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ABSTRACT

The consistency of the embedding of four-dimensional SO(8) gauged N = 8 supergravity

into eleven-dimensional supergravity, where the internal directions are compactified on a

seven-sphere, was established by de Wit and Nicolai in the 1980s. The reduction ansatz for

the eleven-dimensional metric, and for some of the components of the 4-form field strength,

were found at that time, and recently the complete expression for the 4-form reduction has

been obtained. The expressions are quite complicated, and in many practical applications

it would be sufficient to know the ansatz for a subset of the four-dimensional fields. In this

paper, we obtain explicit expressions for the embedding of the truncation of the full N = 8

gauged theory to the N = 2 gauged STU supergravity. This corresponds, in the bosonic

sector, to a consistent truncation of the N = 8 supergravity fields to those that are singlets

under the U(1)4 Cartan subalgebra of SO(8). This truncation to STU supergravity, which

comprises N = 2 supergravity coupled to three vector multiplets, suffices, for example, for

lifting the general 8-charge asymptotically-AdS rotating black holes to eleven dimensions.

We also give two distinct further truncations to N = 2 supergravities coupled to single

vector multiplets.
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1 Introduction

The idea that the four-dimensional N = 8 gauged SO(8) supergravity of de Wit and

Nicolai [1] could be obtained by means of a dimensional reduction of eleven-dimensional

supergravity on S7 dates back to the early 1980s [2, 3]. Originally, this reduction was

discussed just at the level of the linearisation of the field equations around the Freund-

Rubin [4] AdS4 × S7 ground state. A reduction in which all the massive Kaluza-Klein

towers as well as the massless N = 8 supergravity subsector is retained can obviously be

consistently extended, in principle, to the full non-linear order. However, one cannot in

general expect to be able to perform a consistent truncation of this full theory in which

the towers of massive multiplets are set to zero, leaving only the massless four-dimensional

gauged N = 8 supergravity [5]. The key issue here is that one would generically expect

that in the full theory, non-linear “currents” built from powers of the massless fields would

act as sources in the equations of motion of the massive fields that one wishes to set to

zero. Indeed, this is exactly what would happen in a sphere or coset-space reduction of

any generic theory, and thus a reduction in which just a “massless sector” (including the

gauge bosons of the full isometry group of the compactifying manifold) was retained would

be inconsistent beyond the linearised level. The first indication that the S7 reduction of

eleven-dimensional supergravity might be an exception to the general rule was found in

ref. [6], where it is shown that a crucial trilinear coupling of two SO(8) gauge bosons to

a massive spin-2 multiplet of fields is absent. This satisfies a first, necessary, condition

for the retained gauge bosons not in fact to act as sources for the massive fields that one

wishes to set to zero. This happens because the gauge bosons enter not only in the metric

uplift ansatz but also in the uplift ansatz for the 4-form field strength of eleven-dimensional

supergravity. This, together with a certain identity obeyed by the Killing vectors on the

7-sphere, conspires to remove the trilinear couplings that would otherwise be the first signal

of the inconsistency of the truncated reduction.

The possibility of a dimensional reduction of a higher-dimensional theory on a sphere, in

which a finite number of lower-dimensional fields including the gauge bosons of the isometry

group were retained, was in fact conceived by Pauli in 1953 (in the context of an S2 reduction

of six-dimensional Einstein gravity) [7–9], but he recognised that the consistency problems

mentioned above would be an obstacle to realising his idea. In fact, the S7 reduction of

eleven-dimensional supergravity was the first non-trivial example in which the idea of a

“Pauli reduction” [10] actually works.

An indirect, but nevertheless complete, demonstration of the consistency of the S7
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reduction was provided by de Wit and Nicolai in ref. [11] (see also [12]). They obtained an

explicit expression for the metric uplift ansatz, and also partial results for the uplift ansatz

for the 4-form field strength. Their construction, making extensive use of the supersymmetry

of the theory, essentially proves that the reduction is necessarily a consistent one. Much

more recently, further work has provided more complete expressions for the 4-form uplift

ansatz, and has also provided further insights into the structure of the reduction [13–16].

Although the consistency of the S7 Pauli reduction of eleven-dimensional supergravity

has now been fully established, and the uplift ansätze for the metric and 4-form field strength

are explicitly known, these expressions are in practice somewhat unwieldy and complicated

to use in full generality. In many cases, when for example lifting a solution of the four-

dimensional gauged supergravity to D = 11, it may suffice to have explicit expressions for

the uplift ansatz for only a subset of the fields in the full four-dimensional supergravity

theory. The uplift ansatz for such a truncation of the full gauged supergravity theory may

be much simpler and more manageable. Examples of this kind that have been obtained

previously include the embedding of four-dimensional SO(4)-gauged N = 4 supergravity,

for which the complete and explicit bosonic S7 uplift ansatz is given in ref. [17]. The four-

dimensional N = 4 gauged theory is of course itself a consistent truncation of the N = 8

gauged theory.

Another example that has proved to be of considerable utility is given in ref. [18]. This

describes the embedding of a truncation of the full SO(8) gauged theory in which only

the gauge bosons of the U(1)4 abelian subgroup of SO(8) are retained. The truncation

in ref. [18] retains also the four-dimensional metric, and three dilatonic scalar fields. The

associated four-dimensional theory in this case is not a fully consistent truncation of N = 8

gauged SO(8) supergravity: to be consistent, one should include a total of six scalar fields

rather than just the three that are retained in ref. [18], comprising three axions as well as

the three dilatonic scalars. However, if one restricts attention to four-dimensional solutions

in which the U(1) gauge fields are essentially purely electric or purely magnetic, but not

both, then the three axions can be consistently set to zero and the ansatz in ref. [18] can

then be used in order to lift such solutions to eleven dimensions.1 The uplift ansatz found

in ref. [18], with its restricted notion of consistency, is sufficient for the purposes of lifting

the static four-charge black hole solutions to eleven dimensions.

The purpose of the present paper is to obtain explicit expressions for the bosonic uplift

1To be more precise, the three axions can be consistently set to zero if the wedge products Fα ∧ F β of

the four U(1) field strengths all vanish.
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ansatz for the embedding of the fully consistent truncation of the SO(8) gauged supergravity

to its abelian U(1)4 subsector. This theory, comprising the metric, four U(1) gauge fields,

and the three dilatons and three axions mentioned above, is the bosonic sector of the N = 2

supersymmetric gauged STU supergravity theory. Its field content comprises the N = 2

supergravity multiplet coupled to three vector multiplets. The inclusion of the additional

three axionic scalar fields makes the uplift ansatz considerably more complicated than the

restricted uplift ansatz that was found in ref. [18]. In fact an attempt to construct the

ansatz for the embedding of the bosonic sector of the gauged STU supergravity was made

in ref. [19], but at that time only the partial results for the 4-form uplift ansatz that had

been obtained in ref. [11] were available, and the results in ref. [19] are for that reason

incomplete. With the recent advances in the construction of the internal 4-form uplift

ansatz for the SO(8) gauged supergravity that have been achieved in refs. [13, 15, 20], we

are now in a position to complete the job that was left unfinished in ref. [19].

The ansatz that we shall present in this paper is considerably more complicated than

the restricted one without the three axionic scalars that was obtained in ref. [18]. It is,

however, still considerably simpler, for practical purposes, than the complete ansatz for the

reduction to the full N = 8 gauged SO(8) supergravity theory. Uplifting four-dimensional

solutions of N = 2 theories to eleven dimensions has been of recent interest in the context

of AdS/CFT, in particular, the ABJM proposal [21]. An interesting example has been the

study of flow solutions as a new way of understanding strongly-coupled phases of M2 brane

dynamics [22, 23]. More generally, uplifting to eleven dimensions may facilitate a clearer

understanding of the four-dimensional physics, such as the microscopic counting of black

hole solutions in N = 2 gauged supergravities, which has recently been studied in Ref. [24].

The ansatz we obtain allows one to lift, for example, any black hole solution of gauged

N = 8 supergravity carrying abelian charges to eleven dimensions. The most general such

solution would have four electric and four magnetic charges (although global symmetries

could be used in order to rotate to a duality complexion where a total of 5 independent

non-zero charges remain).

2 Gauged STU supergravity

The gauged STU supergravity is a consistent truncation of the N = 8 SO(8) gauged theory

with N = 2 supersymmetry and residual gauge group U(1)4, the maximal abelian subgroup

of SO(8) [18,25]. In particular, the truncation leaves a total of six non-trivial scalars, three
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dilatons and three axions parameterised by λi and σi, respectively, with i = 1, 2, 3, and

four U(1) gauge fields Aα (α = 1, 2, 3, 4) with associated field strengths Fα. The bosonic

Lagrangian, in the notation of ref. [19], is

L = R ∗1l + LKinS − V ∗1l + LKinA + LCS , (2.1)

where the scalar kinetic terms are simply [19]

LKinS = −1

2

∑

i

(
(∂λi)

2 + sinh2 λi (∂σi)
2

)
∗1l (2.2)

and the scalar potential 2

V = −4 g2
∑

i

(Y 2
i + Ỹ 2

i ), (2.3)

where [19]

cosh λi =
1

2
(Y 2

i + Ỹ 2
i ), cos σi sinhλi =

1

2
(Y 2

i − Ỹ 2
i ). (2.4)

In addition, we define [19]

sinσi sinhλi = bi. (2.5)

It will sometimes be more convenient to use an SL(2,R) parameterisation for the scalar

fields rather than an SO(2, 1) parameteristion, by defining dilaton/axion pairs (ϕi, χi) by

eϕi = coshλi + sinhλi cos σi , χi e
ϕi = sinhλi sinσi , (2.6)

in terms of which the scalar kinetic Lagrangian becomes

LKinS = −1

2

∑

i

(
(∂ϕi)

2 + e2ϕi (∂χi)
2

)
∗1l . (2.7)

The quantities Yi, Ỹi and bi defined above are now given by

Y 2
i = eϕi , Ỹ 2

i = e−ϕi + χ2
i e

ϕi , bi = χi e
ϕi . (2.8)

The kinetic terms for the gauge fields LKinA and the Chern-Simons terms LCS , given

by equations (36) and (38) of ref. [19], are

LKinA = −1
2 |W |−2

[
P0

(
Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 ∗F 1

(2) ∧ F 1
(2) + Ỹ 2

1 Y
2
2 Y

2
3 ∗F 2

(2) ∧ F 2
(2)

+Y 2
1 Ỹ

2
2 Y

2
3 ∗F 3

(2) ∧ F 3
(2) + Y 2

1 Y
2
2 Ỹ

2
3 ∗F 4

(2) ∧ F 4
(2)

)

+2P1 b2 b3 (Ỹ
2
1 ∗F 1

(2) ∧ F 2
(2) − Y 2

1 ∗F 3
(2) ∧ F 4

(2))

+2P2 b1 b3 (Ỹ
2
2 ∗F 1

(2) ∧ F 3
(2) − Y 2

2 ∗F 2
(2) ∧ F 4

(2))

+2P3 b1 b2 (Ỹ
2
3 ∗F 1

(2) ∧ F 4
(2) − Y 2

3 ∗F 2
(2) ∧ F 3

(2))
]

(2.9)

2Note that this potential is a particular example of the Fayet-Iliopoulos potentials of four-dimensional

gauged N = 2 supergravities. See, for example, Ref. [26].
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and

LCS = −|W |−2
[
b1 b2 b3

(
Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 F

1
(2) ∧ F 1

(2) + Ỹ 2
1 Y

2
2 Y

2
3 F

2
(2) ∧ F 2

(2)

+Y 2
1 Ỹ

2
2 Y

2
3 F

3
(2) ∧ F 3

(2) + Y 2
1 Y

2
2 Ỹ

2
3 F

4
(2) ∧ F 4

(2)

)

+b1 (P0 + 2b22 b
2
3) (Ỹ

2
1 F

1
(2) ∧ F 2

(2) − Y 2
1 F

3
(2) ∧ F 4

(2))

+b2 (P0 + 2b21 b
2
3) (Ỹ

2
2 F

1
(2) ∧ F 3

(2) − Y 2
2 F

2
(2) ∧ F 4

(2))

+b3 (P0 + 2b21 b
2
2) (Ỹ

2
3 F

1
(2) ∧ F 4

(2) − Y 2
3 F

2
(2) ∧ F 3

(2))
]
, (2.10)

where

P0 ≡ 1 + b21 + b22 + b23 , W ≡ P0 − 2i b1 b2 b3 ,

P1 ≡ 1− b21 + b22 + b23 , P2 ≡ 1 + b21 − b22 + b23 , P3 ≡ 1 + b21 + b22 − b23 . (2.11)

3 Complete ansätze for N = 8 gauged SO(8) supergravity

In this section we summarise briefly the uplift ansätze for the full N = 8 gauged SO(8)

supergravity [13, 15, 16, 20, 27]. 3 We remark that the ansätze presented below are not

unique, and in fact there are many possible ways of writing them down [28,29]. Of course,

these ansätze should all be equivalent and the consistency of both the D = 11 and N = 8

theories as well as the reduction will guarantee that this will indeed be the case. Here, we

present the ansätze in what we believe to be their simplest known form.

The metric ansatz [27]

∆−1gmn(x, y) =
1

8
KmIJ(y)KnKL(y)

[ (
uMN

IJ + vMNIJ
) (
uMN

KL + vMNKL

) ]
(x), (3.1)

whereKmIJ are the 28 Killing vectors on the round S7 as defined in equation (4.5), has been

known for some time and is in fact applied in ref. [19] to determine the internal metric for the

full gauged STU supergravity. The recent progress concerns uplift ansätze for components

of the field strength FMNPQ (or equivalently the three form potential AMNP ), viz.

Fmnpq, Fµmnp, Fµνmn, Fµνρm and Fµνρσ . (3.2)

Note that the components as presented above do not quite correspond in a direct manner

to the notation used in ref. [19]. This is because, in line with the whole spirit of a Kaluza-

Klein reduction, all fields in ref. [19] are defined with the Kaluza-Klein gauge fields included;

3We simply state the uplift ansätze here and do not give an account of how they are derived. For such

an account, the reader is encouraged to consult Refs. [14–16].
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i.e. the seven-dimensional coordinate differentials dym always appear in the Kaluza-Klein

covariantised form

dym −→
(
dym −KmIJ(y)AIJ

µ (x) dxµ
)
. (3.3)

The Kaluza-Klein redefinition above is easy to account for and we shall do so when pre-

senting the full set of uplift ansätze (see section 5).

The Fmnpq components of the field strength can be obtained simply from the ansatz for

Amnp [13, 15,20]

Amnp(x, y) = − i
√
2

96
∆gpqK

IJ
mn(y)K

q KL(y)
[ (
uMN

IJ − vMNIJ
) (
uMN

KL + vMNKL

) ]
(x),

(3.4)

where KIJ
mn are defined in equation (4.7). In particular,

Fmnpq = 4∂[mAnpq]. (3.5)

Similarly,

Fµmnp = ∂µAmnp − 3∂[mA|µ|np] (3.6)

with Amnp as determined by equation (3.4) and Aµmn given by the following exact vector

ansatz [15]

Aµmn(x, y) =
1

24
Kmn

IJ(y)Aµ IJ(x)−
√
2

4
Amnp(x, y)K

p IJ(y)Aµ
IJ(x). (3.7)

The ansatz for Fαβab [16] is particularly simple

eµ
αeν

βem
aen

bFαβab =

√
2

8

(
Kmn

IJ(y)Gµν IJ(x)− 12∆−1Amnp(x, y)K
p
IJ(y)Hµν

IJ(x)

)
,

(3.8)

where Gµν IJ and Hµν
IJ are covariantised field strengths of the electric and magnetic vectors

and eµ
α and em

a are defined by

EM
A =


eµ

α Bµ
pep

a

0 em
a


 . (3.9)

The Kaluza-Klein vectors Bµ
m in the STU truncation are given by the abelian U(1)4 trun-

cation of KmIJ AIJ
µ . In particular, from the above ansatz we deduce that Fαβab vanishes

for four-dimensional solutions with vanishing vector expectations values.
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The ansatz for Fαβγa is perhaps the most involved [16]

eµ
αeν

βeρ
γem

aFαβγa

= −
√
2

48
ηµνρ

σKn IJ(y)Kmn
KL(y)

[(
uijIJ + vijIJ

) (
uklKL − vklKL

)]
(x)

×
(
V̂M

ij∂σV̂M kl − 2
√
2m7Aσ

MN V̂MP
ij V̂NP kl − 2

√
2m7Aσ

MN V̂MP
klV̂NP ij

)
(x),

(3.10)

where V̂M ij is usual four-dimensional E7(7)/SU(8) coset element parameterising the 70

scalars.

The ansatz for the Fµνmn components of the four-form are

Fµνmn = Eµ
AEν

BEm
CEn

DFABCD

= em
aen

beµ
αeν

βFαβab + 2Bν
pFµmnp −Bµ

pBν
qFmnpq, (3.11)

where the first term is given in equation (3.8). Similarly, the Fµνρm are given by equation

(3.10) and appropriate contractions of the Fµνmn, Fµmnp and Fmnpq components with the

Kaluza-Klein vectors Bµ
m. 4

On the other hand, the conjectured ansatz for the Freund-Rubin term 5 is perhaps the

simplest and most elegant [16] 6

fFR = − i

24
ηαβγδFαβγδ = − m7

96
√
2g2

(
V (x)− g2

6

(
Qijkl(x)Σ̂ijkl(x, y) + h.c.

))
, (3.12)

where V (x) is the four-dimensional scalar potential, Qijkl is simply given in terms of the

T -tensor

Qijkl =
3

4
A2 m

n[ijA2 n
kl]m −A1

m[iA2 m
jkl] (3.13)

and complex self-dual tensor

Σ̂ijkl(x, y) =
(
uij

IJukl
KL − vij IJvkl KL

)
(x) Km [IJ(y)Km

KL](y). (3.14)

Note that the only components of the four-form field strength for which an ansatz is not

given in ref. [19] are the ones related to the internal components Amnp of AMNP , which, as

explained above, are given by the ansatz in equation (3.4), after including the Kaluza-Klein

redefinitions explained above and in section 5.

4Note that in ref. [16], the components on the left-hand side of equations (3.8) and (3.10) are denoted by

Fµνmn and Fµνρm, respectively.
5There are other established ansätze for the Freund-Rubin term (see ref. [16]). However, it has not yet

been possible to show that those ansätze have the following simple form.
6In this paper, we use the conventions of ref. [19], which are related to the conventions of ref. [16] as

follows: gref. [16] =
√
2 gref. [19] and V ref. [16] = 1/2 V ref. [19].

8



4 Derivation of Amnp

In this section, we outline the derivation of the purely internal (7-sphere) components Amnp

using ansatz (3.4), which we repeat here for convenience

Amnp = − i
√
2

96
∆gpqK

IJ
mnK

q KL
(
uMN

IJ − vMNIJ
) (
uMN

KL + vMNKL

)
. (4.1)

As is clear from the ansatz above, the first step is to compute the u and v tensors. These

tensors have already been computed in ref. [19] (see also ref. [30]), but here, we express them

in terms of U(1)4-invariant tensors. In this way the u and v are expressed more covariantly

with respect to the U(1)4 symmetry.

Without loss of generality, we can choose U(1)4 ⊂ SO(8) to act on the index pairs

{12}, {34}, {56} and {78}, where, for example the first U(1) rotates 1 and 2 into each other.

Introducing

(XIJKL)I′J ′K ′L′ = 4! δIJKL
I′J ′K ′L′ , (4.2)

we define Ci
± as

C1
± = X1234 ±X5678 , C2

± = X1256 ±X3478 , C3
± = X1278 ±X3456 . (4.3)

It is clear that Ci
± are the unique rank-4 U(1)4-invariant tensors, up to redefinitions of the

embedding of U(1)4 ⊂ SO(8). Furthermore, there are also four rank-2 invariant tensors

F
(1)
IJ = 2 δ12IJ , F

(2)
IJ = 2 δ34IJ , F

(3)
IJ = 2 δ56IJ , F

(4)
IJ = 2 δ78IJ . (4.4)

The 28 Killing vectors of the SO(8) symmetry of the round S7 are written in the spinor

representation, i.e. with

KIJ = 1
2(Γab)

IJ
(
xa

∂

∂xb
− xb

∂

xa

)
, (4.5)

where xa are the Cartesian coordinates on R
8 that are employed in equation (A.2). We

then define the following vectors and tensors:

ξ(i)m = 1
16C

(i)
+IJKLK

IJ
mnK

nKL , ξ(i)mn = − 1
16C

(i)
+IJKLK

IJ
m KKL

n ,

S(i)
mnp =

1
16C

(i)
−IJKLK

IJ
mnK

KL
p ,

F (α)
m = F

(α)
IJ KIJ

m , F (α)
mn = F

(α)
IJ KIJ

mn , (4.6)

where

Kmn
IJ = K[mn]

IJ = − 1

m7

◦

DmKn
IJ . (4.7)
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Indices on Km
IJ and Kmn

IJ as well as all U(1)4-invariant tensors are raised and lowered

with the background (inverse) metric
◦

gmn and
◦

gmn, respectively.

The 56-bein V = V1V2V3, where

Vi =


u

(i)
ij
IJ v(i)ijKL

v(i)klIJ u(i)klKL


 . (4.8)

In symmetric gauge each 56-bein is expressed as

Vi = exp


 0 φ(i)

φ̄(i) 0


 , (4.9)

where φ̄(i) is the complex conjugate of φ(i). In terms of the U(1)4-invariant tensors above,

the scalar expectation values are

φ(i) = −2λi
(
cos σiC

i
+ − i sinσiC

i
−

)
. (4.10)

Hence by exponentiation,

u(i)IJ
KL = δKL

IJ +
1

4

(
cosh

λi
2

− 1

)(
Ci
+C

i
+

)
IJKL

, (4.11)

v(i)IJKL = −1

2
sinh

λi
2

(
cos σiC

i
+ − i sinσiC

i
−

)
IJKL

. (4.12)

The u and v matrices corresponding to the full 56-bein V can then be found from

uIJ
KL = u(1)IJ

MN
(
u(2)MN

PQu(3)PQ
KL + v(2)MNPQv

(3)PQKL
)

+ v(1)IJMN

(
v(2)MNPQu(3)PQ

KL + u(2)MN
PQv

(3)PQKL
)
, (4.13)

vIJKL = v(1)IJMN
(
u(2)MN

PQu(3)PQ
KL + v(2)MNPQv

(3)PQKL
)

+ u(1)IJMN

(
v(2)MNPQu(3)PQ

KL + u(2)MN
PQv

(3)PQKL
)
. (4.14)

Now that we have the u and v tensors, we can compute ∆−1gpqAmnp by contracting them

with KIJ
mn and KqKL as prescribed by the formula (4.1). In terms of the U(1)4-invariant

vectors and tensors defined in equations (4.6),7

∆−1gpqAmnp =
3∑

i=1

bi S
(i)q

mn +
1

64

4∑

α,β=1

fαβ F
(α)q F (β)

mn , (4.15)

where, defining

y2i = Y 2
i − Ỹ 2

i , ỹ2i = Y 2
i + Ỹ 2

i , (4.16)

7Recall that indices on U(1)4-invariant tensors are raised/lowered using the background (inverse) metric

on the round seven-sphere,
◦

gmn/
◦

gmn.
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f11 = y21(b3y
2
2 + b2y

2
3) + b1y

2
2y

2
3 − 4b1b2b3, f22 = −y21(b3y22 + b2y

2
3) + b1y

2
2y

2
3 − 4b1b2b3,

f33 = −y21(b3y22 − b2y
2
3)− b1y

2
2y

2
3 − 4b1b2b3, f44 = y21(b3y

2
2 − b2y

2
3)− b1y

2
2y

2
3 − 4b1b2b3,

f12 = −ỹ21(b3y22 + b2y
2
3) + b1ỹ

2
2 ỹ

2
3 − 4b1, f21 = ỹ21(b3y

2
2 + b2y

2
3) + b1ỹ

2
2 ỹ

2
3 − 4b1,

f13 = −ỹ22(b3y21 + b1y
2
3) + b2ỹ

2
1 ỹ

2
3 − 4b2, f31 = ỹ22(b3y

2
1 + b1y

2
3) + b2ỹ

2
1 ỹ

2
3 − 4b2,

f14 = −ỹ23(b2y21 + b1y
2
2) + b3ỹ

2
1 ỹ

2
2 − 4b3, f41 = ỹ23(b2y

2
1 + b1y

2
2) + b3ỹ

2
1 ỹ

2
2 − 4b3,

f23 = ỹ23(b2y
2
1 − b1y

2
2)− b3ỹ

2
1 ỹ

2
2 + 4b3, f32 = −ỹ23(b2y21 − b1y

2
2)− b3ỹ

2
1 ỹ

2
2 + 4b3,

f24 = ỹ22(b3y
2
1 − b1y

2
3)− b2ỹ

2
1 ỹ

2
3 + 4b2, f42 = −ỹ22(b3y21 − b1y

2
3)− b2ỹ

2
1 ỹ

2
3 + 4b2,

f34 = ỹ21(b3y
2
2 − b2y

2
3)− b1ỹ

2
2 ỹ

2
3 + 4b1, f43 = −ỹ21(b3y22 − b2y

2
3)− b1ỹ

2
2 ỹ

2
3 + 4b1.

(4.17)

The U(1)4-invariant vectors and tensors are given explicitly in terms of a set of adapted

coordinates (µα, φρ) on S
7 in appendix A, where µα are subject to constraint (A.1). Thus,

all that is left to do in order to find Amnp is to contract ∆gpq, which we know from the

metric ansatz [19], with the expression found above written in adapted coordinates, i.e.

Amnp = ∆gpq




3∑

i=1

bi S
(i)q

mn +
1

64

4∑

α,β=1

fαβ F
(α)q F (β)

mn


 . (4.18)

The resulting expression is 8

Aα56 dµα =
b1

2Ξ g3

[
µ21W2 d(µ

2
2)−µ22W1 d(µ

2
1)−µ21 µ22 (Y 2

2 Ỹ
2
2 dα2+Y

2
3 Ỹ

2
3 dα3)

]
,

Aα78 dµα =
b1

2Ξ g3

[
µ24W3 d(µ

2
3)−µ23W4 d(µ

2
4)+µ

2
3 µ

2
4 (Y

2
2 Ỹ

2
2 dα2−Y 2

3 Ỹ
2
3 dα3)

]
,

Aα57 dµα =
b2

2Ξ g3

[
µ21W3 d(µ

2
3)−µ23W1 d(µ

2
1)−µ21 µ23 (Y 2

1 Ỹ
2
1 dα1+Y

2
3 Ỹ

2
3 dα3)

]
,

Aα68 dµα =
b2

2Ξ g3

[
µ24W2 d(µ

2
2)−µ22W4 d(µ

2
4)+µ

2
2 µ

2
4 (Y

2
1 Ỹ

2
1 dα1−Y 2

3 Ỹ
2
3 dα3)

]
,

Aα58 dµα =
b3

2Ξ g3

[
µ21W4 d(µ

2
4)−µ24W1 d(µ

2
1)−µ21 µ24 (Y 2

1 Ỹ
2
1 dα1+Y

2
2 Ỹ

2
2 dα2)

]
,

Aα67 dµα =
b3

2Ξ g3

[
µ23W2 d(µ

2
2)−µ22W3 d(µ

2
3)+µ

2
2 µ

2
3 (Y

2
1 Ỹ

2
1 dα1−Y 2

2 Ỹ
2
2 dα3)

]
,(4.19)

8The factor of g−3 is introduced in the expressions below because we are using dimensionless coordinates

on the unit sphere.
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where

W1 = Ỹ 2
2 Ỹ

2
3 µ

2
2 + Ỹ 2

1 Ỹ
2
3 µ

2
3 + Ỹ 2

1 Ỹ
2
2 µ

2
4 ,

W2 = Y 2
2 Y

2
3 µ

2
1 + Ỹ 2

1 Y
2
2 µ

2
3 + Ỹ 2

1 Y
2
3 µ

2
4 ,

W3 = Y 2
1 Y

2
3 µ

2
1 + Y 2

1 Ỹ
2
2 µ

2
2 + Ỹ 2

2 Y
2
3 µ

2
4 ,

W4 = Y 2
1 Y

2
2 µ

2
1 + Y 2

1 Ỹ
2
3 µ

2
2 + Y 2

2 Ỹ
2
3 µ

2
3 (4.20)

and

α1 = µ21 + µ22 α2 = µ21 + µ23 , α3 = µ21 + µ24 . (4.21)

Note that the Wα defined above are related to the Zα defined in ref. [19] as follows

Wα = Zα − µ2α . (4.22)

The coordinate indices (5, 6, 7, 8) on the Amnp refer to the directions (φ1, φ2, φ3, φ4) respec-

tively, so A(3) = Aα56 dµα ∧ dφ1 ∧ dφ2 + · · · .
The function Ξ is defined in equation (21) of ref. [19] as follows

Ξ = Y 2
1 Y

2
2 Y

2
3 µ

4
1 + Y 2

1 Ỹ
2
2 Ỹ

2
3 µ

4
2 + Ỹ 2

1 Y
2
2 Ỹ

2
3 µ

4
3 + Ỹ 2

1 Ỹ
2
2 Y

2
3 µ

4
4

+ (Y 2
2 Ỹ

2
2 + Y 2

3 Ỹ
2
3 )(Y

2
1 µ

2
1µ

2
2 + Ỹ 2

1 µ
2
3µ

2
4)

+ (Y 2
1 Ỹ

2
1 + Y 2

3 Ỹ
2
3 )(Y

2
2 µ

2
1µ

2
3 + Ỹ 2

2 µ
2
2µ

2
4)

+ (Y 2
1 Ỹ

2
1 + Y 2

2 Ỹ
2
2 )(Y

2
3 µ

2
1µ

2
4 + Ỹ 2

3 µ
2
2µ

2
3). (4.23)

5 Uplifting gauged STU supergravity to eleven dimensions

The uplift ansatz for Amnp, given in (4.19) in the previous section, along with the previous

results of ref. [19], allows us to complete the uplift of gauged STU supergravity to eleven

dimensions. The uplift of the four-dimensional metric ds24 was obtained in ref. [19], and is

given by

dŝ211 = Ξ
1
3 ds24 + Ξ

1
3 dŝ27

= Ξ
1
3 ds24 + g−2 Ξ− 2

3

[∑

α

Zα (dµ
2
α + µ2αDφ

2
α) + 2b2 b3 (µ

2
1 µ

2
2Dφ1Dφ2 − µ23 µ

2
4Dφ3Dφ4)

+2b1 b3 (µ
2
1 µ

2
3Dφ1Dφ3 − µ22 µ

2
4Dφ2Dφ4) + 2b1 b2 (µ

2
1 µ

2
4Dφ1Dφ4 − µ22 µ

2
3Dφ2Dφ3)

+1
2b

2
1

(
(µ1 dµ1 + µ2 dµ2)

2 + (µ3 dµ3 + µ4 dµ4)
2
)

+1
2b

2
2

(
(µ1 dµ1 + µ3 dµ3)

2 + (µ2 dµ2 + µ4 dµ4)
2
)

+1
2b

2
3

(
(µ1 dµ1 + µ4 dµ4)

2 + (µ2 dµ2 + µ3 dµ3)
2
)]
, (5.1)
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where ds24 is the four-dimensional metric, the Zα are defined in (4.20) and (4.22), and Ξ is

defined in (4.23). The 1-forms Dφα, which are defined by

Dφα ≡ dφα − g Aα
(1) , (5.2)

manifest the expected U(1)4 gauge invariance Aα
(1)(x) −→ Aα

(1)(x) + dΛα(x) that originates

via the subset φα −→ φα + gΛα(x) of the eleven-dimensional coordinate transformations.

The 4-form field strength is given in equation (41) of ref. [19], which we reproduce here

for convenience

F̂(4) = −2gUǫ(4) + F̂ ′
(4) + F̂ ′′

(4) + Ĝ(4) , (5.3)

where ǫ(4) is the volume form in the four-dimensional spacetime metric ds24. The first term

in (5.3) corresponds to the Freund-Rubin term, with

U = Y 2
1 (µ21+µ

2
2)+ Ỹ

2
1 (µ23+µ

2
4)+Y

2
2 (µ21+µ

2
3)+ Ỹ

2
2 (µ22+µ

2
4)+Y

2
3 (µ21+µ

2
4)+ Ỹ

2
3 (µ22+µ

2
3) .

(5.4)

In terms of the components FABCD, this corresponds to Fαβγδ .

The next term in the expression above is F̂ ′
(4) = dÂ′

(3), where Â
′
(3) is obtained by making

the replacements dφα → Dφα in the expression for the internal projection of the 3-form

potential (4.19). Thus we have 9

Â′
(3) =

1
2Aαβ̂γ̂

dµα ∧ (dφβ − g Aβ
(1)) ∧ (dφγ − g Aγ

(1)) , (5.5)

where the components A
αβ̂γ̂

are given in (4.19).

The term F̂ ′′
(4), which is given in equation (43) of ref. [19], is

F̂ ′′
(4) = − 1

2g2
|W |−2

∑

α

dµ2α ∧ (dφα − g Aα
(1)) ∧Rα , (5.6)

where

R1 = Ỹ 2
1 Ỹ

2
2 Ỹ

2
3 [P0 ∗F 1

(2) + 2b1 b2 b3 F
1
(2)] + Ỹ 2

1 [P1 b2 b3 ∗F 2
(2) + b1 (P0 + 2b22 b

2
3)F

2
(2)] (5.7)

+Ỹ 2
2 [P2 b1 b3 ∗F 3

(2) + b2 (P0 + 2b21 b
2
3)F

3
(2)] + Ỹ 2

3 [P3 b1 b2 ∗F 4
(2) + b3 (P0 + 2b21 b

2
2)F

4
(2)] ,

R2 = Ỹ 2
1 Y

2
2 Y

2
3 [P0 ∗F 2

(2) + 2b1 b2 b3 F
2
(2)] + Ỹ 2

1 [P1 b2 b3 ∗F 1
(2) + b1 (P0 + 2b22 b

2
3)F

1
(2)]

−Y 2
2 [P2 b1 b3 ∗F 4

(2) + b2 (P0 + 2b21 b
2
3)F

4
(2)]− Y 2

3 [P3 b1 b2 ∗F 3
(2) + b3 (P0 + 2b21 b

2
2)F

3
(2)] ,

R3 = Y 2
1 Ỹ

2
2 Y

2
3 [P0 ∗F 3

(2) + 2b1 b2 b3 F
3
(2)]− Y 2

1 [P1 b2 b3 ∗F 4
(2) + b1 (P0 + 2b22 b

2
3)F

4
(2)]

+Ỹ 2
2 [P2 b1 b3 ∗F 1

(2) + b2 (P0 + 2b21 b
2
3)F

1
(2)]− Y 2

3 [P3 b1 b2 ∗F 2
(2) + b3 (P0 + 2b21 b

2
2)F

2
(2)] ,

R4 = Y 2
1 Y

2
2 Ỹ

2
3 [P0 ∗F 4

(2) + 2b1 b2 b3 F
4
(2)]− Y 2

1 [P1 b2 b3 ∗F 3
(2) + b1 (P0 + 2b22 b

2
3)F

3
(2)]

−Y 2
2 [P2 b1 b3 ∗F 2

(2) + b2 (P0 + 2b21 b
2
3)F

2
(2)] + Ỹ 2

3 [P3 b1 b2 ∗F 1
(2) + b3 (P0 + 2b21 b

2
2)F

1
(2)] ,

9Note that we have introduced the hatted indices α̂ such that (1̂, 2̂, 3̂, 4̂) = (5, 6, 7, 8).
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and W and Pα are defined in (2.11).

Finally, the remaining term in (5.3) is given by

Ĝ(4) =
1

2g
(2Y −1

1 ∗dY1 − χ1 Y
4
1 ∗dχ1) ∧ d(µ21 + µ22)

+
1

2g
(2Y −1

2 ∗dY2 − χ2 Y
4
2 ∗dχ2) ∧ d(µ21 + µ23)

+
1

2g
(2Y −1

3 ∗dY3 − χ3 Y
4
3 ∗dχ3) ∧ d(µ21 + µ24) . (5.8)

Note that, as observed in ref. [19], the equations of motion for the U(1) gauge fields in the

STU theory are simply given by d(|W |−2Rα) = 0.

5.1 Consistency of the other uplift formulae with the general uplift ansätze

In this section, we revisit the uplift ansätze for some of the other components of the 4-form

field strength. In particular, in light of the recent developments [16], we show that the

ansatz for, in particular, the Freund-Rubin term takes a simple form.

In ref. [16], an uplift ansatz is given for the Freund-Rubin term and it is, moreover,

conjectured that the term can be expressed in terms of the sum of the potential and its

derivative according to the conjectured formula (3.12). In order to express the Freund-Rubin

term in this form, we introduce the following paramaterisation of the scalars:

ηi = λi cos σi , ζi = λi sinσi . (5.9)

The scalars ηi are the coefficients of the self-dual tensors in the parameterisation of φijkl in

the unitary gauge, and ζi are the coefficients of the anti-self dual tensors.

It can now be seen that the function U given in (5.4) can be written as

U = − 1

8g2
(V +

∑

i

∂V

∂ηi
ξi) , (5.10)

where

ξ1 = µ21 + µ22 − µ23 − µ24 , ξ2 = µ21 + µ23 − µ22 − µ24 , ξ3 = µ21 + µ24 − µ22 − µ23 . (5.11)

Note also that, in terms of tensors ξi, Ĝ(4) given in (5.8) can be written as

Ĝ(4) =
1

4g

∑

i

(cos σi ∗dλi − sinσi sinhλi coshλi ∗dσi) ∧ dξi . (5.12)

The form of this is consistent with the ansatz for the Fαβγa component of the field strength

proposed in ref. [16], equation (3.10). Furthermore, it is now straightforward to see that the
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Bianchi identity dF̂(4) = 0 is satisfied provided that the scalar fields satisfy their equations

of motion.

The F̂ ′
(4) term is given by the Kaluza-Klein covariantisation of Fmnpq, Fµmnp and, since

F̂ ′
(4) = dÂ′

(3) with Â′
(3) given by equation (5.5), the second term on the right-hand side of

the expression for Fαβab, (3.8).

Moreover, the F̂ ′′
(4) is given by the Kaluza-Klein covariantisation of the first term on the

right-hand side of the expression for Fαβab, (3.8).

Thus, we have established the direct, if somewhat intricate, relationship between the

uplift ansätze of the gauged STU supergravity with the general ansätze for the full N = 8

supergravity, given in ref. [16].

6 Consistent truncations of the STU embedding

There are two inequivalent consistent truncations of STU supergravity that are sometimes

useful in their own right, and have the merit of being considerably simpler than the full

STU theory. In each case, the bosonic sector of the truncated supergravity comprises

gravity coupled to two U(1) gauge fields, a dilatonic scalar and an axionic scalar. The two

truncations, which we shall refer to as the 2 + 2 truncation and the 3 + 1 truncation, are

implemented by setting

2 + 2 : λ1 = λ σ1 = σ , λ2 = λ3 = σ2 = σ3 = 0 ,

A1
µ = A2

µ = Aµ , A3
µ = A4

µ = Ãµ , (6.1)

3 + 1 : λ1 = λ2 = λ3 = λ , σ1 = σ2 = σ3 = σ ,

A1
µ = Ãµ , A2

µ = A3
µ = A4

µ = Aµ . (6.2)

Note that we are not rescaling the gauge potentials in these truncations, so Aµ and Ãµ in the

2+2 truncation and Aµ in the 3+1 truncation will have non-canonically normalised kinetic

terms. Also, in the 3 + 1 truncation the scalar fields λ and σ will have non-canonically

normalised kinetic terms. We have chosen not to rescale the truncated fields in order to

avoid the occurrence of many
√
2 or

√
3 factors. It will be convenient to parameterise the

scalar fields in the standard SL(2,R) form, for which their kinetic terms are proportional

to −∂ϕ2 − e2ϕ ∂χ2, by introducing ϕ and χ that are related to λ and σ by

eϕ = coshλ+ sinhλ cos σ , χ eϕ = sinhλ sinσ , (6.3)
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in terms of which we have

Y 2 = eϕ , Ỹ 2 = e−ϕ + χ2 eϕ , b = χ eϕ . (6.4)

6.1 2 + 2 truncation

Here, with the fields truncated as in (6.1), we choose an adapted parameterisation for the

the µα coordinates in which we take

µ1 = c cos 1
2θ , µ2 = c sin 1

2θ , µ3 = s cos 1
2 θ̃ , µ4 = s sin 1

2 θ̃ , (6.5)

where we have also defined

c = cos ξ , s = sin ξ . (6.6)

The four azimuthal angles φα will be parameterised by defining

φ1 =
1
2 (ψ + φ) , φ2 =

1
2 (ψ − φ) , φ3 =

1
2(ψ̃ + φ̃) , φ4 =

1
2(ψ̃ − φ̃) . (6.7)

The unit 7-sphere metric then takes the form

dΩ2
7 =

4∑

α=1

(dµ2α + µ2α dφ
2
α) = dξ2 + cos2 ξ dΩ2

3 + sin2 ξ dΩ̃2
3 , (6.8)

where

dΩ2
3 =

1
4

[
dθ2+sin2 θ dφ2+(dψ+cos θ dφ)2

]
, dΩ̃2

3 =
1
4

[
dθ̃2+sin2 θ̃ dφ̃2+(dψ̃+cos θ̃ dφ̃)2

]

(6.9)

are the metrics on two unit 3-spheres.

The metric reduction ansatz (5.1) in the 2 + 2 truncation thus reduces to

dŝ211 = Ξ
1
3 ds24 +

Ξ
1
3

g2

{
dξ2 +

cos2 ξ

4Z3

[
dθ2 + sin2 θ dφ2 + (dψ + cos θ dφ− 2gA(1))

2
]

+
sin2 ξ

4Z1

[
dθ̃2 + sin2 θ̃ dφ̃2 + (dψ̃ + cos θ̃ dφ̃− 2gÃ(1))

2
]}

, (6.10)

where, from (4.20) and (4.22), we now have

Z1 = Z2 = Ỹ 2 sin2 ξ + cos2 ξ , Z3 = Z4 = Y 2 cos2 ξ + sin2 ξ , Ξ = Z1 Z3 . (6.11)

The 4-form reduction ansatz is now given by

F̂(4) = −2g U ǫ(4) −
sc

g
(∗dϕ − χ e2ϕ ∗dχ) ∧ dξ + dÂ′

(3) + F̂ ′′
(4) ,

Â′
(3) =

1

g3
χ eϕ

[ c4
Z3

Ω(A)− s4

Z1
Ω̃(Ã)

]
, (6.12)

F̂ ′′
(4) =

c

2g2Y 2

[
sdξ ∧ (dψ + cos θ dφ− 2gA(1)) +

1
2c sin θ dθ ∧ dφ

]
∧ (∗F (2) + χY 2 F(2))

− s

2g2Ỹ 2

[
c dξ ∧ (dψ̃ + cos θ̃ dφ̃− 2gÃ(1))− 1

2s sin θ̃ dθ̃ ∧ dφ̃
]
∧ (∗F̃ (2) − χY 2 F̃(2)) ,
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where

U = c2 Y 2 + s2 Ỹ 2 + 2 ,

Ω(A) = 1
8 sin θ (dψ + cos θ dφ− 2gA(1)) ∧ dθ ∧ dφ ,

Ω̃(Ã) = 1
8 sin θ̃ (dψ̃ + cos θ̃ dφ̃− 2gÃ(1)) ∧ dθ̃ ∧ dφ̃ . (6.13)

The bosonic sector of the STU supergravity Lagrangian given in section 3 reduces under

the present 2 + 2 truncation to

L = R ∗1l− 1
2∗dϕ ∧ dϕ− 1

2e
2ϕ ∗dχ ∧ dχ− V ∗1l

−Y −2 ∗F (2) ∧ F(2) − Ỹ −2 ∗F̃ (2) ∧ F̃(2)

−χF(2) ∧ F(2) + χY 2 Ỹ −2 F̃(2) ∧ F̃2 , (6.14)

where

V = −4g2 (Y 2 + Ỹ 2 + 4) . (6.15)

It can be verified that the uplift of the 2+2 truncation that we obtained in this subsection

agrees with the abelian truncation of the uplift of the N = 4 gauged SO(4) supergravity

that was obtained in ref. [17].

6.2 3 + 1 truncation

For the 3 + 1 truncation of the fields of STU supergravity, given by equation (6.2), an

appropriate adapted parameterisation for the µα coordinates is given by taking

µ1 = cos ξ , µa = νa sin ξ , a = 2, 3, 4 ,
∑

a

ν2a = 1 . (6.16)

The unit S7 metric then takes the form

dΩ2
7 = dξ2 + cos2 ξ dφ21 + sin2 ξ dΩ2

5 , (6.17)

where

dΩ2
5 =

4∑

a=2

(dν2a + ν2a dφ
2
a) = dΣ2

2 + (dψ +B)2 (6.18)

is the metric on the unit 5-sphere, and dΣ2
2 is the standard “unit” Fubini-Study metric10

on CP
2, with J = 1

2dB being the Kähler form on CP
2. In terms of νa and φa we have

(dψ +B) =
∑

a

ν2a dφa . (6.19)

10The Fubini-Study metric is given in terms of the complex coordinates za = νa e
iφa on S5 by dΣ2

2 =
∑

a dz̄adza − |∑a z̄adza|2. This “unit” metric is Einstein with Rij = 6gij .
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It will be convenient to define the two functions

β = Y 2 (Y 2 c2 + Ỹ 2 s2) , γ = Y 4 c2 + s2 , (6.20)

where, as before, we have defined c = cos ξ and s = sin ξ. From (4.20), (4.22) and (4.23) we

find

Z1 = Ỹ 4 s2 + c2 , Za = β − b2 s2 ν2a , Ξ = β2 Y −2 , (6.21)

where, as before, b = χ eϕ = χY 2. The eleven-dimensional metric (5.1) now becomes, in

the 3 + 1 truncation we are considering here,

dŝ211 = Ξ
1
3 ds24 + g−2 Ξ− 2

3

[ β2
Y 4

dξ2 + γ s2
(
(dψ +B − gA(1)) +

b2 c2

γ
(dφ1 − gÃ(1))

)2

+β s2 dΣ2
2 +

β2 c2

γ Y 4
(dφ1 − gÃ(1))

2
]
. (6.22)

Substituting the 3 + 1 truncation into the uplift formula for the 4-form in STU super-

gravity given in section 5, we now find

F̂(4) = −2gU ǫ(4) + Ĝ(4) + dÂ′
(3) + F̂ ′′

(4) , (6.23)

with

U = 2(Y 2 c2 + Ỹ 2 s2) + Y 2 ,

Ĝ(4) = −2sc

g
(∗dϕ − χ e2ϕ ∗dχ) ∧ dξ ,

Â′
(3) =

sc χ

g3
dξ ∧ (dφ1 − gÃ(1)) ∧ (dψ +B − gA(1))−

s2c2

βg3
χ e2ϕ (dφ1 − gÃ(1)) ∧ J

+
s4

βg3
χ e2ϕ (dψ +B − gA(1)) ∧ J ,

F̂ ′′
(4) =

sc

g2 |W |2 dξ ∧ R̃ ∧ (dφ1 − gÃ(1))−
sc

g2 |W |2 dξ ∧R ∧ (dψ +B − gA(1))

− s2

g2 |W |2 R ∧ J , (6.24)

where, from (2.11),

|W |2 = (1 + 4b2)(1 + b2)2 (6.25)

and from (5.7),

R̃ = R1 , R = R2 = R3 = R4 , (6.26)

with

R̃ = Ỹ 6 [(1 + 3b2) ∗F̃(2) + 2b3 F̃(2)] + 3b (1 + b2) Ỹ 2 [b ∗F(2) + (1 + 2b2)F(2)] ,

R = Y 2 (1 + b2)2 [∗F (2) − 2b F(2)] + b (1 + b2) Ỹ 2 [b ∗F̃(2) + (1 + 2b2) F̃(2)] . (6.27)
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The bosonic sector of the STU supergravity Lagrangian given in section 3 reduces, under

the 3 + 1 truncation, to

L4 = R ∗1l− 3
2

(
∗dϕ ∧ dϕ+ e2ϕ ∗dχ ∧ dχ

)
− V ∗1l + LKinA + LCS , (6.28)

with

V = −12g2(Y 2 + Ỹ 2),

LKinA = − 1

2(1 + 4χ2 e2ϕ)

[
6χ2 eϕ ∗F(2) ∧ F̃(2) + e−3ϕ(1 + 3χ2e2ϕ)(1 + χ2e2ϕ) ∗F̃(2) ∧ F̃(2)

+3eϕ ∗F(2) ∧ F(2)

]
,

LCS = − χ

(1 + 4χ2 e2ϕ)

[
− 3e2ϕF(2) ∧ F(2) + 3(1 + 2χ2 e2ϕ) F̃(2) ∧ F(2)

+χ2(1 + χ2 e2ϕ) F̃(2) ∧ F̃(2)

]
. (6.29)

7 Conclusions

The existence of a consistent reduction of eleven-dimensional supergravity on S7, to give

four-dimensional N = 8 SO(8) gauged supergravity, was first established in [11]. In that

paper, the complete expression for the eleven-dimensional metric ansatz was obtained, and

partial expressions also for the four-form field strength. The complete expressions for the

uplifted four-form field strength were obtained recently [13–16]. Although the results are

now complete, they are not necessarily convenient to use in practice, if, as is commonly the

case, one is interested in uplifting four-dimensional configurations that involve only a subset

of the full set of N = 8 supergravity fields. In the context, for example, of four-dimensional

black hole solutions, it is almost always the case that only an abelian subsector of the

SO(8) gauge fields is turned on. Thus for many practical purposes, it suffices to know the

uplift formulae for the truncation of the SO(8) gauged supergravity to its abelian U(1)4

subsector. The consistent truncation of the maximal gauged supergravity to this abelian

subsector corresponds to the gauged N = 2 STU supergravity theory, whose bosonic sector

comprises the metric, the four abelian U(1) gauge fields, three dilatonic scalars and three

axionic scalars. This theory is, for example, sufficient in order to describe the general class

of rotating asymptotically AdS black holes, which can carry four electric and four magnetic

charges.

In this paper, we have carried out the abelian truncation of the results for the uplifting

of the gauged N = 8 theory, thereby obtaining fully explicit expressions for the lifting of

the bosonic sector of the four-dimensional gauged STU supergravity to eleven dimensions.
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We formulated the truncation in a notation that is adapted to the U(1)4 isometries in the

internal directions on the seven-sphere. In special cases where the gauge fields are either

purely electric or purely magnetic, one can make a further consistent truncation (to a non-

supersymmetric theory) in which the three axionic scalars vanish. This leads to enormous

simplifications in the formulae, and they then reduce to ones that are given in ref. [18].

We also considered two distinct supersymmetric truncations of the STU supergravity,

where, in each case, two gauge fields, a dilatonic scalar and an axionic scalar survive. The

first, which we referred to as the 2 + 2 truncation, is achieved by setting the four original

gauge fields to be pairwise equal. The second, which we call the 3+1 truncation, is achieved

instead by setting three of the original four gauge fields equal. The geometric structure of

the internal seven-sphere becomes particularly simple in these two truncations. In the 2+2

truncation, the seven-sphere is described as a foliation by S3 × S3 factors, with the two

surviving gauge fields being associated with the two U(1) isometries acting on the Hopf

fibres in the two S3 factors, viewed as U(1) bundles over S2. In the 3 + 1 truncation the

seven-sphere is instead described as a foliation by S5 × S1 factors, with the two surviving

gauge fields being associated with the U(1) isometry acting on the Hopf fibres of S5 viewed

as a U(1) bundle over CP2, and the U(1) isometry of the S1 factor. Consequently, the uplift

formulae are much simpler for these truncations.

We hope that the new uplift ansätze presented in this paper for what are particularly

interesting truncations of maximal SO(8) gauged supergravity will be of use in future ap-

plications.
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A U(1)4-invariant tensors in adapted coordinates

We shall use an adapted coordinate system ym = (µα, φρ) for S
7, with the direction cosines

µα satisfying
4∑

α=1

µ2α = 1. (A.1)

These coordinates are related to the R
8 coordinates as follows

x1+ix2 = µ1 e
iφ1 , x3+ix4 = µ2 e

iφ2 , x5+ix6 = µ3 e
iφ3 , x7+i x8 = µ4 e

iφ4 . (A.2)

The expressions for the various U(1)4-invariant tensors become much more elegant in terms

of these coordinates. First of all, we have the background round S7 metric

dΩ2
7 =

◦

gmndy
mdyn =

∑

α

(dµ2α + µ2α dφ
2
α) . (A.3)

Note that the inverse background metric in these coordinates is

◦

∂27 =
◦

gmn∂ym∂yn =
∑

α<β

(µα∂µβ
− µβ∂µα)

2 +
∑

α

µ−2
α ∂2φα

. (A.4)

The vectors ξ
(i)
m , viewed as 1-forms, are then given by

ξ(1)m dym = 3
2d(µ

2
1 + µ22) = 3(µ1 dµ1 + µ2 dµ2) = −3

2d(µ
2
3 + µ24) = −3(µ3 dµ3 + µ4 dµ4) ,

ξ(2)m dym = 3
2d(µ

2
1 + µ23) = 3(µ1 dµ1 + µ3 dµ3) = −3

2d(µ
2
2 + µ24) = −3(µ2 dµ2 + µ4 dµ4) ,

ξ(3)m dym = 3
2d(µ

2
1 + µ24) = 3(µ1 dµ1 + µ4 dµ4) = −3

2d(µ
2
2 + µ23) = −3(µ2 dµ2 + µ3 dµ3) .

(A.5)

The 2-index symmetric tensors ξ
(i)
mn are given by

ξ(1)mn dy
mdyn =− 1

4(µ
2
1 + µ22)(dµ

2
1 + dµ22 + µ21dφ

2
1 + µ22dφ

2
2)

+ 1
4(µ

2
3 + µ24)(dµ

2
3 + dµ24 + µ23dφ

2
3 + µ24dφ

2
4) ,

ξ(2)mn dy
mdyn =− 1

4(µ
2
1 + µ23)(dµ

2
1 + dµ23 + µ21dφ

2
1 + µ23dφ

2
3)

+ 1
4(µ

2
2 + µ24)(dµ

2
2 + dµ24 + µ22dφ

2
2 + µ24dφ

2
4) ,

ξ(3)mn dy
mdyn =− 1

4(µ
2
1 + µ24)(dµ

2
1 + dµ24 + µ21dφ

2
1 + µ24dφ

2
4)

+ 1
4(µ

2
2 + µ23)(dµ

2
2 + dµ23 + µ22dφ

2
2 + µ23dφ

2
3) . (A.6)

The vectors F
(α)
m are given by

F (1)
m dym = µ21 dφ1 + µ22 dφ2 + µ23 dφ3 + µ24 dφ4 ,

F (2)
m dym = µ21 dφ1 + µ22 dφ2 − µ23 dφ3 − µ24 dφ4 ,

F (3)
m dym = µ21 dφ1 − µ22 dφ2 + µ23 dφ3 − µ24 dφ4 ,

F (4)
m dym = µ21 dφ1 − µ22 dφ2 − µ23 dφ3 + µ24 dφ4 . (A.7)
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The 2-forms F
(α)
(2) = dF

(α)
(1) are given by

1
2F

(1)
mndy

m ∧ dyn = 2µ1dµ1 ∧ dφ1 + 2µ2dµ2 ∧ dφ2 + 2µ3dµ3 ∧ dφ3 + 2µ4dµ4 ∧ dφ4 ,
1
2F

(2)
mndy

m ∧ dyn = 2µ1dµ1 ∧ dφ1 + 2µ2dµ2 ∧ dφ2 − 2µ3dµ3 ∧ dφ3 − 2µ4dµ4 ∧ dφ4 ,
1
2F

(3)
mndy

m ∧ dyn = 2µ1dµ1 ∧ dφ1 − 2µ2dµ2 ∧ dφ2 + 2µ3dµ3 ∧ dφ3 − 2µ4dµ4 ∧ dφ4 ,
1
2F

(4)
mndy

m ∧ dyn = 2µ1dµ1 ∧ dφ1 − 2µ2dµ2 ∧ dφ2 − 2µ3dµ3 ∧ dφ3 + 2µ4dµ4 ∧ dφ4 .

(A.8)

The 3-forms S(i) are given by

S(1) = −1
2µ1µ2 (µ1dµ2 − µ2dµ1) ∧ dφ1 ∧ dφ2 + 1

2µ3µ4 (µ3dµ4 − µ4dµ3) ∧ dφ3 ∧ dφ4 ,

S(2) = −1
2µ1µ3 (µ1dµ3 − µ3dµ1) ∧ dφ1 ∧ dφ3 + 1

2µ2µ4 (µ2dµ4 − µ4dµ2) ∧ dφ2 ∧ dφ4 ,

S(3) = −1
2µ1µ4 (µ1dµ4 − µ4dµ1) ∧ dφ1 ∧ dφ4 + 1

2µ2µ3 (µ2dµ3 − µ3dµ2) ∧ dφ2 ∧ dφ3 .

(A.9)
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