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I. INTRODUCTION

The connection between the particle production which occurs at late times after a black

hole forms from collapse [1] and the late time particle production from a mirror in flat space

that accelerates without bound, asymptotically approaching a null geodesic, was established

by Davies and Fulling [2, 3]. An interesting question is whether there are mirror trajectories

for which their entire history of particle creation, from initial non-thermal phase to late time

thermal emission, corresponds to the entire history of particle creation from a spacetime

in which a black hole forms from collapse. We have found a specific example in (1+1)

dimensions where there is such an exact correspondence.

The model for gravitational collapse that we consider consists of a collapsing shell with

a null trajectory. The spacetime inside the shell is flat while the geometry outside the

shell is the usual Schwarzschild geometry. This model was considered in [4] where the exact

Bogolubov coefficients connecting the in and out vacuum states were computed for a massless

minimally coupled scalar field. The trajectory for the mirror is a simple modification of one

that was discovered in Ref. [5]. The mirror, which is in flat space, begins at past timelike

infinity, i−, and accelerates in a monotonic fashion, asymptotically approaching v = vH with

v ≡ t+ r.

One of the advantages of our model is that the Bogolubov coefficients between the in and

out states have been computed analytically. It is the equivalence between these coefficients

in the black hole and accelerating mirror cases that establishes the exact connection. In-

terestingly, in the mirror case there are so far a limited number of specific trajectories for

which the Bogolubov coefficients have been computed analytically [3, 6–9]. In most of these

cases, as in the present case, the actual amount of particle production must be computed

numerically.

In [10–12] we pointed out this mirror - black hole connection and briefly explored the

time dependence of the particle production and the time dependence of the stress-energy

tensor in the accelerating mirror case. Here we give the details of the computations of

the Bogolubov coefficients in both the black hole and accelerating mirror cases. For the

black hole we add a discussion of the computation in (3+1)D. We also give a significantly

more detailed description of the time dependence of the particle production process, which

includes an estimate, consistent with the uncertainty relation, of the time evolution of the
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spectrum of the produced particles. The time dependence of the particle production process

was investigated for other mirror trajectories in [8].

In Sec. II we compute the Bogolubov coefficients for our mirror trajectory and for the case

of a null shell that collapses to form a black hole in (1+1) and (3+1) dimensions. In the latter

case we ignore the effective potential in the mode equation. In Sec. III the time dependence

of the particle production process and the frequency spectrum of the produced particles are

investigated. Sec. IV contains a brief discussion of the time dependence of the stress-energy

of the quantum field in the accelerating mirror case. Our results are summarized in Sec. V.

Throughout we use units such that ~ = c = G = kB = 1 and our conventions are those of

Ref. [13].

II. BOGOLUBOV COEFFICIENTS

In this section we compute the particle production that occurs for a massless minimally

coupled scalar field in three different situations: a (1+1)D flat spacetime with an accel-

erating mirror moving along a particular trajectory; a (1+1)D spacetime in which a null

shell collapses to form a black hole; and a (3+1)D spherically symmetric spacetime in which

a null shell collapses to form a black hole. We begin with the simplest case which is the

accelerating mirror.

A. (1+1)D flat spacetime with a mirror

The line element for flat space in (1+1)D is simply

ds2 = −dt2 + dr2 = −du dv . (2.1)

where alternative, null coordinates are

u = t− r , v = t+ r . (2.2)

We denote the trajectory of the mirror by r = z(t). Note that we shall only be concerned

with the part of the spacetime that is to the right of the mirror.

The wave equation for the massless minimally coupled scalar field is

�φ = 0 . (2.3)
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The field can be expanded in terms of complete sets of mode functions, each of which satisfies

the equation

∂u ∂v f = 0 . (2.4)

The general solution is

f = a(u) + b(v) , (2.5)

for arbitrary functions a and b.

The modes are normalized using the scalar product

(φ1, φ2) = −i
∫

Σ

dΣ
√
|gΣ|na φ1

↔
∂ a φ

∗
2 ,= −i

∫
Σ

dΣ
√
|gΣ|na [φ1∂a φ

∗
2 − (∂aφ1)φ∗2] , (2.6)

with Σ a Cauchy surface and na the unit normal to that surface. One Cauchy surface we

shall use is I −
R . In this case the scalar product is

(φ1, φ2) = −i
∫ ∞
−∞

dv φ1

↔
∂ v φ

∗
2 . (2.7)

The other consists of the union of I +
R with I +

L,>, the part of I +
L that is to the right of the

mirror. The scalar product is then

(φ1, φ2) = −i
∫ ∞
−∞

du φ1

↔
∂u φ

∗
2 − i

∫ ∞
vH

dv φ1

↔
∂ v φ

∗
2 . (2.8)

The in modes are normalized on I −
R and form a complete set for the region to the right

of the mirror. The other set of modes of interest are those which are normalized on I +
R

and which vanish on I +
L,>. We label these as out modes. Another set of modes, labeled left

modes, end on I +
L,>. Taken together the out modes and left modes form a complete set. All

modes in either set that impinge upon the mirror must vanish at its surface. The in and out

modes thus have the forms

f in
ω =

1√
4πω

[
e−iωv − e−iωp(u)

]
, (2.9a)

f out
ω =

1√
4πω

[
e−iωh(v) θ(vH − v)− e−iωu

]
, (2.9b)

where the ray tracing functions p(u) and h(v) are defined so that at the location of the

mirror p(u) = v and h(v) = u. See Ref. [8] for details.1

1 Note that in [8] the function we call h(v) is denoted by f(v).
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To find the number of particles produced we first expand the field in terms of both sets

of modes

φ =

∫ ∞
0

dω[ain
ω f

in
ω + ain †

ω f in ∗
ω ] , (2.10a)

=

∫ ∞
0

dω[aout
ω f out

ω + aout †
ω f out ∗

ω + aleft
ω f left

ω + aleft †
ω f left ∗

ω ] . (2.10b)

We also write

f out
ω =

∫ ∞
0

dω′[αωω′f in
ω′ + βωω′f in ∗

w′ ] . (2.11)

Then using the fact that the modes are orthonormal with respect to the scalar product one

finds that

αωω′ = (f out
ω , f in

ω′) , (2.12a)

βωω′ = −(f out
ω , f in ∗

ω′ ) , (2.12b)

aout
ω = (φ, f out

ω ) =

∫ ∞
0

dω′
[
ain
ω′α∗ωω′ − ain †

ω′ β
∗
ωω′

]
. (2.12c)

Then, if the field is in the in state, the average number of particles found in the out state

with frequency ω is

〈in|Nout
ω |in〉 =

∫ ∞
0

dω′ |βωω′ |2 . (2.13)

We now introduce a specific mirror trajectory that begins at past timelike infinity, i−,

and is asymptotic to the ray v = vH . A Penrose diagram for it is given in Fig. 1. The

trajectory, which is a slight modification of what was called the Omex trajectory in Ref. [5],

is

z(t) = vH − t−
W
(
2e2κ(vH−t)

)
2κ

, (2.14)

with κ and vH constants, and with W the Lambert W (or Product Log) function, which has

the properties

z = W (z)eW (z) = W (zez) . (2.15)

Then writing

v = vm(t) = t+ z(t) , (2.16)

with vm(t) being the value of v for the mirror’s location at time t, we find

t̃m(v) = v − 1

2κ
log[κ(vH − v)] , (2.17)
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with t̃m(v) the time when the mirror intersects the null ray labeled by v. This equation can

easily be verified by substituting (2.14) into (2.16) and using (2.17) along with the second

relation in (2.15). Then since h(v) = u at the surface of the mirror,

h(v) = t̃m(v)− z[t̃m(v)] = v − 1

κ
log[κ(vH − v)] . (2.18)

I L

+
I R

+

I L

-
I R

-

i
0

i
0

i
+

i
-

FIG. 1. Penrose diagram for a flat (1+1)D spacetime containing an accelerating mirror with the

trajectory (2.14) in the case that κ = 1 and vH = 0. The trajectory is timelike, begins at i− and

asymptotically approaches v = vH = 0.

The relation p(u) = v which is valid at the surface of the mirror is the inverse of the

relation h(v) = u. We find that

p(u) = vH −
1

κ
W
(
e−κ(u−vH)

)
. (2.19)

This can be verified by computing h(p(u)) and using the first relation in (2.15). Combining

the equations p(u) = vm = tm(u) + z[tm(u)] and tm(u) = u+ z[tm(u)] one finds

tm(u) =
1

2

[
vH + u− 1

κ
W
(
e−κ(u−vH)

)]
. (2.20)

Here tm(u) is the time when the mirror intersects the null ray labeled by u.

To evaluate the formulas for the Bogolubov coefficients in (2.12a) and (2.12b) we choose

the surface I −
R for which the general form of the scalar product is given in (2.7). Combining
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these equations along with (2.9b) and (2.18) and noting that u = −∞ on I −
R , we find after

some algebra that

αωω′ =
1

4π

∫ vH

−∞
dv e−i(ω−ω

′)v [κ(vH − v)]iω/κ

{√
ω′

ω
+

√
ω

ω′

[
1 +

1

κ(vH − v)

]}
,(2.21a)

βωω′ =
1

4π

∫ vH

−∞
dv e−i(ω+ω′)v [κ(vH − v)]iω/κ

{√
ω′

ω
−
√
ω

ω′

[
1 +

1

κ(vH − v)

]}
.(2.21b)

Changing the integration variable to x = vH − v allows for the evaluation of the integrals in

terms of gamma functions. After more algebra we find

αωω′ = −e
−i(ω−ω′)vH

2πκ

√
ωω′

ω − ω′
[
− i
κ

(ω − ω′)
]−iω/κ

Γ

(
iω

κ

)
, (2.22a)

βωω′ = −e
−i(ω+ω′)vH

2πκ

√
ωω′

ω + ω′

[
− i
κ

(ω + ω′)

]−iω/κ
Γ

(
iω

κ

)
. (2.22b)

B. (1+1)D spacetime with a collapsing null shell

v = v0

uin = vH

uout = ∞

I −
L

I +
L

I −
R

I +
R

FIG. 2. Penrose diagram for a 2D black hole that forms from the collapse of a null shell along the

trajectory v = v0. The Cauchy surface used to compute the Bogolubov coefficients is the dotted

(blue) surface formed from I +
L , part of I −R , and the v = v0 null ray. Note that the horizon is the

future light cone of the point (uin = vH ≡ v0 − 4M , v = v0).

For a (1+1)D spacetime with a collapsing null shell the line element inside the shell is
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still given by (2.1), while outside the shell it is

ds2 = −
(

1− 2M

r

)
dt2s +

(
1− 2M

r

)−1

dr2 . (2.23)

The Penrose diagram is given in Fig. 2. We define the usual radial null coordinates inside

the shell to be those in Eq. (2.2). Outside both the shell and the horizon, the corresponding

coordinates are

us ≡ ts − r∗ , (2.24a)

v ≡ ts + r∗ , (2.24b)

r∗ ≡ r + 2M log

(
r − 2M

2M

)
. (2.24c)

Following [4, 14] we match the coordinate systems along the part of the trajectory of the

shell which is outside the horizon in such a way that both v and r are continuous across

the surface and v = v0 on the surface. This is why we have no subscripts for these two

coordinates. The coordinates t and u are not continuous across the surface. To find the

relation between us and u we note that at the surface and outside the event horizon

r =
1

2
(v0 − u) , (2.25a)

r∗ =
1

2
(v0 − us) = r + 2M log

(
r − 2M

2M

)
. (2.25b)

Substituting (2.25a) into the right hand side of (2.25b) and solving for us gives

us = u− 4M log

(
vH − u

4M

)
, (2.26)

with

vH ≡ v0 − 4M . (2.27)

Note that the event horizon (us =∞) is at u = vH .

We next show that it is possible to invert (2.26) using the Lambert W function. First it

is easy to show that (2.26) can be written in the form

exp

(
vH − us

4M

)
=

(
vH − u

4M

)
exp

(
vH − u

4M

)
. (2.28)

Then computing the Lambert W function of both sides the equation and using the second

relation in (2.15) we find that

u = vH − 4MW

[
exp

(
vH − us

4M

)]
. (2.29)
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The field φ and its mode functions f are solutions to Eq. (2.3). In the flat space region

below the null shell the general solution is (2.5). In the Schwarzschild region above the shell,

Eq. (2.3) takes the form

∂us∂v f = 0 . (2.30)

The general solution is

f = c(us) + d(v) , (2.31)

with c and d being arbitrary functions. Thus in the flat space region solutions can be any

function of u or any function of v while in the Schwarzschild region they can be any function

of us or any function of v. Given the relations (2.26) and (2.29) it is clear that any solution

in the Schwarzschild region is also a solution in the flat region and vice versa. Once again

the modes are normalized using the scalar product (2.6). There is a complete set of in modes

that are normalized on I − and are given by the expressions

f in
ω,R =

e−iωv√
4πω

, (2.32a)

f in
ω,L =

e−iωu√
4πω

. (2.32b)

A different complete set of modes consists of subsets that have three different late time

behaviors. Some of the modes end on I +
L , others go through the future horizon and end

up at the singularity, and the rest end on I +
R . As with the accelerating mirror, we are

interested in those that end up on I +
R , which we label as out modes and which are given by

f out
ω =

e−iωus√
4πω

. (2.33)

The other modes we label with the superscripts left and sing.

As in the accelerating mirror case (2.13), our goal is to determine the average number of

particles in the out state for a given value of ω if the field is in the in state

〈in|Nout
ω |in〉 = 〈in|aout †

ω aout
ω |in〉 . (2.34)

The expansions of φ in terms of these complete sets of modes is

φ =

∫ ∞
0

dω[ain
ω,Rf

in
ω,R + ain †

ω,Rf
in ∗
ω,R + ain

ω,Lf
in
ω,L + ain †

ω,Lf
in ∗
ω,L] , (2.35a)

=

∫ ∞
0

dω[aout
ω f out

ω + aout †
ω f out ∗

ω + aleft
ω f left

ω + aleft †
ω f left ∗

ω

+asing
ω f sing

ω + asing †
ω f sing ∗

ω ] . (2.35b)
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In this case the scalar product (f in
ω′,R, f

out
ω ) = 0, because the out modes vanish on I −

R .

Hence

aout
ω = (φ, f out

ω ) =

∫ ∞
0

dω′
[
ain
ω′,L(f in

ω′,L, f
out
ω ) + ain †

ω′,L(f in ∗
ω′,L, f

out
ω )
]
. (2.36)

If we write

f out
ω =

∫ ∞
0

dω′
[
αωω′f in

ω′,L + βωω′f in ∗
ω′,L

]
, (2.37)

then

aout
ω =

∫ ∞
0

dω′
[
ain
ω′,Lα

∗
ωω′ − ain †

ω′,Lβ
∗
ωω′

]
, (2.38)

and the Bogolubov coefficients can be obtained from

αωω′ = (f out
ω , f in

ω′,L) , (2.39a)

βωω′ = −(f out
ω , f in ∗

ω′,L) , (2.39b)

while once again the average number of particles is

〈in|Nout
ω |in〉 =

∫ ∞
0

dω′ |βωω′|2 . (2.40)

The Cauchy surface we use to compute the Bogolubov coefficients is shown as dotted

(and blue) in Fig. 2. It consists of v = v0 plus the part of I −
R with v > v0 and all of I +

L .

However, the modes f out
ω,R are nonzero only on the part of the Cauchy surface with v = v0

that is outside the event horizon (us < ∞, u < vH). Using (2.32b), (2.33), (2.39a) and

(2.39b) one finds

αωω′ =
1

4π

∫ vH

−∞
du e−i(ω−ω

′)u[κ(vH − u)]iω/κ

×
[√

ω′

ω
+

√
ω

ω′

(
1 +

1

κ(vH − u)

)]
, (2.41a)

βωω′ =
1

4π

∫ vH

−∞
du e−i(ω+ω′)u[κ(vH − u)]iω/κ

×
[√

ω′

ω
−
√
ω

ω′

(
1 +

1

κ(vH − u)

)]
, (2.41b)

where κ = 1/(4M) is the surface gravity of the black hole. These equations are identical

to Eqs. (2.21) for the mirror trajectory considered in Sec. II A if we make the substitution

um → v and identify the acceleration parameter, κ, in the mirror case, with the surface
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gravity κ in the black hole case. Thus the values for αωω′ and βωω′ are identical with those

in (2.22) and we have found an exact correspondence between the particle production which

occurs in (1+1)D for a mirror with trajectory (2.14) and a black hole that forms from the

collapse of a null shell along the surface v = v0.

C. (3+1)D spacetime with a collapsing null shell

For a (3+1)D spacetime with a collapsing null shell the line element inside the shell is

that of flat space

ds2 = −dt2 + dr2 + r2dΩ2 , (2.42)

and outside the shell is the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2s +

(
1− 2M

r

)−1

dr2 + r2dΩ2 . (2.43)

The Penrose diagram is given in Fig. 3.

v = v0

v = vH

H+

I −

I +

FIG. 3. Penrose diagram for a (3+1)D black hole that forms from the collapse of a null shell along

the trajectory v = v0. The horizon, H+, is the dotted (red) curve. The Cauchy surface used to

compute the Bogolubov coefficients is the short-dashed (blue) curve.

The radial null coordinates have the same definitions as in the (1+1)D case with those

inside the shell given by (2.2) and those outside the shell given by (2.24). The matching of
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the coordinates across the shell is also the same as in the (1+1)D case with the results given

by (2.26) and (2.29).

The massless minimally coupled scalar field satisfies Eq. (2.3). The field can be expanded

in terms of complete sets of modes where the mode functions are written in the general form

f =
Y`m(θ, φ)√

4πω

ψ(t, r)

r
. (2.44)

Inside the shell we have the flat-space radial wave equation

−∂
2ψ

∂t2
+
∂2ψ

∂r2
− Veff(r)ψ = 0 , (2.45)

while outside the shell we have the scalar Regge-Wheeler equation

−∂
2ψ

∂t2s
+
∂2ψ

∂r2
∗
− Veff(r)ψ = 0 . (2.46)

The effective potential is

Veff =

(
1− 2M

r

)[
2M

r3
+
`(`+ 1)

r2

]
, (2.47)

which can be seen to work in both cases if inside the shell we set M = 0.

The modes are normalized using the full three dimensional version of the scalar product,

Eq. (2.6). In the cases we consider the Cauchy surface consists of either a single null

hypersurface or a union of null hypersurfaces, and the integrals are of the forms∫
du

∫
dΩ r2

↔
∂u ,

∫
dv

∫
dΩ r2

↔
∂ v . (2.48)

We consider two complete sets of mode functions. Those for the in state are normalized

on past null infinity, I −, and vanish at r = 0 inside the shell. Thus inside the shell they are

the same as the mode functions in flat space in the Minkowski vacuum. On I − they are

ψin
ω` = e−iωv , (2.49)

with 0 ≤ ω <∞. They are of course more complicated away from I −, although there are

analytic solutions for them inside the shell. The simplest solution inside the shell is for the

mode with ` = 0:

ψin
ω0 = e−iωv − e−iωu . (2.50)
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The other complete set of solutions we will consider is a union of two subsets. One subset,

of most interest, is normalized on future null infinity, I +. We label them as out modes. On

I + they are

ψout
ω` = e−iωus , (2.51)

where again 0 ≤ ω < ∞. These modes vanish at the future horizon H+. The other set

consists of modes which vanish at I + and are nonzero on H+. We give them the label H+

and will not be concerned with their normalization here. It is easy to show using the scalar

product and a Cauchy surface for the region outside the horizon, which consists of H+ and

I +, that these two sets of modes are orthogonal.

The expansions for φ in terms of the two complete sets of modes are

φ =

∫ ∞
0

dω
∑
`,m

[
ain
ω`mf

in
ω`m + ain †

ω`mf
in ∗
ω`m

]
, (2.52a)

φ =

∫ ∞
0

dω
∑
`,m

[
aout
ω`mf

out
ω`m + aout †

ω`mf
out ∗
ω`m + aH

+

ω`mf
H+

ω`m + aH
+ †

ω`m f
H+ ∗
ω`m

]
. (2.52b)

In this case, the goal is to determine the average number of particles in the out state, as a

function of ω, `, and m, if the field is in the in state. This is given by

〈in|Nout
ω`m|in〉 = 〈in|aout †

ω`m a
out
ω`m|in〉 . (2.53)

Using the orthonormality of the mode functions we find from (2.52) that

aout
ω`m = (φ, f out

ω`m) =
∑
`′,m′

∫ ∞
0

dω′
[
ain
ω′`′m′(f in

ω′`′m′ , f out
ω`m) + ain †

ω′`′m′(f
in ∗
ω′`′m′ , f out

ω`m)
]
. (2.54)

If we take the transformation between sets of mode functions to be

f out
ω`m =

∑
`′m′

∫ ∞
0

dω′
[
αω`mω′`′m′f in

ω′`′m′ + βω`mω′`′m′f in ∗
ω′`′m′

]
, (2.55)

then the operators are connected by

aout
ω`m =

∑
`′,m′

∫ ∞
0

dω′
[
ain
ω′`′m′α∗ω`mω′`′m′ − ain †

ω′`′m′β
∗
ω`mω′`′m′

]
, (2.56)

and the expectation value will be

〈in|Nout
ω`m|in〉 =

∑
`′,m′

∫ ∞
0

dω′ |βω`mω′`′m′|2 , (2.57)
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with the Bogolubov coefficients found via

αω`mω′`′m′ = (f out
ω`m, f

in
ω′`′m′) , (2.58a)

βω`mω′`′m′ = −(f out
ω`m, f

in ∗
ω′`′m′) . (2.58b)

On any hypersurface where integrals of the form (2.48) are to be computed, the following

orthonormality conditions are useful∫
dΩY`m(θ, φ)Y ∗`′m′(θ, φ) = δ`,`′ δm,m′ ,∫
dΩY`m(θ, φ)Y`′m′(θ, φ) = (−1)m δ`,`′ δm,−m′ . (2.59)

It is then possible to show that the Bogolubov coefficients are partially diagonal in the sense

that

αω`mω′`′m′ ∝ δ`,`′ δm,m′

βω`mω′`′m′ ∝ (−1)m δ`,`′ δm,−m′ , (2.60)

and that the expectation of number per `,m mode is

〈in|Nout
ω`m|in〉 =

∫ ∞
0

dω′ |βω`mω′`(−m)|2 . (2.61)

To compute the Bogolubov coefficients using Eqs. (2.58) it is necessary to choose a Cauchy

surface for the spacetime. The choice we make is driven by the fact that we have exact

solutions for the mode functions f in
ω`m in the region inside the shell and also everywhere on

I − since that is where these modes are normalized. To get their form in the region outside

the shell it would be necessary either to use a Bogolubov transformation or to solve the

partial differential equation (2.46) numerically. The mode functions f out
ω`m are normalized on

I + so we have analytic expressions for them there. They can be computed in the region

outside the null shell by separating the functions ψω` into

ψω`(t, r) = e−iωtχω`(r) , (2.62)

and numerically solving the resulting radial equation for χω`, which is

d2χω`
dr2
∗

+ (ω2 − Veff)χω` = 0 . (2.63)

However, to extend these solutions to the region inside the null shell to make contact with

f in
ω`m requires either using a Bogolubov transformation such as Eq. (2.55) or solving the

14



partial differential equation (2.45) numerically. Here we use a Bogoulubov transformation

and choose the Cauchy surface shown in Fig. 3, which consists of the null surface v = v0

along with the portion of I − with v0 < v <∞.

In a subsequent paper we intend to numerically solve the mode equation (2.63) when the

effective potential is included. In this paper, however, we set Veff = 0 and ignore potential

barrier effects in order to see what other effects (3+1)D has. Accordingly, inside the shell,

the in modes are given by Eq. (2.50) for all values of ` and m. Similarly, outside the shell

the out modes are given by

ψout
ω` = e−iωus , (2.64)

which are taken to vanish as us → −∞ along I − for v > v0. Thus

αω`mω′`′m′ = −iδ`,`′δm,m′

4π
√
ωω′

∫ vH

−∞
du(e−iωv0 − e−iωu)

↔
∂u e

iωus ,

βω`mω′`′m′ = i(−1)m
δ`,`′δm,−m′

4π
√
ωω′

∫ vH

−∞
du(e−iωv0 − e−iωu)

↔
∂u e

−iωus . (2.65a)

Note that the terms in the integrands with factors of e−iωv0 are total derivatives and can

be integrated trivially. Because e±iωus effectively vanishes at us = ±∞, these terms vanish

also. The result is that

αω`mω′`′m′ = −δ`,`′δm,m′

4π

∫ vH

−∞
du e−i(ω−ω

′)u[κ(vH − u)]iω/κ

×
[√

ω′

ω
+

√
ω

ω′

(
1 +

1

κ(vH − u)

)]
, (2.66a)

βω`mω′`′m′ =
(−1)m+1δ`,`′δm,−m′

4π

∫ vH

−∞
du e−i(ω+ω′)u[κ(vH − u)]iω/κ

×
[√

ω′

ω
−
√
ω

ω′

(
1 +

1

κ(vH − u)

)]
. (2.66b)

The expression for αω`mω′`′m′ differs from the (1+1)D case in (2.41a) by the factor of

−δ`,`′δm,m′ and the expression for βω`mω′`′m′ differs from the (1+1)D case in (2.41b) by

the factor of (−1)m+1δ`,`′δm,−m′ .

As mentioned in the Introduction, Massar and Parentani [4] have computed the Bogol-

ubov coefficients for the case of a null shell collapsing to form a black hole. Their computation

was for the s-wave sector in the (3+1)D case when the effective potential is ignored. Thus

it was the same as the case done in this subsection. By restricting to the s-wave sector,

they effectively considered the (1+1)D case as well. However, because they began with the
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(3+1)D case, their mode functions vanish at r = 0 inside the shell. In our separate (1+1)D

model we made no such assumption and instead had modes arising from I −
L . Despite that

difference both models yield the same amount of particle production. (Note that there is a

missing normalization factor of 8M in Eq. (10) of [4].)

III. TIME AND FREQUENCY RESOLVED SPECTRA

To investigate the time dependence of the particle production rate we construct localized

wave packets of a form originally used by Hawking [1] and which were used by us in Ref. [8]

to examine a set of accelerating mirror models. When this constructive process is applied to

mode functions of definite frequency, the resulting packets form a complete orthonormal set

that subdivides (and provides a degree of localization) within both the time and frequency

domains. Following [14], a given mode packet is defined as

f out
jn ≡

1√
ε

∫ (j+1)ε

jε

dωe2πiωn/ε f out
ω . (3.1)

A packet with index j covers the range of frequencies jε ≤ ω ≤ (j + 1)ε. Since the definite

frequency out modes approach I +
R with the behavior f out

ω ∼ e−iωus , a packet with index n

covers the approximate time range (2πn− π)/ε . us . (2πn+ π)/ε. We can write

βjn,ω′ ≡ −(f out
jn , f

in ∗
ω′ ) . (3.2)

Using Eq. (3.1) and interchanging the order of integration gives

βjn,ω′ =
1√
ε

∫ (j+1)ε

jε

dω e2πiωn/εβωω′ . (3.3)

Then the quantity

〈Njn〉 ≡
∫ ∞

0

dω′ |βjn,ω′ |2 , (3.4)

can be thought of as giving the average number of particles detected by a particle detector

that was sensitive to the frequency range jε ≤ ω ≤ (j + 1)ε and was turned on during the

time period (2πn − π)/ε . us . (2πn + π)/ε. Note that the value of 〈Njn〉 is the same for

both the mirror and the (1+1)D spacetime with a collapsing null shell since the values of

βωω′ are the same in those cases.

A similar expression works for the (3+1)D spacetime with a collapsing null shell for given

values of ` and m. If, as in the previous section, we neglect Veff , then the value of β for given
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ω and ω′ is the same for all ` and m. Thus summing over ` and m results in an infinite

number of particles for each value of j and n. If the mode equation is solved by including

Veff , then the number of particles for each value of j and n will be finite [14] (a case we will

discuss elsewhere).

If Eq. (2.22b) is substituted into Eq. (3.3) then in the late time, large n limit one can

see that the dominant contribution to the integral comes from values of ω′ for which the

arguments of the oscillating exponentials cancel or nearly cancel and which therefore satisfy

the condition ω′ � ω. In this limit

|βωω′ |2 ∼ 1

2πκω′
1

e2πω/κ − 1
, (3.5)

and one sees that there is a thermal distribution of particles with temperature T = κ/2π.

Thus the radiation will asymptotically approach a thermal distribution at the black hole

temperature. Such a late time thermal distribution was found for black hole radiation in [1]

and for mirrors with a particular class of asymptotically null trajectories in [3] .

To compare the exact results with a thermal spectrum, it is useful to write the thermal

spectrum in terms of packets. This has been done in [8] for a mirror trajectory studied by

Carlitz and Willey [6] in which the particle production is always in a thermal distribution.

The trajectory is [8]

z(t) = −t− 1

κ
W (e−2κt) , (3.6)

and the relevant Bogolubov coefficient is

βωω′ =
1

4π
√
ωω′

[
−2ω

κ
e−πω/2κ

(
ω′

κ

)−iω/κ
Γ

(
iω

κ

)]
. (3.7)

Substituting Eq. (3.7) into Eq. (3.3) and then into Eq. (3.4) yields

〈Njn〉 =
1

ε

∫ (j+1)ε

jε

dω

e2πω/κ − 1
=

κ

2πε
log

[
e

2π(j+1)ε
κ − 1

e
2πjε
κ − 1

]
− 1 . (3.8)

Note that the packets depend on the frequency parameters ε and j but not on the time param-

eter n as would be expected if the particles are always produced in a constant-temperature

thermal distribution. Note also that the infrared divergence in Eq. (3.7) results in a diver-

gence in the j = 0 bin in Eq. (3.8). Since all real particles detectors have infrared cutoffs,

for simplicity we simply ignore the j = 0 bin when making comparisons with our results for

the trajectory (2.14).
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An interesting balance in time and frequency resolution occurs for

ε =
κ

2π
log

(
1 +
√

5

2

)
= T csch−1(2) . (3.9)

With this packet width one can show using Eq. (3.8) that a thermal distribution has2

∞∑
j=1

〈Nj〉 = 〈Nj=1〉+
∞∑
j=2

〈Nj〉 = 1 + 1 = 2. (3.10)

It is possible, for both the particle production from a mirror following the Carlitz-Willey

trajectory (3.6) and that from a mirror following our accelerating mirror trajectory (2.14),

to scale out the dependence of 〈Njn〉 on κ by working with the following dimensionless

quantities:

x ≡ ω

κ
, (3.11a)

ε̄ ≡ ε

κ
, (3.11b)

v̄H ≡ κvH . (3.11c)

Using Eq. (2.22b), we find for the trajectory (2.14) that

〈Njn〉 =
1

4π2ε̄

∫ ∞
0

dx′
∫ (j+1)ε̄

jε̄

dx1

∫ (j+1)ε̄

jε̄

dx2 e
i(2πn/ε̄−v̄H)(x1−x2)e−π(x1+x2)/2

×x′√x1x2(x1 + x′)−ix1−1(x2 + x′)ix2−1Γ(ix1) Γ(−ix2) . (3.12)

For the other mirror trajectories studied in [8], which were all inertial at late times, it

was found that choosing a small enough value for ε and thus a small enough range for

each value of j in terms of ω gives fine-grained frequency resolution but coarse-grained

time resolution. Similarly choosing a large enough value of ε results in a fine-grained time

resolution but coarse-grained frequency resolution. It was, of course, not possible to get

fine-grained simultaneous time and frequency resolution for those trajectories. The same

issues occur here but, as shown below, we have had some success in locating an optimal

compromise in time and frequency resolution.

We begin by illustrating the time dependence of the particle production rate by choosing

the relatively large number ε̄ = 1. Because any realistic particle detector will have an

infrared frequency cutoff we shall impose one by only considering bins with j ≥ 1. For this

2 The argument of the logarithm is of course the Golden Ratio. It’s significance here is simply that it results

in the sum (3.10).
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value of ε̄ and for the Bogolubov coefficient (2.22b), we find that most of the particles are in

the bin with j = 1. The time evolution of the average number of particles detected in this

bin is given in Fig. 4 for the case vH = 0. It can be seen from this figure that the particle

production rate monotonically increases to its thermal value.

What can also be seen from Fig. 4 is the very small value that 〈Njn〉 has. This means that

the actual amount of particle production that one would expect in a specific instance would

be very low. This is related to the fact that, even at late times, the flux of radiation due to

black hole evaporation is very sparse [16]. Similar results were found for the asymptotically

inertial mirror trajectories in [8].

FIG. 4. Average number of particles produced in the j = 1 frequency bin as a function of the time

parameter n for ε̄ = 1.

To investigate the frequency spectrum we can make use of the specific packet width in

Eq. (3.9), which is small enough to provide some frequency resolution. First however, in

Fig. 5 we show the time dependence of the particle number for the j = 1 bin. It is clear that

the time resolution is not as good as for the case ε̄ = 1 in Fig. 4. The frequency resolution

is shown for three different times in Fig. 6. It is seen that we have reasonably fine-grained
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frequency resolution for the time parameters n = −1, 0, 1, while the amount of particle

production in a given time interval is larger in a low frequency bin than a high frequency

bin.

FIG. 5. Average number of particles produced in the j = 1 frequency bin as a function of the time

parameter n for the packet width in Eq. (3.9).

The increase in particle production is monotonic with no significant feature in the particle

spectrum and production rate near the time of black hole formation in contrast to the initial

burst of particles seen for the mirror trajectory in [9]. The approach to a thermal distribution

is expected since the mirror trajectory is asymptotically null and in the collapsing null shell

case the backreaction of the black hole radiation on the spacetime geometry is ignored. In

contrast, for the asymptotically inertial trajectories studied in [8, 9], one finds a peak in the

amount of particle production followed by a steady decline.
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FIG. 6. Plotted are the frequency spectra for the average number of particles produced with the

packet width in Eq. (3.9). From top to bottom the plots are for the values of the time parameter

n = −1 , 0 , 1. 21



FIG. 7. Energy flux of a quantized massless minimally coupled scalar field for the accelerating

mirror spacetime. At late times the flux approaches its asymptotic value in Eq. (4.3).

IV. STRESS-ENERGY TENSOR

Here we compute the stress-energy tensor for the accelerating mirror spacetime. The

general form of the energy flux for any mirror trajectory as a function of time u is [2]

F (u) ≡ 〈Tuu〉 =
1

24π

(
3

2

p′′2

p′2
− p′′′

p′

)
, (4.1)

where the primes are derivatives with respect to u.3 The energy flux for the trajectory (2.14)

is

F (u) =
κ2

48π

[
4W

(
e−κ(u−vH)

)
+ 1
]

[W (e−κ(u−vH)) + 1]
4 . (4.2)

It is shown in Fig. 7. Note that, unlike the case of mirror trajectories which are asymptot-

ically inertial, there is no negative energy flux in this case. In the late time limit the flux

approaches the thermal value

F =
κ2

48π
, (4.3)

3 This can also be expressed in terms of the rapidity η(u) ≡ tanh−1[ż(tm(u))] = 1
2 ln p

′
(u). The result is

12πF (u) = [η
′
(u)]2 − η′′

(u).
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which is the value at all times for the case of a mirror following the Carlitz-Willey trajec-

tory (3.6).

An interesting question is whether there is some way to characterize the nonthermal

epoch beyond the observation that the approach to a thermal state is monotonic for both

the particle production and the stress-energy tensor. One way to do so is to look at how

quickly a given quantity changes. The rate, F
′
(u), at which the energy flux changes is

F
′
(u) =

κ3

4π

[W
(
e−κ(u−vH)

)
]2

[W (e−κ(u−vH)) + 1]
6 . (4.4)

The particular time, umax, at which the rate F ′(u) reaches its maximum value, is important

because that is the time at which the system is furthest away from both its late-time thermal

emission and its early-time zero emission. It is

κ(umax − vH) = ln 2− 1

2
≈ 0.19 . (4.5)

It is interesting to note that this is the same time at which |z′′(u)| and |p′′(u)| reach their

maximum values. This time is also comparable to the time at which the change in the

particle production rate is a maximum. This can be seen from Fig. 4 to be at n ≈ 0, which

corresponds to u ≈ 0. Recall that the time corresponding to n is approximately u = 2πn/ε.

For u > umax the rate of change of the flux falls off rapidly so there is an asymmetry in the

growth of the flux. This can be seen from the fact that at u = umax the flux is 16/27 ≈ 60%

of its asymptotic value. This asymmetry is also reflected in the particle creation rate, lending

support to the notion that in this case the particles carry the energy [15].

V. CONCLUSIONS

We have displayed an exact correspondence between the particle production in (1+1)D

that occurs for a mirror in flat space with the trajectory (2.14) and the particle production

that occurs when a black hole forms from gravitational collapse of a null shell. There is also

a correspondence in the case of a null shell collapsing to form a black hole in (3+1)D if the

effective potential in the mode equation is ignored.

We have used wave packets of the form (3.1) to investigate the time dependence of the

particle production rate in the (1+1)D cases. We found that the particle production rate

increases monotonically with time. We have also computed the stress-energy tensor 〈Tab〉
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for the scalar field in the case of the accelerating mirror. The rate of change of the particle

production mimics the rate of change of energy production in time. With a relativity slow-

increase and fast-decrease, the rate of change of energy-particle flux peaks at a maximum

time that corresponds to the most non-thermal, out-of-equilibrium time of the system. The

fact that the rate-loss is greater than the rate-gain, points to an asymmetry in the approach

to equilibrium. The energy flux is approximately 60% of its maximum equilibrium value at

the time when the system is the most out of equilibrium.

The monotonic increase in particle production underscores the relatively calm approach

to equilibrium. There are no characteristic imprints to identify the energy flux in the particle

emission. However, the peak non-thermal time can be identified and the rate of change of

energy flux is mirrored in the rate of change of particle production: clear signatures of the

particle-energy coupling during the non-equilibrium formation phase.
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