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We obtain a large class of new 4d Argyres-Douglas theories by classifying irregular punctures
for the 6d (2, 0) superconformal theory of ADE type on a sphere. Along the way, we identify the
connection between the Hitchin system and three-fold singularity descriptions of the same Argyres-
Douglas theory. Other constructions such as taking degeneration limits of the irregular puncture,
adding an extra regular puncture, and introducing outer-automorphism twists are also discussed.
Later we investigate various features of these theories including their Coulomb branch spectrum and
central charges.

I. INTRODUCTION

Four dimensional N = 2 superconformal field theories
(SCFT) play an unusual role in the space of SCFTs across
various dimensions: (1). there are various interesting
IR dynamics such as the existence of a moduli space of
vacua with many interesting phase structures; (2). often
many aspects of the theories such as low energy effective
action and BPS spectrum can be solved exactly. The
investigation of these theories can teach us many lessons
about generic features of quantum field theory such as
confinement, renormalization group flow, etc.

The space of N = 2 SCFTs is enlarged tremendously
since the discovery of Seiberg-Witten (SW) solutions
[1, 2]. One can engineer many Lagrangian theories from
N = 2 Super Yang-Mills (SYM) coupled to free hyper-
multiplets. More recently, it is found that strongly cou-
pled matter system such as TN theories can also be used
to construct new SCFTs [3], known as Class S theories,
which greatly increases the repertoire of known theories.
These theories have one distinguished feature that all
BPS operators on the Coulomb branch[4] have integer
scaling dimensions.

There is another type of N = 2 SCFTs called
Argyres-Douglas (AD) theories [5]. These are intrin-
sically strongly coupled theories, the first instance of
which was originally discovered at a certain point on the
Coulomb branch of the pure N = 2 SU(3) theory. Un-
like familiar SCFTs, such as N = 2 SU(2) SYM coupled
to four fundamental flavors, the AD theory has some
unusual properties: first the scaling dimensions of the
Coulomb branch BPS operators are fractional, and sec-
ond there are relevant operators in the spectrum. These
special features make AD theories a particularly useful
class of models from which we can study generic fea-
tures of conformal field theory, for example the RG flow
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between various fixed points [6]. By looking at special
points on the Coulomb branch of other gauge theories,
new examples with an ADE classification has been found
[7, 8]. More recently, a further remarkable generaliza-
tion of these theories which are called (G,G′) theories[9]
are engineered using type IIB string theory construction
[10, 11].

In [12], a large class of newN = 2 AD theories has been
constructed using A type M5 brane construction (see [13–
15] for theories engineered using A1 (2, 0) theory): one
can engineer four dimensional SCFTs by putting 6d An−1
(2,0) theory on a punctured Riemann surface. To get a
SCFT (within the construction of [12]), one must use
a sphere with one irregular puncture, or a sphere with
one irregular and one regular puncture. The classifica-
tion of irregular punctures is very rich, and in particular
one can also reproduce theories which are originally en-
gineered using regular punctures on sphere [12]. These
lessons suggest that the Argyres-Douglas theories con-
stitute actually a much larger class of N = 2 theories
than the usual Class S theories with integral Coulomb
branch spectrum, and it is interesting to further enlarge
the theory space.

The main purpose of this paper is to generalize the
A type construction of [12] to other types of (2, 0) the-
ory labelled by J . The major problem in the M5 brane
construction is to classify the irregular singularities [16],
which we find to take the following universal form:

Φ =
T

z2+k/b
+ · · · . (1)

Here Φ is the holomorphic part of the Higgs field which
describing the transversal deformation of M5 branes of
J = A,D,E type. T is a regular semi-simple element of
J and k > −b is an arbitrary integer. The allowed set
of values for b is given in Table I and the choice of T in
general depends on that of b.

Given the structure of the singularity, one can obtain
the SW solution by computing the spectral curve of the
Hitchin system det(x−Φ) = 0. Moreover, we can directly
map the corresponding N = 2 AD theory to a 3-fold

mailto:yifanw@mit.edu
mailto:dxie@cmsa.fas.harvard.edu


2

J allowed b
AN−1 N, N − 1
DN 2N − 2 N
E6 12, 9, 8
E7 18, 14
E8 30, 24, 20

TABLE I. Allowed denominators for irregular singularities.

isolated singularity using the spectral curve (see Table II
and Figure 3).

J Singularity b

AN−1 x2
1 + x2

2 + xN3 + zk = 0 N

x2
1 + x2

2 + xN3 + xzk = 0 N − 1

DN x2
1 + xN−1

2 + x2x
2
3 + zk = 0 2N − 2

x2
1 + xN−1

2 + x2x
2
3 + zkx3 = 0 N

E6 x2
1 + x3

2 + x4
3 + zk = 0 12

x2
1 + x3

2 + x4
3 + zkx3 = 0 9

x2
1 + x3

2 + x4
3 + zkx2 = 0 8

E7 x2
1 + x3

2 + x2x
3
3 + zk = 0 18

x2
1 + x3

2 + x2x
3
3 + zkx3 = 0 14

E8 x2
1 + x3

2 + x5
3 + zk = 0 30

x2
1 + x3

2 + x5
3 + zkx3 = 0 24

x2
1 + x3

2 + x5
3 + zkx2 = 0 20

TABLE II. 3-fold singularities corresponding to our irregular
punctures.

Once the basic irregular punctures are identified, there
are three variations which give rise to new theories:

• We can take degeneration limits for some punc-
tures, namely, the eigenvalues of the matrices in
defining the irregular singularity can become de-
generate.

• We can add another regular puncture, so as to ob-
tain theories with non-abelian flavor symmetry.

• If J has a nontrivial outer-automorphism group,
we can introduce twists on the punctures. This is
only possible for a sphere with one irregular and
one regular puncture.

Using these constructions, we can find a lot more new
theories with various intriguing features.

This paper is organized as follows. In Section II we re-
view the basic features of AD theories and their type IIB
constructions. Section III presents the classification of
irregular punctures (singularities) in the M5 brane con-
struction, as well as their relation to IIB isolated quasi-
homogeneous singularities. Section IV gives a detailed
study of twisted irregular punctures. In Section V we
discuss some properties such as spectrum and central
charges of the AD theories that we have constructed.
Finally we conclude in Section VI with a discussion of
potential directions.

II. GENERALITY ABOUT
ARGYRES-DOUGLAS THEORIES

A. Basic features

The first Argyres-Douglas type theory was found as
the IR theory at a special point on the Coulomb branch
of N = 2 pure SU(3) gauge theory [5]. At this point,
besides the massless photons there are two extra mutu-
ally non-local massless dyons, and it was argued that the
IR theory has to be a strongly-coupled interacting SCFT
[5, 17]. This theory has no Higgs branch, and has a one
dimensional Coulomb branch. The Seiberg-Witten curve
of this theory can be written as:

x2 = z3 + u1z + u2, (1)

with Seiberg-Witten differential λ = xdz. Since the in-
tegral of λ along one cycle of SW curve gives the mass
of the BPS particles, its scaling dimension has to be one,
which implies that the scaling dimensions of x, z satisfy
the condition:

[x] + [z] = 1. (2)

By requiring each term in the SW curve to have the same
scaling dimension, we find

[x] =
3

5
, [z] =

2

5
, [u1] =

4

5
, [u2] =

6

5
. (3)

u1 has scaling dimension less than one and therefore it
is a coupling constant, while u2 is a relevant operator
parametrizing the Coulomb branch. For a N = 2 pre-
serving relevant deformation, the sum of scaling dimen-
sions of coupling constant m and the relevant operator u
has to be equal to two: [m] + [u] = 2. The distinguished
feature of AD theories among the N = 2 SCFTs is that
the Coulomb branch operators have fractional scaling di-
mension and they possess relevant operators.

The original method of locating AD theories on the
Coulomb branch of N = 2 gauge theory has been gen-
eralized to SU(2) with various flavors in [18], and it is
further generalized to N = 2 theory with general gauge
group G and fundamental matter in [7, 8, 17]. The AD
theory from pure SU(n+ 1) gauge theory can be labeled
as (A1, An) theory, and those from SO(2n) gauge theory
correspond to (A1, Dn), and finally those derived from En
gauge theory are labeled as (A1, En). These labels denote
the shape of BPS quiver of the corresponding SCFTs.

Over the past decade, there have been many excit-
ing developments in the study of these strongly coupled
SCFTs, including the BPS spectrum [11, 19–24], cen-
tral charges and RG flows [6], AGT duality [25], boot-
strap [26], superconformal indices [27–29] and S-dualities
[30, 31] etc.
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B. Type IIB construction

We can engineer a large class of 4d N = 2 SCFTs by
considering type IIB string theory on an isolated hyper-
surface singularity in C4 defined by a polynomial:

W (x1, x2, x3, x4) = 0, (4)

while decoupling gravity and stringy modes.
Without loss of generality we assume the singular point

is the origin and the isolated singularity condition means
dW = 0 if and only if xi = 0. The holomorphic 3-form
on the three-fold singular geometry is given by

Ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

dW
. (5)

For the resulting 4d theory to be superconformal, the
necessary and sufficient conditions on W are [10, 32]:

1. There exists a C∗ action on W : a collection of pos-
itive charges {qi} such that W (λqixi) = λW (xi).
This is related to the scaling symmetry (or U(1)R
symmetry) of the resulting 4d N = 2 SCFT.[33]

2. The C∗ charges have to satisfy the condition
∑
qi >

1.[34]

The full Seiberg-Witten geometry of the 4d SCFT can be
derived from the mini-versal (universal deformation with
minimal base dimension) deformations of the singularity
which takes the form [35]

F (xi, λa) = W (xi) +

µ∑
a=1

λaφa. (6)

Here φa is the monomial basis of the local quotient alge-
bra

AW =
C[x1, x2, x3, x4]

JW
(7)

where

JW = 〈∂W
∂x1

,
∂W

∂x2
,
∂W

∂x3
,
∂W

∂x4
〉 (8)

is the Jacobian ideal.
The complex structure deformations λa of the sin-

gularity correspond to the parameters on the Coulomb
branch of the N = 2 4d SCFT. The Milnor number
µ ≡ rankAW associated with the singularity captures
the rank of the BPS lattice. The BPS particles corre-
spond to D3 branes wrapping special-Lagrangian cycles
in the deformed 3-fold. Again one can define a three

form Ω = dx1∧dx2∧dx3∧dx4

dF , whose integral over a special
Lagrangian three cycle gives the mass of the BPS parti-
cle. Demanding the integral of Ω to have mass dimension
one, we deduce the scaling dimension of the deformation
parameters as

[λa] = α(1− q(φa)), (9)

where q(φa) is the C∗ charge of monomial φa and

α =
1∑4

i=1 qi − 1
. (10)

They capture the Coulomb branch parameters of the 4d
N = 2 SCFT.

Cecotti-Neitzke-Vafa constructed a large class of new
AD theories by putting type IIB theory on the following
special class of isolated hyper surface singularities [11]:

fG(x1, x2) + fG′(x3, x4) = 0. (11)

Here fG(x, y) is a polynomial of the following types

fAk
(x, y) = x2 + yk+1,

fDk
(x, y) = x2y + yk−1,

fE6
(x, y) = x3 + y4,

fE7
(x, y) = x3 + xy3,

fE8(x, y) = x3 + y5.

(12)

These theories are called (G,G′) theories, and the scaling
dimension of various operators have a common denomi-
nator [11]

r =
1

4

hG + hG′

gcd(hG/2, hG′/2)
, for G,G′ = A1, D2n, E7, E8

r =
hG + hG′

gcd(hG, hG′)
, other cases.

(13)

By looking at the defining data of these theories and reor-
ganizing the monomials parametrizing the deformations,
one notices the following obvious equivalences among
these theories

(G,G
′
) ∼ (G

′
, G),

(A1, E6) ∼ (A2, A3), (A1, E8) ∼ (A2, A4), . . . (14)

The BPS quiver for these theories is given by the direct
product of G and G′ type Dynkin diagram. In particular,
the dimension of the charge lattice Γ is

dim Γ = 2nc + nf = rank (G)× rank (G
′
). (15)

Here nc is the dimension of Coulomb branch and nf
counts the number of mass parameters.

In additional to these (G,G′) theories, one can engi-
neer a large class of new N = 2 SCFTs by classifying the
isolated hypersurface singularity with a C∗ action satis-
fying the conditions

∑
qi > 1 [36], see [37, 38] for earlier

sporadic examples. We will see below that some of them
can be also engineered using M5 brane constructions.[39]

The connection between the IIB string theory and M5
brane constructions are most transparent in the case of
(Ak−1, An−1) theories [11, 40]. In that case, IIB string
theory on the singular 3-fold xk + zn + y2 + w2 = 0 is
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T-dual to IIA NS5 brane wrapped on the singular al-
gebraic curve xk + zn = 0 at y = w = 0. Lifting to
M-theory, we have a M5 brane wrapping the same curve.
The deformations xizj of the curve which describe the
Coulomb branch of the AD theory are identified with
complex structure deformations of the three-fold singu-
larity in the IIB picture. Although such explicit duality
transformation is absent in general, we can still argue by
comparing the derived Coulomb branch spectrum that a
special class of IIB isolated singularities are related to
M5 brane configurations.

Recently, there has been an attempt in [41, 42] to clas-
sify N = 2 rank one SCFTs using Kodaira’s classification
of degeneration of elliptic fibrations. It would be inter-
esting to see if we can find new rank one theories using
3-fold singularities.

III. CLASSIFICATION OF IRREGULAR
SINGULARITIES

A. A type irregular singularities

One can also engineer four dimensional N = 2 SCFTs
by putting 6d AN−1 (2, 0) theory on a Riemann surface
C with regular (tame) or irregular (wild) singularities [3,
12, 43]. The SW curve Σ of the corresponding field theory
can be identified with the spectral curve of the Hitchin
system defined on C [44, 45]:

det(x− Φ) = 0→ xN +

N∑
i=2

εix
N−i = 0. (1)

Here Φ ∈ H0(C, End(E)
⊗
KC) is the Higgs field

transforming as a holomorphic section of the bundle
End(E)

⊗
KC [46], and εi is holomorphic section of the

line bundle Ki
C . Moreover the Seiberg-Witten differential

is just λ = xdz.
The singularity is characterized by the singular bound-

ary condition of the Higgs field. In particular the regular
singularity means that the Higgs field has a first order
pole:

Φ =
T

z
+ . . . (2)

where we have suppressed the regular terms and T is
a nilpotent element of the Lie algebra An−1. Using the
gauge invariance of the Hitchin system, the regular punc-
tures are classified by the nilpotent orbits which can be
labelled by a Young Tableaux [d1, d2, . . . , dk] [3]. See Fig-
ure 1 for some examples [47].

One can decorate the Riemann surface C with an ar-
bitrary number of regular singularities. The Coulomb
branch chiral primaries of the resulting 4d N = 2 SCFT
have integer scaling dimensions and therefore there are no
relevant chiral primaries in their Coulomb branch spec-
trum.

Full: [4] Simple: [2,1,1] General: [3,1]

FIG. 1. Regular punctures of A3 theories.

To get an Argyres-Douglas theory, we need to use irreg-
ular singularities. This program has been implemented
in [12] for 6d An−1 theory (see [13–15] for construction
in A1 case). Due to the requirement of superconformal
invariance, one can have only the following two scenarios
[12]: a. a single irregular singularity on P1; b. an ir-
regular singularity and a regular singularity on P1. The
irregular singularities have been classified in [12], and
they take the following forms:

Φ =
T

zr+2
+ . . . , r =

j

n
, Type I

Φ =
T

zr+2
+ . . . , r =

j

n− 1
, Type II

Φ =
T`
z`

+ . . .+
T1
z

+ . . . , T` ⊆ T`−1 ⊆ · · · ⊆ T1, Type III

where we used the usual partial ordering of Young
tableau Ti via containment or more generally the par-
tial ordering of associated nilpotent orbits.

For type I and type II theories, the SW curve can be
read from the Newton polygon which captures the leading
order behavior of the singularity. Assume the singularity
has the following form

Φ ∼

B1

. . .
Bk

 (3)

Here Br are all diagonal and the order of pole satisfy-
ing the condition r1 < r2 . . . < rk. The size of those
blocks sum up to N : d1 + . . . + dk = n. The Newton
polygon is depicted by starting with the point (n, 0), and
locating a point (ai, bi) such that the line connecting the
above two points have slope ri; next we find another
point (ai−1, bi−1) such that the subsequent slope is ri−1
etc. See Figure 2 for the Newton polygons of type I and
type II singularities.

Once the Newton polygon is given, one can find out the
full Seiberg-Witten curve Σ by enumerating the integral
points contained in the Newton polygon, i.e. we associate
to a marked point with coordinate (i, j) a monomial xizj ,
and the SW curve is simply∑

(i,j)∈S

ui,jx
izj = 0, (4)

where the coefficients label the parameters of the
Coulomb branch of the AD theory.



5

xα

zβ

xα

zβ

FIG. 2. Type I and II irregular singularities in A2 theories.

One can find the scaling dimensions of these param-
eters by demanding each term in (4) to have the same
scaling dimension and that the SW differential λ = xdz
has scaling dimension one. Among the parameters of
the physical theory, couplings are given by those with
[ui,j ] < 1, Coulomb branch operators if [ui,j ] > 1 and
masses if [ui,j ] = 1. For type I and type II theory, some
of the deformations are not allowed [48], see Figure 2 for
the integer points labeled by the empty dots under the
Newton polygon.

Now we would like to provide a different justification
for why there are only type I and type II irregular sin-
gularities. At the origin of the Coulomb branch moduli
space, the SW curves for type I and type II theories are

xn + zk = 0 Type I,

xn + xzk = 0 Type II. (5)

The spectral curve of the An−1 type Hitchin system may
be written as the three-fold form

x21 + x22 + xn3 +

n∑
i=2

εi(z)x
n−i
i = 0. (6)

Here εi(z) ∈ Ki and is a polynomial in z. We would like
to have an isolated singularity at the origin, and the only
two possibilities are the following:

x21 + x22 + xn3 + zk = 0, Type I,

x21 + x22 + xn3 + xzk = 0. Type II. (7)

J dim J h {di}i=1,..., rank (J)

An−1 n2 − 1 n 2, 3, . . . , n
Dn n(2n− 1) 2n− 2 2, 4, . . . , 2n− 2;n
E6 78 12 2, 5, 6, 8, 9, 12
E7 133 18 2, 6, 8, 10, 12, 14, 18
E8 248 30 2, 8, 12, 14, 18, 20, 24, 30

TABLE III. Relevant Lie algebra data: h denotes the Coxeter
number and {di} are degrees of the fundamental invariants .

Forgetting the first two quadratic terms which are rigid,
we see that the classification of the irregular singularities
in the A type Hitchin system boils down to, in the IIB
perspective, two types of isolated three-fold hypersurface
singularities in (7) among the ones with the form of (6).

B. General case

Now we would like to generalize the classification of
irregular singularities to other type of 6d (2, 0) theory
labelled by a Lie algebra J = D,E. We still use z to
denote the coordinate on P1 and declare that the Higgs
field has the following form near z = 0,

Φ = B + . . . . (8)

Here B is the singular term which can be put in the
following block-diagonal form:

Φ ∼

B1

. . .
Bk

+ . . . (9)

with the order of pole for various blocks ordered as r1 <
r2 < . . . < rk.

For D type theory we use the fundamental represen-
tation, while for E type theory we use the adjoint repre-
sentation for the polar matrices appearing in the above
description. The physics should not depend on the rep-
resentation we are using [49].

We would like to determine what kind of combination
of ri and forms of Bi are needed to define a SCFT. This
may be done using the similar method which has been
used in [12] for type A case.

However, given the correspondence between A type ir-
regular singularities in the Hitchin system on C from the
M5 brane perspective and isolated singularities of the
form (7) in IIB geometry, we find it more convenient to
generalize the classification of A type irregular singular-
ities in the language of IIB isolated singularities.

To begin with, let’s review some properties of D type
and E type Hitchin system. For D type theories, the SW
curve looks like

x2n +

n−1∑
i=1

ε2i(z)x
2n−2i + (ε̃n(z))2 = 0. (10)
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Here ε2i ∈ K2i for i = 1, . . . , n − 1 and ε̃n(z) ∈ Kn.
The novelty here compared to the type A discussion is
that the term constant in x is constrained to be a perfect
square. The coefficients in these differentials parameter-
ize the Coulomb branch of the 4d SCFT. The spectral
curve for the E type Hitchin system is much more com-
plicated due to constraints among the differentials. Here
the important fact for us is that the independent invari-

ant polynomials parameterizing the Coulomb branch are

E6 : ε2(z), ε5(z), ε6(z), ε8(z), ε9(z), ε12(z),

E7 : ε2(z), ε6(z), ε8(z), ε10(z), ε12(z), ε14(z), ε18(z),

E8 : ε2(z), ε8(z), ε12(z), ε14(z), ε18(z), ε20(z), ε24(z),

ε30(z). (11)

The above differentials are holomorphic sections of var-
ious line bundles εi(z) ∈ Ki over C. To utilize IIB de-
scription, one can put the SW curve in the three-fold
form [40]:

An−1 : x21 + x22 + xn3 + ε2(z)xn−23 + . . .+ εn−1(z)x3 + εn(z) = 0,

Dn : x21 + xn−12 + x2x
2
3 + ε2(z)xn−22 + . . .+ ε2n−4(z)x2 + ε2n−2(z) + ε̃n(z)x3 = 0,

E6 : x21 + x32 + x43 + ε2(z)x2x
2
3 + ε5(z)x2x3 + ε6(z)x23 + ε8(z)x2 + ε9(z)x3 + ε12(z) = 0,

E7 : x21 + x32 + x2x
3
3 + ε2(z)x22x3 + ε6(z)x22 + ε8(z)x2x3 + ε10(z)x23

+ ε12(z)x2 + ε14(z)x3 + ε18(z) = 0,

E8 : x21 + x32 + x53 + ε2(z)x2x
3
3 + ε8(z)x2x

2
3 + ε12(z)x33+

ε14(z)x2x3 + ε18(z)x23 + ε20(z)x2 + ε24(z)x3 + ε30(z) = 0. (12)

Now εi(z) are polynomials in z, and we would like to
find out the choice of εi to turn on such that there is an
isolated singularity at the origin.

Three-fold hypersurface singularities of the form (12)
are called compound Du Val (cDV) singularities in sin-
gularity theory [50].

Singularity
Leading order

differential Label

An−1 x2
1 + x2

2 + xn3 + zk = 0 εn = zk A
(n)
n−1[k]

x2
1 + x2

2 + xn3 + zkx3 = 0 εn−1 = zk A
(n−1)
n−1 [k]

Dn x2
1 + xn−1

2 + x2x
2
3 + zk = 0 ε2n−2 = zk D

(2n−2)
n [k]

x2
1 + xn−1

2 + x2x
2
3 + zkx3 = 0 ε̃n = zk D

(n)
n [k]

E6 x2
1 + x3

2 + x4
3 + zk = 0 ε12 = zk E

(12)
6 [k]

x2
1 + x3

2 + x4
3 + zkx3 = 0 ε9 = zk E

(9)
6 [k]

x2
1 + x3

2 + x4
3 + zkx2 = 0 ε8 = zk E

(8)
6 [k]

E7 x2
1 + x3

2 + x2x
3
3 + zk = 0 ε18 = zk E

(18)
7 [k]

x2
1 + x3

2 + x2x
3
3 + zkx3 = 0 ε14 = zk E

(14)
7 [k]

E8 x2
1 + x3

2 + x5
3 + zk = 0 ε30 = zk E

(30)
8 [k]

x2
1 + x3

2 + x5
3 + zkx3 = 0 ε24 = zk E

(24)
8 [k]

x2
1 + x3

2 + x5
3 + zkx2 = 0 ε20 = zk E

(20)
8 [k]

TABLE IV. Isolated quasi-homogeneous cDV singularities.

It is straightforward to prove (see Appendix A for de-
tails) that

The isolated quasi-homogeneous 3-fold singulari-
ties of cDV type are precisely the ones listed in
Table IV.

We would like to find the form of the irregular singu-
larity for the Higgs field Φ on C such that the leading
order differential (which defines the singularity) is given
by the terms listed in Table IV. In other words, we want
to identify the Hitchin system that describes the same
Coulomb branch spectrum of some N = 2 SCFT as does
the IIB singular geometry.

It is straightforward to check by explicitly comparing
the Coulomb branch parameters from the spectral curve
of the Hitchin system with those from the complex struc-
ture deformations of the 3-fold singularity (see subsec-
tion III C 1 for an illustration in D-type theories) that
the Higgs field has the following singular form

Φz =
T

z2+k/b
+ . . . , (13)

where T is a regular semi-simple element of the Lie al-
gebra J and the possible values of b are listed in Table I
which are in one to one correspondence with the degrees
of the leading order differentials in Table IV [51]. Those
are the irregular singularities that we are going to focus
in this paper and we denote the resulting N = 2 SCFT
by J (b)[k]. We summarize the connections between the
AD theory and its various descriptions in Figure 3.

When the allowed denominator b is taken to be the
dual Coxeter number h of the corresponding Lie algebra
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Coulomb Branch of
AD theory J (b)[k]
66

Defo
rm
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((
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cDV Singularity WJ [b, k]
IIB description

oo //
Hitchin System (J,Φ[b, k])
with Irregular Singularity
M5 brane description

FIG. 3. Connection between AD theory, cDV singularity, and Hitchin system.

J , the 4d N = 2 SCFT J (h)[k] engineered using this
singularity corresponds to the (J,Ak−1) theory of [11]
reviewed in the previous section. Moreover, most of the
theories constructed in [37, 38] using Arnold’s unimodal
and bimodal singularities [35] are also included in our
construction [52].

Interestingly Table I also shows up in the discussion of
non-degenerate [53] Hitchin systems with irregular sin-
gularities for which the Higgs field has a leading polar
matrix of the regular semi-simple type (go to a covering
space of the z plane if necessary) [54, 55]. We start with
a irregular singularity of the type

Φ =
T

zn
+ · · · , n ∈ Z, n > 1. (14)

When T is already regular semi-simple on the z plane,
the story is straightforward and we do not have further
constraints on T . On the other hand if T is not semisim-
ple, for example nilpotent, it is well known that after
lifting to a b-fold cover of the local patch around the sin-
gularity on the z plane by z = ub, (8) is gauge equivalent
to a local model with leading polar matrix T ′ semisimple
and leading singularity of order a+ 1 [55] [56]. The local
model written in terms of the original coordinate z is [57]

Φ =
T ′

z1+
a
b

+ · · · . (15)

The ratio s = a/b (we take b to be the minimal possible
integer possible) is called the slope or Katz invariant as-
sociated with the local model of the Higgs field [55, 58].
It can be shown using the relation between Higgs bundles
and opers that the denominator b of s must always be a
divisor of di for some 1 ≤ i ≤ rank (J), which are degrees
of the fundamental invariants of J (see Table III) [58].
Further imposing that T ′ is regular semisimple restricts
the denominator b of the slope to take the values summa-
rized in Table I.[59] For example, for An type theories,
the possible slopes are simply n + 1 and n which corre-
spond to the Type I and II theories described previously
in [12].

1. Maximal irregular singularity

A special class of AD theories can be constructed from
irregular singularity of the maximal type: namely the
Higgs field behaves as

Φ =
T`
z`

+
T`−1
z`−1

+ · · ·+ T1
z

+ · · · . (16)

Here Ti are in regular semi-simple orbits of J . This corre-
sponds to the case where k is a positive integer multiple
of b in (15). The dimension of the Coulomb branch is
[54]

dim Coulomb =
`(dim J − rank J)

2
− dim J. (17)

The number of mass parameters of this theory is nf =
rank J , and therefore the dimension of the BPS charge
lattice is

dim Γ =2 dim Coulomb + nf

=`(dim(J)− rank J)− 2 dim(J) + rank J

=rank J [(`− 2)h(J)− 1]

(18)

This corresponds to the (J,A(`−2)h(J)−1) theory of [11].
We expect this class of theories to have a rich set

of features among all AD theories (some of which we
will exhibit in section V B 1). They typically have Higgs
branches, large flavor symmetries and are likely to have
3d mirror quiver gauge theories [12, 60]. There exists
exactly marginal operators in the Coulomb branch spec-
trum and the theory can undergo nontrivial S-duality
transformations.

2. Degeneration of irregular singularities

Let’s now consider a degeneration of the irregular sin-
gularity considered in the previous subsection.

Φ =
T`
z`

+
T`−1
z`−1

+ . . .+
T1
z

+ . . . (19)

which is specified by a sequence of semisimple elements:
ρ = {T1, T2, . . . , T`} of J . Previously we have take all
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of these matrices from the regular semi-simple orbits. In
general, we could taken them to be from other semisimple
orbits, and the only constraints are [12, 54]

T1 ⊆ T2 ⊆ . . . ⊆ T`. (20)

For this type of puncture, the local contribution of the
singularity ρ to the dimension of Coulomb branch is

dimρ Coulomb =
1

2

∑̀
i=1

dim(Ti), (21)

where dim(Ti) is the (complex) dimension of the corre-
sponding orbit. Moreover, the number of the mass pa-
rameters in the resulting AD theory from this singularity
is equal to the number of distinguished eigenvalues of T1.

Some N = 2 SCFTs constructed using this type of sin-
gularity have exactly marginal operators and nontrivial
S-duality. One example of such has been explored in [30].

C. Some Explicit Examples of AD Theories

1. D type AD theories and Newton polygon

The SW curve for D type theory can be easily read off
from the spectral curve of the Hitchin system,

x2n +

n−1∑
i=1

ε2i(z)x
2n−2i + (ε̃n(z))2 = 0. (22)

There are two types of AD theories D
(n)
n [k] and

D
(2n−2)
n [k] which correspond to the following singular

SW curves

x2n + z2k = 0,

x2n + zkx2 = 0, (23)

with the SW differential λ = xdz. The Higgs field takes
the following singular forms accordingly

Φ =
T

z2+
k
n

+ · · · ,

Φ =
T

z2+
k

2n−2

+ · · · .
(24)

One can read off the scaling dimension of x and z by
requiring that the SW differential has scaling dimension
one: [x] + [z] = 1. The full SW curve can be easily found
from the Newton polygon, see Figure 4.

Let us for illustration consider the exampleD
(6)
4 [5]. We

can write down the full SW curve using the Newton poly-
gon (Fig. 4) as follows. We list monomials xαzβ that cor-
respond to filled dots in the Newton polygon. The half-
filled dots on the x0 axis indicates that we should only
regard the square root of the corresponding monomial zβ

xα

zβ

xα

zβ

FIG. 4. Newton polygons for D
(6)
4 [5] and D

(4)
4 [6] theories.

as parametrizing independent deformations. This is due
to the Pfaffian constraint. Hence we have

x8 + x6(u1,1z + u1,0) + x4(u2,3z
3 + u2,3z

2 + u2,1z + u2,0)

+ x2(z5 + u3,3z
3 + u3,2z

2 + u3,1z + u3,0)

+ (ũ3z
3 + ũ2z

2 + ũ1z + ũ0)2 = 0
(25)

From the scaling dimensions of x and z,

[x] =
5

11
, [z] =

6

11
, (26)

we can read off the dimensions of the Coulomb branch
parameters. In particular there are no mass parameters
and the chiral primaries have dimensions

∆Coulomb = {12

11
,

14

11
,

14

11
,

18

11
,

20

11
,

20

11
,

24

11
,

30

11
} (27)

among which the relevant ones are paired with coupling
constants as expected.

We can equivalently use the IIB description with iso-
lated hypersurface singularity

W (x, y, z, w) = w2 + x3 + xy2 + z5 = 0 (28)

whose local quotient algebra is

AW ={1, x, y, z, xz, y2, yz, z2, xz2, y2z, yz2, z3,
y2z2, xz3, yz3, y2z3}.

(29)
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From the C∗ charges of the coordinates

qx =
1

3
, qy =

1

3
, qz =

1

5
, qw =

1

2
(30)

and

α =
1∑
qi
−1

=
30

11
(31)

we recover the same Coulomb branch spectrum as in (27).

2. An irregular singularity and an regular singularity

To build AD theories with generically nonabelian fla-
vor symmetries, we can consider an irregular singularity
and a regular singularity on P1. The regular singularity
is labeled by a nilpotent orbit of J (the Nahm description
(or Higgs branch description) is better). See [43] for vari-
ous type of punctures. There are a variety of new theories
by choosing different regular and irregular punctures.

If we take the irregular punctures with pole order de-
nominator b given by the Coxeter number h of the Lie
algebra J ,

Φ ∼ T

z2+k/h
+ · · · (32)

and choose the full regular puncture, we can construct
AD theories with non-abelian J flavor symmetry which
we will denote by (J (h)[k], F ) (see Figure 5 for their New-
ton polygons). These theories are called Dp(J) theories
in [61, 62] with p = k + h.

IV. TWISTED IRREGULAR SINGULARITY

If the underlying Lie algebra J has a nontrivial outer-
automorphism group Out(J) (see Table V, it induces an
automorphism on the Hitchin moduli space. Therefore,
we may consider the projection onto Out(J) invariant
configurations of the Higgs field Φ. This can be done
locally at the singularities via introducing monodromy
twist by an element o ∈ Out(J),

Φ(e2πiz) = g[o(Φ(z))]g−1 (1)

for some g ∈ J/g∨ (here g∨ is the invariant subalgebra of
J), which we shall refer to as twisted singularities. Glob-
ally, the twisted singularities must come in pairs con-
nected by twist lines (or cuts).

J A2N A2N−1 DN E6 D4

Automorphism Out(J) Z2 Z2 Z2 Z2 Z3

Invariant subalgebra g∨ BN CN BN−1 F4 G2

Langlands dual g CN BN CN−1 F4 G2

TABLE V. Outer-automorphisms of simple Lie groups [63].

xα

zβ

xα

zβ

FIG. 5. Newton Polygons for (D
(6)
4 [5], F ) and (D

(4)
4 [6], F )

theories.

A. Review of regular twisted singularities

Twisted singularities of the regular type from which
one builds usual Class S theories have been explored ex-
tensively in [43]. From Table V, we see a nontrivial o
can have order 2 (for J = A2n−1, Dn, E6), or order 3 (for
J = D4) [64]. The Lie algebra J acquires a grading with
respect to the eigenvalues of o,

J =

{
J1 + J−1 for |o| = 2

J1 + Jω + Jω2 for |o| = 3
(2)

where ω3 = 1 and we use the subscript on J to denote
the eigen-subspaces.

The local model for the Higgs field near the singularity
takes the following form when o has order 2,

Φ =
T1
z

+
U1

z1/2
+ T0 + . . . (3)

where T1, T0 ∈ J1 = g∨ and U1 ∈ J−1. When the twist
element o has order 3 with eigenvalue ω (third root of
unity), we have instead

Φ =
T1
z

+
U1

z2/3
+

W1

z1/3
+ T0 + . . . (4)

where T1, T0 ∈ J1 = g∨, U1 ∈ Jω and W1 ∈ Jω2 .
The Coulomb branch of the resulting 4d SCFT receives

local contributions from not only the Spaltenstein-dual
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nilpotent orbit d(Op) in g∨ associated with the leading
polar matrix T1 [65], but also components of the sublead-
ing polar matrices U1,W1. Altogether the local contri-
bution to the Coulomb branch has dimension [43]

dimp Coulomb =
1

2
dimC d(Op) +

1

2
dim J/g∨. (5)

To obtain the total Coulomb branch dimension, we add
up the local contributions from the singularities and the
global contribution [66],

dim Coulomb =
∑
i

dimpi
Coulomb + (g − 1) dimJ,

(6)
where g is the genus of the Riemann surface C.

On the other hand, the local contribution to the Higgs
branch has quaternionic dimension [43]

dimp Higgs =
1

2
(dim g− rank g− dimCOp) . (7)

The total quaternionic dimension of the Higgs branch is
given by

dim Higgs =
∑
i

dimpi
Higgs + rank g∨. (8)

B. Maximal twisted irregular singularities

We now extend the twisted singularities to the irregu-
lar type which can be achieved by decorating the irreg-
ular singularities considered previously with appropriate
local monodromy twist o ∈ Out(J). As explained be-
fore, demanding conformal invariance and o-invariance,
we shall specialize to the case of one irregular twisted sin-
gularity and one regular twisted singularity on P1. Un-
like the untwisted case, we do not have a classification
for these twisted irregular singularities at the moment.
Nonetheless we shall see a number of subclasses can al-
ready be constructed easily and have interesting features.
We will leave the general classification of twisted singu-
larities that give rise to AD theories to a future publica-
tion. Since IIB description for these twisted singularities
is not known, it would also be interesting to figure out
the corresponding IIB 3-fold singular geometry.

First let us consider the case where the irregular sin-
gularity is of the maximal type discussed in subsec-
tion III B 1 with a Z2 twist. The local structure of ir-
regular singularity is,

Φ =
T`
z`

+
U`

z`−1/2
+
T`−1
z`−1

+
U`−1
z`−3/2

+ . . .+
T1
z

+ . . .

(9)
where Ti are regular semisimple elements of J1 = g∨

which is even under the Z2 twist and Ui ∈ J−1 is odd. We
denote the data defining the twisted irregular singularity
collectively by ρ̃ = {Ti, Uj |1 ≤ i ≤ `, 2 ≤ j ≤ `}.

The local contribution to the Coulomb branch dimen-
sion can be obtained by studying the pole structure of

the differentials εdi . Expanded in z, if the leading singu-
lar term in εdi that isn’t completely determined by the
singular part of Φ (i.e. Tm for 1 ≤ m ≤ ` and Um for
2 ≤ m ≤ `) has pole order pdi , the irregular singularity

contributes
∑rank J
i=1 pdi to the Coulomb branch dimen-

sion. Taking into account the local contribution from
the regular twisted singularity (5), and the global contri-
bution (with now g = 0 this is −dim J), we obtain the
total Coulomb branch dimension.

The number of distinctive eigenvalues of T1 corre-
sponds to the number of mass parameters contributed
by the twisted irregular singularity, which is the rank of
g∨ for the maximal case we consider here. We expect the
local contribution to the Higgs branch also has quater-
nionic dimension rank g∨.

For example consider Z2 twist of ADE type Hitchin
system with regular semisimple polar matrices Tm. The
set of fundamental invariants splits under the action o,

A2n−1 o : εk → (−1)kεk for 2 ≤ k ≤ 2n

Dn 6=4 o : ε2i → ε2i for 1 ≤ i ≤ n− 1, and ε̃n → −ε̃n
E6 o : εi → εk for k = 2, 6, 8, 12, and εk → −εk for k = 5, 9.

(10)
We denote the invariant subset by s1 and its complement
by s2. The local contribution from the irregular twisted
singularity to the Coulomb branch dimension is

dimρ̃ Coulomb =
∑
i∈s1

(di − 1)`+
∑
i∈s2

((di − 1)`+ 1/2)

=
`h(J)rank (J)

2
+
|s2|
2

(11)
where |s2| is the size of the set s2 and the i-th summand
gives the order of the highest pole in the differential εi
whose coefficient is not purely determined by the polar
matrices Tm and Un from ρ̃ [54].

As for degenerations of the maximal twisted irregular
singularity, we have the following conjectured formula,
in analogy to the untwisted case, for counting the local
contribution to the Coulomb branch dimension in terms
of semi-simple orbits of Ti in g∨ [67],

dimρ̃ Coulomb

=
1

2

(∑̀
i=1

dimTi +
∑̀
j=2

(dim J/g∨ − |s2|)

+ dim J/g∨

) (12)

For Ti regular semisimple, we have dimTm = (dim g∨ −
rank g∨)/2 and the above reduces to (11).

Therefore the total Coulomb branch dimension of the
AD theory, constructed from a maximal twisted irregular
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singularity and a principal regular singularity is

dim Coulomb =
(`+ 1)h(J)rank (J)

2
+ |s2| − dim J

=
rank (J)((`− 1)h(J)− 2)

2
+ |s2|.

(13)
On the other hand, the total Higgs branch quarternionic
dimension of this AD theory is given by

dim Higgs =
1

2
(dim g− rank g) + rank g∨ (14)

The detailed Coulomb branch spectrum can be ob-
tained from the SW curve as before. Below we take
J = Dn for illustration. The singular SW curve, up to
transformations that fixes xdz takes the form [68]

x2n + x2z2(n−1)(`−2) = 0. (15)

which fixes the scaling dimensions

[x] =
`− 2

`− 1
, [z] =

1

`− 1
. (16)

The crucial difference from the untwisted cases in the pre-
vious sections is that among the deformations of the sin-
gular SW curve, the Pfaffian ε̃n is constrained to have half
integer powers of z. With this in mind, we can quickly
enumerate the Coulomb branch operators, in particular
the total number of them is, from ε2i and ε̃n

dim Coulomb =

n−1∑
i=1

(2i(`− 1)− `) + (n− 1)(`− 1)

=(n− 1)(n(`− 1)− 1)
(17)

which agrees with (13). Furthermore, we have 2n−2 mass
parameters: n− 1 of them correspond to the Casmirs of
USP (2n−2) flavor symmetry and the other n−1 of them
come from the irregular singularity. From (14), the total
Higgs branch quarternionic dimension is

dim Higgs =
1

2
(dimCn−1 − rankCn−1) + n− 1 = n(n− 1)

(18)
We discuss some details about the Z2 twisted regu-

lar singularities and the resulting AD theories in Ap-
pendix B. We will leave the generalizations to Z2 twist
for A2n theories and Z3 twist for D4 theories to the in-
terested readers.

C. D type twisted irregular singularities

The generalization to cases with leading polar matrix
nilpotent is straightforward for D type theories since the
Z2 outer-automorphism of SO(2n) can be identified with
O(2n)/SO(2n). In other words, the condition (1) be-
comes

Φ(ze2πi) = g̃Φ(z)g̃−1, (19)

with g̃ ∈ O(2n) and det g̃ = −1
The twisted version of Dn singularity with slope de-

nominator b = n, takes the following form with k odd
[69],

Φ =
1

z2+
k
2n



0 1
−1 0

0 ωk

−ωk 0
. . .

0 ωk(n−1)

−ωk(n−1) 0


+ . . . ,

ω2n = 1
(20)

with O(2n) gauge transformation

g̃ =

(
0 I2n−2
J2 0

)
(21)

where we defined Im as the m ×m identity matrix and

J2 =

(
1 0
0 −1

)
.

Alternatively we can also twist the irregular singulari-
ties with b = 2n− 2, and obtain for arbitrary k ∈ Z,

Φ =
1

z2+
k

2n−2



0 0
0 0

0 1
−1 0

. . .

0 ωk(n−2)

−ωk(n−2) 0


,

ω2n−2 = 1
(22)

with O(2n) gauge transformation

g̃ =

 I2 0 0
0 0 I2n−4
0 J2 0

 (23)

for k odd and

g̃ =

 J2 0 0
0 0 I2n−4
0 I2 0

 (24)

for k even.
For example consider the AD theory constructed from

a twisted Dn singularity of the form (22) with k = 1
and a simple regular puncture whose pole structure is
{1, . . . , 1, 1/2}. The singular SW curve is

x2n + x2z = 0 (25)

which fixes

[x] =
1

2n− 1
, [z] =

2n− 2

2n− 1
. (26)
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The AD theory has n−1 Coulomb branch operators with
dimensions 2i/(2n−1) with n ≤ i ≤ 2n−2 and one mass
parameter [70].

Similarly, we can start with a twisted Dn singularity of
the form (20) with k = 1 and a simple regular puncture.
The singular SW curve is [71]

x2n + z = 0 (27)

which fixes

[x] =
1

2n+ 1
, [z] =

2n

2n+ 1
. (28)

The AD theory has n−1 Coulomb branch operators with
dimensions 2i/(2n + 1) with n + 1 ≤ i ≤ 2n − 1 and no
mass parameters [72].

It’s also straightforward to construct AD theories from
the above twisted irregular singularities in the presence
of twisted full regular singular singularities. See Figure 6
for examples of the Newton polygons for these theories.
Note that in contrast to those of the untwisted theories
in Figure 5, the x-independent monomials that would
contribute to the SW curve now correspond to half-filled
dots that have been shifted below by one unit because
the Pfaffian invariant ε̃n is odd under Z2 twist.

xα

zβ

xα

zβ

FIG. 6. Twisted D4 theories with twisted full regular singu-
larities.

V. MORE PROPERTIES OF AD THEORIES

A. Coulomb branch spectrum

As we have discussed in the previous sections, for D
type theory it is straightforward to read off the spectrum
of the AD theory from an irregular singularity and pos-
sibly an additional regular singularity using the Newton
polygon. For E type theories, the spectral curve repre-
sentation of the spectrum is rather redundant, in which
case it is more convenient to use the IIB 3-fold singu-
larity description whose complex structure deformations
constitute the full Coulomb branch spectrum with no re-
dundancy [73]. The scaling dimensions of the Coulomb
branch parameters which correspond to certain coeffi-
cients in εi(z) can be read off easily following the proce-
dure in subsection II B. However, some of the deformation
parameters have negative 4d scaling dimension and cor-
respond to irrelevant couplings which must be removed
from the list of physical Coulomb branch parameters.

To incorporate an additional regular singularity, we
can simply allow εi(z) to have a pole in z according to
the pole structure {pdi} with 1 ≤ i ≤ rank J associated
to the regular singularity,

εi(z) = · · ·+ ui,1
z

+
ui,2
z2
· · ·+

ui,pdi
zpdi

. (1)

The ui,j ’s are unconstrained Coulomb branch parameters
whose scaling dimensions can again be easily fixed (all
positive). Together with the parameters associated with
the isolated 3-fold singularity in the absence of poles in
εi(z), they make up the entire Coulomb branch spectrum.

B. Central charges

There are a number of ways to compute the central
charges of the AD theories that we have constructed.
Some of which are more useful than the others depending
on the input.

When there exists a weak coupling description, the
central charges a, c are determined by [74]

2a− c =
1

4

∑
i

(2[ui]− 1), a− c =
1

24
(nv − nh) (2)

where [ui] denotes the scaling dimension of the Coulomb
branch operator ui, nv counts the number of vector mul-
tiplets and nh the number of hypermultiplets. More gen-
erally, when the theory has a Higgs branch and is com-
pletely Higgsed, we can rewrite the second equation as
[6, 12]

a− c = −dimH Higgs

24
. (3)

For AD theories constructed from Type J (2,0) SCFTs
on P1 with integral pole at the irregular singularity, we
expect dimH Higgs = rankJ .
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For strongly coupled theories, there is a formula for
the central charges from topological field theories [74],

a =
R(A)

4
+
R(B)

6
+

5r

24
+

h

24
, c =

R(B)

3
+
r

6
+

h

12
(4)

where R(A), R(B) are the R-charges of path integral
measure factors and r, h are the number of free vector-
multiplets and hyper-multiplets at generic points of the
Coulomb branch. For the theories we consider, r coin-
cides with the rank of the Coulomb branch and h is zero.
Moreover R(A) can be expressed in terms of the scaling
dimensions of the Coulomb branch operators,

R(A) =
∑
i

([ui]− 1) (5)

For generic strongly coupled N = 2 SCFTs, it is diffi-
cult to compute R(B). However we have the following
formula for (G,G′) theories from [62],

R(B) =
1

4

r(G)r(G′)h(G)h(G′)

h(G) + h(G′)
(6)

This formula has an elegant extension for general
isolated hypersurface singularities in the IIB descrip-
tion [36]. Given a IIB singular 3-fold defined by
W (x1, x2, x3, x4) = 0 in C3 which has a C∗ action with
positive charges {qi}, we can compute R(B) by [36]

R(B) =
µα

4
(7)

where µ is the Milnor number for W and

α =
1∑r

i=4 qi − 1
(8)

is the scaling dimension of the constant deformation.
Since all of the AD theories from untwisted irregular

singularity considered here have IIB description in terms
of isolated hypersurface singularities, we can extract their
a and c central charges from (7) and (4).

As for the twisted theories, generally only the 2a − c
anomaly can be obtained from the Coulomb branch spec-
trum and more technique needs to be developed in or-
der to compute a and c separately, for example, 3d mir-
ror symmetry for the S1 reduction of these AD theories
would be a useful tool. Below we are focus on the central
charges for the untwisted theories (see Appendix B for
examples in the twisted case).

It is known for cDV singularities of index n (i.e.
cAn, cDn, cEn) with the additional coordinate z, its Mil-
nor number is given by [35]

µ = n

(
1

q(z)
− 1

)
(9)

where q(z) is the C∗ charge of z. For example, for b = h
the Coxeter number, the Milnor number is simply

µ = n(k − 1). (10)

In general we have q(z) = b
hk and α = hk

b+k , thus

µ = n

(
hk

b
− 1

)
, (11)

which leads to

R(B) =
nhk(hk − b)

4b(b+ k)
(12)

using (7).

J µ(b1) µ(b2) µ(b3)
An n(k − 1) (n+ 1)k − n
Dn n(k − 1) (2n− 2)k − n
E6 6(k − 1) 8k − 6 9k − 6
E7 7(k − 1) 9k − 7
E8 8(k − 1) 10k − 8 12k − 8

TABLE VI. Milnor numbers (BPS lattice dimension) for

J(b)[k] theories.

1. Examples from the maximal irregular singularities

In general it is straightforward to compute R(A) us-
ing the Coulomb branch spectrum obtained from either
the spectral curve or the associated 3-fold singularity.
Although a closed form expression of R(A) for general
J (b)[k] is not available at present, for the special subclass
of theories J (b)[bm] ∼= (J,Ahm−1) with m ∈ Z+ which
originate from maximal irregular singularities introduced
in section III B 1, the problem is vastly simplified.

Since J (b)[bm] does not depend on the (allowed) choice
of b up to marginal deformations, its Coulomb branch
spectrum is captured uniformly by a single spectral curve
or its corresponding 3-fold cDV singularity for given J
and positive integer m. In particular, following the pro-
cedure outlined in the previous section, it is easy to
see that the Coulomb branch of J (b)[bm] has dimen-
sion n(mh/2− 1) among which there are n− 1 marginal
operators[75] and mn − 1 relevant operators (see Ta-
ble VII). Moreover, from the Coulomb branch spectrum
one can compute a and c central charges which we record
in Table VIII.

J r rmarg rrel nf

An
1
2
n(m(n+ 1)− 2) n− 1 (m > 1)

n− 2 (m = 1)
mn− 1 n

Dn>3 n(m(n− 1)− 1) n− 1 mn− 1 n
E6 6(6m− 1) 5 6m− 1 6
E7 7(9m− 1) 6 7m− 1 7
E8 8(15m− 1) 7 8m− 1 8

TABLE VII. Coulomb branch dimension r, number of
marginal operators rmarg and relevant operators rrel for
J(b)[bm] theories.
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J a c

An
n(m(2m(n+1)(n+2)−5)−5)

24(m+1)
n(m(m(n+1)(n+2)−2)−2)

12(m+1)

Dn
n(m(4m(n−1)(2n−1)−5)−5)

24(m+1)
n(m(m(n−1)(2n−1)−1)−1)

6(m+1)

E6
312m2−5m−5

4(m+1)
78m2−m−1

m+1

E7
7(684m2−5m−5)

24(m+1)

7(171m2−m−1)
6(m+1)

E8
5(372m2−m−1)

3(m+1)

4(465m2−m−1)
3(m+1)

TABLE VIII. Central charges a and c for J(b)[bm] theories.

2. Limits of the central charges

Here we will consider various large parameter limits of
the J (b)[k] theories and obtain the asymptotic behaviors
for central charges a and c. In particular we will see that
a = c in these limits.

Let us start with the limit k → ∞ with n finite. In
this limit we have

α =
hk

b+ k
∼ h, r ∼ µ

2
=
nhk

2b
(13)

which gives

R(B) =
µα

4
∼ nh2k

4b
. (14)

The Coulomb branch spectrum (in this limit [x] ∼
1, [z] ∼ b/k) from the spectral curve is given by

{di −
bj

k
|1 ≤ i ≤ n, j ≥ 1 such that di −

bj

k
> 1} (15)

where di’s are the degrees of fundamental invariants in
Table III. From (15) we can derive

R(A) =
∑
α

([uα]− 1)

∼
n∑
i=1

(
(di − 1)(bi + 1)− bi(bi + 1)

2

b

k

) (16)

where bi counts the number of Coulomb branch operators
from the invariant differential εi. In the limit k →∞, we
have

bi ∼ (di − 1)
k

b
(17)

which implies

R(A) ∼ k

2b

n∑
i=1

(di − 1)2 =
knh(2h− 1)

12b
(18)

where we have used the Lie algebra identities

n∑
i=1

di =
1

2
n(h+ 2),

n∑
i=1

d2i =
1

6
(2h2 + 5h+ 6)n. (19)

Therefore the central charges a and c are determined to
be

a = c =
knh(h+ 1)

12b
. (20)

In particular, for the maximal slope b = h, we have

a = c =
kn(h+ 1)

12
. (21)

Next let us inspect the n→∞ limit with k finite in the A
and D type theories. For D2n−2

n (k) and Dn
n(k) theories,

by studying the deformations of the spectral curves, we
have in this limit

for D(2n−2)
n [k]n→∞ a = c =

(k2 − 1)n

12
,

for D(n)
n [k]n→∞ a = c =

(4k2 − 1)n

12
.

(22)

Similarly for An+1
n (k) and Ann(k) theories, we have[76]

for A(n+1)
n [k]n→∞ a = c =

(k2 − 1)n

12
,

for A(n)
n [k]n→∞ a = c =

(k2 − 1)n

12
.

(23)

Finally we consider theories A
(b)
n [bm] and D

(b)
n [bm] in

the n → ∞ limit (thus b → ∞) with m finite (which
corresponds to taking k and rank (J) large with their
ratio fixed). The central charges in this limit can be
easily read off from Table VIII:

for A(b)
n [bm]n→∞ a = c =

m2n3

12(m+ 1)
,

for D(b)
n [bm]n→∞ a = c =

m2n3

3(m+ 1)
.

(24)

VI. CONCLUSION AND DISCUSSIONS

Using M5 branes, we have constructed a large class of
new N = 2 SCFTs by classifying the irregular punctures.
We have also given the corresponding 3-fold hypersurface
singularities in the IIB description. Along the way, we
have established a map between the irregular singular-
ities of Hitchin system, Argyres-Douglas theories, and
isolated hypersurface singularities (see Figure 3). The
main purpose of this paper is to give a classification of
the possible theories within this construction, and there
are many other interesting questions about these theories
that one can study.

Some of the theories (e.g. from maximal irregular sin-
gularities) constructed here have exact marginal defor-
mations, and one question is to identify the correspond-
ing duality group. It is expected that one can find many
weakly coupled gauge theory descriptions, and it is in-
teresting to study them systematically (see [30] for some
examples).
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A special subclass of our theories, labelled by
(J (b)[k], F ) with k = −b+1, are rigid matter in the sense
that they do not contain any Coulomb branch moduli
but have full flavor symmetry J .[77] By gauging a diag-
onal subgroup of the flavor symmetries of two such rigid
matter systems, one may generate N = 2 asymptotically
free gauge theories. With outer-automorphism twist, we
can construct N = 2 asymptotically free gauge theories
for arbitrary gauge group G this way.[78]

The RG flows between the AD theories have been ex-
plored in [6] for A type theories by considering various
deformations of the singular SW curve. In terms of the
IIB isolated 3-fold singularities, these flows are captured
by the so-called adjacency relations[79] between different
singular varieties. In particular, some of the adjacency
relations among Arnold’s simple singularities (which cor-
respond to cDV singularities labelled by J (h)[2] ) were
realized explicitly by RG flows in [6]. We expect a simi-
lar relation between adjacency relations among the 3-fold
singularities considered in this paper (Table II) and the
RG flows among the corresponding AD theories.

It is interesting to study various partition function of
these theories, and we expect that our M5 brane con-
struction would be quite useful. In particular, we expect
that the two point function (with insertions of opera-
tors corresponding to our irregular punctures) of the 2d
Toda theory would give the S4 partition function [80].
Similarly, the two point function of the q-deformed YM
theory would give the superconformal (Schur) index [27]
(see [28, 29] for recent result on A1 type AD theory).
Once the index is obtained, it is interesting to find the
corresponding chiral algebra [28, 29].

For A type theory whose irregular singularity has in-
teger order poles, one can compactify the theory on a
circle to get a 3d N = 4 SCFT. The mirror for these
theories has been written down in [12, 60, 81] and they
are all Lagrangian quiver gauge theories. We expect that
the new theories engineered here using integer order pole
irregular singularity (the maximal irregular singularities
and their degenerations) should also have three dimen-
sional mirrors, and it would be interesting to develop a
systematic identification.

For our theories J (b)[k], their central charges satisfy the
condition a = c in the large k or large rank (J) limit, and
this indicates that the theories may have supergravity
duals [82]. It would be very interesting to derive the
supergravity dual explicitly.

As we have briefly mentioned, for the same three-fold
isolated quasi-homogeneous singularity, had we kept the
string scale finite while decoupling gravity, we would end
up with a 4d non-gravitational string theory (known as
little string theory or LST for short) whose low energy
limit gives the 4d N = 2 SCFT [83–86]. There we have
another holographic picture in terms of type II string
theory on linear dilaton background with an N = 2 LG
sector which is well-defined even at finite k and rank (J).
It would be very interesting to understand what kind of
dynamics in the 4d N = 2 AD theory (as a low energy

sector of the full LST) we can learn from the bulk string
theory description, possibly in a double-scaled limit (to
cap off the dilaton throat) along the lines of [87–91].

Finally, the irregular singularities of the Hitchin sys-
tem considered here are codimension-two half-BPS de-
fects of the 6d (2, 0) theory. Upon compactification on
T 2 longitudinal to the defect, we obtain a half-BPS sur-
face operator in 4d N = 4 SYM [43]. It would be inter-
esting to study the surface operators obtained this way
from our irregular singularities, especially the ones with
outer-automorphism twist, in relation to the geometric
Langlands program [54, 55].
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Appendix A: Isolated Quasi-homogeneous cDV
Singularties

In this section, we prove that the isolated quasi-
homogeneous cDV singularities defined by

WJ(x1, x2, x3, z) = fJ(x1, x2, x3) + zg(x1, x2, x3, z)
(A1)

with J = A,D,E, are precisely those listed in Table IV.
Firstly, it is easy to check that the quasi-homogeneous

singularities in Table IV all have finite Milnor numbers
thus isolated.

A necessary condition for a general quasi-homogeneous
singularity W (xi) = 0 to be isolated is that for any axis

xi there must be at least one monomial
∏
j x

kj
j in W (xi)

such that
∑
j kj − ki ≤ 1, otherwise there will be a sin-

gular locus along the xi axis [35].
Now given a quasi-homogeneous cDV singularity de-

fined by WJ in (A1) (in particular q(xi), q(z) > 0),
WJ(xi, z) must contain monomial(s) from the set L =
{zk, zkx1, zkx2, zkx3} with k ≥ 1 to avoid a singular lo-
cus along the z axis.

1. For WJ(xi, z) of cAn, cE6 and cE8 types, up to
coordinate redefinitions, such WJ(xi, z) is always
captured by the normal forms (or their marginal
deformations) in Table IV

2. ForWJ(xi, z) of cDn type, ifWJ(xi, z) contains any
of the three monomials zk, zkx1, z

kx3, up to a coor-
dinate transformation, such WJ(xi, z) is captured
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by the two normal forms (or their marginal defor-
mations) in Table IV. However if WJ(xi, z) only
contains the zkx2 monomial from the set L, then
up to a coordinate transformation, we may assume
that the z dependent monomials of WJ(xi, z) are

all of the form zixj2 with i, j ≥ 1. Consequently, we
have a singular locus along x23 + zk = x2 = x1 = 0.

3. For WJ(xi, z) of cE7 type, if WJ(xi, z) contains any
of the three monomials zk, zkx1, z

kx3, up to a coor-
dinate transformation, such WJ(xi, z) is captured
by the two normal forms (or their marginal defor-
mations) in Table IV. However if WJ(xi, z) only
contains the zkx2 monomial from the set L, then
up to a coordinate transformation, we may assume
that the z dependent monomials of WJ(xi, z) are

all of the form zixj2, zixj2x3 or zix23 with i, j ≥ 1. If
WJ(xi, z) does not contain monomials of the form
zix23, we again end up with a singular locus along
x33 + zk = x2 = x1 = 0; otherwise the C∗ charges
q(x2) = 1/3 and q(x3) = 2/9 demand a term of the
form t6mx2 + z5mx23 in WJ(xi, z) for some m ∈ Z+

(i.e. k ∈ 6Z), in which case WJ(xi, z) is simply a
marginal deformation of fE7

(xi, z) + z9m.

Hence we have completed the proof.

Appendix B: Examples of AD Theories from
Maximal Twisted Irregular Singularities

For the AD theory engineered using a D type maxi-
mal twisted singularity and another full regular twisted
singularity considered in section IV B with singular SW
curve (15), the dimensions of the Coulomb branch oper-
ators are,

{2i− k

`− 1
|1 ≤ i ≤ n− 1, k ≥ 1

such that 2i− k

`− 1
> 1}

(B1)

from ε2i and

{n− 2k + 1

2(`− 1)
|k ≥ 0 such that n− 2k + 1

2(`− 1)
> 1} (B2)

from ε̃n. Hence we have from (2),

2a− c =
1

4

∑
j

(2[uj ]− 1)

=
1

12
(n− 1)n(4(`− 1)n− 2`− 1)

(B3)

and from (14) and (3)

a− c =− n(n− 1)

24
, (B4)

allowing us to determine a and c for this class of AD
theories

a =
1

24
(n− 1)n(8(`− 1)n− 4`− 1),

c =
1

6
(n− 1)n(2(`− 1)n− `).

(B5)

It is straightforward to repeat the above analysis for
twisted A2n−1 and E6 theories from a irregular twisted
singularity with regular semisimple polar matrices Ti
(in g∨) and a regular twisted puncture of general type.
Suppose the pole structure associated with the regular
twisted singularity is denoted by {pdi} with 1 ≤ i ≤
rank (J), then the Coulomb branch spectrum is given by

{pdi + 1− k

`− 1
|di ∈ s1, k ≥ 1 such that pdi −

k

`− 1
> 0}

(B6)
from the Z2 invariant differentials and

{pdi +
1

2
− 2k + 1

2(`− 1)
|di ∈ s2, k ≥ 0

such that pdi +
1

2
− 2k + 1

2(`− 1)
> 1}

(B7)

from the Z2 odd differentials. In addition, we have
2|s1| = 2(r − |s2) mass parameters, half of which corre-
sponds to the Casmirs of either SO(2n+ 1) or F4 flavor
symmetry (the other half are associated with the twisted
irregular singularity). The Higgs branch quarternionic
dimensions are conjectured to be n(n+1) for the twisted
A2n−1 theory and (52 − 4)/2 + 4 = 28 for twisted E6

theory.
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