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Level-rank duality relates the observables of two different Chern-Simons theories in which the
roles of the Chern-Simons level and the rank of the gauge group are exchanged. In this note, we
explore the consequences of this duality in the realm of topological string theory. We show that this
duality induces a number of identities between the open Gromov-Witten invariants of the geometries
associated with a knot K and its mirror image K̃. We show how these identities arise both in the
A-model and in the dual B-model.

I. Introduction

The level-rank duality states that there is a correspon-
dence between the primary fields (and also the correla-
tion functions) of two seemingly different rational confor-
mal field theories, namely the SU(N)k and the SU(k)N
WZW models [1, 2].1 The isomorphism between the vec-
tor space of conformal blocks of the WZW model on a
surface Σ and the Hilbert space of the quantized Chern-
Simons theory on Σ×R [5] lifts the level-rank duality to
a duality between two different Chern-Simons theories.
The consequences of this duality for the Chern-Simons
observables – which coincide with certain knot invariants
[5] – have been studied in a great detail in [2, 4]. An
important consequence of this duality is a simple rela-
tion between the colored HOMFLY invariants of a knot
K and its mirror knot K̃.
It is well-known that Chern-Simons theory defined on

a three-manifold M is equivalent to the A-model open

topological string theory on the total space T ∗M
π
−→ M

[6]. The Chern-Simons partition function is written in
terms of the open topological string amplitudes with the

target space T ∗M
π
−→ M . In case of M = S3, these open-

string amplitudes are efficiently captured by the closed-
string amplitudes of the resolved conifold geometry via
the large N duality [7]. Likewise, the Wilson loop expec-
tation values of Chern-Simons theory are encapsulated
in the A-model open topological string amplitudes on

the same target space, T ∗S3 π
−→ S3, in the presence of

probe D4-branes [8]. In this manner, the large N duality
maps the Chern-Simons Wilson loop expectation value of
a knot K to open-string amplitudes of the resolved coni-
fold geometry with the insertion of a Lagrangian cycle
associated to K. 2 Roughly speaking, open-string am-
plitudes count the number of holomorphic maps from a
genus g Riemann surface with h boundary components
to the target space O(−1)⊕O(−1) → P1. The boundary
components of the Riemann surface are mapped to the
Lagrangian cycle associated to a given knot. The La-
grangian cycle provides the appropriate boundary con-

1 The level-rank duality has been promoted to other classical Lie
groups as well [3, 4].

2 For a review of the subject see [9].

ditions for open strings. Furthermore, mirror symmetry
provides another way to approach the problem of calcu-
lating open-string amplitudes associated to the insertion
of a Lagrangian cycle, by means of the dual B-model ge-
ometry.

The large N duality makes an intriguing connection
between knot invariants and the open Gromov-Witten
invariants in the realm of topological string theory. A
natural question to ask in this context is how the level-
rank duality emerges in topological string theory. The
level-rank duality implies a number of identities for knot
invariants. Therefore, it is natural to expect from this
duality to induce certain identities between the corre-
sponding open Gromov-Witten invariants. In this note,
we would like to address this question from both the A-
model and the B-model perspectives.

From the A-model point of view, a knot K is substi-
tuted by a Lagrangian cycle LK in T ∗S3 → S3. The
construction of the Lagrangian cycle LK was initiated
in [10, 11] by constructing the conormal bundle to the
knot K in the ambient target space T ∗S3 → S3. How-
ever, the rigorous construction of the Lagrangian cycles
associated with an algebraic knot K – before and after
the large N transition – was established in [12]. In this
construction, replacing an algebraic knot K by its mir-
ror image K̃ amounts to changing the Lagrangian cycle
LK to a new Lagrangian which describes K̃ in the topo-
logical string setup. This would affect the relevant open
string amplitudes, and hence the corresponding Gromov-
Witten invariants. Tracing this change in the amplitude,
we figure out the identities between the Gromov-Witten
invariants associated with K and its mirror image K̃.

In the B-model approach, the ambient space geometry
is the mirror of the resolved cornfield which is a non-
compact Calabi-Yau threefold. Under the dictionary of
mirror symmetry, the Lagrangian cycles will be trans-
lated to holomorphic curves in the mirror ambient space.
When one deals with toric Lagrangian cycles, the dic-
tionary of the mirror symmetry is quite explicit [13, 14],
and one knows how to exactly construct the mirror curve
associated with the Harvey-Lawson Lagrangian cycles.
However, the Lagrangian cycles constructed in [12] are
non-toric, and the recipe of mirror symmetry is not ap-
plicable to this situation, and one cannot easily figure out
the corresponding mirror curve associated with an alge-
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braic knot K. Nonetheless, one can deal with this prob-
lem in an indirect way. It has been shown that the mirror
curve associated with a knot K in fact coincides with a
topological invariant of the knot, known as the augmen-
tation polynomial [15]. This quantity appears in the con-
text of knot contact homology, and there are methods to
calculate it (for a nice review of the subject see [16, 17]).
The higher genus and higher hole amplitudes for knots
are then constructed using the techniques spelled out in
a great detail in [18]. We trace the effect of changing

a knot K with its mirror image K̃ on the augmentation
polynomial and show how the identities between open
Gromov-Witten invariants of K and K̃ are realized in the
B-model.
In this note, we proceed as follows. In section II., we

show that the level-rank duality of Chern-Simons theory
leads to a number of identities between the open Gromov-
Witten invariants associated with a knotK and its mirror
K̃. In section III., we consider the Lagrangian cycles
constructed in [12] for an algebraic knot K. We show
how the Lagrangian cycles which describe K are affected
when K is replaced by its mirror image K̃. Following
the change in Lagrangian cycles yields the identities of
section II between the open Gromov-Witten invariants of
K and K̃. In section IV., we illustrate how the identities
found in section II are realized in the B-model approach.

II. Chern-Simons Considerations

In knot theory, there are certain topological operations
which generate a new knot from a given knot. The first
of these operations, O, reverses the orientation of an ori-
ented knot along it, O(K) = −K. The second operation,
M , is a reflection3

M(x, y, z) = (x, y,−z) (1)

of the ambient space. The image of a given knot K under
this map is the mirror image of K, and it is denoted by
K̃ = M(K). In this process, in the knot diagram of K, all
under-crossings are replaced by over-crossings and vice
versa. The third operation, P , is the composition of the
first two P = O ◦ M . It turns out that {I,M,O, P},
in which I is the identity map, forms an abelian group
– isomorphic to Z2 ⊕ Z2 – under composition of maps.
The mirror image of a given knot K is not necessarily
ambient isotopic to K. Although for chiral knots, a knot
K and its mirror image K̃ are topologically distinct, their
knot invariants are closely related. It has been shown in
[1, 2] that in the framework of Chern-Simons theory the
relation between the invariants of a knot K and its mirror
K̃ is governed by the level-rank duality of Chern-Simons
theory.

3 The mirror image of a knot K is independent of the choice of M ,
because the image of K under any other orientation-preserving
homomorphism is ambient isotopic to K̃ [32].

Although exchanging the roles of the rank and the level
of an affine Lie algebra G(N)k is not a symmetry of the
algebra, it was shown that G(N)k and G(k)N Chern-
Simons theories are dual to each other [1, 3]. Specifically
for SU(N)k and SU(k)N Chern-Simons theories defined
on S3, the observables of the two theories are in a one-
to-one correspondence

〈W (K̃)
µ 〉SU(N)k = 〈W

(K)
µt 〉SU(k)N (2)

In (2), 〈W
(K)
µ 〉SU(N)k is the expectation value of the Wil-

son operator around a knot K, and the Young tableau
µ specifies an irreducible highest weight representation
of SU(N)k. The Young tableau µt is the transpose of

µ, and K̃ is the mirror of K. In order to make contact
with knot invariants, it is convenient to work with the
two following parameters

q = exp
( 2πi

k +N

)

, Q = exp
( 2πiN

k +N

)

(3)

The HOMFLY invariant associated to a knot K, colored
with representation µ, is related to the Wilson loop ex-
pectation value along that knot in representation µ

H(K)
µ (Q, q) =

〈W
(K)
µ 〉U(N)k

S00
(4)

where S00 is the partition function of Chern-Simons the-
ory on S3. Under the exchange k ↔ N , the quantum
parameter q remains invariant q ↔ q, and Q is replaced
by its inverse Q ↔ Q−1. After incorporating the con-
tribution of the U(1) factor, the level-rank duality (2)
implies

H(K̃)
µ (Q, q) = (−1)|µ|H

(K)
µt (Q−1, q) (5)

We would like to explore the consequences of (5) for
open topological string amplitudes. It is well known
that Chern-Simons theory on S3 is equivalent to topo-
logical A-model with the target T ∗S3 → S3 with La-
grangian boundary conditions [6]. Roughly speaking,
open string amplitudes count the number of holomor-
phic maps from the worldsheet – which is a genus g Rie-
mann surface with h boundary components – to the tar-
get space T ∗S3 → S3. In this correspondence q = eigs

and Q = et, where t = iNgs is the ’t Hooft coupling
constant. The genus g amplitude with h boundaries and

winding vector ~k associated to a knot K is given in terms
of the HOMFLY invariants of K in the following way

ω
(K)

(g,h,~k)
(Q) =

[

[

log
(

∑

~k′

Z
(K)
~k′

(Q, q)Tr~k′V
)

]

Tr~kV

]

g2g+h−2
s

In the above expression, after the genus expansion, we
only pick the coefficient of g2g+h−2

s . The partition func-

tion Z
(K)
~k

is given by

Z
(K)
~k

(Q, q) =
∑

|µ|=ℓ(~k)

χµ(C~k)H
(K)
µ (Q, q)
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in which χµ(C~k) is the character of the symmetric group
Sℓ(~k) with conjugacy class C~k. Since the colored HOM-

FLY invariants of K are all polynomials (after multipli-
cation by an appropriate factor Qℓ, where ℓ is either an
integer or a half-integer number) in terms of Q, the am-

plitude ω
(K)

(g,h,~k)
(Q) is also a polynomial of Q. The open

Gromov-Witten invariants of K and the mirror knot K̃
are then obtained as

ω
(K)

(g,h,~k)
(Q) =

dmax
∑

d=dmin

GW
(K)
(g,h)(d,

~k)Qd ,

ω
(K̃)

(g,h,~k)
(Q) =

dmax
∑

d=dmin

GW
(K̃)
(g,h)(d,

~k)Qd .

(6)

where dmin and dmax are the lowest and highest degrees of
non-vanishing Gromov-Witten invariants associated with
the genus g amplitude with h boundaries and winding
~k respectively. Because of (5), it is evident that there
should be relations between the open Gromov-Witten in-
variants associated with K and K̃. To figure out this rela-
tionship, let us first find how the two partition functions
are related

Z
(K̃)
~k

(Q, q) =
∑

|µ|=ℓ(~k)

χµ(C~k)H
(K̃)
µ (Q, q)

= (−1)|
~k|

∑

|µ|=ℓ(~k)

χµt(C~k)H
(K)
µt (Q−1, q)

= (−1)|
~k|Z

(K)
~k

(Q−1, q)

(7)

In the second line of (7), we have used (5), and the fact
that

χµt(C~k) = (−1)|
~k|+ℓ(~k) χµ(C~k) (8)

where |~k| and ℓ(~k) are the number of holes and the to-

tal winding associated with the winding vector ~k respec-
tively. To find the relation between the amplitudes as-
sociated with K and K̃, we notice that Tr~k1

V · Tr~k2
V =

Tr~k1+~k2
V , and the fact that |~k|1+ |~k2| = |~k1+~k2|. These

considerations together with (6) and (7) result in the fol-
lowing simple identity between the open Gromov-Witten
invariants associated with a knot K and its mirror K̃ 4

GW
(K̃)
(g,h)(d,

~k) = (−1)hGW
(K)
(g,h)(dmin + dmax − d,~k) (9)

The factor (−1)h has a physical interpretation in terms
of topological amplitudes. Once a knot K is exchanged

4 For the case of unknot, the special case of this relation for disks
(g = 0, h = 1) was proved in [19], using techniques of mirror
symmetry. Of course, the mirror image of unknot is the unknot
itself, and this relation becomes a relation between disk invari-
ants of unknot with different degrees.

by its mirror K̃, the orientation of the Lagrangian cycle
associated with K is reversed. This in particular implies
that the orientation of all h circles of the correspond-
ing amplitude, which end on the Lagrangian cycle, are
reversed too. In string theory language, this parity oper-
ation on the Lagrangian brane changes the action by an
overall minus sign. Therefore a genus g topological ampli-
tude with h boundary components on the corresponding
D-brane is modified by a factor of (−1)h.
To manifestly illustrate the relationship (9), we have

presented the annulus amplitudes associated with the

(5, 3) torus knot and its mirror image (̃5, 3). Each row
of the following tables represents the annulus Gromov-
Witten invariant of the given torus knot with the degree
specified on the left. In these tables, f specifies the fram-
ing of the knot.

(5, 3) GW(0,2)(d,~k = {2})

d = 0 945 + 469/2f + 49/2f2

d = 1 −4620− 1148f − 105f2

d = 2 9225 + 4515/2f + 365/2f2

d = 3 −9600− 2280f − 164f2

d = 4 5475 + 1245f + 80f2

d = 5 −1620− 348f − 20f2

d = 6 195 + 39f + 2f2

(̃5, 3) GW(0,2)(d,~k = {2})

d = 0 195 + 39f + 2f2

d = 1 −1620− 348f − 20f2

d = 2 5475 + 1245f + 80f2

d = 3 −9600− 2280f − 164f2

d = 4 9225 + 4515/2f + 365/2f2

d = 5 −4620− 1148f − 105f2

d = 6 945 + 469/2f + 49/2f2

III. A-model

In this section, we would like to see how identity (9)
arises in the topological A-model. In the A-model, a knot
K is substituted by a Lagrangian cycle. The recipe for
constructing the correct Lagrangian cycle associated to
a general knot K is not yet known. However, for a large
class of knots, known as algebraic knots, the Lagrangian
cycles were delicately constructed in [12], based on the
previous works [10, 11, 24]. Although the Lagrangian
cycles associated with algebraic knots are known, due
to their complicated nature, one can explicitly compute
topological amplitudes (using localization techniques of
[26–29]) only for a subclass of algebraic knots which pre-
serve certain C∗ symmetries. This subclass consists of
torus knots. In this section, we first explain what hap-
pens to the Lagrangian cycles associated to an algebraic
knot if one substitutes a knot K by its mirror K̃. In the
second step, we show how this change leads to identity
(9) for torus knots.



4

An algebraic knot is defined in the C2-plane. Let x
and y locally describe the C2-plane in consideration. An
algebraic knot is then defined as the intersection loci of
the holomorphic curve

F (x, y) = 0 (10)

with the three-sphere S3 = {(x, y) ∈ C2| |x|2 + |y|2 = 2}.
For instance an (r, s) torus knot – in which r and s are
coprime numbers – is specified by

F (r,s)(x, y) = xr − ys (11)

To see why the intersection of the holomorphic curve
F (r,s)(x, y) = 0 with the three-sphere S3 is a (r, s)
torus knot, let us define the following Clifford torus
T 2 = S1

θ × S1
φ inside the above three-sphere, in which

S1
θ = {(x, y)|x = eiθ, y = 0, 0 ≤ θ < 2π}

S1
φ = {(x, y)|x = 0, y = eiφ, 0 ≤ φ < 2π}

(12)

When rθ − sφ = 2πk for any k ∈ Z, we find a torus
knot on the surface of the Clifford torus. Without loss of
generality we set k = 0, and we define sϕ ≡ θ. Then a
(r, s) torus knot is parametrized as

K(r,s) = {(x, y) ∈ C2|x = eisϕ, y = eirϕ, 0 ≤ ϕ < 2π}

The mirror image of an algebraic knot K, defined by (10),
is obtained by the operation (1). In this setup, the mirror
reflection is equivalent to substituting one of the coordi-
nates of the ambient C2-plane by its complex conjugate.
Therefore, the mirror knot K̃ is defined by

F (x, ȳ) = 0 (13)

where ȳ is the complex conjugate of y. This implies that
the mirror of a (r, s) torus knot is parametrized as

K̃(r,s) = {(x, y) ∈ C2|x = eisϕ, y = e−irϕ, 0 ≤ ϕ < 2π}

Comparing K̃(r,s) with K(r,s), it is clear that the mirror
of a (r, s) torus knot is equivalent to the (−r, s) torus
knot; confirming a well known fact in knot theory.
Now, we would like to construct the Lagrangian cycles

associated with an algebraic knot and its mirror, follow-
ing [12]. The deformed conifold space Xµ is defined as a
hypersurface in C4

Xµ = {(x, y, z, w) ∈ C4|xz − yw = µ} (14)

which is equipped with the natural symplectic two-form
induced from the ambient C4. Xµ is isomorphic to the

total space T ∗S3 π
−→ S3. Defining z1 = (x + z)/2, z2 =

−i/2(x− z), z3 = −1/2(y−w), and z4 = i/2(y+w), we
realize

∑

i z
2
i = µ. Splitting zi into real and imaginary

parts zi = xi + iyi (xi, yi ∈ R), it is easy to see that

~x · ~y = 0 , |~x|2 + |~y|2 = µ (15)

Defining the symplectomorphism φµ : Xµ → X

φµ(~x, ~y) ≡ (~u,~v) =
( ~x

|~x|
,−|~x| ~y

)

(16)

the total space T ∗S3 → S3 is realized as a subspace of
R4 × R4

|~u| = 1 , ~u · ~v = 0 (17)

in which the first equation specifies the three-sphere base,
and ~v is the normal direction.
To construct the Lagrangian associated with an alge-

braic knot K, it is crucial for the Lagrangian LK to avoid
the singular point of the conifold as it goes through the
large N transition [12]. To achieve this, one has to con-
sider a lift of the knot K. A lift is an embedding of a
circle γ in X (γK : S1 → X) such that the composition
π ◦ γK : S1 → S3 is the knot K. In order for K to avoid
self-intersection, it is also important that γK intersects
each fiber only once. Assuming a lift γK exists

(~u,~v) = (~f(θ), ~g(θ)) , θ ∈ [0, 2π] (18)

then the Lagrangian cycle Lγ is constructed by

~u = ~f(θ) , ~̇f(θ) ·
(

~v − g(θ)
)

= 0 (19)

The Lagrangian cycle associated to K in the deformed
conifold Xµ is then given by LK = φ−1

µ (LγK
). An explicit

lift for algebraic knots constructed in [12]. The starting

point for γK is the holomorphic curve Z
(K)
µ ⊂ Xµ

Z(K)
µ = {F (x, y) = 0} ∩ {F (z,−w) = 0} (20)

We notice that Z
(K)
µ ∩Sµ = K in which Sµ is the vanishing

cycle of the deformed conifold. Z
(K)
µ may have several

distinct connected components. We take one connected

component C
(K)
µ ⊂ Z

(K)
µ which has nontrivial intersection

with Sµ. The last ingredient in construction of the lift
γK is the S2-bundle Pa = {(~u,~v) ∈ X | |~v| = a} where
a ∈ R+ [12]. The lift γK is then given as the intersection

of the sphere bundle Pa and the image of C
(K)
µ under the

symplectomorphism φµ

γK = Pa ∩ φµ(C
(K)
µ ) (21)

As is clear from the construction of the Lagrangian cycle
LK, the choice of the knot K enters through the lift γK.
Therefore, in the construction of the Lagrangian cycle
associated with the mirror image of K, we need to adjust
the corresponding lift accordingly. The only difference in
the construction of the lift γK̃ enters through the curve

Zµ. For the mirror knot K̃, the corresponding curve will
be

Z(K̃)
µ = {F (x, ȳ) = 0} ∩ {F (z,−w̄) = 0} (22)
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Choosing one connected component of Z
(K̃)
µ , the lift as-

sociated with K̃ is given by

γK̃ = Pa ∩ φµ(C
(K̃)
µ ) (23)

As of now, the explicit calculation of topological string
amplitudes associated with the above Lagrangian cycles
is only possible for torus knots which preserve certain C∗

action. In here, in the remaining part of this section, we
show that the open Gromov-Witten invariants of LK(r,s)

and LK̃(r,s) are related, when K(r,s) is a (r, s) torus knot.
We notice that LK(r,s) and LK̃(r,s) preserve different C∗

symmetries

(x, y, z, w) 7→ (eisϕx, eirϕy, e−isϕz, e−irϕw)

(x, y, z, w) 7→ (eisϕx, e−irϕy, e−isϕz, eirϕw)
(24)

where the first and the second transformations are the
symmetries of LK(r,s) and LK̃(r,s) respectively. In order
to carry out the localization computation on the cor-
responding moduli space of stable maps with boundary
components, we have to trace the above C∗ symmetries
in the resolved conifold. It is easy to see that the cor-
responding C∗ symmetries that the proper Lagrangian
cycles (LK and LK̃ after large N transition transform
into new Lagrangian cycles whose construction has been
spelled out in detail in [12]) preserve take the following
form

(x, y, z, w; [u1, u2]) 7→

(eisϕx, e±irϕy, e−isϕz, e∓irϕw; [e−i(s±r)ϕu1, u2])
(25)

where [u1, u2] are the homogeneous coordinates of the P1

cycle after the small resolution. In above equation, the
first and the second choices of signs correspond to the
circle actions associated with K(r,s) and K̃(r,s) respec-
tively. This choice of signs would also affect the weights
of the equivariant classes of the localization computation.
There are two ways to proceed. We can carry out the lo-
calization computation for amplitudes case by case for
both Lagrangian cycles associated with K(r,s) and K̃(r,s)

with respect to their C∗ symmetries, and verify (9). We
have checked (9) for several amplitudes with low genus
and winding, and the results are in agreement with (9).
However, we can draw a more general conclusion. It has
been shown in [12], by relating the Gromov-Witten in-
variants of torus knots to those of unknot, that one can
reproduce the Rosso-Jones formula [21] for the HOMFLY
polynomial of torus knots. We do knot repeat this deriva-
tion in here. Following the same line of argument as in
[12], we can show that the generating functions for open
Gromov-Witten invariants of a (r, s) torus knot and its

mirror image for winding one are given by

F
(r,s)
1 (Q, gs) =(−1)s−1Q−s/2

∑

|µ|=s

χµ(Ck(s))ei
r
2sκµgsdimqµ

F
(̃r,s)
1 (Q, gs) =(−1)s−1Q−s/2

∑

|µ|=s

χµ(Ck(s))e−i r
2sκµgsdimqµ

(26)

These equation are precisely special cases of the Rosso-
Jones formula for a (r, s) torus knot and its mirror image

(̃r, s). On the other hand, we know that the HOMFLY
invariants of a knot and its mirror are related by (5). As
a result, the identity (9) between Gromov-Witten invari-

ants of a knot K and its mirror image K̃ is realized from
the A-model point of view for torus knots. Although

F
(r,s)
1 and F

(̃r,s)
1 are only the the one-point functions

(with winding one for the boundary) associated to a (r, s)

torus knot and its mirror (̃r, s), this derivation is gener-
alized to higher hole and higher winding Gromov-Witten
invariants in a straightforward manner.
Before closing this section, we would like to comment

on the derivation of [22] for the HOMFLY invariants of
torus knots in the framework of A-model. In [22], it was
shown how one can calculate the HOMFLY invariants of
torus knots using the formalism of the topological ver-
tex [25]. Topological vertex calculates open topological
string amplitudes associated with toric Lagrangian cycles
embedded in a toric Calabi-Yau threefold. Taking the ad-
vantage of the fact that a torus knot is generated by an
SL(2,Z) transformation of the unknot, it was shown that
the HOMFLY invariants of torus knots can be captured
by performing an appropriate SL(2,Z) transformation on
the toric Lagrangian cycle associated with the unknot. In
this derivation the framing of the toric Lagrangian cycle
is a fraction of the framing of the torus knot. The stan-
dard framings for K(r,s) and K̃(r,s) torus knots are rs and
−rs respectively. It was then shown that this sign differ-
ence leads exactly to equation (5), specialized to a (r, s)
torus knot and its mirror image.

IV. B-model

In the B-model approach, the open Gromov-Witten in-
variants associated with toric geometries are calculated
as follows. One first calculates the disk instanton num-
bers from an algebraic curve, known as the mirror curve.
The mirror curve is a non-compact Riemann surface, and
is the generating function of disk instantons. In the sec-
ond step, the annulus instanton numbers are obtained
from the Bergman kernel of the mirror curve, which is
determined by the topology and geometry of the curve.
Disk and annulus instanton numbers are the ingredients
for higher invariants. The higher genus and higher hole
invariants are determined by the recursive procedure of
[20].
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In the present case, the situation is more subtle. First
of all, since the Lagrangian cycles in the A-model are non-
toric, we cannot directly obtain the corresponding mirror
curves which determine the disk instantons. However, it
was shown in [15] that the mirror curve associated with
a knot K coincides with one of the topological invariants
associated with K, namely its augmentation polynomial.5

The augmentation polynomial6 is an algebraic curve and
it reproduces the A-polynomial of K in a certain limit. It
turns out that the augmentation polynomial can be con-
structed only by the knowledge of the HOMFLY polyno-
mials of K, colored in totally symmetric representations.
Suppose x and y are the local coordinates on the mirror
curve A (augmentation polynomial). The curve can then
be represented in the following way [15, 22]

y(x) = exp
(

x
d

dx
lim
gs→0

log

∞
∑

k=0

H
(K)
Sk

(Q, q)xk
)

(27)

where Sk is the k-th totally symmetric representation dis-
played by a Young diagram with total number of k boxes
sitting in a single row, and q = eigs . In the topological
string setup, the parameter Q corresponds to the area
of the base P1 of the resolved conifold geometry. For in-
stance, the augmentation polynomial associated with the
trefoil knot turns out to be

(1 −Qy) + (y3 − y4 + 2y5 − 2Qy5

−Qy6 +Q2y7)x− y9(1− y)x2 = 0
(28)

Before, discussing higher invariants in the B-model, let
us see how (9) is realized in the B-model at the level of
disks. In order to answer this question, we first notice
that the disk instanton numbers associated with K can
also be constructed by only the knowledge of HOMFLY
invariants of K in totally anti-symmetric representations

y(x) = exp
(

− x
d

dx
lim
gs→0

log

∞
∑

k=0

H
(K)
Λk

(Q, q)xk
)

(29)

In (29), Λk is the k-th totally anti-symmetric representa-
tion displayed by a Young diagram with total number of
k boxes sitting in a single column. Now, let x̃ and ỹ be
the local coordinates on the mirror curve Ã associated
with the mirror knot K̃. Similar to K, the mirror curve
associated to K̃ can be constructed via (27) as

ỹ(x̃) = exp
(

x̃
d

dx̃
lim
gs→0

log

∞
∑

k=0

H
(K̃)
Sk

(Q, q) x̃k
)

(30)

Using (5), we can rewrite (30) in terms of the HOMFLY
invariants of the original knotK in totally anti-symmetric

5 In general, the augmentation polynomial may be one irreducible
component of the mirror curve.

6 For an introduction to the subject see [16, 17].

representations

ỹ(x̃) = exp
(

− x̃
d

dx̃
lim
gs→0

log

∞
∑

k=0

H
(K)
Λk

(Q−1, q) (−x̃)k
)

Comparing the above formula with (29), and noticing the

fact that the HOMFLY invariants H
(K)
µ (Q, q) are poly-

nomials in terms of Q, we arrive at

GW
(K̃)
(0,1)(d, k) = −GW

(K)
(0,1)(dmin + dmax − d, k) (31)

in which dmin and dmax are the lowest and the highest de-
grees of non-vanishing disk Gromov-Witten invariants for
a given winding k respectively. It is also evident that the
augmentation polynomial Ã associated with K̃ is simply
obtained from A by sending x → −x and Q → Q−1. For
instance for the mirror of the trefoil knot, we obtain the
corresponding augmentation polynomial from (28) to be

Q(Q− ỹ)− (Q2ỹ3 −Q2ỹ4 + 2Q2ỹ5 − 2Qỹ5

−Qỹ6 + ỹ7)x̃ −Q2ỹ9(1 − ỹ)x̃2 = 0
(32)

Now, we turn into higher invariants. The next step
is to determine the annulus instanton numbers associ-
ated to K. Unlike the toric cases, the annulus numbers
in this case are not given by the Bergman kernel associ-
ated with the augmentation polynomial [18]. However,
it was shown in [18] that there exists another symmet-
ric bi-differential which is the generating function of all
annulus instanton numbers. It was shown in [18] how
one can explicitly construct this bi-differential (known as
the physical annulus kernel) for torus knots. This an-
nulus kernel together with the augmentation polynomial
are the ingredients for a recursive procedure to determine
all other higher invariants. To see how the annulus in-
stanton numbers of K and K̃ are related, we first notice
that all annuli can be extracted by only the knowledge
of HOMFLY invariants colored with at most rows [18].
For brevity, let us concentrate on a specific annulus with

winding vector ~k = {1, 1}. One can obtain the instan-
ton numbers associated with this annulus in the following
way

ω
(K)
(0,2,{1,1})(Q) = 2

[

H
(K)

(Q, q) +H
(K)

(Q, q)−H
(K)

(Q, q)

(2H
(K)

(Q, q) +H
(K)

(Q, q)−H
(K)

(Q, q)2)
]

O(g0
s)

Equivalently, it turns out that we can obtain all annulus
instanton numbers only with the knowledge of HOMFLY
invariants with at most two columns. For the annulus
~k = {1, 1}, we have

ω
(K)
(0,2,{1,1})(Q) = −2

[

H
(K)

(Q, q) +H
(K)

(Q, q)−

H
(K)

(Q, q)(H
(K)

(Q, q) + 2H
(K)

(Q, q)−H
(K)

(Q, q)2)
]

O(g0
s)

The same expressions would hold for the annulus num-
bers of the mirror knot K̃ if one uses the HOMFLY in-
variants of K̃ accordingly. If we use (5), we easily realize
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that

ω
(K̃)
(0,2,{1,1})(Q) = 2

[

H
(K)

(Q−1, q) +H
(K)

(Q−1, q)

−H
(K)

(Q−1, q)(2H
(K)

(Q−1, q) +H
(K)

(Q−1, q)

−H
(K)

(Q−1, q)2)
]

O(g0
s)

Noticing that the HOMFLY invariants are polynomials
in terms of Q, we arrive at

GW
(K̃)
(0,2)(d, {1, 1}) = GW

(K)
(0,2)(dmin + dmax − d, {1, 1})

where dmin and dmax are the lowest and the highest degrees
of non-vanishing annulus Gromov-Witten invariants for

the winding ~k = {1, 1} respectively. This argument is
easily generalized to any windings for the two boundary
components of an annulus instanton, and we find

GW
(K̃)
(0,2)(d,

~k) = GW
(K)
(0,2)(dmin + dmax − d,~k)

in which ~k = {0, 0, · · · , 1, 0, 0, · · · , 1} is the winding vec-
tor associated to a general annulus amplitude.
The higher genus and higher hole invariants associated

with K and K̃ are obtained through the recursive proce-
dure of [20, 23], with the kernels constructed in [18].

Ω
(K)
(g,h+1)(p, J) =

∑

i

Res
q→ai

K(p, q)
(

Ω
(K)
(g−1,h+2)(q, q̄, J)

+

g
∑

ℓ=0

′

∑

I⊂J

Ω
(K)
(ℓ,|I|+1)(q, I)Ω

(K)
(g−ℓ,h−|I|+1)(q̄, J\I)

In above, the differentials Ω
(K)
(g,h) are the generating func-

tions of genus g amplitudes with h boundary compo-
nents7

Ω
(K)
(g,h)(x1, · · · , xh) =

∑

|~k|=h

ω(g,h,~k)(Q)

(

xk1
1 · · ·xkh

h + permutations
)

dx1 · · · dxh

(33)

The recursion kernelK(p, q) is made of the physical annu-
lus kernel and the canonical meromorphic one-form which
generates disk instantons. It is easily seen that by send-
ing K → K̃, the recursion kernel gets a minus sign and
its Q dependence is substituted by Q−1 in it. Then, by
induction, one recognizes that the identity (9) is fulfilled

among the Gromov-Witten invariants of K and K̃.
Before we conclude this section, there are three com-

ments in order. First, in [30] there has been proposed
a mirror curve for torus knots, based on the fact that a
torus knot is produced from unknot by an appropriate
SL(2,Z) transformation. One may ask how this curve

7 For more details on notations, consult [18].

is affected if one substitutes a torus knot by its mirror
image. In the construction of [30], the mirror curve of a
torus knot is obtained from the mirror curve of the un-
knot via a rational framing transformation. This rational
number is determined by the ratio of the two co-prime
numbers which define the torus knot. It turns out that
the sign of the rational framing transformation deter-
mines whether we would find the mirror curve associated
with the torus knot or with its mirror. By the rational
framing transformation of the unknot mirror curve, we
find two distinct curves depending on the sign of the ra-
tional framing. One curve corresponds with the torus
knot, and the other with the mirror torus knot.
The second comment concerns links. The identity (9)

is not restricted to the case of knots, but also holds for
Gromov-Witten invariants associated with links. The
natural question is that in the case of links, how one real-
izes the identity (9) in the B-model. It was shown in [31]
that for the case of links, instead of mirror curves one
needs to work with a higher dimensional variety. This
variety coincides with the augmentation variety of the
link [31]. Similar to the case of knots, the augmentation
variety of a link can be merely constructed by the knowl-
edge of HOMFLY invariants of the link with n compo-
nents, colored with n totally symmetric representations.
As we saw in the case of knots, this variety can be equiv-
alently constructed in terms of HOMFLY invariants of
the link, colored with n totally anti-symmetric represen-
tations. Using the statement of the level-rank duality
for the case of links and following the same line of argu-
ment as for knots, we easily find that (9) is fulfilled for
the case of links. Furthermore, we find that the augmen-
tation variety of a link is related to the augmentation
variety of its mirror by sending Q → Q−1 and xi → −xi

(i = 1, 2, · · · , n). For higher genus and higher hole invari-
ants of links, one would first need to develop a suitable
notion of the recursive procedure of [23] for higher di-
mensional varieties. This recursive procedure for higher
dimensional varieties is not known yet.
As the last comment, it is interesting to notice that

the level-rank duality holds for composite representations
as well. In case of U(N), the most general irreducible
representation is specified by a pair of Young tableau
[33]. HOMFLY invariants in composite representations
are related to amplitudes which are stretched between
several Lagrangian branes. Since the level-rank duality
holds for composite representations

H
(K̃)
[µ,ν](Q, q) = (−1)|µ|+|ν|H

(K)
[µt,νt](Q

−1, q)

identity (9) is fulfilled for Gromov-Witten invariants as-
sociated to stretched amplitudes.
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