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Abstract

Non-Abelian vortex strings supported in a certain four-dimensional N =
2 Yang-Mills theory with fundamental matter were shown [1] to become
critical superstrings. In addition to translational moduli non-Abelian string
under consideration carries orientational and size moduli. Their dynamics
is described by two-dimensional sigma model whose target space is a tau-
tological bundle over the complex projective space. For the N = 2 theory
with the U(2) gauge group and four fundamental hypermultiplets there are
six orientational and size moduli. After combining with four translational
moduli they form a ten-dimensional target space required for a superstring
to be critical. For the theory in question the target space of the sigma model
is C2 × Y6, where Y6 is a conifold. We study closed string states which
emerge in four dimensions (4D) and identify them with hadrons of the 4D
bulk N = 2 theory. It turns out that most of the states arising from the ten-
dimensional graviton spectrum are non-dynamical in 4D. We find a single
dynamical massless hypermultiplet associated with the deformation of the
complex structure of the conifold. We interpret this degree of freedom as a
monopole-monopole baryon of the 4D theory (at strong coupling).



1 Introduction

This paper builds on the previous discovery of the non-Abelian solitonic vor-
tex string in a certain 4D Yang-Mills theory shown to be critical in the
strong coupling limit [1]. The results to be reported below are summa-
rized in [2]. The particular 4D theory where non-Abelian vortex is critical
is N = 2 supersymmetric QCD with U(2) gauge group and Nf = 4 number
of quark flavors. The target space of the 2D theory on the vortex string is
C2 × Y6, where Y6 is conifold. Analyzing the closed string spectrum we find
one massless hypermultiplet associated with the deformation of the complex
structure of the conifold. Then we interpret this hypermultiplet in terms of
the four-dimensional Yang-Mills theory at strong coupling.

In quantum chromodynamics Regge trajectories show almost perfect lin-
ear J behavior (J stands for spin). However, in all controllable examples
at weak coupling a solitonic confining string exhibits linear behavior for the
Regge trajectories only at asymptotically large spins [3, 4]. The reason for
this is that at J ∼ 1 the physical “string” becomes short and thick and can-
not yield linear Regge behavior. Linear Regge trajectories at J ∼ 1 have a
chance to emerge only if the string at hand satisfies the thin-string condition
[1],

T ≪ m2 , (1.1)

where T is the string tension and m is a typical mass scale of the bulk fields
forming the string. The former parameter determines the string length, while
the latter determines the string width. At weak coupling g2 ≪ 1, where g2

is the bulk coupling constant, we have m ∼ g
√
T . The thin-string condition

(1.1) is therefore badly broken.
For most solitonic strings in four dimensions, like the Abrikosov-Nielsen-

Olesen (ANO) vortices [5], the low-energy two-dimensional effective Nambu-
Goto theory on the string worldsheet is not ultraviolet (UV) complete. To
make the worldsheet theory sensible to the dimension of the target space one
has to take into account higher derivative corrections [6]. Higher derivative
terms run in inverse powers of m and at weak coupling blow up making the
string worldsheet “crumpled” [7]. The blow up of higher derivative terms
in the worldsheet theory corresponds to the occurrence of thick and short
“string.”

The question weather one can find an example of a solitonic string which
might produce linear Regge trajectories at J ∼ 1 was addressed and answered
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in [1]. Such a string should satisfy the thin-string condition (1.1). This
condition means that higher derivative correction are parametrically small
and can be ignored. If so the low-energy worldsheet theory should be UV
complete. This implies the following necessary conditions:

(i) The low-energy world-sheet theory must be conformally invariant;

(ii) The theory must have the critical value of the Virasoro central charge.

These conditions are satisfied by the fundamental string.

In [1] it was shown that (i) and (ii) above are met by non-Abelian vortex
string [10, 11, 12, 13] supported in four-dimensional N = 2 supersymmetric
QCD with the U(N) gauge group, Nf = 2N matter hypermultiplets and the
Fayet-Iliopoulos (FI) parameter ξ. The non-Abelian part of the gauge group
has vanishing β function.

The non-Abelian vortex string is 1/2 BPS saturated and, therefore, has
N = (2, 2) supersymmetry on its worldsheet. In addition to translational
moduli characteristic of the ANO strings, the non-Abelian string carries ori-
entational moduli, as well as size moduli if Nf > N . [10, 11, 12, 13], see
[14, 15, 16, 17] for reviews. Their dynamics is described by two-dimensional
sigma model with the target space

O(−1)
⊕(Nf−N)

CP
1 , (1.2)

to which we will refer to as WCP(N,Nf − N) model. It has a natural
description in terms of gauged linear sigma model (GLSM) [18] containing
N positive and Nf−N negative U(1) charged chiral multiplets. For Nf = 2N
the model becomes conformal and condition (i) above is satisfied. Moreover
for N = 2 the dimension of orientational/size moduli space is six and they
can be combined with four translational moduli to form a ten-dimensional
space required for critical superstrings1. Thus the second condition is also
satisfied [1].

Given that the necessary conditions are met, a hypothesis was put forward
[1] that this non-Abelian vortex string does satisfy thin-string condition (1.1)
at strong coupling regime in the vicinity of a critical value of g2c ∼ 1. This
implies that m(g2) → ∞ at g2 → g2c .

1It corresponds to ĉ = c

3
= 3
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Moreover, a version of the string-gauge duality for the four-dimensional
bulk Yang-Mills was proposed: at weak coupling this theory is in the Higgs
phase and can be described in terms of (s)quarks and Higgsed gauge bosons,
while at strong coupling hadrons of this theory can be understood as string
states formed on the non-Abelian vortex string. In this paper we further
explore this hypothesis by studying string theory for the critical non-Abelian
vortex. This analysis allows us to confirm and enhance the construction [1].

Vortices in U(N) theories are topologically stable and can be realized as
either closed or open strings. Open strings need to end on some object e.g.
branes. However, there are no such objects in N = 2 SQCD2. Therefore
we shall focus on the closed strings emerging from four dimensions and we
will be able to identify closed string states with with hadrons of the four
dimensional bulk theory.

It is worth mentioning at this point that our solitonic vortex describes
only non-perturbative states. Perturbative states, in particular massless
states associated with the Higgs branch of the four-dimensional theory (see
Sec. 2), are present at all values of gauge couplings and are not captured by
the vortex string dynamics.

The onset of the thin-string regime (1.1) is determined by the ratio T/m2.
While the string tension is exactly determined by FI parameter ξ,

T = 2πξ , (1.3)

there is no exact formula known for mass m. The latter is a (common)
mass parameter for the (s)quarks and Higgsed gauge bosons, which form
long non-BPS multiplets. Their masses receive quantum corrections (see
[16] and Sec. 2 below). Thus condition (1.1) can be argued for but it is
problematic to rigorously prove it since we are at strong coupling. We can
test it, however. The effective hadron four-dimensional theory which emerges
from quantization of the non-Abelian string should respect general properties
of the original N = 2 theory.

We perform the following four major tests of our proposal:

(a) N = 2 space-time supersymmetry in 4D. From the string side it emerges
due to N = (2, 2) worldsheet supersymmetry and the fact that we have
only closed string states in our theory. In fact, we will show that our
non-Abelian vortex is a Type IIA superstring.

2There is a possibility for a string to end on BPS monopoles in N = 1 theory which is
a deformation of the N = 2 SQCD by a superpotential.
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(b) Absence of 4D massless graviton. Our original bulk theory is N =
2 QCD without gravity. Thus we expect that 4D massless string modes
not to include graviton.

(c) Absence of unwanted massless vector multiplets.

(d) The 4D massless monopole-monopole baryon exists only at strong cou-
pling and cannot be continued to the weak coupling, where its presence
would contradict previous semiclassical analysis.

Note that if the Calabi-Yau manifold Y6 is compact then there certainly is
a massless 4D graviton in the spectrum3 . However, since conifold is noncom-
pact, we do not expect any massless spin-2 states appearing after the reduc-
tion to 4D, nor do they exist in the bulk 4D N = 2 theory. We shall explicitly
demonstrate that the 4D graviton is absent due to non-normalizability of its
wave function.

Moreover, we will show that 4D massless vector multiplets associated with
the Killing vectors on the conifold are also absent due to non-normalizability
of their wave functions over the internal six-dimensional space. Massless
vector multiplets have natural interpretation as gauge bosons. If they were
present at strong coupling at g2 close to g2c they would remain massless at
arbitrary g2, in particular, at weak coupling4. However, we know that there
are no massless gauge multiplets at weak coupling in the bulk N = 2 Yang-
Mills theory – all gauge fields are Higgsed. In particular, we will show that
the 4D vector multiplet associated with deformation of the Kähler structure
of the conifold Y6 in type IIA string theory is non-dynamical.

We will address the physical meaning of the above non-normalizability.
For certain non-normalizable modes we see that their background values
should be considered as coupling constants in the 4D Yang-Mills theory[20].
For others, non-normalizability is related to instability due to the presence
of the Higgs branch in the bulk (and associated massless states).

The paper is organized as follows. In Sec. 2 we review physics of the
N = 2 SQCD, non-Abelian vortices and introduce a string description for
these vortices. In Sec. 3 we discuss N = 2 supersymmetry on the worldsheet
and show that we deal with Type IIA string. In Sec. 4 we briefly review the

3An alternative – massless 4D spin-2 state with no interpretation in terms of 4D gravity
– is ruled out by the Weinberg-Witten theorem [19].

4One could avoid this conclusion if gauge fields were Higgsed at weak coupling. How-
ever, this would require an appropriate amount of massless charged matter multiplets.
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general framework to obtain 4D states from 10D massless close string states
like graviton and discuss the normalizability of these states. In Sec. 5 we
consider the massless vector multiplet and hypermultiplet associated with
deformations of Kähler and complex structures of the conifold respectively.
In Sec. 6 we give physical interpretation of the hypermultiplet associated with
deformation of the complex structure of the conifold as a monopole-monopole
baryon. We summarize our conclusions in Sec. 7. Appendix contains explicit
expressions for the metric of resolved and deformed conifolds.

2 Non-Abelian Vortex as a Critical Super-

string

In this section we briefly review our bulk N = 2 Yang-Mills, non-Abelian
strings that it supports and the corresponding worldsheet model.

2.1 N = 2 supersymmetric Yang-Mills in 4D

The basic bulk model we start from is N = 2 SQCD with the U(N) gauge
group and Nf massless matter hypermultiplets. It is described in detail in
[12], see also the review [16]. The field content is as follows.

TheN = 2 vector multiplet consists of the U(1) gauge field Aµ and SU(N)
gauge fields Aa

µ, where a = 1, ..., N2− 1, as well as their Weyl fermion super-
partners plus complex scalar fields a, and aa and their Weyl superpartners,
respectively.

The matter sector of the U(N) theory contains Nf (s)quark hypermulti-
plets each consisting of the complex scalar fields qkA and q̃Ak (squarks) and
their fermion superpartners — all in the fundamental representation of the
SU(N) gauge group. Here k = 1, ..., N is the color index while A is the flavor
index, A = 1, ..., Nf . In this paper we assumed the matter mass parameters
to vanish.

In addition, we introduce the FI parameter ξ in the U(1) factor of the
gauge group. It does not break N = 2 supersymmetry.

We will consider the bulk theory with Nf = 2N . In this case the SU(N)
gauge coupling does not run since the corresponding β function vanishes.
Note however, that the conformal invariance of the bulk theory is explicitly
broken by the FI parameter.
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Let us review the vacuum structure and the excitation spectrum of the
bulk theory assuming weak coupling, g2 ≪ 1, where g2 is the SU(N) gauge
coupling. The FI term triggers the squark condensation. The squark vacuum
expectation values (VEV’s) are

〈qkA〉 =
√
ξ




1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 1 0 . . . 0


 , 〈¯̃qkA〉 = 0,

k = 1, ..., N , A = 1, ..., Nf , (2.1)

where we present the squark fields as matrices in the color (k) and flavor (A)
indices.

The squark condensate (2.1) results in the spontaneous breaking of both
gauge and flavor symmetries. A diagonal global SU(N) combining the gauge
SU(N) and an SU(N) subgroup of the flavor SU(Nf) group survives, however.
This is a well known phenomenon of color-flavor locking.

Thus, the unbroken global symmetry of the bulk is

SU(N)C+F × SU(Ñ)× U(1) , (2.2)

where
Ñ = Nf −N .

Here SU(N)C+F represents a global unbroken color-flavor rotation, which

involves the first N flavors, while the SU(Ñ) factor stands for the flavor

rotation of the remaining Ñ quarks.
Now, let us briefly discuss the perturbative excitation spectrum. Since

both U(1) and SU(N) gauge groups are broken by the squark condensation,
all gauge bosons become massive. In particular, the mass of the SU(N) gauge
bosons is given by

m ≈ g
√
ξ (2.3)

at weak coupling.
As was already mentioned, N = 2 supersymmetry remains unbroken. In

fact, with the non-vanishing ξ, both the squarks and adjoint scalars combine
with the gauge bosons to form long N = 2 supermultiplets with eight real
bosonic components [21]. All states appear in the representations of the un-
broken global group (2.2), namely, in the singlet and adjoint representations
of SU(N)C+F ,

(1, 1, 0), (Adj, 1, 0), (2.4)
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and in the bi-fundamental representations of SU(N)C+F × SU(Ñ)

(
N̄, Ñ,

Nf

2Ñ

)
,

(
N, ˜̄N, −Nf

2Ñ

)
. (2.5)

The representations in (2.4) and (2.5) are labeled according to three fac-
tors in (2.2). The singlet and adjoint fields are the gauge bosons, and the
first N flavors of squarks qkP (P = 1, ..., N), together with their fermion
superpartners. In particular, the mass of adjoint fields is given by Eq. (2.3).

The physical reason behind the fact that the (s)quarks transform in the
adjoint or bi-fundamental representations of global group is that their color
charges are screened by the condensate (2.1) and therefore they can be con-
sidered as mesons.

The bi-fundamental fields (2.5) represent the (s)quarks of the type qkK

with K = N + 1, ..., Nf . They belong to short BPS multiplets with four
real bosonic components. These fields are massless provided that the matter
mass terms vanish. In fact, in this case the vacuum (2.1) in which only N
first squark flavors develop VEVs is not an isolated vacuum. Rather, it is a
root of a Higgs branch on which other flavors can also develop VEVs. This
Higgs branch forms a cotangent bundle to the complex Grassmannian

H = T ∗GrCNf ,N
. (2.6)

whose real dimension is [22, 23]

dimH = 4NÑ. (2.7)

The above Higgs branch is non-compact and is hyper-Kähler [24, 22], there-
fore its metric cannot be modified by quantum corrections [22]. In particular,
once the Higgs branch is present at weak coupling we can continue it all the
way into strong coupling. In principle, it can intersect with other branches
if present, but it cannot disappear in the theory with vanishing matter mass
parameters. We will see below that the presence of the Higgs branch and
associated massless bi-fundamental quarks has a deep impact on non-Abelian
vortex dynamics.

The Higgs branch (2.6) has a compact base defined by the condition

¯̃q
kA

= 0 . (2.8)
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This is the complex Grassmannian of real dimension 2NÑ . The BPS vortex
solutions exist only on the base of the Higgs branch. Therefore, we will limit
ourselves to the vacua which belong to the base manifold.

Let us comment on the U(1) charges in (2.4) and (2.5). The global un-
broken U(1) factor in (2.2) acts as follows. Let us make a U(1)g gauge
transformation on quarks qkA (we define the U(1) quark charge to be 1/2).
To preserve the vacuum (2.1) we compensate it by action of the generator

(
−1

2
, ..., −1

2
;

N

2Ñ
, ...,

N

2Ñ

)
, (2.9)

which belongs to flavor SU(Nf ). Here we separated the first N and the last Ñ
entries. As a result, the quarks qkP do not transform (hence the vacuum (2.1)

is invariant) while the quarks qkK acquire charges
Nf

2Ñ
, where P = 1, ..., N and

K = N + 1, ..., Nf . This is reflected in (2.4) and (2.5).
What is usually referred to as the baryonic U(1) symmetry is a part of the

U(N) gauge group in our 4D Yang-Mills. Still we can identify the unbroken
U(1) factor in (2.2) as a “baryonic” U(1)B symmetry. The reason is clear: the
baryonic operators constructed as a product of two bi-fundamental quarks

B = εKK ′ εll′ q
lK ql

′K ′

, B̃ = εKK ′

εll
′

q̃Kl q̃K ′l′ , K,K ′ = N + 1, ..., Nf

(2.10)
have the U(1)B baryonic charges

QB(B) =
Nf

Ñ
= 2 , QB(B̃) = −Nf

Ñ
= −2, (2.11)

where we indicated the numerical values for the case we are interested in in
what follows, N = Ñ = 2.

Certainly the physical meaning of the baryonic charge above is not the
same as, say, in actual QCD. As we saw above, in our theory bi-fundamental
quarks (which can be viewed as mesons upon Higgs screening) also carry
baryonic charges. Therefore, baryons can decay into bi-fundamental mesons.
We will see example of such a behavior below.

The above analysis of the Higgs phase assumes weak coupling. What
happens if we increase the coupling constant g2? In fact, the bulk theory
at zero ξ is invariant under S-duality which interchanges strong and weak
coupling regimes [25, 22]

τ → τD = −1

τ
, τ =

4πi

g2
+
θ4D
2π

, (2.12)
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where θ4D is the θ-angle. Therefore, even at non-zero ξ the region of g2 ≫ 1
can be described in terms of the dual weakly coupled gauge theory.

2.2 Non-Abelian vortex strings

The presence of the global SU(N)C+F symmetry is the reason for formation of
non-Abelian flux tubes (vortex strings) [10, 11, 12, 13]. The most important
feature of these vortices is the presence of orientational and size zero modes.
In N = 2 bulk theory these strings are 1/2 BPS-saturated; hence, their
tension is determined exactly by the FI parameter, see (1.3).

Non-Abelian vortices confine BPS monopoles of the four dimensional
theory. However, as was already mentioned, the monopoles cannot be at-
tached to the string ends. In fact, in the U(N) theories confined elementary
monopoles are junctions of two “neighboring” non-Abelian strings, see [16]
and Sec. 6 for a more detailed discussion.

Let us have a closer look at the effective worldsheet theory for non-Abelian
vortex. Dynamics of the translational modes (which are also present for the
conventional ANO string) in the Polyakov formulation [9] is described by the
action

Str =
T

2

∫
d2σ

√
h hkl∂kx

µ ∂lxµ , (2.13)

where σk (k = 1, 2) are the world-sheet coordinates, xµ (µ = 1, ..., 4) are 4D
coordinates and h = det(hkl) where hkl is the world-sheet metric which is
understood as an independent variable.

If one choose Nf = N , the dynamics of the orientational zero modes
on the non-Abelian vortex (they become orientational moduli fields on the
worldsheet), would be described by two-dimensionalN = (2, 2) supersymmetric
CP

N−1 model which is compact [10, 11, 12, 13], see [14, 15, 16] for reviews.
Size moduli do not appear in this case. If one adds extra quark flavors, non-
Abelian vortices become semilocal. They acquire size moduli (see the review
paper [26] devoted to Abelian semilocal vortices).

Non-Abelian semilocal vortices in N = 2 Yang-Mills with Nf > N were
studied in [10, 13, 27, 28, 29]. The world-sheet theory for the orientational
(size) moduli of the semilocal vortex is given by the sigma model on the

tautological bundle over the same projective space O(−1)⊕Ñ
CP

N−1 where Ñ =

(Nf −N), which we agreed to call WCP (N, Ñ). Its GLSM formulation is as
follows [18]. One introduces two types of complex fields nP , P = 1, . . . , N and
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ρK , K = N + 1, . . . , Nf , which have U(1) charges +1 and −1 respectively.
The orientational moduli are described by the N -plets nP while the size
moduli are parametrized by the Ñ -plet ρK .

The effective two-dimensional theory on the worldsheet has the action

Sor =

∫
d2σ

√
h
{
hkl

(
∇̃kn̄P ∇l n

P +∇kρ̄K ∇̃l ρ
K
)

+
e2

2

(
|nP |2 − |ρK |2 − β

)2
}
+ fermions . (2.14)

Since fields nP and ρK have charges +1 and −1 with respect to the gauge
U(1) we have

∇k = ∂k − iAk , ∇̃k = ∂k + iAk .

The limit e2 → ∞ is implied. 5

Coupling constant β in (2.14) is related to the bulk coupling via

β ≈ 4π

g2
. (2.15)

This formula was derived at weak coupling regime in the bulk theory [11, 12]
and is quasiclassical. It is modified at strong coupling.

Note that the first (and the only) coefficient of the β function β1 = N−Ñ
is the same for the bulk and world-sheet theories. It vanishes provided N =
Ñ .

The bosonic part of the total string action for the non-Abelian vortex
under consideration is the sum of (2.13) and (2.14),

S = Str + Sor . (2.16)

As was already mentioned, the two necessary conditions for a thin string
regime are met for the non-Abelian semilocal vortex supported in four-
dimensional N = 2 Yang-Mills theory provided the gauge group is U(N = 2)

5A remark in passing: In fact, the world-sheet theory on the semilocal non-Abelian
string is not exactly the WCP (N, Ñ) model [29]. Both orientational and size moduli
have logarithmically divergent norm [27]. After an appropriate infrared regularization
logarithmically divergent norms can be absorbed into the definition of two dimensional
fields. The actual theory is called zn model. Nevertheless it has the same infrared physics
as the GLSM in question [30].
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and the number of quark hypermultiplets is Nf = 4 [1]. Indeed, in the
conformal gauge the translational part of the action is a free theory and
therefore conformal, while the β function of the the orientational (size) part

is proportional to β1 = N − Ñ . Thus, the condition of conformality β1 = 0
implies

N = Ñ , or Nf = 2N. (2.17)

Moreover, the number of orientational (and size) degrees of freedom in (2.14)
is

2(N + Ñ − 1) = 2(2N − 1), (2.18)

where we subtracted 2 because of the D-term condition (see the last line
in (2.14)) and U(1). Requiring that this number is equal to six gives the

solution 6 N = Ñ = 2, Nf = 4. For these values of N and Ñ the target space
of the sigma model (2.14) is resolved conifold [18]

Y6 = O(−1)CP1 ⊕O(−1)CP1 . (2.19)

The global symmetry of our world-sheet sigma model (2.14)

SU(2)× SU(2)× U(1) (2.20)

is the same as the unbroken global group of the bulk theory (2.2) for N =

Ñ = 2. The fields n and ρ transform in the following representations:

n : (2, 0, 0), ρ : (0, 2, 1) . (2.21)

2.3 Bulk duality vs. world-sheet duality

If Ñ < N the bulk N = 2 Yang-Mills is asymptotically free. Its coupling
constant g2 is frozen at the scale

√
ξ. The theory is in the weak coupling

regime if
√
ξ ≫ Λ, where Λ is the dynamical scale. If we make

√
ξ ≪ Λ the

physics can be described by weakly coupled infrared-free N = 2 SQCD with

6See [1] for details of calculation of the Virasoro central charge for our sigma model.

Technically there are two other pairs of N and Ñ which formally fit our construction
(vanishing beta function and vanishing Virasoro central charge): N = 1, Ñ = 3 and

N = 3, Ñ = 1, with ratio of the U(1) charges for nA and for ρK fields being equal to
−3 and −1/3 respectively. Although it is straightforward to generalize GLSM (2.14),
we cannot proceed further, since the derivation of such GLSMs as theories of dynamical
vortices in N = 2 SQCD along the lines of [27] is not available at the moment.
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the gauge group U(Ñ)×U(1)N−Ñ and Nf flavors of dual quarks [31], see also
[32] for a review. This bulk duality is reflected in the world-sheet duality for
the sigma model on the non-Abelian vortex. Namely, the coupling constant
β is reflected β → −β and the roles of N orientational moduli nP and Ñ size
moduli ρK are interchanged [31].

In the theory at hand Ñ = N = 2 and the SU(2) gauge coupling constant
does not run. However, as was already mentioned, our bulk theory has weak-
strong self-duality (2.12). This duality should be reflected in the world-sheet
model as well. Indeed, the world-sheet model (2.14) is obviously self-dual
under the reflection of the coupling constant β,

β → βD = −β . (2.22)

Under this duality the orientational and size moduli nP and ρK interchange.
Note, that the 4D self-dual point g2 = 4π is mapped onto the 2D self-dual
point β = 0. The 2D coupling constant β can be naturally complexified if
we include the θ term in the action of the CP

N−1 model,

β → β + i
θ2D
2π

.

Given the complexification of β we expect to get a generalization of (2.22)
to complex values of the coupling which has the same fix point β = 0.

It was conjectured in [1] that thin-string condition (1.1) is in fact satisfied
in this theory at strong coupling limit g2c ∼ 1. The conjecture is equivalent to
the assumption that the mass of quarks and gauge bosonsm has a singularity
as a function of g2. If we assume for simplicity that there is only one singular
point, then by symmetry, a natural choice is the self-dual point τc = i or
g2c = 4π. This gives

m2 → ξ ×





g2, g2 ≪ 1
∞, g2 → 4π

16π2/g2, g2 ≫ 1
, (2.23)

where the dependence of m at small and large g2 follows from the tree-level
formula (2.3) and duality (2.12).

Thus we expect that the singularity of mass m lies at β = 0. This
is the point where the non-Abelian string becomes infinitely thin, higher
derivative terms can be neglected and the theory of the non-Abelian string
reduces to (2.16). The point β = 0 is a natural choice because at this point
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we have a regime change in the 2D sigma model per se. This is the point
where the resolved conifold defined by theD-term in (2.14) develops a conical
singularity [34].

The term “thin string” should be understood with care. As was men-
tioned previously, the target space of our sigma model is non-compact, see
(2.19). Since the non-compact string moduli ρK have the string-size inter-
pretation one might think that at large |ρ| our string is not thin. Note, that
by the thin-string condition (1.1) we mean that the string core is thin, and
higher-derivative corrections run in powers of ∂2/m2 and are negligible.

Note that there are massless states in the bulk theory namely bifunda-
mental quarks (2.5) which give rise to the continuous spectrum. Most of
these light modes are not localized on the string and do not participate in
the string dynamics. The only zero modes which are localized (in addition
to the translational modes) are the size and the orientational modes [27]
indicated in (2.14). They have logarithmically divergent norm while other
light modes are power non-normalizable in the infrared. All other localized
modes are massive with mass ∼ m. Integrating out these massive modes
leads to higher-derivative corrections running in powers of ∂2/m2. They are
negligible if m is large, see (1.1). We do not integrate out zero modes.

3 Type IIA Description

3.1 Vortex string and bulk supersymmetry

In this section we discuss the space-time supersymmetry of the non-Abelian
vortex superstring (2.16). Let us first describe the fermionic content of the
worldsheet theory. The action of the translational sector of the string in the
static gauge σ1 = x0, σ2 = x3 can be written as a free theory

Str =
T

2

∫
d2x{∂kxi ∂kxi + ζ̄L ∂R ζL + ζ̄R ∂R ζR}, (3.1)

where the worldsheet integral in the static gauge is taken over x0 and x3,
k = 0, 3, while xi are transversal translational moduli, i = 1, 2. There are
four real degrees of freedom associated with complex free fermions ζL and ζR
in the translational sector.

Note that we use the static gauge because the effective worldsheet theory
for the string was derived in the static gauge from the solitonic vortex solution
of the bulk theory [11, 12].
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The bosonic part of the worldsheet action for orientational-size moduli
(of the GLSM) is given by (2.14). The fermionic superpartners of nP and
ρK are fermionic fields ξPL,R and χK

L,R made of left and right moving modes.
They are subject to constraint

n̄P ξ
P
L,R − ρ̄Kχ

K
L,R = 0. (3.2)

These fermions are related to nP and ρK via N = (2, 2) worldsheet super-
symmetry.

The total number of real degrees of freedom in the fermionic orientational-
size sector is 4(N + Ñ − 1) = 12 for N = Ñ = 2. Thus altogether we have
16 fermions in the worldsheet theory in the static gauge. This corresponds
to 32 fermions in the reparametrization invariant description (which reduces
to 16 fermions upon fixing a physical gauge like light-cone or static gauge).
These fermions are interpreted as θ-variables in 10D space for a closed string.
The number of θ-variables corresponds to the number of supercharges. This
number is reduced to eight upon considering the string on a six dimensional
Calabi-Yau manifold with SU(3) holonomy [37]. Eight supercharges are re-
quired in order to have N = 2 supersymmetry in 4D space. The rest of the
10D supersymmetry is broken by the Calabi-Yau background.

As was mentioned in the Introduction this is one of the successful tests
of our picture. 4D N = 2 supersymmetry which we get on the string side
matches with N = 2 supersymmetry present in the bulk QCD from the
very beginning. Imagine that we had an open vortices in our bulk QCD.
Open strings would break 4D supersymmetry down to N = 1 on the string
side. This would contradict N = 2 supersymmetry of our initial theory.
Fortunately we do not have open vortex strings.

3.2 Type IIA superstring

Given the N = 2 supersymmetry in 4D the next question to address is
whether our vortex is described by Type IIA or Type IIB superstring theory.
To answer this question we consider 10D parity transformation. As it is well
known, Type IIB string is a chiral theory and breaks parity while Type IIA
string theory is left-right symmetric and conserves parity [37].

The parity transformation acts on 4D fermions as

ψα → ¯̃
ψα̇. (3.3)
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(for notations see [27] or [16]). Explicit expressions presented in [39] (in the
static gauge) for profile functions of the fermion zero modes show that the
U(1) supertranslational and SU(2) superorientational modes are proportional
to

ψ̄2̇ ∼ (x1 + ix2)ζL, ψ̄2̇Pk ∼ nP ξ̄Lk.

¯̃
ψ1̇ ∼ (x1 − ix2)ζR,

¯̃
ψ

kP

1̇ ∼ −ξkRn̄P . (3.4)

Since x1,2,3 → −x1,2,3 and n → −n, ρ→ −ρ under parity transformation we
have

ζL → −ζ̄R, ζR → −ζ̄L, , ξPR → −ξPL , χK
R → −χK

L . (3.5)

Our 2D world-sheet theory is invariant under this transformation (3.1); thus
we conclude that the string theory of the vortex string (2.16) is of Type IIA.

Certainly this result matches our expectations because we started with
N = 2 supersymmetric Yang-Mills preserving 4D parity (it is a vector-like
theory). Therefore we expect that the closed string spectrum in this theory
should respect 4D parity.

4 Four Dimensional Reduction

In this section we discuss massless states in four dimensions which are pre-
dicted by our string theory.

4.1 Generalities

Now let us consider Type IIA string propagating in 10D space with a non-flat
metric,

C
2 × Y6 , (4.1)

where Y6 is the non-compact target space of sigma model (2.14) which is
a resolved Calabi-Yau conifold [34]. As was argued above, we expect that
the non-Abelian vortex becomes parametrically thin and can be described
by the string action (2.16) at strong coupling near the self-dual point β = 0.
Therefore, below we assume that β is small, |β| ≪ 1.

Strictly speaking at small β quantum corrections in the world-sheet sigma
model blow up. In other words, we can say that at small β the gravity
approximation does not work. However, if we are interested in the massless
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states, we can perform the supergravity computations at large β and the
extrapolate the results to strong coupling. The massless states in the sigma
model language correspond to chiral primary operators. They are protected
by N = (2, 2) world-sheet supersymmetry. Their masses are not lifted by
quantum corrections. However, kinetic terms (the Kähler potentials) can
acquire corrections.

The massless 10D bosonic fields of Type IIA string theory in flat ten
dimensions are graviton, dilaton and antisymmetric tensor BMN , in the NS-
NS sector. In the R-R sector Type IIA string gives one-form and three-form
[40]. Here M,N = 1, ..., 10 are 10D indices. We start with the massless
10D graviton and examine what states it can produce in four dimensions. In
fact, the states coming from other massless 10D fields listed above can be
recovered from N = 2 supersymmetry in 4D, see for example [41]. We will
follow the standard string theory method which is well developed for compact
Calabi-Yau spaces [37]. Our only novel aspect is that that for each 4D state
we have to check normalizability of its wave function over the non-compact
Y6.

Massless 10D graviton is a fluctuation of the metric

δGMN = GMN −G
(0)
MN

where G
(0)
MN is the metric on (4.1) which has a block form: the flat metric

for R4 and the Calabi-Yau metric for the conifold (see the next sections and
Appendix for an explicit expression for this metric).

Graviton should satisfy the Lichnerowicz equation

DAD
AδGMN + 2RMANBδG

AB = 0, (4.2)

where DA and RMANB are the covariant derivative and the Riemann tensor,
respectively, calculated in the background G

(0)
MN . Here the gauge

DAδG
A
N − 1

2
DNδG

A
A = 0

is imposed. For the block form of the metric G
(0)
MN only the six-dimensional

part Rijkl of RMANB is nonvanishing while the operator DAD
A is given by

DAD
A = ∂µ∂

µ +DiD
i

where the indices µ, ν = 1, ..., 4 and i, j = 1, ..., 6 belong to flat 4D space and
Y6, respectively, and we use the 4D metric with diagonal entries (−1, 1, 1, 1).

16



Following a standard string theory method [37] we look for solutions of
(4.2) assuming the factorized form of δGMN

δGµν = δgµν(x)φ6(y), δGµi = Bµ(x) Vi(y), δGij = φ4(x) δgij(y)
(4.3)

where xµ and yi are coordinates in R4 and Y6, respectively. Moreover, δgµν(x),
Bµ(x) and φ4(x) are graviton, vector and scalar fields in 4D, while φ6(y), Vi(y)
and δgij(y) are fields on Y6.

In order for the fields δgµν(x), Bµ(x) and φ4(x) to be dynamical in 4D
the fields φ6(y), Vi(y) and δgij(y) should have finite norm when integrated
over the six-dimensional internal space Y6. Otherwise, the 4D fields come
with infinite kinetic energy and are not dynamical [20]. They just decouple,
and this is very important.

Symbolically the Lichnerowicz equation (4.2) can be written as

(∂µ∂
µ +∆6) g4(x)g6(y) = 0, (4.4)

where ∆6 is the two-derivative operator from (4.2) reduced to Y6, while
g4(x)g6(y) symbolically denotes the factorization form (4.3). If we expand g6
in eighenfunctions,

−∆6g6(y) = λ6g6(y) , (4.5)

the eighenvalues λ6 will play the role of the mass squared of the 4D states.
Since our conifold is asymptotically flat g6 for λ6 > 0 behaves as a plane

wave at large y2i and is non-normalizable. Thus we are looking for massless
4D states with λ6 = 0

−∆6g6(y) = 0. (4.6)

Solutions of this equation for Calabi-Yau manifolds are given by elements
of Dolbeault cohomology H(p,q)(Y6), where (p, q) denotes numbers of holo-
morphic and anti-holomorphic indices in the form. The dimensions of these
spaces h(p,q) are called Hodge numbers for a given Y6.

4.2 4D graviton

For 4D graviton gµν(x) in (4.3) equation (4.6) takes the form

−DiD
iφ6 = −Di∂

iφ6 = 0 . (4.7)

It has only one solution
φ6(y) = const . (4.8)
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For a compact Calabi-Yau space this is expressed as h(0,0) = 1 and leads to
the presence of a single graviton in 4D. For the conifold under consideration
the solution (4.8) has infinite norm on Y6, so there is no 4D graviton in our
theory.

This result is expected and most welcome. As was already mentioned,
the original N = 2 Yang-Mills theory in four dimensions had no gravity and,
therefore, we do not expect 4D graviton to appear as a closed string state.
The result above is a non-trivial check of our approach and, in particular, of
the validity of the main conjecture of the thin-string regime for vortex string
(1.1).

The non-normalizability of wave function (4.8), besides graviton, rules
out also other 4D states of the N = 2 gravitational and tensor multiplets:
vector field, dilaton, antisymmetric tensor and two scalars coming from 10D
three-form.

Note also, that even if we “forgot” about the GSO projection the tachyon
would be absent in 4D anyway due to non-normalizability of (4.8).

4.3 Killing vectors

Consider now the second option in (4.3): 10D graviton δGµi gives rise to a
vector field in 4D. This possibility is related to the presence of continuous
symmetries on Y6. Our conifold Y6 has a global symmetry, so we expect to
have seven Killing vectors associated with the generators of (2.20).

The Killing vectors obey the following equation:

DiV
m
j +DjV

m
i = 0 , m = 1, ..., 7 . (4.9)

For the Calabi-Yau manifold it then follows that Vi should satisfy Eq. (4.6)
which reads

DjD
jV m

i = 0 . (4.10)

Being integrated by parts over compact Calabi-Yau spaces this equation
implies that Vi is a covariantly constant vector DjVi = 0. Such vectors are
incompatible with the SU(3) holonomy. This leads to the conclusion that
there are no global continuous symmetries on compact Calabi-Yau manifolds
[37].

For non-compact Y6 this conclusion can be avoided and we expect pres-
ence of seven Killing vectors associated with the symmetry (2.20). However,
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it is easy to see that V m
i produced by rotations of coordinates yi by the gen-

erators of (2.20) do not fall-off at large y2i (where the Y6 metric tends to flat).
Thus, they are non-normalizable, and the associated 4D vector fields Bµ(x)
are absent.

This result also matches our expectations. Vector fields Bµ(x) naturally
have interpretation of gauge fields. Their presence would mean that we have
low energy gauge group (2.20) in 4D. However as we explained in Sec. 2.1
symmetry (2.20) is a global unbroken group of our bulk N = 2 QCD. It
is not gauged. Therefore the presence of gauge fields Bµ(x) would lead to
inconsistency of our picture. Happily they are absent.

Moreover, as was noted in Sec. 1, massless gauge fields, if present at
strong coupling, could be continued all the way to the weak coupling domain.
Then their presence would contradict the quasiclassical analysis of Sec. 2.1,
where it is shown that we do not have massless gauge multiplets at weak
coupling.

4.4 Physical nature of non-normalizable modes

If we were studying the fundamental string on a non-compact Calabi-Yau
space, we would conclude that string propagates in the full 10D space and
4D subspace of it has no special role. However, our string is a solitonic
vortex in 4D gauge theory. Clearly we have to interpret string states as
states living in this 4D theory. Most of string states are not localized near
the 4D subspace and from 4D perspective represent non-normalizable states.
What is the physical nature of these non-normalizable modes, in particular
those we found above?

One option is that non-normalizable modes, being non-dynamical, corre-
spond to the coupling constants of 4D theory [20]. One example of this is the
4D graviton considered above. It comes with the infinite kinetic term; hence,
the 4D metric cannot fluctuate. It is fixed to be flat and can be viewed as
a fixed background rather than a dynamical field. In other words, the 4D
“Planck mass” is infinite in our theory.

Another example is the 4D gauge fields Bµ(x) associated with the Killing
vectors. As was noted above, they correspond to gauging of the global bulk
symmetry (2.2) which, if present, would contradict consistency of our picture.
However, these gauge fields also come with the infinite kinetic terms, which
means that the gauge coupling constants of these fields are in fact zero. This
confirms that the symmetry (2.2) is global rather than local.
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The most straightforward example of this situation will be discussed in
Sec. 5. We will see that the coupling constant β is a non-normalizable
modulus of the 4D theory.

There are also non-normalizable massive 4D states associated with con-
tinuous spectrum of (4.5). We interpret these modes as follows. For these
modes the associated integrals over Y6 are divergent at large yi’s. Large yi

mean large nP and ρK , see (2.14). In particular, ρK have size moduli inter-
pretation; they represent long-range tails of the non-Abelian vortex in the
directions orthogonal to the string axis. The very presence of these long-
range tails (and logarithmic divergence of orientational and size zero modes
[27]) are related to the presence of the Higgs branch (2.7) and associated
massless bi-fundamental quarks (2.5).

We see that the wave functions of non-normalizable states are saturated
at large distances from the vortex string axis in four dimensions. Therefore,
these states are not localized on the string. The infinite norm of these states is
interpreted as an instability. These states are massive and therefore unstable.
Namely, they decay into massless bi-fundamental quarks.

As we already mentioned in the Introduction the vortex string of [1]
is conceptually different in comparison with fundamental string theory. In
the theory of fundamental string all states present in four dimensions are
string states. The string theory for vortex strings of [1] is slightly different.
The string states should describe only non-perturbative physics at strong
coupling, such as mesons and baryons. The perturbative states seen at week
coupling are not described by this theory. In particular, the Higgs branch
(and associated massless bi-fundamental quarks) found at weak coupling can
be continued to the strong coupling. It can intersect other branches, but
cannot disappear (for quarks with the vanishing mass terms) [22].

5 Deformations of the Conifold Metric

In this section we consider the last option in (4.3), namely 4D scalar fields
associated with deformations of the conifold metric δgij(y). Eq. (4.6) in this
case reduces to the Lichnerowicz equation on Y6, namely

DkD
kδgij + 2Rikjlδg

kl = 0. (5.1)

Solutions of this equation for the Calabi-Yau spaces reduce to deformations of
the Kähler form or deformations of complex structure [34, 20]. For a generic
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Calabi-Yau manifold the numbers of these deformations are given by h(1,1)

and h(1,2), respectively. Before describing these deformations we will briefly
review conifold geometry.

5.1 Conifold

The target space of the sigma model (2.14) is defined by theD-term condition

|nP |2 − |ρK |2 = β (5.2)

and the U(1) phase is gauged away. We can construct the U(1) gauge invari-
ant variables to be referred to as “mesonic,”

wPK = nPρK . (5.3)

In terms of these variables the condition (5.2) can be written as

detwPK = 0 , (5.4)

or, alternatively,
4∑

α=1

w2
α = 0, (5.5)

where
wPK = σPK

α wα

and σ matrices are chosen (1,−iτa), a = 1, 2, 3. Equation (5.5) defines the
conifold, which is a cone whose section is S2 × S3.

At β = 0 this conifold develops a conical singularity and both S2 and
S3 shrink to zero. It has the Kähler Ricci-flat metric and represents a non-
compact Calabi-Yau manifold [42, 18, 34]. The explicit form of this metric
is [42]

ds2 = dr2 +
r2

6
(ds21 + ds22) +

r2

9
ds23, (5.6)

where

ds21 = dθ21 + (sin θ1)
2dϕ2

1 , (5.7)

ds22 = dθ22 + (sin θ2)
2dϕ2

2 , (5.8)

ds23 = (dψ + cos θ1dϕ1 + cos θ2dϕ2)
2 . (5.9)
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Here r is the radial coordinate on the cone while the angles above are defined
at 0 ≤ θ1,2 < π, 0 ≤ ϕ1,2 < 2π, 0 ≤ ψ < 4π.

The volume integral associated with this metric is

(Vol)Y6
=

1

108

∫
r5drdψdθ1dϕ1dθ2dϕ2 sin θ1 sin θ2 . (5.10)

We can introduce another radial coordinate,

r̃2 =
4∑

α=1

|wα|2 .

It is related to r in (5.6) via [42]

r2 =
3

2
r̃4/3 . (5.11)

The conifold singularity can be smoothed in two different ways: by defor-
mation of the Kähler form or deformation of the complex structure. The first
option is called resolved conifold and amounts to introducing the non-zero
β in (5.2). This resolution preserves Kähler structure and Ricci-flatness of
the metric. If we put ρK = 0 in (5.2) we get CP

1 model with target space
S2 of radius

√
β. The explicit metric for resolved conifold can be found in

[42, 43, 44], see also Appendix B.
If β = 0 there is another option – deformation of the complex structure.

It also preserves the Kähler property and Ricci-flatness of the metric of the
conifold. This is called “deformed conifold.” It is defined by deformation of
Eq. (5.5), namely,

4∑

α=1

w2
α = b , (5.12)

where b is a complex number. Now if we take the radial coordinate r̃ = 0 the
S3 does not shrinks to zero, its size is determined by b. The explicit metric
on the deformed conifold is presented in [42, 45, 46], see Appendix B.

5.2 The Kähler structure deformations

Consider the 4D scalar field β(x) associated with deformation of the Kähler
form of the conifold β, see (5.2). The effective action for this field is

S(β) = T

∫
d4xhβ(∂µβ)

2, (5.13)
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where the metric hβ(β) is given by the normalization integral over the conifold
Y6,

hβ =

∫
d6y

√
ggli

(
∂

∂β
gij

)
gjk

(
∂

∂β
gkl

)
. (5.14)

Here gij(β) is the resolved conifold metric, while g is its determinant. Using
the explicit expression for the resolved conifold metric (A.1) we find

gli
(
∂

∂β
gij

)
gjk

(
∂

∂β
gkl

)
=

90

r4
(5.15)

to the leading approximation at small β. Taking into account the volume
integral (5.10) we arrive at the following β normalization integral:

hβ = (4π)3
5

6

∫
dr r = ∞ . (5.16)

It is seen that the β normalization integral is quadratically divergent in the
infrared. Thus, the scalar 4D β(x) decouples in the bulk QCD, it is not
represented by a localized state.

As was already mentioned, β can be naturally complexified, see Sec. 2.3.
On the string theory side the imaginary part of β comes from 10D antisym-
metric tensor. Moreover, in Type IIA superstring the complex scalar β is a
part of N = 2 massless vector multiplet which also includes 4D vector field
coming from the 10D three-form (see [41] for a review). All fields of this 4D
massless vector multiplet are non-dynamical because of their infinite norm
on Y6.

Much in the same way as in the case of massless vector multiplets associ-
ated with the Killing vectors the absence of the vector β multiplet matches
our expectations. Indeed, massless gauge fields, if present at strong coupling,
could be continued all the way up to the weak coupling domain where their
presence would contradict the quasiclassical analysis of Sec. 2.1.

As was explained in Sec. 4.4, non-normalizable modes can be interpreted
as (frozen) coupling constants in the 4D bulk theory. The β field is the
most straightforward example of this, since the 2D coupling β is known to
be related to the 4D coupling.

5.3 Complex structure deformations

Now let us focus on the singular point β = 0. At this self-dual value of
the coupling constant there is different deformation of the conifold metric
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satisfying (5.1). Namely, the deformation of the complex structure (5.12)
induced by the complex modulus b. The effective action for this field is

S(b) = T

∫
d4xhb|∂µb|2, (5.17)

where the metric hb(b) is given by the normalization integral over the conifold
Y6,

hb =

∫
d6y

√
ggli

(
∂

∂b
gij

)
gjk

(
∂

∂b̄
gkl

)
, (5.18)

Here gij(b) is the deformed conifold metric.
We will calculate hb below using two distinct methods. The first one

follows the general framework developed in [20].7

Using the constraint (5.12) we can nominate, say, w2, w3 and w4 as inde-
pendent variables. Then the volume form of the Y6 conifold can be written
as

(Vol)Y6
∼

∫ ∣∣∣∣
dw2dw3dw4

w1

∣∣∣∣
2

. (5.19)

The metric (5.18) can be expressed as

hb ∼
∂

∂b

∂

∂b̄

∫ ∣∣∣∣
dw2dw3dw4

w1

∣∣∣∣
2

, (5.20)

(see [47]). Calculating the derivatives under the constraint (5.12) we arrive
at

hb ∼
∫

dr̃

r̃
∼ log

r̃2max

|b| , (5.21)

where the logarithmic integral at small distances is cut off by the minimal
size of S3 which is equal to |b|.

Now let us verify this result by explicit calculations. Starting from the
explicit expression for the deformed conifold metric (A.3) we obtain (to the
leading order in b)

gli
(
∂

∂b
gij

)
gjk

(
∂

∂b̄
gkl

)
=

(sinψ)2

r̃4
, (5.22)

7We are very grateful to Cumrun Vafa for illuminating communications and for bringing
our attention to this paper.

24



where r̃ is given by (5.11). Substituting this into the volume integral (5.10)
and using the relation (5.11) we finally get

hb = (4π)3
4

3
log

r̃2max

|b| . (5.23)

It is seen that the norm of the field b(x) is logarithmically divergent in
the infrared. The modes with logarithmically divergent norm are on the
borderline between normalizable and non-normalizable modes. Usually such
states considered as “localized” on the string. We follow this rule. In our
framework (vortex string vs string theory) we can relate this logarithmic
behavior with the marginal stability of the b state, see Sec. 6. In fact, this
mode is localized on the string in the same sense as the orientational and
size zero modes are localized on the vortex solution in the bulk theory: they
also have logarithmically divergent norm in the infrared in 4D space [27].

The upper bound in (5.21) can be related to the (infinite) size L of R4.
Noting 8 that r̃max ∼ |nmaxρmax| ∼ ξL2 we finally get

hb = (4π)3
4

3
log

ξ2L4

|b| . (5.24)

In Type IIA superstring the complex scalar associated with deformations
of the complex structure of the Calabi-Yau space enters, in fact, as a 4D
hypermultiplet. Thus our 4D scalar b is a part of a hypermultiplet. Another
complex scalar b̃ comes from the 10D three-form (see [41] for a review).
Together they form the bosonic component of the 4D N = 2 hypermultiplet.
Thus we expect that the bosonic part of the full effective action for the b
hypermultiplet takes the SU(2)R invariant form,

S(b) = T

∫
d4x

{
|∂µb|2 + |∂µb̃|2

}
log

T 4L8

|b|2 + |̃b|2
, (5.25)

where we absorb the constant in front of the logarithm term in (5.24) into field

normalization. The fields b and b̃ being massless can develop VEVs. Thus
we have a new Higgs branch with the metric determined by the logarithmic
factor in (5.25). This branch develops only at the self-dual value of the
coupling constant g2 = 4π. Due to the non-renormalization theorem of [22]

8See Sec. 4.4 for a more detailed explanation.
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logarithmic Higgs branch metric (5.25) does not depend on the 4D coupling
constant g2.

To conclude this section we would like to stress that the presence of
the new “non-perturbative” Higgs branch at a single point g2 = 4π at strong
coupling is another successful evidence for the validity of our picture. Indeed,
a hypermultiplet is a BPS state. Were it present in some interval of τ at
strong coupling it could be continued all the way up to weak coupling where
its presence would contradict 9 the quasiclassical analysis, see Sec. 2.1.

6 Physical Interpretation of String States

In this section we reveal a physical interpretation of the b state as a monopole-
monopole baryon.

6.1 String states at weak coupling

Consider first the weak coupling region g2 ≪ 1 in N = 2 SQCD. Since
squarks develop condensates (2.1) non-Abelian vortices confine monopoles.
As was already mentioned, confined elementary monopoles are in fact junc-
tions of two distinct elementary non-Abelian strings [48, 12, 13]. As a re-
sult, in the bulk SQCD we have monopole-antimonopole mesons in which
the monopole and antimonopole are connected by two confining strings, see
Fig 1a. In the U(N) gauge theory we can have baryons appearing as a
closed necklace configurations [16]. For the U(2) gauge group this necklace
configuration consists of two monopoles, see Fig. 1b.

Moreover, monopoles acquire quantum numbers with respect to the global
symmetry group (2.2). To see this note that in the worldsheet theory on the
vortex string confined monopole is seen as a kink interpolating between two
different vacua (which are distinct elementary non-Abelian strings) of the
corresponding 2D sigma model [48, 12, 13]. On the other hand we know
that the sigma model kinks at strong coupling are described by nP and ρK

fields [49, 50] (for the sigma model described by (2.14) it was shown in [51])
and therefore transform in the fundamental representations 10 of non-Abelian

9In principle, one can avoid this conclusion if other massless BPS states are present.
Together they can combine into massive non-BPS multiplet.

10Strictly speaking to make both bulk monopoles and world-sheet kinks well defined as
localized objects we should introduce a infrared regularization, say, a small quark mass
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a b

Figure 1: a. Monopole-antimonopole stringy meson. b. Monopole-monopole
stringy baryon. Open and closed circles denote the monopole and antimonopole,
respectively.

factors in (2.2).
As a result monopole-antimonopole mesons and baryons in our case can

be singlets or triplets of both SU(2) global groups in (2.2), as well as in the
bi-fundamental representations. With respect to baryonic U(1)B symmetry
in (2.2) the mesons at hand have charges QB(meson) = 0, 1 while baryons
can have charges

QB(baryon) = 0, 1, 2 , (6.1)

see (2.21). All these non-perturbative stringy states are heavy, with mass
of the order of

√
ξ, and therefore can decay into screened quarks which are

lighter and, eventually, into massless bi-fundamental screened quarks (2.5).

6.2 Monopole-monopole baryon

Now we pass to the self-dual point β = 0 in strong coupling region. We will
show that the b state of the string associated with the deformation of the
complex structure of the deformed conifold can be interpreted as a baryon
constructed from two monopoles, see Fig. 1b. From Eq. (5.12) we see that
the complex parameter b (which is promoted to a 4D scalar field) is singlet
with respect to two SU(2) factors of the global world-sheet group (2.20).
What about its baryonic charge? Since

wα =
1

2
Tr

[
(σ̄α)KP n

PρK
]

(6.2)

term. When we take the limit of the zero quark masses, the kinks become massless and
smeared all over the closed string. However their global quantum numbers stay intact.
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we see that the b state transforms as

(1, 1, 2), (6.3)

where we used (2.5) and (5.12). In particular it has baryon charge QB(b) = 2.
Since the worldsheet and the bulk global symmetries are isomorphic we

are lead to the conclusion that the massless b hypermultiplet is a monopole-
monopole baryon with the quantum numbers (6.3) under symmetry (2.20).

We have observed that at infinite coupling of the two dimensional theory
(β = 0) a new ‘exotic’ Higgs branch opens up, which is parameterized by
the VEV of the hypermultiplet of the effective string compactification. This
branch emanates only from that locus and does not exist at nonzero β. Being
massless this state is marginally stable at β = 0 and can decay into pair of
massless bi-fundamental quarks in the singlet channel with the same baryon
charge QB = 2, see (2.10). The b hypermultiplet does not exist at non-zero
β. One way to interpret this fact in terms of bulk SQCD is as follows. The
b hypermultiplet may have a “wall of marginal stability” in the complex β
plane – a closed loop shrunk to a single point β = 0. Outside this point
the b hypermultiplet does not exist as a stable state, while at this point it is
marginally stable.

This interpretation is supported by logarithmic divergence of the norm
of the b state kinetic term (5.25), which in turn suggests that the b state is
only marginally stable. Detailed studies of how this can happen and how
the b hypermultiplet interacts with massless bi-fundamental quarks is left for
future work.

7 Conclusions

In this paper we studied the massless spectrum produced by closed non-
Abelian vortex string in N = 2 QCD with U(2) gauge group and Nf = 4
flavors of quark multiplets. We interpreted 4D closed string states as a
hadrons of the bulk QCD. Most of the string states turns out to be non-
dynamical due to non-compactness of the six dimensional internal Calabi-Yau
space Y6. In particular, we showed the absence of 4D graviton and unwanted
vector fields in full accord with expected properties of N = 2 bulk QCD.
We found one massless 4D hypermultiplet associated with deformations of
the complex structure of the conifold Y6. This state is present only at the
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self-dual point g2 = 4π. We interpreted it as a baryon constructed from two
monopoles connected by confining strings, see Fig. 1b.

We expect that this massless hypermultiplet is the lowest state of the
whole Regge trajectory of states with higher spins in 4D. Since 4D space is
flat we expect this Regge trajectory to be linear with respect to spin J . The
explicit construction of this Regge trajectory is left for a future work.

Let us make some comments to connect our results with other develop-
ments in string theory. Non-Abelian vortices appear as D2 branes extended
along the finite interval between NS5 branes and D3 branes. The length
of this interval is proportional to the FI parameter, which gives the string
tension [10, 13]. In some other examples within the AdS/CFT framework
the solitionic vortices turn out to be D-branes or D-strings wrapping some
compact cycles [52, 44, 53]. Yet, to the best of our knowledge, in the cur-
rent literature solitonic strings so far have not been treated as fundamental
superstrings.

In the present paper (and in [1]) neither did we assume the presence of the
ten-dimensional space-time and fundamental strings or D-branes, nor used
any holographic duality. Instead our starting point is a four-dimensional
N = 2 supersymmetric QCD. Certainly this theory can be realized as a low-
energy limit of the fundamental string theory with D branes or via geometric
engineering. However, we do not assume this construction from the the
beginning since, our starting basic bulk theory per se is well defined.

Then we explored the case Nf = 2N in N = 2 SQCD and found that
it supports 1/2 BPS non-Abelian vortex strings. If N = 2 the worldsheet
theory on this vortex has ten real moduli which can be interpreted as coordi-
nates on the target space R4 × Y6 of the two-dimensional sigma model. This
supersymmetric sigma model describes critical superstring.

Our theory predicts non-perturbative hadronic states of the original SQCD
at strong coupling (at β = 0). The tension of the vortex sting is fixed by
the 4D Fayet-Iliopoulos term ξ, which is a scale for “strong interactions”,
not the bona fide Planck scale. In a sense, we returned to the early days of
string theory and tried to obtain (supersymmetric) hadrons as closed string
excitations of a solitonic SQCD string. It turns out that in a proper setup it
is possible.

Within our approach we certainly should not think of the solitonic vortex
string [1] as of a D brane since we do not have any supergravity and D branes
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to begin with.11 However, it would be stimulating to find a possible connec-
tions between the results reported in [1, 2] and the literature on solitonic
strings engineered in string theory. Presumably one can see the spectrum of
light states which we described in this work by applying some string dualities.
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Appendix.

Metrics of resolved and deformed conifolds

The Kähler, Ricci flat metric on the resolved conifold has the form [42, 43, 44]

ds2 = κ(r)−1 dr2 +
r2

6
ds21 +

1

6
(r2 + 6β) ds22 + κ(r)

r2

9
ds23 , (A.1)

where the angle differentials are defined in (5.9), while function κ(r) is equal
to

κ(r) =
r2 + 9β

r2 + 6β
. (A.2)

11We are deeply indebted to Igor Klebanov for raising this issue, bringing our attention
to Refs. [52, 44, 53], and suggesting that there might be a string theory S duality which
relates D string and fundamental string.
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Consider now the metric on the deformed conifold. The deformation
(5.12) preserves Kähler structure and Ricci flatness of the conifold metric.
The metric of the deformed conifold has the form [42, 45, 46]

ds2 = |b|2/3K(u)

{
(sinh u)3

3(sinh 2u− 2u)

(
du2 + ds23

)
+

cosh u

4
(ds21 + ds22) +

1

2
ds24

}
,

(A.3)

where angle differentials are defined in (5.9), while

ds24 = sinψ(sin θ1dθ2dϕ1+sin θ2dθ1dϕ2)+cosψ(dθ1dθ2− sin θ1 sin θ2dϕ1dϕ2).
(A.4)

Here

K(u) =
(sinh 2u− 2u)1/3

21/3 sinh u
(A.5)

and the radial variable u is defined as

r̃2 = |b| cosh u. (A.6)
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