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Abstract

We enumerate the set of simplified models which match onto the complete set of gauge
invariant effective operators up to dimension six describing interactions of a singlet-like
Majorana fermion dark matter with the standard model. Tree level matching conditions
for each case are worked out in the large mediator mass limit, defining a one to one
correspondence between the effective operator coefficients and the simplified model pa-
rameters for weakly interacting models. Utilizing such a mapping, we compute the dark
matter annihilation rate in the early universe, as well as other low-energy observables
like nuclear recoil rates using the effective operators, while the simplified models are
used to compute the dark matter production rates at high energy colliders like LEP, LHC
and future lepton colliders. Combining all relevant constraints with a profile likelihood
analysis, we then discuss the currently allowed parameter regions and prospects for
future searches in terms of the effective operator parameters, reducing the model de-
pendence to a minimal level. In the parameter region where such a model-independent
analysis is applicable, and leaving aside the special dark matter mass regions where
the annihilation proceeds through an s-channel Z or Higgs boson pole, the current con-
straints allow effective operator suppression scales (Λ) of the order of a few hundred
GeV for dark matter masses mχ > 20 GeV at 95% C.L., while the maximum allowed
scale is around 3 TeV for mχ ∼ O (1TeV). An estimate of the future reach of ton-scale
direct detection experiments and planned electron-positron colliders show that most of
the remaining regions can be probed, apart from dark matter masses near half of the
Z-boson mass (with 500GeV < Λ< 2TeV) and those beyond the kinematic reach of the
future lepton colliders.



1 Introduction

Dark matter candidates charged under the weak isospin can interact with the standard
model (SM) particles via known gauge interactions, a fact that simplifies their phenomenol-
ogy considerably. A gauge singlet scalar field can also have a renormalizable interaction
with the SM Higgs doublet. However, in order to couple the SM sector to a gauge sin-
glet fermion dark matter (stabilized by a postulated Z2 symmetry), one needs to introduce
either additional bosonic degrees of freedom that couple to both the sectors, or additional
fermionic degrees of freedom with electroweak charges which can mix with the singlet state
after electroweak symmetry breaking. Possible frameworks to discuss the phenomenology
of a singlet-like fermion WIMP (weakly interacting massive particle) candidate have been
studied at length for decades, from specific ultra-violet (UV) complete models (e.g., the bino
in the MSSM), to model independent setups with effective operators.

The three most relevant observables for a stable WIMP are it’s relic density obtained via
thermal freeze out, it’s pair annihilation cross-section in the current epoch in dark matter
dense regions, and the elastic scattering rate of WIMP’s with nuclei. All of these processes
involve scatterings with an energy scale or momentum transfer comparable to the WIMP
mass or much lower. Therefore, as long as the new states mediating the interactions are at
least a few times heavier than the dark matter, we can work with a set of effective operators
of leading dimension relevant to the process, and truncating the operator series would not
lead to any inconsistency nor amount to large theoretical errors.

Pair production of WIMP’s are being searched for at high-energy colliders as well, and
for certain types of interactions or for lower dark matter masses, they could be competitive
with, or even have a larger reach than that of the direct or indirect detection probes. Collider
searches for dark matter necessarily rely on a recoil of the dark matter pair against a hard
radiation in the initial state, which can lead to a sub-process centre of mass energy (ŝ1/2)
considerably higher than the dark matter pair mass. Therefore, in such a situation, the
effective operator description would be accurate in the region where the suppression scale
of the operators are higher than the ŝ1/2 involved, or we should discard events from the
analysis with ŝ1/2 larger than the suppression scale of the effective field theory (EFT) [1].
An alternative approach would be to use simplified models including both the dark matter
and the mediators as new states to interpret the collider searches, in which case inevitably
the number of possibilities to study is large, and for comparison with other constraints on
dark matter, we need to perform multiple sets of global analyses. On the other hand, if we
focus on the parameter region where we can be model-independent as far as relic density,
direct and indirect detections are concerned by using effective operators to describe these
processes, the collider searches can be interpreted in terms of simplified models which match
onto those effective operators, in the limit of very heavy mediators.

We propose to carry out such a programme for the singlet Majorana fermion dark matter
in this study, the end goal being performing a complete likelihood analysis with a proper
treatment of all data at hand. Once a one-to-one correspondence between the simplified
model parameters and the EFT parameters are established, we can consistently compute
the collider cross-sections within the simplified models, and rest of the observables with the
corresponding effective operators. The final results will be presented in terms of the EFT
parameters. Such an approach does not require any additional effort from the experimental
collaborations of high energy colliders, an upper bound on the relevant cross-sections after
a set of kinematical cuts can be interpreted within this framework without losing any infor-
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mation from the tail of the missing momentum distributions. At the same time, interpreting
the results within the EFT parameters helps us create a global picture of WIMP’s without
any prejudice to a particular new physics model.

The SM gauge invariant set of effective operators that describe the interactions of a
Majorana fermion WIMP are well studied, and we provide a brief review on the operators
in Sec. 2, following our previous study in Ref. [2]. Therefore, the first step in our approach
is to write down all possible simplified models that would match onto each of the effective
operators when the mediating particles are heavy enough. We carry out this exercise (parts
of which have been reported in Ref. [3]) in Sec. 3. The first half of Sec. 4 is devoted to a
discussion of all the relevant experimental constraints and the construction of the likelihood
function for each. In the second half of this section we first address the question of direct
search for the mediators versus the monojet plus missing momentum search at the LHC,
and then go on to discuss the results of our likelihood analysis, where the latter include
only the monojet constraints for reasons explained in that section. We summarize our study
in Sec. 5, with a view towards the role of future experiments in probing the parameter space
that survive all current constraints.

2 Effective operators in dark matter interactions

In this section, we briefly review the effective field theory of a Majorana fermion dark matter
(DM) in which the low-energy degrees of freedom consist of the SM fields and the DM field
χ [2]. The EFT is described by the following Lagrangian in general:

LEFT =LSM +
1
2
χ̄(i /∂ −Mχ)χ +

1
2

∑

a, n

ca
Oa

Λn−4
a

, (1)

whereLSM is the renormalizable SM Lagrangian, Mχ is the bare DM mass parameter before
the electroweak symmetry breaking, and Oa represent operators of mass dimension n de-
scribing interactions between the DM and the SM particles, with dimensionless coefficients
ca. We assume that physics behind the EFT is described by a weakly interacting theory and
restrict |ca| < 1. For such theories, the suppression scale Λa for a tree generated operator
corresponds to the mass of a heavy intermediate particle generating Oa.

The set of operators Oa are required to respect the SM gauge symmetry, and an additional
Z2 symmetry to ensure the stability of the DM particle, under which the DM field is odd while
the SM fields are even. If the DM field χ is a singlet under the SM gauge symmetry, we have
eight types of independent operators up to mass dimension-six; all of which are shown in
Tab. 1 with H, Q i, Ui, Di, Li and Ei denoting the Higgs doublet, the quark doublets, the
up-type quark singlets, the down-type quark singlets, the lepton doublets and the charged
lepton singlets, respectively.#1 Here, the subscripts ‘i’ and ‘ j’ represent flavour indices, while
Dµ is the covariant derivative acting on the Higgs field H. Some comments on the SM gauge
invariant operators in this table are in order below:

• The operators constitute a complete set up to mass dimension six, so that other oper-
ators such as the anapole moment, (χ̄γµγ5χ)∂ µBµν, with Bµν being the field strength
tensor of the hypercharge gauge boson, can be written as a linear combination of this
operator basis using equations of motion.

#1In our notation, an appropriate chirality projection operator PR or PL is associated with an SM fermion
field, e.g., Q̄ iγµQ j is equivalent to Q̄ iγµPLQ j , while ŪiγµU j is the same as ŪiγµPRU j .
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Dim. 5 OS = (χ̄χ)|H|2 OPS = (χ̄ iγ5χ)|H|2
Dim. 6 OQ = (χ̄γµγ5χ)(Q̄ iγµQ j) OU = (χ̄γµγ5χ)(ŪiγµU j) OD = (χ̄γµγ5χ)(D̄iγµDj)

OL = (χ̄γµγ5χ)( L̄iγµL j) OE = (χ̄γµγ5χ)(ĒiγµE j) OH = (χ̄γµγ5χ)(H†i
←→
DµH)

Table 1: SM gauge invariant operators for interactions between the DM and the SM particles.

• All interactions between the DM and the SM particles are from higher dimensional
operators because of the Z2 symmetry. Furthermore, all except OPS preserve the CP
symmetry.

• Since the DM is a Majorana fermion, a factor of 1/2 is included in front of the inter-
action terms, following standard normalization.

• The DM particle is not necessarily a pure singlet under the SM gauge symmetry, though
the DM field χ is a singlet. In fact, χ can mix with another Z2 odd SU(2)L doublet
field (which can be introduced in a simplified model) after the electroweak symmetry
breaking, and it generates OS, OPS and OH , as shown in the next section.

• There is an implicit assumption that all suppression scales Λa are of a similar order.
We also assume that mass dimension 7 operators play a sub-leading role.

• Generically, one needs to fix a scale defining the EFT Lagrangian (1), and consider
RGE effects on the Wilson coefficients ca to calculate physical quantities [4]. Since we
are assuming a weakly interacting theory behind the EFT, these effects do not give
a sizeable contribution. We therefore neglect the RGE effects for simplicity, without
inducing large errors for weakly coupled UV theories.

It is convenient to rewrite the Lagrangian (1) using the lowest suppression scale Λ ≡
min(Λa), which makes our numerical analysis easier. The Lagrangian then reads

LEFT =LSM +
1
2
χ̄(i /∂ −Mχ)χ +

1
2

∑

a, n

c̃a
Oa

Λn−4
, (2)

where the coefficients c̃a are defined by c̃a ≡ ca(Λ/Λa)(n−4). Since the absolute value of c̃a is
always smaller than that of ca, the complete model parameter space defined by the original
effective Lagrangian (1) is covered by varying all c̃a’s in the region |c̃a|® 1.

3 Connection between the EFT and simplified models

When the physical mass of the DM (denoted by mDM) and the electroweak scale are much
lower than the suppression scales Λa, the EFT can be used to describe non-relativistic DM
phenomena such as DM freeze-out in the early universe and DM annihilation in the present
universe or its scattering with nuclei. On the other hand, when we consider relativistic DM
phenomena such as DM production at the LHC, the EFT description is of limited applicability
since a clear separation of scales no longer exists due to a variable sub-process collision
energy. In particular, if the energy is close to or higher than the suppression scale of the
operators, we cannot describe the process by a truncated effective operator series anymore.

We propose a programme to address this problem, which is based on a specific rela-
tion between the EFT operators and the corresponding simplified models which match onto
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them. The basic idea is to consider a tree-level process mediated by a new heavy particle
whose mass is fixed to be the suppression scale Λa, where the operator Oa is generated in
the large Λa limit. This can be realized in a simplified model setting, with all the vertices
being now from mass dimension-three or four terms. For each operator Oa in Tab. 1, there
are two different ways to introduce such a new heavy particle; in one case the new particle
is even under the Z2 symmetry, and in the other case it’s Z2-odd. The difference between
the two corresponds to which process reproduces Oa, an s-channel or t-channel process. In
what follows, we consider each of these ways in further detail for each operator.

3.1 The four-Fermi operators O f

We first consider the four-Fermi operators O f = (χ̄γµγ5χ)( f̄iγµ f j)with fi being SM fermions
Q i, Ui, Di, Li and Ei, as this is a simple case to intuitively understand the relation between
the EFT and simplified models.

3.1.1 Z2-even mediator

The four-Fermi operator (χ̄γµγ5χ)( f̄iγµ f j) describes, for example, the process χχ↔ f f̄ ,
so that the new heavy Z2-even particle must be bosonic, being exchanged in the s-channel.
Since the four-Fermi operator has the form of a current-current interaction, this particle
should also be a massive vector. Furthermore, the vector particle directly couples to the dark
matter current, and thus it must be a singlet under the SM gauge symmetry. We therefore
introduce a real singlet Proca field (X f )µ whose mass is Λ f :

L (+)f = −
1
4
(X f )µν(X f )

µν +
Λ2

f

2
(X f )µ(X f )

µ −
d(X )
χ

2
(χ̄γµγ5χ)(X f )µ − d(X )f ( f̄ γ

µ f )(X f )µ, (3)

where the superscript (+) indicates that (X f )µ is even under the Z2 symmetry, while the
index f corresponds to Q, U , D, L or E. The flavour index for the SM fermions has been
suppressed for simplicity. The field strength tensor of the Proca field is denoted by (X f )µν,
and at this stage, the coupling constants d(X )

χ
and d(X )f can take arbitrary values, which will

be fixed by the relation between the EFT and this simplified model.

After integrating (X f )µ out from the simplified model Lagrangian (3), we obtain the
following effective Lagrangian which involves a non-local interaction term,#2

L (+)f ,eff =
i
2

∫

d4 y JµX f
(x)G (X f )

µν (x − y) JνX f
(y),

JµX f
(x) = (d(X )

χ
/2)[χ̄(x)γµγ5χ(x)] + d(X )f [ f̄ (x)γ

µ f (x)], (4)

whereG (X f )
µν (x− y) is the Green’s function (the two-point function) of (X f )µ in the coordinate

space and has the following asymptotic form in the limit of large Λ f ,

G (X f )
µν (x − y)≡ −i

∫

d4q
(2π)4

gµν − qµqν/Λ
2
f

q2 −Λ2
f + iε

e−iq(x−y)→ i
gµν
Λ2

f

δ(x − y). (5)

#2We performed the integration explicitly in the path-integral form. See Ref. [5] for more details.
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The Lagrangian (4) generates the four-Fermi operator (χ̄γµγ5χ)( f̄ γµ f ) with the coefficient
−d(X )

χ
d(X )f /(2Λ

2
f ). Since we are interested in tree-level diagrams involving both the DM and

the SM particles, physical quantities depend only on the combination of d(X )
χ

d(X )f . Hence,
each coupling constant can be fixed without loss of generality as

d(X )
χ
= −1 and d(X )f = c f . (6)

This defines the required relation between the EFT and the simplified model (3).

3.1.2 Z2-odd mediator

The process χχ↔ f f̄ is reproduced by the t(u)-channel exchanges of a new heavy Z2-odd
particle, and the new particle must to be bosonic. On the other hand, unlike the previous
case, this new Z2-odd bosonic particle can be either a massive scalar or a vector because
of the nature of t(u)-channel diagrams. Moreover, since the new bosonic field couples to
one DM field and one SM fermion field at each vertex, its quantum numbers must be the
same as those of the SM fermion. We therefore introduce a complex scalar field (φ f ) and
a complex Proca field (Vf )µ simultaneously, where their masses and the quantum numbers
are fixed to be Λ f and those of f , respectively:

L (−)f = −
1
2
(Vf )

†
µν
(Vf )

µν +Λ2
f (Vf )

†
µ
(Vf )

µ − d(V )f f̄ γµχ(Vf )µ − (d
(V )
f )

∗(Vf )
†
µ
χ̄γµ f

+|Dµφ f |2 −Λ2
f |φ f |2 − d(φ)f f̄ χφ f − (d

(φ)
f )

∗φ†
f χ̄ f . (7)

The SM gauge indices for f , (Vf )µ and φ f as well as the flavour index for f have been
suppressed for the sake of simplicity. The field strength tensor of the new vector field is given
by (Vf )µν ≡ Dµ(Vf )ν − Dν(Vf )µ with Dµ being the covariant derivative which is common for
all of the three fields f , (Vf )µ and φ f .

After integrating the heavy vector (Vf )µ and scalerφ f fields out from the above simplified
model Lagrangian (7), we obtain the following effective Lagrangian,

L (−)f ,eff = i

∫

d4 y
�

Jµ†
Vf
(x)G (Vf )

µν (x − y) JνVf
(y) + J†

φ f
(x)G (φ f )(x − y) Jφ f

(y)
�

,

JµVf
(x) = (d(V )f )

∗χ̄(x)γµ f (x), Jφ f
(x) = (d(φ)f )

∗χ̄(x) f (x), (8)

where, as before, G (Vf )
µν (x − y) and G (φ f )(x − y) are the Green’s functions of (Vf )µ and φ f ,

respectively. Here, we have neglected the gauge interaction terms of the massive fields to
derive the above effective Lagrangian, because they contribute only to operators of mass
dimension higher than six. Taking the large Λ f limit of the Green’s functions in Eq. (8), we
obtain the following four-Fermi operators:

L (−)f ,eff→±
|d(φ)f |

2 − 2|d(V )f |
2

4Λ2
f

(χ̄γµγ5χ)( f̄ γµ f ), (9)

where Fierz transformations have been used to derive the limit.#3 Regarding the sign of the
equation, the ‘+’ sign should be used for f = U , D and E, while the ‘−’ sign should be used

#3Other types of four-Fermi operators generated by the Fierz transformations such as χ̄γµχ vanish identically
because of the Majorana nature of the DM field and the chiral nature of the SM fermion fields.
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for f =Q and L. The introduction of both the massive Proca and scalar fields simultaneously
is necessary to make the coefficient of the operator (χ̄γµγ5χ)( f̄ γµ f ) take both positive and

negative values. Both the coupling constants d(V )f and d(φ)f can be real, for their phases can
be removed by the redefinitions of the fields (Vf )µ and φ f . Thus the relation between the
EFT and the simplified model (7) can be expressed as

d(V )f =
Æ

−c f θ (−c f ) and d(φ)f =
Æ

2c f θ (c f ) for f = U , D and E,

d(V )f =
p

c f θ (c f ) and d(φ)f =
Æ

−2c f θ (−c f ) for f =Q and L. (10)

3.2 The operator OH

We next consider the operator, OH = (χ̄γµγ5χ)(H†i
←→
DµH), involving the DM and the Higgs

fields, which plays an important role in DM signals at colliders.

3.2.1 Z2-even mediator

The operator describes, e.g., the process χχ↔ HH†, so that the new heavy Z2-even particle
must be a boson connecting the DM current χ̄γµγ5χ and the Higgs boson current H†i

←→
DµH =

iH†DµH − i(DµH)†H, which is almost the same situation as the previous case. Hence, we
introduce a real singlet Proca field (XH)µ with the mass of ΛH :

L (+)H = −
1
4
(XH)µν(XH)

µν +
Λ2

H

2
(XH)µ(XH)

µ

−
d(X )
χ

2
(χ̄γµγ5χ)(XH)µ + |{Dµ + id(X )H (XH)µ}H|2, (11)

where Dµ is the SM covariant derivative acting on the Higgs field H. The kinetic term of H

gives two interactions, −d(X )H (H
†i
←→
DµH)(XH)µ and (d(X )H )

2(XH)µ(XH)µ|H|2. Because the latter
term contributes only to operators of mass dimension more than six, we shall drop it. After
integrating the Proca field (XH)µ out from the above simplified model Lagrangian (11), we
obtain the following effective Lagrangian,

L (+)H,eff =
i
2

∫

d4 y JµXH
(x)G (XH )

µν
(x − y) JνXH

(y),

JµXH
(x) = (d(X )

χ
/2)[χ̄(x)γµγ5χ(x)] + d(X )H [H

†(x)i
←→
DµH(x)], (12)

Taking a large ΛH limit of the Green’s function, the operator (χ̄γµγ5χ)(H†i
←→
DµH) is obtained

with its coefficient being −d(X )
χ

d(X )H /(2Λ2
H). With the same reasoning as before, the relation

between the EFT and the simplified model (11) can be written as

d(X )
χ
= −1 and d(X )H = cH . (13)

3.2.2 Z2-odd mediator

The process χχ↔ HH† can take place via the t(u)-channel exchange of a new heavy Z2-odd
particle. Hence, the new particle must be a fermion having the same quantum numbers as
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those of the Higgs boson in this case. We therefore introduce a Dirac fermion field (denoted
by ψH) with mass ΛH in the following simplified model:

L (−)H = ψ̄H(i /D−ΛH)ψH − χ̄H†[d(ψ)H1 + id(ψ)H2 γ5]ψH − ψ̄H[(d
(ψ)
H1 )

∗ + i(d(ψ)H2 )
∗γ5]Hχ, (14)

where the covariant derivative Dµ acting on the new fermion field ψH is exactly the same
as the one acting on the Higgs field H. After integrating ψH out from the above simplified
model Lagrangian (14), we obtain the following effective Lagrangian,

L (−)H,eff = i

∫

d4 y J̄ψH
(x)G (ψH )(x − y) JψH

(y) (15)

+

∫

d4 y d4z J̄ψH
(x)G (ψH )(x − y)

�

g
2
/W a(y)σa +

g ′

2
/B(y)

�

G (ψH )(y − z) JψH
(z),

JψH
(x) = [(d(ψ)H1 )

∗ + i(d(ψ)H2 )
∗γ5]H(x)χ(x), J̄ψH

(x) = χ̄(x)H†(x)[d(ψ)H1 + id(ψ)H2 γ5],

where /W a and /B are the SU(2)L and U(1)Y gauge fields, respectively, with g and g ′ being
their gauge couplings. Here again we have neglected other terms which contribute only to
operators of mass dimension more than six. Then, the Green’s function has the following
asymptotic form in the limit of large ΛH ,

G (ψH )(x − y)≡ i

∫

d4q
(2π)4

/q+ΛH

q2 −Λ2
H + iε

e−iq(x−y)→−
i
ΛH
δ(x − y) +

1
Λ2

H

/∂ xδ(x − y). (16)

As a result, the effective Lagrangian (15) has the following asymptotic form in the limit,
which involves not only the operator (χ̄γµγ5χ)(H†i

←→
DµH), but also other ones:

L (−)H,eff→
1
ΛH
ℑ[(d(ψ)H1 )

∗ d(ψ)H2 ](χ̄γ
µγ5χ)(H

†i
←→
DµH) +

2
ΛH
ℜ[(d(ψ)H1 )

∗ d(ψ)H2 ](χ̄ iγ5χ)|H|2

+
1
Λ2

H

[(ΛH +Mχ)|d
(ψ)
H1 |

2 − (ΛH −Mχ)|d
(ψ)
H2 |

2](χ̄χ)|H|2. (17)

where the equation of motion for the DM field, i /∂ χ = Mχχ + · · · , has been used to obtain

the above result. One of the phases of the coupling constants d(ψ)H1 and d(ψ)H2 can be removed
by the redefinition of the Dirac field ψH . By imposing the condition that the coefficients of
the other operators (χ̄ iγ5χ)|H|2 and (χ̄χ)|H|2 are zero, the relation between the EFT and
the simplified model (14) is obtained as

d(ψ)H1 =
1
p

2

�

ΛH −Mχ

ΛH +Mχ

�1/4

|cH |1/2 and d(ψ)H2 =
i
p

2

�

ΛH +Mχ

ΛH −Mχ

�1/4
cH

|cH |1/2
. (18)

The emergence of the operators in Eq. (17) can be interpreted as a consequence of the
mixing between χ and ψH . In fact, (χ̄γµγ5χ)(H†i

←→
DµH) describes a vertex between the

Z boson and two χ fields after the electroweak symmetry breaking (EWSB), and thus the
gauge interaction of χ. The DM particle is no longer a pure singlet under the SM gauge
symmetry, but acquires a small doublet component after the EWSB.

3.3 The scalar interaction operator OS

Here, we consider the dimension-five operator OH = (χ̄χ)|H|2, which is relevant, in the
context of colliders, to the decay of the Higgs boson into a pair of DM particles.
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3.3.1 Z2-even mediator

This operator describes the process χχ ↔ HH† again, and thus the new heavy Z2-even
particle must be bosonic. Since it connects the DM and the Higgs scalar operators instead
of their currents, we introduce a real singlet scalar field ϕS with mass ΛS:

L (+)S =
1
2
(∂µϕS)

2 −
Λ2

S

2
ϕ2

S −
d(ϕ)
χ

2
ϕS(χ̄χ)− d(ϕ)S ΛSϕS|H|2. (19)

Other renormalizable terms in the Lagrangian, which are not relevant in deriving OS, are
not shown here. After integrating the scalar field ϕS out from the above simplified model
Lagrangian (19), we obtain the following effective Lagrangian:

L (+)S,eff =
i
2

∫

d4 y JϕS
(x)G (ϕS)(x − y) JϕS

(y),

JϕS
(x) = (d(ϕ)

χ
/2)[χ̄(x)χ(x)] + d(ϕ)S ΛS|H(x)|2. (20)

Taking the largeΛS limit, the effective Lagrangian (20) generates the operator (χ̄χ)|H|2 with
its coefficient being d(ϕ)

χ
d(ϕ)S /(2ΛS). Thus, the relation between the EFT and the simplified

model (19) can be obtained as:

d(ϕ)
χ
= 1 and d(ϕ)S = cS. (21)

3.3.2 Z2-odd mediator

The process χχ↔ HH† is generated by the t(u)-channel exchange of a new heavy Z2-odd
particle, and the new particle must be a fermion having the same quantum numbers as those
of H. We therefore introduce a Dirac fermion field (ψS) with mass ΛS:

L (−)S = ψ̄S(i /D−ΛS)ψS − χ̄H†[d(ψ)S1 + id(ψ)S2 γ5]ψS − ψ̄S[(d
(ψ)
S1 )

∗ + i(d(ψ)S2 )
∗γ5]Hχ, (22)

where Dµ is the covariant derivative acting on the new fermion field ψS. Since the simpli-
fied model (22) is exactly the same as the one in Eq. (14), it gives rise to the three higher
dimensional operators (χ̄χ)|H|2, (χ̄ iγ5χ)|H|2 and (χ̄γµγ5χ)(H†i

←→
DµH) after integrating the

heavy field ψS out from the simplified model Lagrangian (22) and taking a large ΛS limit.
As a result, by imposing the coefficients of the latter two operators to be zero, the relation
between the EFT and the simplified model (22) is obtained as

d(ψ)S1 =
1
p

2

�

ΛS cS

ΛS +Mχ

�1/2

θ (cS) and d(ψ)S2 =
1
p

2

�

−ΛS cS

ΛS −Mχ

�1/2

θ (−cS). (23)

3.4 The pseudoscalar interaction operator OPS

Finally, we consider the other (CP violating) dimension-five operator OPS = (χ̄ iγ5χ)|H|2.

3.4.1 Z2-even mediator

It is essentially the same as in the case of the scalar operator OS in the previous subsection.
We therefore introduce a real singlet scalar field ϕPS whose mass is fixed to be ΛPS, and use
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the pseudoscalar interaction ϕ (χ̄ iγ5χ) instead of the scalar one ϕ (χ̄χ):

L (+)PS =
1
2
(∂µϕPS)

2 −
Λ2

PS

2
ϕ2

PS −
d(ϕ)
χ

2
ϕPS(χ̄ iγ5χ)− d(ϕ)PS ΛPSϕPS|H|2. (24)

After integrating ϕPS out from the Lagrangian above and taking a large ΛPS limit, we obtain
the dimension-five operator (χ̄ iγ5χ)|H|2 with coefficient d(ϕ)

χ
d(ϕ)PS /(2ΛPS). Thus, the relation

between the EFT and the simplified model (24) is obtained as

d(ϕ)
χ
= 1 and d(ϕ)PS = cPS. (25)

3.4.2 Z2-odd mediator

This is again similar to the case of the scalar operator OS, and we therefore introduce a Dirac
fermion field (ψPS) again with its mass being ΛPS:

L (−)PS = ψ̄PS(i /D−ΛPS)ψPS − χ̄H†[d(ψ)PS1 + id(ψ)PS2γ5]ψPS − ψ̄PS[(d
(ψ)
PS1)

∗ + i(d(ψ)PS2)
∗γ5]Hχ. (26)

It generates the three higher dimensional operators in exactly the same manner as before.
By imposing the coefficients of the operators (χ̄γµγ5χ)(H†i

←→
DµH) and (χ̄χ)|H|2 to be zero,

the relation between the EFT and this simplified model is obtained as

d(ψ)PS1 =

�

ΛPS −Mχ

ΛPS +Mχ

�1/4 |cPS|1/2

2
and d(ψ)PS2 =

�

ΛPS +Mχ

ΛPS −Mχ

�1/4
cPS

2|cPS|1/2
. (27)

3.5 Some caveats to using simplified models

In UV completions of models with vector mediators, one needs to consider the questions
of gauge invariance, the origin of the vector boson mass, perturbative unitarity of scatter-
ing amplitudes and cancellation of anomalies. For an s-channel UV completion with a new
U(1)′ gauge group (and a massive Z ′ boson), a detailed analysis has been carried out in
Ref. [6]. However, with our EFT assumption of mχ < mZ ′ , the process leading to strong
unitarity constraint χχ → Z ′L Z ′L is kinematically forbidden, where Z ′L refers to the longitu-
dinally polarized state of Z ′ . From unitarity of χχ → f f̄ and similar 2-to-2 interactions
between pairs of SM fermions ( f ) and χ, one again finds the constraint mχ , m f < mZ ′ , both
of which are satisfied for the region of our interest Λ >Max[3 mDM, 0.3 TeV] (see next sec-
tion for details on the minimum value of Λ). The only constraint that applies therefore is
that of gauge invariance under the new U(1)′, when left and right handed SM fermions have
different charges under the new gauge group. In this case, the SM Higgs doublet needs to
be charged under U(1)′ as well, implying that if the SM quarks are charged, so are the SM
leptons, leading to stronger constraints from LHC dilepton resonance searches. Such a con-
clusion can however be avoided if the SM charged lepton and quark masses are generated
by two different Higgs doublets, thereby making their U(1)′ charges uncorrelated. In the
spirit of this study, we would resort to such an UV completion, in order not to over-constrain
the general picture for DM. To summarize, specific UV models can be more constrained by
the requirements of gauge invariance or unitarity, however, in the domain of validity of the
EFT, unitarity constraints are satisfied, and gauge invariance can be achieved with, for e.g.,
a non-minimal Higgs sector in order to avoid stronger dilepton constraints. Moreover, as is
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well known, unless we consider very specific U(1)′ charge assignments, there would be ad-
ditional gauge anomalies in the theory, and to cancel such anomalies we have to introduce
new heavy quarks which are vector-like under the SM gauge group, but are chiral under
the new U(1)′. Such new quarks can be taken to be heavier than Λ, and their effect on DM
phenomenology is not expected to be generically significant. For the Z2-odd vector boson
mediator, the UV completion needs more model building, where we either have to embed
the DM particle and the SM fermions in a multiplet of a non-abelian gauge group, or look
for an extra-dimensional or Little Higgs type model with an exact KK or T-parity. In the latter
two cases, the Z2-odd partner of a right-handed neutrino, for example, can be the fermionic
DM candidate.

The simplified models with scalar mediators involve only new Yukawa-type interactions,
and they therefore can be considered UV complete. It should however be ensured that the
complete scalar potential, which is not relevant to this study, does not develop any charge
or colour breaking minimum. Since we did not consider any mixing between the SU(2)L
singlet and doublet scalars (which would induce dimension 7 operators), charge breaking
minimum is not expected to develop.

Finally, certain SM observables are also sensitive to the UV completion of the DM simpli-
fied models we consider, one example being the production cross-section and partial decay
widths to SM states of the Higgs boson. Even if the mediators introduced are sufficiently
heavy compared to the electroweak scale, they can modify these quantities and only a global
fit of all current LHC Higgs data can determine whether such deviations are permissible at
present. This is not a generic effect though, as for example, the Z2-even mediator for the
scalar interaction operator in Sec. 3.3 can induce such modifications via the mixing of the
singlet scalar with the neutral CP-even Higgs field after the electroweak symmetry breaking,
but the Z2-odd mediator mixing with the singlet DM state will not have any such effect at
the leading order. Even for the Z2-even mediator case, a UV completion can be designed to
cancel such modifications predicted by the minimal DM simplified models. Therefore once
again, in order not to over-constrain the generic DM picture, we assume the SM predictions
for such processes are unaltered in the complete UV theory. The same approach also applies
to the four-fermion SM operators generated in the simplified models for DM-SM fermion in-
teractions (at leading order, in the s-channel models), which can furnish strong constraints
especially for the first generation quark and charged lepton couplings of the DM, in the
absence of accidental cancellations or symmetry protection.

4 Application to singlet-like Majorana fermion DM

We are in a position to apply the method in the previous section to a singlet-like Majorana
fermion DM, in order to determine the viable regions, in the space spanned by the DM mass
mDM, the suppressions scalesΛi and the coupling constants ci. Even in the absence of flavour
changing interactions of the form c fi j

(χ̄γµγ5χ)( f̄iγµ f j) with i 6= j, we have 37 parameters
(19 parameters if we only use the EFT [7]) to deal with, which is beyond the scope of our
numerical analysis. Hence, we need to impose the following simplifying assumptions before
attempting a scan of the entire parameter space:

• Λi = Λ (unless otherwise stated): All the intermediate heavy particles introduced in
the simplified models are assumed to have a common mass Λ.
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• Λ > Max[3mDM, 0.3 TeV]: In order to describe DM pair annihilation by the EFT, we
must have Λ> 2 mDM (note that Λ= 2 mDM induces 100% error in the theoretical pre-
diction based only on dimension-6 operators for s-channel UV completions). Further-
more, to reduce the error in the prediction of the invisible decays of the Z or the Higgs
boson using the leading effective operators, we needΛ> v, where v(= 246GeV) is the
scale of electroweak symmetry breaking. Therefore, we choose the minimum value of
Λ being consistent with these two requirements.

• c fi j
= c f : The four-Fermi operators have a flavour-blind structure, i.e., c f does not

depend on the flavour indices. On the other hand, SM fermions belonging to different
representations are allowed to have different couplings with the DM.

• |ci | ≤ 1: This reflects the implicit assumption followed throughout this paper: the UV
physics behind the EFT is described by a weakly coupled theory.

• cPS = 0: CP symmetry is assumed to be preserved in the interactions of the DM particle
with the SM particles.

Under these conditions, the number of free parameters reduces to 9 (mDM, Λ, cS, cH , cQ, cU ,
cD, cL and cE), which is within the scope of our analysis. Even though this is a limited scan
of the most general parameter space, it includes sufficient degrees of freedom to grasp the
broad picture of a singlet-like Majorana fermion DM scenario. We should mention that if
the CP violating pseudoscalar coupling cPS is non-zero, the phenomenology changes con-
siderably as observed in our previous study [2], and in contrast to the CP-conserving case,
indirect detection experiments become more relevant.

In order to explore the high probability density regions of the multi-dimensional param-
eter space, we employ the profile-likelihood method [8]. All the relevant experimental and
observational constraints are incorporated in the likelihood function L taking into account
their statistical and systematic uncertainties. The likelihood function that we adopt in our
analysis is composed of three parts:

L[mDM,Λ, cS, · · · , cE] = LCos[mDM,Λ, · · · ]× LDet[mDM,Λ, · · · ]× LColl[mDM,Λ, · · · ], (28)

where these components involve information obtained from DM cosmology, DM detection
experiments and collider experiments, respectively. In the following subsections, we shall
describe each component in detail. In particular, we carefully discuss how the relation
between the EFT and the simplified models is applied to calculate the component LColl. We
adopt the MultiNest sampling algorithm [9], which is an efficient implementation of the
Markov Chain Monte Carlo algorithm [10]. While describing our results in the relevant set
of two-dimensional parameter space, e.g., the (mDM,Λ)-space, we maximize the likelihood
function along the directions of the other parameters. Our scan of the parameters spans
the following ranges, 10 GeV ≤ mDM ≤ 5 TeV and Λ≤ 100 TeV, which are determined based
on our previous study [2]. We use a flat prior for all the operator coefficients, while both
flat and log priors are used for different regions in mDM and Λ, in order to obtain as large a
coverage of the whole parameter space as possible.

4.1 Constraints from DM cosmology

We adopt the following Gaussian likelihood function LCos in our analysis:

LCos[mDM,Λ, cS, · · · , cE]∝ θ (ΩOBS−ΩTH) + exp

�

−
(ΩTH −ΩOBS)2

2 (δΩ)2

�

θ (ΩTH −ΩOBS), (29)
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whereΩOBS = 0.1198/h2 (with h being the normalized Hubble constant) is the observed cos-
mological DM parameter obtained in the latest PLANCK results [11], while δΩ is the error
including both the observational and theoretical uncertainties as (δΩ)2 = (0.0015/h2)2 +
(0.025ΩTH)2. The theoretical uncertainty of 2.5% in the computation of ΩTH originates
from the temperature dependence of massless degrees of freedom required to solve the
Boltzmann equation [12]. In order to evaluate ΩTH, we assume the initial condition of ther-
mal equilibrium abundance of the DM particles and compute ΩTH using the micrOMEGAs
code [13–16] with the input model files for CalcHEP [17] generated by FeynRules [18,
19]. Since all interactions of the EFT in Eq. (1) contribute to ΩTH, the likelihood function
LCos is a function of all the 9 parameters, mDM, Λ, cS, · · · , cE.

As we can see from Eq. (29), the observed value of the relic abundance ΩOBS is taken
only as an upper bound. However, we assume that a single DM species makes up the entire
relic abundance. Therefore, if a parameter point gives ΩTH < ΩOBS, we need an additional
non-thermal production giving rise to rest of the required DM density. Though such a non-
thermal mechanism is not described by the EFT, it can exist in the UV completion without
changing the DM phenomenology discussed here. A typical example is the late time decay
of gravitino into neutralino DM in a supersymmetric scenario.

4.2 Constraints from DM detection experiments

We first define the likelihood function LDet using the latest results of direct detection exper-
iments. Even though current indirect detection probes turn out to be much less important
compared to other constraints for the singlet-like Majorana fermion DM, we briefly point
out the cases where non-negligible constraints might arise in the near future.

4.2.1 The likelihood function LDet

This likelihood function is further decomposed into three components LDet = LSI×LSDp×LSDn,
where the components correspond to spin-independent scatterings with a nucleon (proton
or neutron), and spin-dependent scatterings with a proton and with a neutron, respectively.
Since no viable evidence of a DM signal has been obtained yet in direct detection experi-
ments, we adopt the following likelihood function for all the components by taking a Gaus-
sian form with a mean value of zero:

LDet∝ LSI[mDM,Λ, cS]× LSDp[mDM,Λ, cH , cQ, cU , cD]× LSDn[mDM,Λ, cH , cQ, cU , cD],

LSI = exp

�

−
σ2

SI

2(δσSI)2

�

, LSDp = exp

�

−
σ2

SDp

2(δσSDp)2

�

, LSDn = exp

�

−
σ2

SDn

2(δσSDn)2

�

, (30)

where σi (with i being SI, SDp or SDn) is the corresponding scattering cross-section pre-
dicted by the EFT, while δσi is given by the experimental limit onσi as well as its theoretical
uncertainty, which is evaluated as δσ2

i = UL2
i /1.642 + (0.2σi)2. Here, ULi stands for the

upper limit on σi at 90% confidence level, which is given as a function of mDM by an appro-
priate direct detection experiment. The scaling factor 1.64 is required to make the limit to
be the one at 1σ level. For the limit on the SI scattering cross-section, we use the result of
the LUX experiment (Fig. 5 in Ref. [20]), while the results of the PICO-2L (Fig. 6 in Ref [21])
and the XENON100 (Fig. 2 in Ref. [22]) experiments are used to put limits on the SDp and
SDn scattering cross-sections, respectively.
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An additional theoretical uncertainty of 20% is introduced in δσi, which originates in
hadron matrix elements required to compute σi. Other theoretical uncertainties also come
from the local velocity distribution and the local mass density of the DM. Though the former
one gives a smaller uncertainty than that of the matrix elements when mDM is large enough,
the latter one may not be small [23]. All the experimental results are, however, given as-
suming the local mass density of 0.3 GeV/cm3, while recent analysis of the Milky Way mass
models show that the density is higher than this value [24]. We therefore do not include
these astrophysical uncertainties, for the experimental results turn out to always give con-
servative limits. The scattering cross-section σi is computed using the micrOMEGAs code
with its default setting. Here, it is worth pointing out that LSI depends only on mDM, Λ
and cS, because the SI scattering always occurs by exchanging the Higgs boson within the
EFT including operators up to mass dimension-six.#4 On the other hand, all axial current
interactions of the DM contribute to the SD scatterings, so that LSDp and LSDn depend on cH ,
cQ, cU and cD in addition to mDM and Λ.

4.2.2 Constraints from indirect detection experiments

We estimate how stringent indirect detection constraints could be for the singlet-like Ma-
jorana fermion DM. Since the CP violating interaction is not included in our analysis, all
non-relativistic annihilation cross-sections of the DM are suppressed at leading order due to
CP and angular momentum conservations (i.e., due to helicity suppression). Though DM
indirect detection experiments are usually expected to give less stringent constraints than
other detections, they could be important in the following cases:

• DM annihilation to a top quark pair can occur via the s-channel exchange of the Z
boson from the interaction OH and also by the four-Fermi interactions OQ and OU .#5

Its annihilation cross-section is estimated to be σv ∼ c2
i m2

t /Λ
4 (with ci being the

coefficient of the operator Oi), which is below the current upper limit of DM indirect
detection experiments, for values of Λ> 3mχ .

• DM annihilation to a bottom quark pair may be constrained if mDM = O (10)GeV.
The process is essentially the same as the one to a top quark pair, so that its cross-
section is evaluated as σv ∼ c2

i m2
b/Λ

4 (with mb being the bottom quark mass). The
coefficient ci is, however, severely constrained by collider experiments when mDM =
O (10)GeV as we shall see in the next subsection, and σv is again below the current
upper limit, for values of Λ> 300 GeV.

• At next to leading order, several DM annihilation processes do not suffer from he-
licity suppression, hence they can lead to detectable signals. These include internal
bremsstrahlung [25, 26] and final state radiation of a photon [27], from charged inter-
mediate and final states. Though both these processes are suppressed by an additional
power of the fine structure constant, they can be enhanced due to collinear singularity.
Though the relevant cross-section is currently below the upper limit of DM indirect
detection experiments, but the process will be eventually important in the near future
as it predicts a hard photon spectrum.

• Some interactions of mass dimension more than six may give DM annihilation
signals. Such higher dimensional interactions are usually much suppressed by larger

#4The SI scattering cross-section with a proton is almost the same as the one with a neutron.
#5Amplitude from the s-channel H-exchange vanishes in the non-relativistic limit for the DM momenta.

13



powers of the scale Λ. The exception would be the operator of (c/Λ3)(χ̄χ)×(Yukawa
interaction). After the Higgs field acquires its vacuum expectation value, it induces
the annihilation χχ → f f̄ (SM fermions) without the helicity suppression. When the
coupling c is O (1), which requires a large mixing effect between left- and right-handed
chiralities, the operator can be responsible for the DM relic abundance and can lead
to signals in DM indirect detection experiments.

• When the CP violating interaction OPS is switched on, the DM can annihilate into
SM particles without any suppression. Moreover, this interaction is very hard to ex-
plore in both DM direct detection and collider experiments.#6 As a result, when
physics of the DM is governed by this CP-violating interaction, only indirect detec-
tion experiments allow us to test such a possibility in the near future.

DM indirect detection experiments currently do not lead to significant constraints as long
as we are considering the singlet-like Majorana fermion DM with the CP-violating interac-
tion absent and assuming no large chirality-flip effect in the dimension-seven operator. We
therefore do not include indirect detection constraints in our analysis, though those will be
eventually important in the near future.

4.3 Constraints from collider experiments

We use simplified models instead of the EFT in order to take into account the present con-
straints from collider experiments. According to the simplified model Lagrangians discussed
in the previous section, we consider the following two models:

L (+) =
∑

f

L (+)f [mDM,Λ, c f ] +L
(+)
H [mDM,Λ, cH] +L

(+)
S [mDM,Λ, cS], (31)

L (−) =
∑

f

L (−)f [mDM,Λ, c f ] +L
(−)
H [mDM,Λ, cH] +L

(−)
S [mDM,Λ, cS], (32)

where the components of the Lagrangians have already been defined in the previous sec-
tion. Thanks to the mapping between the simplified models and the EFT, both the models
are defined using the same parameters as those of the EFT. In the computation of physical
quantities associated with collider experiments, we consider these two models separately,
namely we define two likelihood functions: one is a function based on the model described
by Eq. (31) and the other is described by Eq.(32).

The collider constraints considered are the invisible decay widths of the Higgs and the
Z bosons, the mono-photon and the mono-jet cross-sections. The first and the last ones
concern DM searches at the LHC experiment, while the others are from the LEP experiment.
The likelihood function L(±)Coll is composed of the following four functions:

L(±)Coll∝ L(±)InvH[mDM,Λ, · · · ]× L(±)InvZ[mDM,Λ, · · · ]× L(±)
γ
[mDM,Λ, · · · ]× L(±)Jet [mDM,Λ, · · · ], (33)

where the superscripts (+) and (−) denote likelihood functions constructed based on the
models in Eq. (31) and Eq.(32). We discuss each component in further detail below.

#6The scattering between the DM and a nucleon through OPS vanishes in the non-relativistic limit of the
DM particle. Moreover, this interaction is also difficult to probe at collider experiments unless it induces an
invisible decay of the Higgs boson, namely when mDM < mh/2 (mh being the Higgs mass).
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4.3.1 The likelihood function L(±)InvH

When the DM mass is less than a half of the Higgs boson mass, the Higgs boson can decay
invisibly into a pair of DM particles via the interactions in L (±)S . As we have mentioned in
section 3.5, we focus on the case in which the intermediate heavy particles introduced in
the simplified models do not lead to any sizeable corrections to usual SM processes. The
production cross-section of the Higgs boson as well as its decay into SM particles are thus
assumed to be unaltered. Then, a constraint on the invisible decay branching ratio comes
from a global fit of the LHC Higgs data under the setup addressed above, which leads to
an upper bound on the branching ratio as Br(h→ χχ) ≤ 0.24 at 90% C.L. [28]. Since no
significant excess from the SM prediction has been observed yet, we adopt the following
Gaussian likelihood function for L(±)InvH with a mean value of zero:

L(±)InvH[mDM,Λ, cS] = exp

�

−
Br(±)(h→ χχ)2

2{δBr(h→ χχ)}2

�

. (34)

Using the invisible decay width of the Higgs boson, Γ (±)(h → χχ), the branching ratio
is defined as Br(±)(h → χχ) ≡ Γ (±)(h → χχ)/[Γ (SM)

h + Γ (±)(h → χχ)], where the total
decay width of the Higgs boson within the SM is denoted by Γ (SM)

h ' 4.08 MeV [29] when
mh = 125.09 GeV [30]. With v ' 246 GeV being the vacuum expectation value of the Higgs
field, the simplified models (31) and (32) predict the widths as

Γ (+)(h→ χχ)' Γ (−)(h→ χχ)'
c2

S v2

16πΛ2
S

mh

�

1−
4m2

DM

m2
h

�3/2

, (35)

when ΛS is much larger than the electroweak scale. This result therefore coincides with the
one we obtain from EFT, and we shall adopt it in our analysis. The 1σ uncertainty of the
branching fraction is given by δBr(h→ χχ) = 0.24/1.64.

Although the search for the invisible Higgs decay will be improved at on-going and future
LHC experiments, thus leading to stronger limits on the coupling cS, SI DM direct detection
experiments will provide a more stringent limit on cS in the near future.

4.3.2 The likelihood function L(±)InvZ

When the DM particle is lighter than a half of the Z boson mass, Z can decay into a pair
of DM particles via interactions in L (±)H . In fact, the decay width of Z has already been
measured precisely at the LEP experiment. Apart from the width originating in Z → νν̄, the
upper bound on the invisible decay width of Z is 2 MeV at 90% confidence level [31]. We
therefore consider the following likelihood function for L(±)InvZ:

L(±)InvZ[mDM,Λ, cH] = exp

�

−
Γ (±)(Z → χχ)2

2{δΓ (Z → χχ)}2

�

. (36)

The experimental uncertainty of the invisible decay width δΓ (Z → χχ) is 2 MeV/1.64. On
the other hand, the simplified models (31) and (32) predict the width as

Γ (+)(Z → χχ)' Γ (−)(Z → χχ)'
c2

H v2m3
Z

32πΛ4
H

�

1−
4m2

DM

m2
Z

�3/2

, (37)

when ΛH is much larger than the electroweak scale. Here mZ ' 91.2 GeV is the Z boson
mass. This result again coincides with the one of the EFT and we adopt the invisible decay
width (37) in our analysis.
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4.3.3 The likelihood function L(±)
γ

Null results in the search for an excess beyond the SM predictions in single photon events
at the LEP2 experiment give an upper limit on the cross-section of the mono-photon process
e+e−→ χχγ. We consider the limit reported by the DELPHI collaboration based on 650 pb−1

data with the centre of mass energy of 180–209 GeV [32, 33]. The likelihood function L(±)
γ

is given by a convolution of Poisson and Gaussian distributions:

L(±)
γ
[mDM,Λ, cH , cL, cE; Bi] =

∏

i=1,2

(S(±)i + B′i)
Ni exp[−(S(±)i + B′i)]

Ni!
exp

�

−
(B′i − Bi)2

2σ2
Bi

�

, (38)

where N1 = 498 (N2 = 705) is the number of events observed at the High Density Projection
Chamber (the Forward Electro-Magnetic Calorimeter) in the DELPHI detector, which covers
the single photon events with the polar angle in the interval 45◦ ≤ θ ≤ 135◦ (12◦ ≤ θ ≤ 32◦

& 148◦ ≤ θ ≤ 168◦). On the other hand, B1 = 540.6 (B2 = 675.1) is the expected number
of background events with an uncertainty of σB1

= 4 (σB2
= 3) events. We introduced a

nuisance parameter B′1 (B′2) to deal with this uncertainty, which is profiled out by maximizing
L(±)
γ

in the interval 0≤ B′1(B
′
2)≤∞.

Using the simplified models (31) and (32), the expected number of signal events S(±)i
are computed using MadGraph5 [34] with the model files generated by FeynRules and
our own detector simulation code modelling the DELPHI detector response.#7 Since the
mono-photon process can proceed through the s-channel exchange of the Z boson (from
the operator L (±)H ) and through the interactions in L (±)L and L (±)E , the likelihood function
L(±)
γ

depends on the parameters cH , cL and cE, in addition to mDM and Λ.

Our method to match the simplified models onto the effective operators does not fix the
total width of the mediator particle, which is therefore an additional free parameter. There
is of course a minimum width of the intermediate particles as they necessarily couple to the
DM and the SM sectors with O (1) or smaller coupling factors. In addition, they might also
couple to other new states that are not included within the simplified models. Although
a larger width typically leads to a reduced signal cross-section [35–38], having too large
a width is not consistent with our basic assumption that physics of the DM is described
by a weakly interacting theory. We thus fix the mediator width to be Γ = Λ/2 for our
final likelihood scans, which makes the collider constraints conservative, even though for
comparison we shall show certain results both for the minimal and maximal width cases.

4.3.4 The likelihood function L(±)Jet

DM particles can be pair-produced at the LHC not only through their dimension-6 couplings
with quarks, but also through an intermediate Z or Higgs boson. As is well-known, since the
DM itself is invisible, such events are triggered by the presence of at least one hadronic jet,
and the events are characterized by the presence of a large missing transverse momentum /ET

due to the recoiling DM pair. The construction of the likelihood function L(±)Jet is essentially
the same as that for the mono-photon process. Both the ATLAS and the CMS collaborations
have already searched for such mono-jet events using 7 and 8 TeV LHC data. In our analysis,

#7The results of the DELPHI collaboration on the dominant SM background process e+e− → ν`ν̄`γ are
reproduced by our simulation code to a good accuracy. Then, the same detector simulation setup is used in
our analysis to compute the signal events S(±)i in the likelihood function L(±)γ .
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we utilize the CMS result based on 19.5 fb−1 data collected during the 8 TeV run [39, 40].
Since the data are consistent with the standard model predictions, we adopt the following
likelihood function for L(±)Jet :

L(±)Jet [mDM,Λ, cH , cQ, cU , cD; B3] =
(S(±)3 + B′3)

N3 exp[−(S(±)3 + B′3)]

N3!
exp

�

−
(B′3 − B3)2

2σ2
B3

�

, (39)

where N3 = 3677 is the number of observed events after employing the kinematical selection
criterion used in Ref. [39], while the corresponding expected number of background events
is B3 = 3663.0 with its uncertainty σB3

= 196.0. We have introduced a nuisance parameter
B′3 as in the previous case, which is eventually profiled out.

In order to compute the expected number of signal events S(±)3 based on the simplified
models (31) and (32), we have performed a Monte Carlo analysis within these frameworks
following the FeynRules-MadGraph5-Pythia6 [41]-Delphes2 [42] chain. We adopt the
anti-kT algorithm [43] for jet reconstructions with a cone size of R = 0.4 as implemented
in the FastJet2 code [44, 45], while CTEQ6L1 [46, 47] has been used for parton distribu-
tion functions with the factorization and the renormalization scales being set at the default
dynamical scale choice of the MadGraph5 code.#8 Since the mono-jet process is from the
diagram with the s-channel exchange of the Z boson via interactions in L (±)H and diagrams
via interactions in L (±)Q , L (±)U and L (±)D , L(±)Jet depends on the parameters cH , cQ, cU and cD

in addition to mDM and Λ. The total decay widths of intermediate heavy particles are set to
be the same as those for the mono-photon process.

4.4 Mono-jet bounds recap: effective operators and simplified models

The comparison of the 8 TeV LHC bounds described in the previous subsection on the effec-
tive scale Λ (or equivalently mediator masses) as a function of the DM mass, obtained using
effective operators or simplified models, has been discussed extensively in the literature,
and we refer the reader to Refs.[37, 48–50] for details. In this subsection, we just want to
note two points important for our study, as illustrated in Fig. 1:

• Depending upon the UV completion and the particular operator under study, the EFT
bounds can be similar, below or above the simplified model bounds across the whole
DM mass range (in the region where Λ> 3mχ with the mediator width fixed to half its
mass). Thus, the EFT results cannot be conservative lower estimates for all possible
models even for the restricted range of Λ considered, and we must resort to simplified
models for consistent prediction of collider bounds.

• The bounds obtained using the vector mediator in the simplified model (31), the scalar
or the vector mediators in the simplified model (32) are different. For each operator
case OQ, OU and OD, we analyze the likelihoods and present the results in Fig. 1 using
these three mediators separately. In the simplified model (32), the vector mediators in
general lead to larger DM pair production cross-sections compared to the scalar medi-
ators (for the same mediator and dark matter masses). The bounds are very different
between the simplified models (31) and (32), and this is the reason we present our
results in later sections using the two models separately.

#8We have reproduced the CMS results (with an agreement to within 5%) to validate our code by comparing
with the expected limit on the DM-quark four-Fermi interactions via an axial vector current.
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Figure 1: Comparison between the 95% confidence level exclusion contours obtained using the
EFT and different simplified models, based on the mono-jet and missing energy searches at the 8
TeV LHC, with Z2-even mediator models (left panel) and scalar or vector Z2-odd mediator models
(right panel). The width of the mediators have been fixed to be half of the mediator mass, which is
the maximum value considered in our analysis.

4.5 Direct production of the mediators at the LHC

Compared to the mono-jet and missing energy signal from DM pair production along with
a jet, single or pair production of the mediators could be easier to search for at the LHC,
especially if the mediators can be produced on-shell. However, there is a degree of model
dependence in comparing the monojet signal with the direct production processes. We
discuss the relative importance of each in the following.

4.5.1 Direct production of Z2-even mediator

In the s-channel UV completion with a Z ′, the Z ′ could be looked for as a di-lepton or di-
jet resonance, the former case having a significantly lower SM background. As argued in
Sec. 3.5, there could be a consistent UV completion with a Z ′ that couples only to quarks,
in which case the di-jet resonance search will be the only option. Such a search depends
strongly on the Z ′ width ΓZ ′ , as illustrated by the CMS search for wide resonances [51]. With
Λ being the mass of the Z ′, we gradually lose sensitivity as ΓZ ′/Λ approaches values as high
as 0.5, since an excess over a very broad invariant mass range can be hard to disentangle
from QCD backgrounds. Since a large number of degrees of freedom can couple to the Z ′

(including all the SM quarks and the DM pair), its width can easily be high enough making
the resonance searches harder.

In Fig. 2 we compare the LHC8 di-jet (green solid line) vs monojet constraints (dashed
blue, red and black lines for different couplings) in the dark matter mass and mediator mass
plane by fixing the couplings to one. The left panel is with the minimal width of the Z ′, i.e.,
the sum of the partial widths to SM quarks and the DM pair with all couplings set to one. On
the right panel we show results with ΓZ ′ = Λ/2, which is the largest width considered in this
study. Unfortunately, for such a large width the di-jet constraint (extrapolated from CMS
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Figure 2: Comparison of LHC8 mono-jet (dashed lines) and di-jet (solid line) constraints in the
simplified model with a Z ′ mediator, in the DM mass and mediator mass plane. The left panel shows
the constraints for a minimal width of the Z ′, while the right one for ΓZ ′ = Λ/2, see text for details.
In the latter case the di-jet bounds become much weaker, and are not visible in this panel.

results in Ref [51]) disappear from the panel, and only the monojet exclusions remain, even
though they also become considerably weaker compared to the minimal width scenario.
Because of this strong model dependence of the di-jet bounds, it would be a conservative
choice not to include them in our general analysis, with the clarification that they do im-
ply strong constraints for specific models. To put it another way, to find viable parameter
regions, we need to restrict ourselves to regions where the di-jet constraints are weak, and
the large Z ′ width case is precisely that.

4.5.2 Direct production of coloured Z2-odd mediator

Pair production of Z2 odd coloured mediators (vector or scalar) can lead to multi-jets and
missing momentum signals with large QCD cross-sections. The LHC search results for first
two generation squarks in the MSSM [52] can then be recast to our scenario to obtain the
relevant bounds. Once again, the matching adopted by us does not fix the width of the
mediator, which introduces an additional model dependence here as well. Let us recall that
the vector mediator production leads to a larger cross-section compared to the scalar case,
and thus it is sufficient to compare the mono-jet and di-jet bounds for the vector mediators.

We show the results in Fig. 3, with the left panel for the minimal width and the right
one for Γq̃ = Λ/2, as before, with Γq̃ and Λ being the width and the mass of the Z2-odd
mediator. Once again, for the minimal width case, the bounds from direct production of
mediators followed by their decay to a DM and a quark, are stronger. However, the mono-
jet + missing energy bounds are more stringent if the width of the mediator is very large
due to unknown decay modes, simply because they do not decay often enough to final states
with high transverse momentum quarks. Therefore, in order to set the most conservative
bounds, we focus on scenarios with large mediator widths, and include only the monojet
constraints in our final results.
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Figure 3: Comparison of LHC8 mono-jet and di-jet plus missing momentum constraints in the sim-
plified model with a coloured vector mediator, in the DM mass and mediator mass plane. The left
panel shows the constraints for a minimal width of the vector mediator, while the right one for
Γq̃ = Λ/2. See text for details.

4.6 Likelihood analysis results: allowed region in the (mχ ,Λ)-plane

We are now in a position to discuss our results of the allowed parameter regions for the
singlet-like Majorana fermion DM, after performing the profile-likelihood analysis with all
available constraints. As discussed before, since the LHC and LEP bounds differ for the
s-channel and t-channel mediator models, we performed separate likelihood analyses in
these two cases. The most relevant projection for the 68% and 95% C.L. allowed regions
would be in the (mχ ,Λ)-plane, which we show in Fig. 4, with the left panel for the simplified
model (31) (called the UV+ case hereafter), and the right panel for the simplified model (32)
(called the UV− case). The difference between the two models is barely observable in this
two dimensional parameter space (although small differences exist in these plots for mχ >
100 GeV). A few points are worth noting:

1. As discussed at length in our previous study [2], the shape of the allowed region is es-
sentially determined by the relic abundance requirement, especially the rather sharply
defined upper contour determining the maximum allowed values of Λ. It is also in-
teresting to note that in the log scale plot, the difference between the 68% and 95%
C.L. allowed regions is rather small, since the likelihood is very sensitive to DM anni-
hilation cross-sections, which in turn changes very rapidly with Λ (and also with mχ

in the resonance regions).

2. The low DM mass region below 20 GeV is disfavoured, as long as Λ > 300 GeV. It
should be noted that in special cases mediators lighter than 300 GeV might evade all
current bounds, thereby opening up this region. However, to properly analyze such
cases, we would require a specific model framework.

3. Unless we are near a resonance for DM pair annihilation, generically the maximum
allowed value of Λ is around 10 mχ . On the other hand, near the Z-pole, it extends up
to almost 100 mχ . Due to the very narrow width of the Higgs boson, near the Higgs
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Figure 4: Allowed regions at 68% (yellow) and 95% C.L. (blue) in the DM mass (mχ) and EFT
cut-off (Λ) plane, for the UV+ model (left panel) and UV− model (right panel). In the grey shaded
region an EFT framework is not suitable for the analysis.

pole, even Λ= 1000 mχ is allowed.

4. The primary reason for the similarity between the UV+ and UV− cases is as follows:
even though the LHC8 constraints rule out a considerably larger range of values of the
quark couplings for a given Λ in the UV− case compared to UV+, the lepton couplings
in the larger DM mass range remain unconstrained. It is the lepton couplings which
can compensate for the quark couplings to give the required relic abundance, thereby
leading to a very similar allowed (mχ ,Λ)-plane for the two cases.

5. Beyond the DM mass of 1 TeV, we clearly do not have any allowed region as long as
Λ> 3 mχ , essentially because the most important annihilation mode in this region to
top quark pairs has an s-wave cross-section which is independent of the DM mass and
goes as m2

t /Λ
4, thereby reducing very rapidly the annihilation cross-section at a rate

approximately larger than m2
t /(81m4

χ
).

For a better understanding about the range of scattering cross-sections that need to be
probed for this scenario, we show in Fig. 5 the range of SI and SD scattering rates predicted
in the currently allowed parameter space. The predictions in the UV+ case are shown in
the three left panels, while the three right panels are for the UV− case. We also display
in the same panels the projected reach of future ton-scale direct detection experiments,
namely the XENON1T [53] and LZ [54] experiments. The colour coding is the same as
before, with yellow and blue corresponding to the 68% and 95% C.L. allowed regions. There
is a small mismatch between our allowed regions and the current LUX, XENON100 or PICO-
2L exclusions for SI (proton), SD (neutron) and SD (proton) cross-sections respectively.
This is primarily because of systematic errors associated with the astrophysical and nuclear
physics uncertainties included in our likelihood. It should also be noted that as far as the
SI and SD rates are concerned, the UV+ and UV− models predict the same rates, since they
both reduce to the same effective operators for low momentum transfers, and the allowed
regions in the (mχ ,Λ)-plane, as seen before, are almost identical.
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Figure 5: Predictions for spin-independent direct detection cross-sections (σSI
p ) and spin-dependent

direct detection cross-sections with proton (σSD
p ) and neutron (σSI

n ) in the 68% (yellow) and 95%
(blue) allowed region of parameter space for the singlet-like Majorana fermion DM. Comparison
with future projections in the XENON1T and LZ experiments are also shown. Predictions in the UV+
case are shown in the three left panels, while the three right panels are for the UV− case.
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5 Summary and future prospects

To summarize, our goal in this study has been to estimate the mass-scale of the mediator par-
ticles allowed by relic density requirements and current constraints on a Majorana fermion
WIMP candidate, focusing on weakly coupled models. In order to compute all relevant DM
related observables, using a complete set of gauge-invariant effective operators is the most
general model independent approach, and as in our previous work [2] we have adopted the
same here. However, such an approach is of limited validity at high-energy colliders, and
hence using simplified models to interpret the collider bounds allows us to survey a larger
range of the mediator masses. To this end, we first write down all possible simplified models,
which lead to each effective operator, when the heavy fields compared to the DM mass and
the electroweak scale are integrated out. Matching the simplified model to the EFT above
the electroweak scale then gives us a one-to-one map between the EFT parameters and the
simplified model ones. We utilize this map to compute the collider observables within the
context of the simplified models, and then combine them with the other constraints to ob-
tain the complete likelihood function. Using a profile-likelihood approach we are then able
to determine the allowed ranges for the dark matter mass and the EFT cut-off scale, while
maximizing the likelihood over rest of the parameters.

The main conclusions that can be drawn from this analysis are that for Λ> 300 GeV, DM
masses below 20 GeV are disfavoured. The Z- and Higgs-pole regions survive all current
constraints up to Λ as high as 100 mχ and 1000 mχ , respectively. Beyond the Higgs-pole
region for DM heavier than about 70 GeV and lighter than 1 TeV, values of the suppression
scale up to Λ = 10 mχ are viable. The UV+ and UV− models lead to very similar results, as
even though the LHC constraints act differently on the quark couplings’ space of the models,
the yet unconstrained leptonic couplings at higher DM masses are sufficient to furnish the
correct relic abundance.

The next question to ask then would be how much of the remaining space of parameters
can the next generation direct detection and planned collider experiments probe? Given the
remaining regions explained above, the most important future searches for the singlet-like
Majorana fermion DM will be multi-ton scale direct detection experiments (for example, the
LZ experiment [54], which is an upgrade of LUX) and proposed future lepton colliders. For
illustration, we perform order of magnitude estimates for the reach of e+e− colliders with
centre of mass energies of 250 GeV (which can be reached by both the CEPC [55] and the
ILC [56]) and an energy of 500 GeV (which can be achieved by the ILC). A further Giga-Z
option of having collisions at an energy equal to mZ is also under study, and can help in
exploring the Z-pole region of DM annihilation further, but we do not include this option
in our estimates. In that sense, the major role of the lepton colliders will be to examine
the DM coupling to the Z-boson and also the four-fermi interaction with leptons using the
mono-photon process. Such processes can of course be relevant only up to the kinematic
threshold of DM pair production, which will be 250 GeV for the 500 GeV ILC. For our simple
estimate we compute the mono-photon cross-sections with basic selection cuts as described
before for LEP [32, 33] in Sec. 4.3.3, and compare them to the baseline value of 1 fb for
the 500 GeV ILC. As has been shown in Ref. [57], a signal cross-section of order 1 fb can be
excluded at 95% C.L. for the nominal luminosities and beam polarizations planned for this
experiment.

We show in Fig. 6 the resulting parameter space after imposing the expected future con-
straints, in the absence of a signal. The Higgs-pole region is found to be completely within
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Figure 6: Same as Fig. 4, after imposing the expected future constraints (in the absence of a signal),
from LZ and 250 GeV ILC/CEPC for upper panels, and from LZ and 500 GeV ILC for lower panels.

the reach of the future SI direct detection limits, while a substantial region near the Z-pole
and part of the heavier DM mass range can also be explored by the lepton colliders and
SD direct detection experiments. In case a Giga-Z option for the future lepton colliders or
even further upgrades of the SD direct DM detections are realized, we might hope to get
a handle on the remaining parameter space at the Z-pole. For dark matter masses mχ ¦
100–200 GeV, since the four-Fermi interactions with SM quarks and leptons are mainly re-
sponsible to achieve the required DM annihilation cross-sections, the high-luminosity run of
the LHC may test part of this region, while the rest can only be studied by more energetic
lepton colliders such as the CLIC experiment [58].
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