finds

δω =
Rc2√
2Q

k2nα [sin(2nw)ω(0) − cos(2nw)dψ]

ω(0) =
dr

r
− tan θdθ, kα ≡

N
∏

i=1

kai , w ≡ v̂ −Nψ

(20)

This expression has a singularity at r = 0 which can be
eliminated by adding homogenous solutions or suitable
Fourier modes of the warp factors. We will cure all the
singularities in next section. For future reference, here we
present the final regular asymptotically–flat geometry:

ds24(B) = dr2 + r2dθ2 + r2 sin2 θdφ2 + r2 cos2 θdψ2, β =

N
∑

i=1

βi,

Z1 = 1 +
R2

Q
[
N
∑

i=1

a2i + 2c2

fai
+ c2(1− α2

Q
)
k2nα cos(2nw)

fα
], Z2 = 1 +

Q

fα
, Z4 =

√
2cR

knα cos(nw)

fα
,

ω = βφdφ− βψdψ − RF√
2

1

fα
(r2 sin2 θdφ+ r2 cos2 θdψ) (21)

− Rc2√
2Q

k2nα

[

sin(2nw)(α2
N
∑

i=1

ω(1)
ai

− ω(0)) + cos(2nw)(dψ −
N
∑

i=1

α2βi
a2i

)
]

,

ω(1)
ai

=
1

fai
(
dr

r
− a2i sin 2θdθ

r2 + a2i cos 2θ + fai
),

1

fα
≡

∑ 1

fai
,

1

α2
≡

N
∑

i=1

1

a2i
,

F
2

= −2c2

r2
(1− k2nα ),
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IV. REGULAR MICROSTATE GEOMETRIES

In this section we will study the potential singularities
at the center of R4 and the positions of the supertubes,
and we will make a minimal change of the warp factors
to eliminate the singularities encountered in last section.
We begin with analyzing the regularity of the metric

at the center of R4, i.e. at r = 0. The only potential
singular term is the function F . Expand F around r = 0
we can get:

F ∼ −4c2n
1

α2
+O(r2), (22)

which is regular.
Next we focus on the singular points at the supertube

locations, fai = 0. The potential singularities are in the
coefficient of (dτ+A)2 in the six dimensional metric. The
condition to cancel it is the requirement [22]:

lim
fai

→0
fai [−

2√
P
β0(µ+

F
2
β0) +

√
P
V

] = 0, (23)

where β0 = (βφ + βψ)/2 and µ = (ωφ + ωψ)/2. This
condition will fix the values of ci in Z1. One can find

c2i = 2c2. (24)

Finally we eliminate singularities in (20) by introduc-
ing a minimal change of the sources

Z1 → Z1 + δ1Z1, δ1Z1 =
R2cδ
Q

k2nα cos(2nw)

fα
. (25)

This new sources will induce a modification to the one-
form ω which will can make (20) regular. Solving the
second set of BPS equations, we find

δ1ωr,θ =
Rcδ√
2
k2nα sin(2nw)

N
∑

i=1

ω(1)
ai
, (26)

δ1ωφ,ψ = −Rcδ√
2
k2nα cos(2nw)(

N
∑

i=1

βi
a2i

), δ1F = 0,

ω(1)
ai

=
1

fai
(
dr

r
− a2i sin 2θdθ

r2 + a2i cos 2θ + fai
).

Regularity of the one–form δω + δ1ω at r = 0 fixes the
value of cδ:

cδ = −c
2α2

Q
. (27)

This elimination of the singularities is typical for super-
strata, and it is known as coiffuring [36].

V. DISCUSSION

This work generalizes the superstrata discovered in
[21] by adding momentum to concentric D1–D5 pro-
files. Thus, unlike the solutions constructed there our

geometries describe disconnected configurations of D1-
D5 branes with momentum. The field theory interpreta-
tion of such unbound states and their role in the fuzzball
program in still an open problem [28]. Surprisingly, the
full geometry, obtained by solving non-linear equations,
exhibits a simple superposition of the harmonic functions
describing individual centers. It would be interesting to
demonstrate that a similar superposition principle holds
for all unbound states.
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Appendix A: Solution with arbitrary number of

supertubes

In this appendix we present the solution with many
concentric supertubes. Following the pattern encoun-
tered in (12) it is easy to guess the geometry with N
concentric supertubes3,

β =

N
∑

i=1

βi,

Z1 =
R2

Q
[
N
∑

i=1

a2i + c2i
fai

+
c2(kα)

2n

fα
cos(2nw)],

Z2 = Q

N
∑

i=1

1

fai
, Z4 =

√
2R

c(kα)
n

fα
cos(nw),

F
2

= −2c2

r2
(1 − (kα)

2n),

ω = βφdφ− βψdψ − RFr2√
2fα

(s2θdφ+ c2θdψ),

(A1)

and check that it solves all the BPS equations. In the
language of two-charge geometry, the solution has N con-
centric circular profiles with radii ai.

Appendix B: Solution generating technique

In this appendix we review the work of [23] and show
some details in our construction. The 1-form β appearing
in (1) can be separated as:

β =
K3

V
(dτ +A) + ξ (B1)

3 sθ ≡ sin θ, cθ ≡ cos θ.
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with K3 is a harmonic function on R
3 and its relation

with 1-form ξ is:

⋆3d3ξ = −d3K3 (B2)

The first layer of the solutions can be built as

Θ2 = η2 ∧ (dτ +A) + ⋆4[η2 ∧ (dτ +A)]

Z1 = L1 +
K2K3

V
, η2 ≡ D(

K2

V
),

(B3)

Here we defined a one–form η2. Generalized harmonic
functions K2 and L1 satisfy equations

⋆4D ⋆4 K2 = ⋆4D ⋆4 L1 = 0 (B4)

and a constraint

∂τK2 + ∂vL1 = 0. (B5)

Similarly we have:

Θ1 = η1 ∧ (dτ +A) + ⋆4[η1 ∧ (dτ +A)],

Z2 = L2 +
K1K3

V
, η1 ≡ D(

K1

V
),

⋆4 D ⋆4 K1 = ⋆4D ⋆4 L2 = 0,

∂τK1 + ∂vL2 = 0.

(B6)

and

Θ4 = η4 ∧ (dτ +A) + ⋆4[η4 ∧ (dτ +A)],

Z4 = L4 +
K4K3

V
, η4 ≡ D(

K4

V
),

⋆4 D ⋆4 K4 = ⋆4D ⋆4 L4 = 0,

∂τK4 + ∂vL4 = 0.

(B7)

To crucial step solving the first layer BPS equation is to
solve the generalized harmonic function given the β. For
example let us solve K4. The equation about K4 is

⋆4D ⋆4 DK4 = 0 (B8)

where D = d − β ∧ ∂
∂v

. The attempt solution is K4 =

ei(mv+kφ+nψ)f(r, θ). Consider a special β in (10) we get:

⋆ d ⋆ dK4 + 2m(kgφφβφ + ngψψβψ)K4

−m2(gφφβ2
φ + gψψβ2

ψ)K4 = 0
(B9)

The family of solution vanishing at infinity is:

K4 =
ei(kφ−mv+nψ)

r2
(
sin θ

r
)k(

cos θ

r
)n(hrahrb)

m (B10)

where

hra =

√

r2

(−a2 + fa + r2)

r2

(a2 + fa + r2)
(B11)

To eliminate the singularities let us rewrite cos θ:

cos θ =

√

(−a2 + fa + r2)(a2 + fa − r2)

4r2a2

=

√

(−b2 + fb + r2)(b2 + fb − r2)

4r2b2

(B12)

and set m = 2n and k = 0:

K4 =
ei(−nv+2nψ)

r2
knak

n
b (B13)

where

ka =

√

a2 + fa − r2

a2 + fa + r2
. (B14)
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