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To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings
are studied using an effective field theory description of spacetime-symmetry breaking. The asso-
ciated mass dimension 8 coefficients for Lorentz violation studied do not result in any linearized
gravity modifications and instead are revealed in the first nonlinear terms in an expansion of space-
time around a flat background. We consider effects on gravitational radiation through the energy
loss of a binary system and we study two-body orbital perturbations using the post-Newtonian
metric. Some effects depend on the internal structure of the source and test bodies, thereby break-
ing the Weak Equivalence Principle for self-gravitating bodies. These coefficients can be measured
in solar-system tests, while binary-pulsar systems and short-range gravity tests are particularly
sensitive.

I. INTRODUCTION

General Relativity (GR) with the Einstein-Hilbert
(EH) action can be expressed in the language of gauge
field theory with the gauge symmetries of local Lorentz
symmetry and diffeomorphism symmetry. As such it
is considered a non-abelian gauge theory, with nonlin-
ear self-interaction terms in the interaction hamiltonian.
How well these interaction terms have been tested is in
part measured by what alternatives to the EH action
are acceptable within experimental limits. While using
the EH action does not result in a renormalizable quan-
tum field theory, the structure of the interaction terms
can be tested in the classical limit through observation,
gravitational waves, weak-field and strong-field tests of
gravity. These types of tests are particularly of interest
precisely because the standard implementation of quan-
tum field theory fails to yield stable radiative corrections
for the EH action, or to put it simply, GR has not been
combined with quantum theory in a satisfactory way.

One promising avenue for experimental probes is to
test the very gauge symmetries, local Lorentz and dif-
feomorphism symmetry, upon which GR rests. A strong
possibility exists, in various theoretical scenarios in the
literature, that these symmetries might not be exact in
nature, particularly in the low-energy limit of an under-
lying unified theory [1, 2]. Due to this and other moti-
vations, a broad program has been underway recently to
identify and measure possible spacetime-symmetry vio-
lations using a general effective field theory framework
[3, 4]. Though no significant positive signal yet exists,
numerous areas involving gravity, electromagnetism, and
other forces have placed strong limits [5]. In the case of
gravity, work is underway to identify and measure signals
for spacetime-symmetry breaking in the weak-field grav-
ity regime. Analysis has already been performed with lu-
nar laser ranging [6, 7], atom interferometric gravimetry
[8, 9], gyroscopic tests [10], binary-pulsar tests [11], short-
range gravity tests [12–14] planetary ephemeris [15], cos-
mic rays [16], gravitational waves [17, 18], and others
[19].

The theoretical framework used for the analysis so far

has been the linearized gravity limit of the Standard-
Model Extension framework [20–26]. The flat spacetime
version of the SME framework uses a general lagrangian
expansion with CPT and Lorentz-breaking terms formed
from background tensor fields contracted with operators
built from matter fields. Since the introduction of nondy-
namical background fields in curved spacetime is gener-
ally incompatible with Riemann geometry, an alternative
approach is used where the Lorentz breaking is consid-
ered dynamical [4, 27]. This is the spontaneous Lorentz-
symmetry breaking approach, which has been applied to
the SME in the linearized gravity limit.

The linearized gravity limit, where the metric is ex-
panded around a flat background, suffices for many phe-
nomenological applications since gravity is inherently
weak in the solar system and it helps significantly to
simplify calculations due to the complexity of handling
spontaneous Lorentz-symmetry breaking in this context.
However, it is only in the quadratic and higher-order
terms in the field equations of GR that we see the struc-
ture of the interaction terms dictated by the spacetime
symmetries under study. In light of this it is natural
to extend existing SME analysis in this direction to test
these interaction terms.

Analysis in the gravity sector of the SME framework
beyond the linearized limit is scarce to date [28, 29].
There are two aspects to this. One, the construction of
these higher-order terms is marred by complexity due to
accounting for the dynamics of the fluctuations (Nambu-
Goldstone and massive modes) and ultimately finding
the correct energy-momentum tensor to higher order in
metric fluctuations that is consistent with the underly-
ing conservation laws, the known linearized results, and
keeping generality [29]. Second, for most of the coeffi-
cients in the minimal sector of the (gravitational) SME,
and many in the nonminimal sector, experiments can al-
ready be analyzed using linearized gravity results. So
in many cases it is not of phenomenological advantage
to establish the nature of these terms. However, it is of
theoretical interest to establish the nature of such terms.
Furthermore, it may be the case that certain types of
Lorentz violation can only be probed by looking beyond
the linearized limit.
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As a first step toward pushing the analysis beyond the
linearized gravity regime, we examine terms in the non-
minimal SME that provide an example of nonlinear, sec-
ond order terms in the metric expansion around a flat
background, and that are relatively straightforward to
calculate. Additionally, these terms are phenomenolog-
ically of interest since they do not appear in linearized
gravity and contain some interesting effects for experi-
ments and observation as we show. Note that alternatives
to the approach discussed here include studying specific
models of spontaneous Lorentz violation [30, 31], phe-
nomenological parametrizations of physics beyond GR
[32–34], or even alternative geometries [35].

The paper is organized as follows. In Sec. II, we review
the SME framework in the gravity sector and discuss the
basic lagrangian and field equations for the cubic cou-
pling to be studied in this work. We study the possi-
ble effects of the modified field equations on aspects of
gravitational radiation in Sec. III. The post-Newtonian
metric and the associated two-body acceleration are the
subject of Sec. IV. In Sec. V we discuss the application
of the two-body acceleration results to gravitational ex-
periments and observation, including an estimate of the
sensitivities to the relevant coefficients for Lorentz viola-
tion. The work is summarized in Sec. VI. Throughout
this work we adopt the notational conventions of previous
work in the gravity sector [20, 25]. In particular, we refer
throughout the paper to the linearized, quadratic, and
cubic limit in an expansion of the space-time metric gµν
around a flat background. When needed this notion can
be made precise by inserting ǫ < 1 in the expansion for
the metric gµν = ηµν + ǫhµν so that linearized equations
are O(ǫ), quadratic is O(ǫ2), etc.

II. THEORY

In the effective field theory description of local Lorentz
violation in the gravity sector, we write the Lagrange
density of the underlying action as the sum of terms

L = LEH + LLV + Lk + LM, (1)

where LEH =
√−g(R − 2Λ)/2κ is the Einstein-Hilbert

term with cosmological constant Λ. The term LLV de-
scribes the (Lorentz-breaking) gravitational coupling to
the coefficient fields, Lk contains the dynamics of the
coefficient fields, LM describes the matter sector, and
κ = 8πGN .

The non-standard term LLV can itself be written as a
series involving covariant gravitational operators of in-
creasing mass dimension d. Each term is formed by
contracting the coefficient fields kαβ... with gravitational
quantities including covariant derivatives Dα and curva-
ture tensors Rαβγδ. The terms that have been studied
previously include mass dimension 4 through 6 and are

given by the lagrange density

LLV =

√−g

2κ
[(k(4))αβγδR

αβγδ + (k(5))αβγδκD
κRαβγδ

+(k
(6)
1 )αβγδκλD

(κDλ)Rαβγδ

+(k
(6)
2 )αβγδκλµνR

αβγδRκλµν ], (2)

where the parentheses indicate symmetrization with a
factor of 1/2. The minimal SME is contained in the d = 4
(k(4))αβγδ case. This term can be split into a total trace
u, a trace sµν , and a traceless piece tκλµν . In the lin-
earized gravity limit, these coefficients have already been
explored theoretically and experimentally. The mass di-
mension 5 term (k(5))αβγδκ, which breaks CPT symme-

try, and the mass dimension 6 terms k
(6)
1 and k

(6)
2 have

been studied in the context of short-range gravity, gravi-
ton vacuum Čerenkov radiation, and gravitational waves
[16, 17, 25]. It is clear that the terms with more than
one power of curvature will contain higher than second
derivatives of the spacetime metric. Lagrangian models
with higher than second derivatives are known to have
stability issues [36]. However, in the SME we consider
these terms as small corrections to the EH lagrangian,
as part of a perturbative series around low energies, thus
we consider the dynamics as primarily driven by second
order differential equations [37].
Our focus in this work is on the first cubic curvature

term with mass dimension d = 8, which lies beyond those
considered so far in the SME expansion. The d = 8 term
we shall consider is written as

L(8)
LV =

√−g

2κ
(k(8))αβγδκλµνǫζηθR

αβγδRκλµνRǫζηθ. (3)

The coefficient fields (k(8))αβγδκλµνǫζηθ have dimensions
of length to the power 4, or inverse mass to the power 4
in natural units. Due to the contractions, the indices on
the coefficients inherit the symmetries of the Riemann
tensor and it is totally symmetric in the groups of in-
dices αβγδ, κλµν, and ǫζηθ. Using the symmetry prop-
erties of the coefficients, we can determine that there are
1540 a priori independent components. The coefficients
(k(8))αβγδκλµνǫζηθ naturally contain as a subset various
traced pieces that involve contractions of indices on the
three Riemann tensors. The cubic contractions of the
Riemann tensor can be generally classified [38], but we
do not attempt to elucidate the traced pieces in Eq. (3)
in this work. We note in passing that when compared
to the coefficients in the action (2), which have inverse
mass and inverse mass squared dimension, it is natural to
expect the effects associated with the cubic action (3) to
be subdominant. However, the purpose of this work is to
explore such higher-order terms for the reasons outlined
in the introduction, and we neglect the other coefficients
in the pure-gravity sector for the analysis that follows.
Toy models of spontaneous Lorentz violation that

match the form of the lagrangian (3) are straightfor-
ward to construct. For example, for a model with a
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vector field Bµ one can consider a coupling of the form

L ∼ BµBνR
µνBαBβR

αγRβ
γ . Such couplings will be

constrained experimentally by analysis of the general k(8)

term. We also note that there are indeed other mass di-
mension 8 terms we shall not consider here. For exam-
ple, one can form an operator with mass dimension 8 by
combining two covariant derivatives with two powers of
the Riemann curvature tensor, L ∼ D(µDν)RαβγδRǫζηθ.
However, such terms contribute to the linearized field
equations, and have partly been studied previously in re-
cent works [16, 17].
At this stage, we introduce a compact notation for

the k(8) coefficients and the curvature tensors. We use
the calligraphic capital letters A, B, etc. to denote the
groups of Riemann-like indices: A = αβγδ, B = κλµν,
and C = ǫζηθ. Thus for the curvature tensor we write
Rαβγδ = RA and for the k(8) coefficients we write
(k(8))αβγδκλµνǫζηθ = (k(8))ABC . Repeated indices indi-
cate contraction across all four spacetime indices, so for
example, RAR

A = RαβγδR
αβγδ. When needed, some

indices will be shown explicitly.
The first step for phenomenology is to extract the field

equations resulting from the lagrangian (3). This can be
achieved by variation with respect to the metric gµν and
the result is

Gµν = κ(TM )µν + 6D(αDβ)
(
(k(8))αµνβABR

ARB
)

+ 1
2gµν(k

(8))ABCR
ARBRC

+9Rαβγ

(µ(k
(8))ν)γαβABR

ARB + κ(Tk)µν , (4)

where the energy-momentum tensor for matter is (TM )µν
and (Tk)µν is the energy-momentum tensor contribution

from the dynamics of the coefficient fields (k(8))ABC in the
lagrangian term Lk. We then assume assume an asymp-
totically flat background metric ηαβ as usual and im-
pose the conditions of spontaneous breaking of Lorentz
symmetry. In particular, it is assumed that the coeffi-
cient fields (k(8))ABC have a vacuum expectation value of
(k(8))

ABC
. So for the metric and the coefficients fields we

use the following expansions around the vacuum values:

gµν = ηµν + hµν ,

(k(8))ABC = (k(8))
ABC

+ (k̃(8))
ABC

. (5)

Here (k̃(8))
ABC

represents the fluctuations around the
vacuum value [52]. In the chosen asymptotically flat
cartesian coordinates, we assume the partial derivatives
of the vacuum values vanish (∂µ(k

(8))ABC = 0).

Since the k(8) lagrangian term is already of at least
cubic order in the metric fluctuations hµν , the leading

(k(8))ABC terms in the field equations will be at quadratic
order, as can be verified by insertion of the expansions
(5) into equation (4). If we confine attention to quadratic
order field equations O(h2), the procedure for the elim-

ination of coefficient fluctuations (k̃(8))
ABC

described in

Refs. [20, 23, 25] involves no fluctuations for (k(8))ABC in

the k(8) terms in Eq. (4) because these contribute only at
order O(h3). We therefore obtain the modified Einstein
equations valid to quadratic order as

Gµν = κ(TM )µν+6(k(8))αµνβAB
∂α∂β

(
RARB

)
+κ(Tk)µν .

(6)
In Eq. (6), we can take the curvature tensors in the sec-
ond k(8) term to be linearized in hµν , since the term is
already at quadratic order.
As we are considering spontaneous symmetry break-

ing, the underlying action remains invariant under dif-
feomorphisms and local Lorentz transformations, and so
the field equations will satisfy the conservation laws as-
sociated with these symmetries [39]. In particular, the
conservation laws associated diffeomorphism invariance
holds, which can be checked as follows. First note that
the covariant divergence of the field equations (6) van-
ishes on the left side by the geometric identitiesDµG

µν =
0. On the right-hand side, it can be verified that the di-
vergence of the second k term vanishes to quadratic order
automatically. This is in contrast to some of the other co-
efficients in the SME expansion [20, 25], where additional
compensating terms (coming from an Lk-type term in the
action) are necessary in the construction of the effective
field equations. If we then assume that the matter tensor
(TM )µν has independently vanishing divergence, then it
follows that the remaining piece (Tk)µν must be indepen-
dently covariantly conserved. In addition to diffeomor-
phism symmetry, the conservation law for local Lorentz
symmetry is also satisfied by virtue of the symmetry of
the free indices of the terms on the right-hand side of (6).
The second term in Eq. (6) is already in a form suit-

able for the calculation of the effects on the spacetime
metric since it only depends on the vacuum values of the
coefficients k(8), and the metric fluctuations hµν . There-
fore the final task in establishing the effective quadratic-
order field equations is to consider the unknown, inde-
pendently conserved term (Tk)µν . Considering the dis-
cussion above, this term is not necessary to ensure that
the conservation laws hold at quadratic order. Without
knowing the explicit form for the terms in Lk, which
would come from some underlying theory producing the
coupling (3), we cannot directly calculate (Tk)µν . One
possibility is to study a large class of specific models of
spontaneous Lorentz breaking where the exact form of Lk

is known. This task lies beyond the scope of the present
paper but would be of interest for future study. Note
that investigations along these lines already exist for the
coefficients (k(4))αβγδ. For example, in a study of which
vector models of spontaneous Lorentz breaking match the
field equations presented in Ref. [20], it was shown that
various assumptions, including assuming a vanishing in-
dependently conserved piece (Tk)µν , restrict attention to
a subset of all possible vector models [31]. We remark
here that some preliminary analysis with vector models,
with couplings of the form mentioned above, shows that
the contribution of (Tk)µν vanishes to quadratic order.
For the remainder of this work we shall adopt the as-

sumption that (Tk)µν = 0 to quadratic order, which is
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similar to an assumption adopted for extracting the field
equations for the minimal SME coefficients (k(4))αβγδ.
Note that this assumption does not preclude the case
when (Tk)µν happens to be proportional to a term of the

form of the (k(8)) term in equation (6) - in this case there
is a rescaling of the field equations but the phenomenol-
ogy remains the same.

III. RADIATION EFFECTS

If one considers the linearized limit of the field equa-
tions (6), the k(8) term on the right-hand side vanishes.
It is clear then that there are no effects on the propaga-
tor for the metric fluctuations hµν . This implies, for ex-
ample, that the propagation of gravitational waves is the
same as in GR. One consequence of this result is that the
coefficients k(8) lie beyond the reach of the previous anal-
ysis with quadratic actions [17] and analysis with mod-
ified dispersion relations [34]. We note, however, that
we are assuming an expansion of spacetime around a flat
background. If we were to generalize this to an expansion
around a curved background, the possibility would then
exist for linearized effects of the coefficients k(8) to ap-
pear. This could occur since the curvature terms in the
lagrangian (3) could take their background values plus
fluctuations, leaving some terms quadratic in hµν in the
lagrangian. This possibility has been considered by some
authors studying Lorentz invariant cubic curvature cou-
plings [40]. In context of the lagrangian (3), this remains
an open area of study beyond the scope of this work.
Although there are no effects on the propagation of

gravitational waves from the cubic curvature coupling
terms k(8), the appearance of these Lorentz-breaking
terms at quadratic order in the field equations implies
the possibility of an effect on the energy-momentum loss
of a system due to radiation from gravitational waves. In-
deed, the standard calculation in GR for the energy loss
of a gravitational system involves using the quadratic or-
der terms in the usual Einstein equations [41]. To exam-
ine this possibility, we compute the total four-momentum
and rate of four-momentum loss for a binary system using
the field equations. First we display the field equations
in an alternative form:

(GL)
µν = κ[(TM )µν + τµν ]

+6(k(8))
αµνβ

AB
∂α∂β

(
RARB

)
, (7)

where (GL)
µν is the linearized Einstein tensor, τµν is

defined by

τµν =
1

κ
[(GL)

µν −Gµν ], (8)

and the expression (7) is valid to quadratic order in hµν .
Note also that to quadratic order, we raise and lower
indices in the k(8) term with the Minkowski metric ηµν
and its inverse.

The ordinary divergence ∂µ of the right-hand side of
(7) vanishes and it can be interpreted using an energy-
momentum pseudotensor,

Θµν = (TM )µν+τµν+ 6
κ
(k(8))

αµνβ

AB
∂α∂β

(
RARB

)
, (9)

for the total system of gravity plus matter. One can de-
fine the total four-momentum Pµ of the system as the
spatial integral of Θ0µ over all space in a fixed coordi-
nate system. For a generic spacetime, this integral does
not converge. However, we consider spacetimes that are
asymptotically flat except for possible gravitational wave
pieces in the metric fluctuations hµν . Ordinarily in GR,
the total four-momentum consists of two pieces: one due
to the localized, or near zone solutions for the space-time
metric, and the other due to possible gravitational radi-
ation. While the former can be shown to be constant in
time, the latter can result in a time-varying total four-
momentum on account of gravitational radiation carrying
energy and momentum away from the system.
To see if there is a modification to the energy and

momentum carried away from an isolated gravitational
system, we examine the rate of change of the spatial
integral of Θ0µ with respect to coordinate time t, or
dPµ/dt. After some manipulation using the conserva-
tion law ∂µΘ

µν = 0, the expression can be turned into a
surface integral over a sphere of radius R centered on the
gravitational system. In this region, the matter energy
momentum tensor vanishes and the only terms in Θµν

that will survive in the limit R → ∞ are quadratic in
hµν , coming from wave solutions that fall off as 1/R.
We shall restrict attention to results at leading order in

the coefficients k(8), which has the advantage that for the
third Lorentz-violating term in Eq. (9), we can substitute
GR results. In particular, we use the result that the wave
solutions for hµν have a dependence on the retarded time
tR = t−R with the wave vector kµ = (1, nj). Here nj is
an outward pointing normal from the origin taken as the
gravitational system’s center of mass-energy. We then
find that to leading order in the coefficients k(8),

dPµ

dt
= −

∫

S

d2xnj

[
τ jµ

+ 24
κ
(k(8))

jµ

α βlγδmnǫζpk
αkβkγkδkǫkζ

d2

dt2R
(ḧlmḧnp)

]
,

(10)

where a dot indicates a derivative with respect to tR.
We next examine the contributions of the two terms in

(10) in turn. Contributions to hµν itself in the wave zone
include the standard quadrupole terms in GR, higher-
order terms in a post-Newtonian series, and possible con-
tributions from the k(8) terms in (6). These latter terms,
however, can be expected to contribute only at second
order in ǫ when considering an expansion around a flat
background gµν = ηµν + ǫhµν . It would be of interest
to calculate such terms to determine their possible ef-
fects on gravitational waves but this lies beyond the scope
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of the present work. It suffices here to note that when
inserted into (10) in the first term involving τ jµ, these
O(ǫ2) corrections to hµν will yield modifications only at
third order in ǫ in the first term of (10) since τ jµ is al-
ready at O(ǫ2). Thus if one neglects any contributions
to hµν in the wave zone from the k(8) coefficients, the
first term in (10) yields the standard result for energy
and momentum loss from gravitational waves in GR. For
example, for the energy loss one obtains the well-known

quadrupole result dP 0/dt = (GN/5)
...
I
jk ...

I
jk where Ijk is

the (traceless) mass quadrupole tensor.
The second term in equation (10) is the leading

Lorentz-violating correction to the energy-momentum
loss for an isolated gravitational system. At leading order
in Lorentz violation we insert the standard quadrupole
formula for the metric fluctuations hjk = 2GN Ïjk/R into
this term. Focusing on a binary system, and using the
leading expression for Ijk for a slow-motion system, we
obtain an explicit function of tR for this term that is pe-
riodic. Furthermore, in this limit the tR-derivative term
does not depend on angles so the angular integral only ap-
plies to the projection of the k(8) coefficients along kµ and
yields a linear combinations of these coefficients. Upon
time averaging the second term in (10) over one orbit,
however, we obtain zero for this extra contribution to
the energy-momentum flow. We can trace this result to
fact that a total tR derivative appears in the expression
- when averaged over tR we end up evaluating a periodic
function at the beginning and end of one cycle, thereby
obtaining zero. Therefore, to quadratic order in hµν ,

we can say that the k(8) coefficients do not produce any
leading-order effects for the energy-momentum loss for
gravitational waves.

IV. POST-NEWTONIAN LIMIT

An alternative to exploring gravitational waves is to
consider the “near zone” post-Newtonian effects on a
gravitational system. As usual, this involves an expan-
sion in powers of the average speed v̄ of the typical body
in the system with the Newtonian potential U ∼ v2 dom-
inating over small relativistic corrections. We employ a
perfect fluid model to describe the bodies in the system,
assuming the usual perfect fluid energy-momentum ten-
sor for (TM )µν . Using this model, we solve the modified
field equations to obtain the post-Newtonian metric and
ultimately the dynamical equations for a two-body sys-
tem.

A. Metric

In terms of mass density ρ, internal energy Π, pres-
sure p, and four-velocity field uµ, the matter energy-
momentum tensor is

(TM )µν = (ρ+ ρΠ+ p)uµuν + pgµν . (11)

The Newtonian potential U , contained in h00/2 satisfies
Poisson’s equation

−~∇2U = 4πGNρ. (12)

Assuming the matter is localized, the standard solution
is

U(r, t) = GN

∫
d3r′

ρ(r′, t)

|r − r′| . (13)

The full post-Newtonian metric from (6) turns out to
be that of General Relativity except for one additional
term in the O(v4) piece of the metric components h00,
which we denote δh00. The equation for this extra term
can be obtained from the post-Newtonian expansion of
the field equations (6). Focusing on solving for this piece,
the relevant equation is that involving the R00 component
of the Ricci tensor, which is given to O(v4) by

R00 = κ(SM )00 + 3(k(8))j00kAB
∂j∂k

(
RARB

)

+3(k(8))jllkAB
∂j∂k

(
RARB

)
, (14)

where the curvature components in the k(8) term sur-
viving at this post-Newtonian order include R0j0k and
Rjklm. The term (SM )µν is the trace-reversed energy-
momentum tensor for matter. The matter terms in
(SM )00 along with other terms in R00 contribute to the
conventional GR post-Newtonian metric.
To solve for the desired term δh00 we shall adopt a

standard perturbative assumption and work to leading
order in the coefficients for Lorentz violation. We make
the following coordinate choice on some of the compo-
nents of the metric,

∂jgjk = 1
2∂k(gjj − g00),

∂jg0j = 1
2∂0gjj , (15)

which matches earlier conventions [20]. It will be useful
here to introduce a common shorthand for partial deriva-
tives where ∂jkl... = ∂j∂k∂l.... The relevant equation be-
comes

−1

2
~∇2δh00 = 48(k

(8)
eff )jklmnp∂jk(∂lmU∂npU). (16)

In this equation, (k
(8)
eff )jklmnp

are effective coefficients for

Lorentz violation, given in terms of the underlying coef-
ficients in the lagrangian by the expression

(k
(8)
eff )jklmnp = (k(8))0jk00lm00np0 + (k(8))0jk0qlmq0np0

+(k(8))0jk00np0qlmq + (k(8))qjkq0lm00np0

+(k(8))0jk0qlmqrnpr + (k(8))qjkq0lm0rnpr

+(k(8))qjkqrlmr0np0 + (k(8))qjkqrlmrsnps.

(17)

These effective coefficients (keff)jklmnp have symmetry
in each of the pairs of indices jk, lm, and np. Also,
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there is pairwise symmetry under the interchanges jk ↔
lm, jk ↔ np, and lm ↔ np, bringing the number of
independent coefficient combinations in k(8) to 56.
We assume that the right-hand side of equation (16)

represents a small correction to GR. Using dimensional
analysis this implies roughly that k < L4, where L is
the typical length scale of the gravitational system, to
be consistent with the perturbative assumption. Pro-
ceeding, the Poisson-like equation (16) has the standard
integral solution

Ψ = 48(k
(8)
eff )jklmnp

∫
d3r′

∂′
jk[∂

′
lmU(r′)∂′

npU(r′)]

4π|r − r′| , (18)

where Ψ = δh00/2. From dimensional analysis, the result
of this integral could contain terms that vary with the in-
verse sixth power of the distance. However, we shall show
there are scenarios where the nonlinear nature of this po-
tential yields terms that actually vary as the inverse cubic
power of the distance, among other terms.
The integral in equation (18) is taken over all space.

For a localized gravitational system, one can show con-
vergence of the integral for large values of r′ using the
asymptotic behavior of the Newtonian potential. For
small values of r′, careful consideration is needed. The
standard use of delta functions to describe the distribu-
tion of matter for point masses fails to give a convergent
result for (18) and is therefore avoided in this treatment.
Such subtleties arise even in the treatment of general
relativistic terms at first post-Newtonian order, due to
the nonlinear nature of gravity [42, 43]. We will assume
a sufficiently well-behaved mass density function ρ(r′).
For example, to be integrable in the Newtonian potential
U (Eq. (13)), ρ must be at least a piecewise continuous
function.
For calculations to follow, we develop the integral in

(18) further. One convenient way to solve the integral in
(18) is first to express the Newtonian potentials in the
integrand in terms of the mass density using (13). Equa-
tion (18) then involves three volume integrals. To pro-
ceed further we make use of a “triangle function” which
is a three-point function G(r,y1,y2) defined by

G(r,y1,y2) =
1

4π

∫
d3r′

1

|r − r′||r′ − y1||r′ − y2|
.

(19)
The solution to this integral with the appropriate bound-
ary conditions is known and we use the result

G(r,y1,y2) = 1− ln(r1 + r2 + r12), (20)

where r1 = |r − y1|, r2 = |r − y2|, and r12 = |y1 − y2|
[43, 44]. Using this function, the integral (18) can be
written

Ψ = 48(k
(8)
eff )jklmnp

∫
d3y1

∫
d3y2ρ(y1, t)ρ(y2, t)

× ∂jkl1m1n2p2
G(r,y1,y2). (21)

The calculation of the remaining GR terms in the post-
Newtonian metric proceeds as usual from the field equa-
tion (6) using the coordinate choice (15). The complete
metric to first post-Newtonian order includes terms up
to O(v4) in g00, O(v3) in g0j and O(v2) in gjk. It is given
by

g00 = −1 + 2U + 2φ− 2U2 + 2Ψ,

g0j = − 1
2 (7V

j +W j),

gjk = δjk(1 + 2U), (22)

where V j , W j , and φ are given by

V j = GN

∫
d3r′

ρ′

|r − r′| ,

W j = GN

∫
d3r′

ρ′(r − r′)jv′k(r − r′)k

|r − r′|3 ,

φ = GN

∫
d3r′

[ρ′(2v′2 + 2U ′ +Π′) + 3p′]

|r − r′| , (23)

and a prime denotes a dependence on the integration
variables r′j . We see that for this subset of the SME
in the lagrangian (3), the only contribution to the post-
Newtonian metric is to g00 at O(v4) comprised of the Ψ
potential.

B. Binary system dynamics

Our goal is to find the equations of motion for a two-
body system comprised of gravitationally bound, or oth-
erwise, distinct bodies. To do this we shall employ a
standard method of modeling the bodies using the per-
fect fluid description, and ultimately integrating the ac-
celeration density over a given body to find the equation
of motion for its, suitably defined, center of mass. We
use a special fluid density ρ∗ = ρ

√−gu0 that satisfies
the continuity equation ∂0ρ

∗ + ∂j(ρ
∗vj) = 0 and define

the mass of a body a and its center of mass as

ma =

∫

a

d3rρ∗(t, r),

ra =
1

ma

∫

a

d3rρ∗(t, r)r. (24)

Subsequent time derivatives of ra yield the velocity va

and acceleration aa of the center of mass.
The starting point for the integration of the fluid equa-

tions over the body a is the acceleration given by

aa =
1

ma

∫

a

d3rρ∗(t, r)
dv

dt
. (25)

Into this equation, we insert an expression for ρ∗dv/dt
from the perfect fluid equations of motion Dµ(TM )µν =
0. In particular, the spatial components ν = j of these
equations yields the acceleration density

ρ∗
dv

dt
= ρ∗∇U −∇p−AGR + ρ∗∇Ψ. (26)
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On the right-hand side, the first two terms are the Newto-
nian contributions to the acceleration density, while the
third term contains the contributions from the GR post-
Newtonian terms. The latter expression can be found in
equation 44 of Ref. [20] or in standard references [41, 47].
Of primary interest is the last term involving the gradi-

ent of Ψ, which contains the contributions from the k
(8)
eff

coefficients to the fluid motion.
Equation (26) is inserted into (25) to find the accelera-

tion of the body a. The details of this calculation for the
Newtonian and GR terms can be found elsewhere [43].
The correction to the acceleration of a body a coming
from the Ψ term is given by the integral

δaa =

∫

a

d3rρ∇Ψ, (27)

where Ψ is inserted from (21). To evaluate this we in-
sert the mass density functions for each body a, b, c,
etc. into the integrals, as ρ = ρa + ρb + ρc.... Note that
these densities are localized in the neighborhood of each
body and hence affect the domains for the volume inte-
grals. This procedure breaks up the three integrals over
the variables r, y1, y2 into regions over different bodies
(abb, aab, abc, etc.). In particular, there will be an in-
tegral in which the three volume integrals are all over
body a. This we identify as the “self-acceleration” term
- it vanishes by the symmetries of the integral, which of-
fers a consistency check with the energy-momentum con-
servation law discussion in Sec. II. For the remaining
terms, due to the seven partial derivatives appearing, a
complete solution even for the case of widely separated
bodies with negligible multipole moments, and neglecting
tidal forces, is lengthy, although straightforward to com-
pute using known methods. We can classify the terms
that appear for a two-body system by their dependence
on the inverse power of the relative distance between the
two bodies a and b, r = ra−rb, where ra and rb are the
center of mass positions.
We focus on a two-body system and seek terms in (27)

with the least inverse powers of r. It turns out that a
tractable expression for the two-body acceleration with
r−4 and r−6 dependencies appears and contains a novel
dependence on the structure of the bodies. To obtain
results along these lines, an efficient way to deal with
the three-point function G that is appropriate for widely
separated bodies is needed. For example, when the vari-
ables r and y1 lie in one body, and y2 lies in a different
body, we can expand the logarithm in powers of r1/r2,
to obtain

G(r,y1,y2) = 1− ln 2− ln r2 −
r1
2

(
1

r2
+ r2n̂

j
1∂j

1

r2

)

+
r21
4

(
n̂j
1∂j

1

r2
+

r2
2
n̂j
1n̂

k
1∂jk

1

r2

)
+ ...,

(28)

where the unit vector n1 points in the direction of r1.
More details about this type of expansion can be found

in Ref. [44], where it was used for some terms in higher
post-Newtonian GR.
For this calculation, we assume perfectly spherical bod-

ies and ignore multipole moments and tidal terms over
each body. However, we do not ignore the finite size of
each body, as this plays a critical role in the result. After
some calculation, the expression for the two-body accel-
eration of body a is

aa = −GNmbn

r2
+ (aGR)a + δaa, (29)

where the first term is the Newtonian acceleration and
n = r/r. The second term contains the contributions
from GR to O(v4):

(aGR)a = −GNmb

r2

[
n
(
v2a − 4va · vb + 2v2b

− 3
2 (n · vb)

2 − 5
GNma

r
− 4

GNmb

r

)

−n · (4va − 3vb)(va − vb)
]

(30)

The Lorentz-breaking piece of the acceleration is given
by

δaja = −576πG2
Nmb(Pa + Pb)(k

(8)
eff )kl(mmnn)

n<jkl>

r4

−15120G2
Nmb[(P̃a + P̃b)(k

(8)
eff )klmnpp

+(P̃ ′
a + P̃ ′

b)(k
(8)
eff )klmpnp

]
n<jklmn>

r6
, (31)

which is valid up to terms of order 1/r7.
The directional dependence in (31) is encoded in each

of the totally symmetric and trace free combinations of
unit vectors n<jkl> and n<jklmn> that depend on the
unit vector n and the kronecker delta δjk. Such terms
are readily constructed and formulas can be found in the
literature [43, 45]. Explicitly they are given by

n<jkl> = njnknl − 1
5 (n

jδkl + nlδjk + nkδlj)

n<jklmn> = njnknlnmnn − 1
9 (n

jnknlδmn + perms)

+ 1
63 (n

jδklδmn + perms), (32)

where “perms” indicates all independent permutations
of indices; 10 total permutations for the second term in
n<jklmn> and 15 for the third term. The internal terms
in (31) are integrals for each (spherical) body given by

Pa =
1

ma

∫

a

d3rρ2a,

P̃a =
1

35ma

(
8π

∫

a

d3rρ2ar
2 + 46

Ωa

GN

)
,

P̃ ′
a =

1

35ma

(
16π

∫

a

d3rρ2ar
2 − 48

Ωa

GN

)
, (33)

where the same expressions hold for body b. Here Ωa is
the Newtonian self-energy of the body:

Ωa = −GN

2

∫

a

d3r

∫

a

d3r′
ρρ′

|r − r′| . (34)
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Certain features of this acceleration are striking.
Firstly, there is a dependence on the structure of the two
bodies via the integrals (33). In particular, body a’s ac-
celeration due to body b depends on integrals of the den-
sity over each body. This implies that the way in which
the matter in each body is distributed affects the way it
falls in the presence of another body, even in the limit
of vanishing multipole moments and tidal forces, thereby
violating the Weak Equivalence Principle for gravitation-
ally bound systems (GWEP) [46, 47]. Note that in de-
riving the two-body acceleration for the GR terms (30) it
is necessary to impose internal equilibrium conditions on
each body to eliminate the dependence of the accelera-
tion on internal structure integrals over each body. These
virial conditions involve the pressure, internal velocity,
and internal gravitational potential energy of each body.
Additionally, the mass of each body is renormalized to
include the total internal energy. Virial conditions were
necessary, for example, to derive the many-body equa-
tions for the mass dimension 4 coefficients sµν to show
that they satisfied GWEP to post-Newtonian orderO(v3)

[20]. In the present case of the k
(8)
eff coefficients, we find

that such virial conditions or mass renormalization can-
not be used to eliminate or simplify the Lorentz-violating
piece of the acceleration (31), despite the appearance of
internal structure integrals (33).
The particular nature of the GWEP violation is novel

as well. To illustrate this we will focus on just the dom-
inant inverse quartic term in the modified acceleration
(31). Suppose the two bodies have uniform densities and
radii a and b. Let the masses of each body be ma and
mb with total mass M = ma+mb. We define a weighted
inverse radius for the bodies via

1

R̄3
=

1

M

(ma

a3
+

mb

b3

)
. (35)

With these definitions, the modification to the relative
acceleration becomes

δaj ≈ −432
(GM)2

R̄3

Kkln
knlnj − 2

5Kjkn
k

r4
. (36)

The coefficients Kjk are the traceless combinations

Kjk =
1

3
[2(keff)jklmlm + (keff)jkllmm]

−δjk
1

9
[2(keff)llmnmn + (keff)llmmnn]. (37)

We can now see directly the dependence on the size of
the bodies in the system. The more compact the bodies,
the stronger the amplitude of the symmetry breaking sig-
nal. Among the strongest sources will be binary pulsar
systems and binary white dwarf systems.
The second aspect of the result, evident in either (31)

or (36), is the anisotropy of the acceleration. This is a
ubiquitous feature of Lorentz-symmetry breaking. It im-
plies the acceleration generally points in a different direc-
tion from the line between the two bodies. Note that the

directional and inverse quartic behavior of the dominant
Lorentz-breaking acceleration term does resemble an ef-
fective quadrupole contribution (Qjk ∼ Kjk). However,
Kjk is taken as a fixed background field in the gravita-
tional system while Qjk is dependent on the orientation
of each body and the distribution of matter. Note also
that while the components of Qjk decrease when mass
is concentrated toward the center of the body, the inter-
nal terms Pa and Pb increase. Nonetheless, there can be
a significant correlation with the quadrupole acceleration
term from Newtonian physics which should be taken into
account for phenomenology.
As a caution, we note that we cannot apply the re-

sults (31) or (36) to the case of black-hole orbits. Since
we are working within the post-Newtonian limit, and us-
ing the approximate quadratic-order field equations, the
results do not apply for black hole solutions. Further-
more, even if we attempted to approximate the full so-
lution for the spacetime metric for large distances, we
assumed for the derivation above that the mass density
ρ is bounded, which is inconsistent with black hole case.
A separate investigation for the case of black holes, with
the complete field equations without any weak field as-
sumptions, remains an open problem. Even for neutron
stars, our results will only be approximate as we use the
first post-Newtonian approximation in our fluid model.
In some vector models of spontaneous Lorentz violation,
it has been shown that a relativistic computation of the
structure of a neutron star can play a strong role in deter-
mining accurate limits on Lorentz violation parameters
from binary pulsar systems [32]. This issue remains an
open question in the SME for future work.

V. OBSERVATION AND EXPERIMENT

The result for a two-body system in equation (31) can
be used to calculate observable deviations from conven-
tional orbits in GR. If we focus on secular changes in
orbital elements, which can be measured in binary pul-
sar system orbits and solar-system tests, we can calculate
directly from equation (31) using standard methods. For
simplicity of presentation here, we omit the O(1/r6) and
higher terms in the acceleration expression (31) and use
the truncated version (36). After some calculation we
find no change in the semi-major axis a and eccentricity
e of a Keplerian ellipse when averaged over one orbit.
The inclination i, angle of nodes Ω, and periastron angle
ω change according to

〈
di

dt

〉
=

432an3(cosωKPk − sinωKQk)

5(1− e2)2R̄3
,

〈
dΩ

dt

〉
=

432an3 csc i(sinωKPk + cosωKQk)

5(1− e2)2R̄3
,

〈
dω

dt

〉
=

216an3

5(1− e2)2R̄3
[KPP +KQQ − 2Kkk

−2 cot i(sinωKPk + cosωKQk)], (38)
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TABLE I: Estimated sensitivity level for different test scenar-
ios. In the case of solar system and binary pulsar tests, the

sensitivity is to the Kjk subset of the (k
(8)
eff )jklmnp coefficients.

For gravimeter and short-range tests, the sensitivity refers to

the relevant components of (k
(8)
eff )jklmnp.

Test Sensitivity to k
(8) (in km4)

solar system 1021

gravimeter 1013

binary pulsar 105

short range 10−1

where P , Q, and k are three unit vectors describing the
orientation of the orbit (P is along the peristron, k is
normal to the orbital plane, and P×Q = k), and n is the
angular frequency of the orbit. In this expression we have
projected the coefficients Kjk along these unit vectors
[20]. The last orbital element is the mean anomaly l0. It
is straightforward to calculate but omitted here since it
typically does not impact phenomenology.
The results in (38) bear a close resemblance to the

precessions in the minimal SME from the coefficients sµν
and aµ [20, 23]. In fact, for small eccentricity, the combi-
nation of coefficients sinωKPk + cosωKQk matches the
combination of sµν coefficients sinωsPk+cosωsQk in the
expressions for the secular change in the angles Ω and ω
but with a different amplitude. To estimate the sensitiv-
ity of orbital analysis to the five measurable coefficients
Kjk, we can use the limits placed on the spatial sjk coef-
ficients from planetary ephemeris and binary pulsar anal-
ysis [11, 15]. We use the order of magnitude expression
sjk ∼ Kjk × 170n2a/R̄3 and assume sjk is limited at the
10−10 level, to obtain the crude estimates in the Table
I. For solar-system ephemeris tests, the factor in front
of Kjk differs by about 4 orders of magnitude between
Mercury’s orbit and Saturn’s orbit, with Mercury hav-
ing the largest factor due to its compactness. We adopt
the value for Earth, for which sjk ∼ Kjk × 10−31 km−4.
For binary-pulsar tests, the situation is much more fa-
vorable due to the compactness of pulsars, and we find
sjk ∼ Kjk × 10−15 km−4 for typical systems. Using mul-
tiple orbits or binary pulsar systems oriented differently,
one can disentangle the different components of Kjk (re-
ferring them to a standard coordinate system - the Sun-
centered Celestial equatorial system), as was done for the
minimal coefficients sµν and aµ. Additional components

of (k
(8)
eff )jklmnp

are also of interest, and the secular preces-

sions can readily be calculated using (31), with sensitivity
suppressed by a factor of roughly (R̄/r)2 relative to Kjk.
Also appearing in Table I are estimated sensitivities

for short-range tests of gravity and Earth laboratory
gravimeter tests. Rather than the specific result in (31),
we use dimensional analysis based on the general integral
expression for acceleration (27) to estimate these sensi-
tivities. This is because the terms in (31) varying with
higher powers of the inverse distance between the two

masses will play a crucial role once the radius of the bod-
ies and the interbody distances are comparable (R̄ ∼ r).
The ratio of the modified acceleration δa to the New-
tonian acceleration is approximately GNm48k

(8)
eff /(c

2L5)
where L is the length scale of the experiment, and c is the

speed of light inserted for the proper units of k
(8)
eff . Using

this crude estimate, we find that short-range gravity tests
are likely to be the most sensitive to the coefficients in the
modified acceleration (27). Compared to orbital tests,
the masses involved are miniscule in short-range gravity
tests (about 1g), but the distances are vastly smaller and
the force can vary as the inverse seventh power of distance
by dimensional analysis - thus strengthening the ampli-
tude of the signal. For gravimeter tests, the source is the
Earth and distances are much larger so we don’t expect
these tests to be as sensitive. Note that for short-range
gravity tests and free-fall experiments near the Earth,
the full expression for the acceleration is needed and the
approximate result (31) does not suffice.
It is useful to consider how the signal from General Rel-

ativity compares in these scenarios. Roughly speaking,
the ratio of the first post-Newtonian acceleration in GR
to the Newtonian acceleration is given by the dimension-
less factor GNm/(c2r), as can be seem from (30). This
factor is miniscule for laboratory masses (∼ 10−28) and
still small but in principle observable for gravimeter tests
(∼ 10−10) [48]. However, the modified (point-mass) ac-
celeration in GR is either proportional to velocity terms
which are negligible, or scales the usual Newtonian accel-
eration and is therefore unlikely to interfere with Earth-
laboratory tests seeking the Lorentz-breaking accelera-
tion in (27).
For orbital tests, analysis can proceed using (31) or

(36) so long as the interbody distance is sufficiently large
compared to the size of the bodies in the system. When
considering short-range gravity tests [50], it is necessary
to work out the full integral in (27), along with the New-
tonian force to obtain the needed total force between two
laboratory test bodies. However, analysis usually pro-
ceeds by using the point-mass force expression in a nu-
merical integration code, along with modeling of the ex-
periment. In the present case, the point mass expression
cannot be defined properly. The starting point instead
would be the integral expression for the acceleration of
body a due to body b, displayed in equation (27), which
can be evaluated numerically for a given distribution of
mass. The seven partial derivatives inside the integral
can be calculated in a straightforward manner but result
in a lengthy expression inside the integrand - this could
also be implementation numerically.
In principle then, short-range gravity tests can measure

a subset of the coefficients (k
(8)
eff )jklmnp

in the laboratory

frame. As with other SME coefficients, they are consid-
ered constant in the canonical, approximately inertial,
Sun-centered frame (SCF) [5, 49]. Neglecting boost ef-
fects from the Earth’s velocity, a rotation RjJ dependent
on the the Earth’s sidereal frequency ω⊕ is needed to re-
late the lab frame to the SCF. Specifically, the coefficients
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are transformed according to

(k
(8)
eff )jklmnp

= RjJRkKRlLRmMRnNRpP (k
(8)
eff )JKLMNP

,

(39)
where the components in the SCF are denoted with cap-
ital letters. The laboratory-frame coefficients are thus
time dependent and can potentially modulate the mea-
sured force with up to 6th-order harmonics in the fre-
quency ω⊕. As with the mass dimension 6 coefficients
explored in Ref. [25], the relevant short-range tests are
those that satisfy the perturbative criteria, which im-
plies that sensitivity at the level of the Newtonian force
between the masses is needed.
What can be said about the possible sizes of the coef-

ficients (k(8))ABC? The SME effective field theory frame-
work describes a broad class of possible effects, and does
not make specific predictions concerning the sizes of these
coefficients. However, the inherent weakness of gravity
compared to the other forces in nature evidently leaves
room for violations of space-time symmetry that are large
compared to other sectors. Consider the current lim-
its on coefficients in the gravity sector. For the coeffi-
cients sµν , the best laboratory limits are at the 10−10

level, with improvements of up to four orders of magni-
tude in astrophysical tests on these dimensionless coef-
ficients [16]. However, for the mass dimension 6 coeffi-

cients (k
(6)
1 )κλµναβ and (k

(6)
2 )κλµναβγδ, the limits are at

the 10−8m2 level. When compared to the Planck length
10−35m, it is evident that symmetry breaking effects that
are not Planck suppressed could still have escaped detec-
tion. This kind of “countershading” occurs for matter-
gravity couplings such as the aµ coefficients and in other
sectors [22, 51]. This theme continues for the mass di-
mension 8 coefficients k(8) in the cubic couplings consid-
ered in this work, where coefficients as large as 1 km4

could have escaped detection. Note also that any partic-
ular model that matches the form of the lagrangian (3)
will be subject to any limits garnered from the analysis
herein.

VI. SUMMARY

In this work we studied a cubic curvature coupling de-
scribing general Lorentz and diffeomorphism symmetry
breaking for gravity, as part of the general effective field
theory expansion of the SME. The basic lagrangian for
this coupling is given in equation (3) and the degree of
symmetry breaking is described by the set of coefficient
fields (k(8))αβγδκλµνǫζηθ with inverse quartic mass dimen-
sion. We studied the field equations for the spacetime
metric up to quadratic order in an expansion around a

flat background (6) and assuming spontaneous Lorentz-
symmetry breaking. The cubic coupling term provides a
readily calculable example of the effects of Lorentz and
diffeomorphism symmetry breaking at second order in
the metric fluctuations hµν in the SME framework. The
field equations also satisfy the conservation laws expected
of spontaneous symmetry breaking to quadratic order in
the metric fluctuations hµν .

The remainder of the paper explored the phenomeno-
logical consequences of the field equations for gravita-
tional waves and post-Newtonian physics. In Sec. III,
we showed some key null results. Firstly, the propaga-
tion and dispersion of gravitational waves is unaffected
by the cubic coupling form of Lorentz breaking that we
consider. Second, the energy and momentum loss for
a binary system radiating gravitational waves to spatial
infinity remains standard upon averaging over an orbital
time scale.

In Sec. IV, we focused on the weak-field, slow motion
limit and derived the post-Newtonian metric in Eq. (22).
The cubic curvature coupling term in the SME results in
an O(v4) correction to the metric components g00 com-
prised of the potential Ψ given in Eq. (18). We mod-
eled matter as a perfect fluid and used this to derive the
acceleration of a massive self-gravitating body in a two-
body system. The modification to the GR acceleration
is given in Eq. (31) and contains GWEP-violating de-
pendence on internal structure. The Lorentz-breaking
effects in the post-Newtonian limit are controlled by

a subset (k
(8)
eff )jklmnp

of 56 combinations of the full

(k(8))αβγδκλµνǫζηθ set of coefficients from the lagrangian,
thus making analysis in this limit more tractable.

In Sec. V, we focused on the two-body acceleration and
considered observations with binary pulsars and solar-
system tests. We found the strongest sensitivity is likely
to be with short-range gravity tests involving controlled
laboratory masses, since the strength of the signal grows
dramatically with the decreasing separation of masses. A
crude estimate of the sensitivity for different categories
of tests is provided in Table I. Similar to other SME
coefficients, the cubic coupling coefficients exhibit a kind
of countershading, where the weakness of gravity can hide
comparatively large Lorentz violation.
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[37] V.A. Kostelecký and M. Mewes, Phys. Rev. D 80, 015020
(2009).

[38] S.A. Fulling et al., Class. Quant. Grav. 9, 1151 (1992).
[39] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); J. Goldstone,

Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam,
and S. Weinberg, Phys. Rev. 127, 965 (1962).

[40] T. C. Sisman, I. Gullu, and B. Tekin, Class. Quant. Grav.
28, 195004 (2011).

[41] C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravita-

tion (Freeman, San Francisco, 1973).
[42] L. Blanchet and G. Faye, J. Math. Phys. 41, 7675 (2000).
[43] E. Poisson and C. Will, Gravity, Cambridge University

Press, 2014.
[44] M.E. Pati and C.M. Will, Phys. Rev. D 65, 104008

(2002).
[45] C.M. Will and A.G. Wiseman, Phys. Rev. D 54, 4813

(1996).
[46] K. Nordvedt, Phys. Rev. 169, 1017 (1968).
[47] C.M. Will, Theory and Experiment in Gravitational

Physics (Cambridge University Press, Cambridge, Eng-
land, 1993).

[48] V.B. Braginsky, C.M. Caves, and K.S. Thorne, Phys.
Rev. D 15, 2047 (1977).
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