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We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories
with direct-product gauge groups G. If the gauge coupling for a factor group Gi ⊂ G becomes
sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself
and/or break other gauge symmetries Gj ⊂ G. Our comparative study of a number of strongly
coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking
depend on the structure of G and on the relative sizes of the gauge couplings corresponding to
factor groups in the direct product.

I. INTRODUCTION

A problem of longstanding interest has been the be-
havior of strongly coupled chiral gauge theories (in four
spacetime dimensions, at zero temperature). Here a chi-
ral gauge theory is defined as one in which the fermions,
written in left-handed chiral form, transform as complex
representations of the gauge group. A chiral gauge the-
ory is defined as being irreducibly chiral if it does not
contain any vectorlike subsector. In this case, the chi-
ral gauge symmetry forbids any fermion mass terms in
the underlying Lagrangian. In order for the theory to be
renormalizable, one requires that it must be free of any
triangle anomalies in gauged currents.
In this paper we shall analyze a variety of chiral gauge

theories with direct-product gauge groups of the form

G =

NG
⊗

i=1

Gi (1.1)

with fermion contents chosen so that all non-Abelian
gauge interactions are asymptotically free. The rea-
son for this choice is that this enables one to carry
out perturbative calculations at a sufficiently large Eu-
clidean energy/momentum scale, µ, in the deep ultra-
violet (UV). As the theory evolves from the UV to the
infrared (IR), these non-Abelian gauge interactions thus
grow in strength. We restrict here to theories without
fundamental scalar fields. The gauge group G is taken
to contain NNA non-Abelian factor groups, and, by con-
vention, we order the factor groups in the tensor product
(1.1) so that these non-Abelian factor groups come before
any possible Abelian factor group(s).
The main question that we investigate is how patterns

of dynamical gauge symmetry breaking depend on the
structure of the direct product gauge group (1.1) and on
the relative strengths of the gauge couplings for various
factor groups Gi ⊂ G that become strong in the IR. We
assume that if G contains any Abelian gauge interaction,
it is weakly coupled at high scales µ in the UV; given that
such a gauge interaction has a positive beta function, this
implies that the Abelian coupling will also remain weak
at lower scales in the infrared. Our study of a variety of
direct-product chiral gauge theories shows how the pat-

terns of symmetry breaking depend on the structure of
G and on the relative sizes of the gauge couplings corre-
sponding to factor groups in the direct product. If the
gauge coupling for one of these factor groupsGi ⊂ G gets
sufficiently strong and dominates over the other(s), then
it can produce bilinear fermion condensates that can self-
break the Gi symmetry itself and/or break other gauge
symmetries Gj ⊂ G.

An example of this dependence of the type of gauge
symmetry breaking upon the relative strengths of gauge
couplings in a direct-product chiral gauge theory is pro-
vided by a modification of the Standard Model (SM) with
the same NG = 3 gauge group GSM = SU(3)c⊗SU(2)L⊗
U(1)Y and with the usual fermion content, but with the
Higgs field removed. If, at a given scale ΛQCD, the
color SU(3)c gauge coupling becomes sufficiently large
while the SU(2)L (and U(1)Y ) gauge couplings are weak,
then the SU(3)c gauge interaction produces a bilinear
quark condensate 〈q̄q〉, which dynamically breaks the
electroweak gauge symmetry GEW = SU(2)L ⊗ U(1)Y
to electromagnetic U(1)em, giving masses to the W and
Z bosons. Indeed, this was a motivation for models
of dynamical electroweak symmetry breaking by a hy-
pothesized vectorial, asymptotically free gauge interac-
tion that would become strongly coupled at the TeV scale
and would produce bilinear fermion condensates involv-
ing a set of fermions that are nonsinglets under GEW [1].
In this scenario, as well as in quantum chromodynam-
ics (QCD) itself, the interaction that becomes strong is
vectorial and breaks a weakly coupled chiral gauge inter-
action to a vectorial subgroup gauge symmetry, namely
U(1)em. In contrast, as discussed in [2] in the context
of the gedanken SM theory with no Higgs field, if the
SU(2)L gauge coupling were sufficiently large at a given
reference scale, while the SU(3)c gauge coupling were
weak, then a very different pattern of symmetry break-
ing would occur: this SU(2)L gauge interaction would
produce bilinear fermion condensates that preserve the
SU(2)L gauge invariance but break SU(3)c to SU(2)c,
and break U(1)Y , giving masses to the gluons in the coset
SU(3)c/SU(2)c and to the hypercharge gauge boson.

Chiral gauge theories (without scalars) that are asymp-
totically free and can therefore become strongly coupled
at low energies have been of interest in the past for sev-
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eral reasons. One motivation involved an effort to un-
derstand the pattern of quark and lepton generations.
Since the respective lower bounds on the compositeness
scales of these Standard-Model fermions are much larger
than their masses, a plausible approach was to begin by
using a theoretical framework in which they were mass-
less. Strongly coupled irreducibly chiral gauge theories
are a natural candidate for such a framework, since the
chiral gauge invariance forbids any fermion mass terms.
If such a theory satisfies the ’t Hooft global anomaly-
matching conditions, then, as the gauge coupling be-
comes sufficiently strong in the infrared, the gauge inter-
action could confine and produce massless gauge-singlet
composite spin-1/2 fermions [3]-[18].

A different motivation for studying strongly coupled
chiral gauge theories arose in the context of models that
sought to explain both dynamical electroweak symme-
try breaking and fermion mass generation. In terms of
low-energy effective Lagrangians, this involved the above-
mentioned new vectorial gauge interaction that would
become strong at the TeV scale and produce bilinear
fermion condensates, in conjunction with a set of four-
fermion operators that could give rise to quark and lep-
ton masses [1, 8]. A next step was the construction of
ultraviolet-completions of these theories that would have
the potential to explain not only the Standard-Model
fermion masses in a given generation, but also the ex-
istence of a generational hierarchy of fermion masses.
A basic property of a chiral gauge theory is that if
it becomes strongly coupled, it can produce bilinear
fermion condensates that self-break the gauge symme-
try [9, 10]. Reasonably UV-complete models for dynami-
cal electroweak symmetry breaking and Standard-Model
fermion mass generation made use of this feature (e.g.,
[12],[13]-[20]). These involved strongly coupled chiral
gauge interactions that led to the formation of various
fermion condensates which broke the initial chiral gauge
symmetry in a sequence of stages that might plausibly
explain the SM fermion masses and their generational
hierarchy. This sequential breaking was such as to yield,
as a residual symmetry, the vectorial gauge symmetry
that is strongly coupled at the TeV scale. Ref. [13] used
a direct-product chiral gauge group with two strongly
coupled gauge interactions and pointed out that different
patterns of sequential gauge symmetry breaking (denoted
Ga and Gb in [13]) could occur, depending on the relative
sizes of gauge couplings corresponding to these two factor
groups. A similar phenomenon was noted in other mod-
els studied in [14]. It is this interesting property of the
nonperturbative behavior of direct-product chiral gauge
theories that we wish to explore further here.

Another motivation for the present study is the fact
that patterns of gauge symmetry breaking by Higgs fields
depend on parameters in the Higgs potential V , which
one can choose at will, subject to the constraint that V
should be bounded from below. In contrast, once one has
specified the gauge and fermion content of a chiral gauge
theory, together with the values of the gauge couplings

at a reference point (which is naturally chosen to be in
the deep UV for theories with asymptotically free non-
Abelian gauge interactions), then the dynamics deter-
mines the pattern of gauge symmetry breaking uniquely
[21].
This paper is organized as follows. In Section II we dis-

cuss our general theoretical framework, methods of anal-
ysis, and a classification of direct-product chiral gauge
theories. Section III contains some useful procedures for
the construction of (anomaly-free, asymptotically free)
chiral gauge theories. In Sections IV-XVI we study a vari-
ety of different chiral gauge theories with a direct-product
gauge groups and fermion contents. These involve both
unitary and orthogonal gauge groups and elucidate how
the patterns of dynamical symmetry breaking depend on
the structures of the respective theories. Our conclusions
are contained in Section XVII.

II. CLASSIFICATION OF GROUPS AND

METHODS OF ANALYSIS

In order to explore the nonperturbative behavior of
direct-product chiral gauge theories, it is useful to have a
general classification of these theories and general meth-
ods for analyzing them. We discuss these in this sec-
tion. As stated above, we consider direct-product chi-
ral gauge theories with gauge groups of the form (1.1)
with fermion content {f} chosen such that the theory is
free of any anomalies in gauged currents and free of any
global SU(2) Witten anomalies, and also such that all
non-Abelian gauge interactions are asymptotically free.
Unless otherwise indicated, we will, with no loss of gener-
ality, write all fermions as left-handed chiral components.
To describe our classification system, we first introduce

some notation. We generically denote a group that has
only real or pseudoreal representations as Gr and a group
that has complex representations as Gc. A group Gr

cannot, by itself, be the gauge group of a chiral gauge
theory, although it can appear as a factor group in a
chiral gauge theory. A group Gr has zero anomaly, while,
in general, a group Gc has nonzero anomalies AR for its
representations (see Eq. (A14)), which we will indicate
by the symbol Gca. If a group Gc has no anomaly, i.e.,
AR = 0 for all R, then it is commonly termed “safe” (s)
[22], and we denote it as Gcs. Of course, a group Gr is
automatically safe. Thus, the generic class Gs includes
Gr and Gcs.
We may then classify a chiral gauge theory with the

direct-product gauge group (1.1) by an NG-dimensional
vector indicating the nature of the factor groups involved
in the direct product. If NG = 1, there are two possibili-
ties: (i) (ca), e.g., SU(N) with N ≥ 3, and (ii) (cs), e.g.,
SO(4k+2) for k ≥ 2 or the exceptional group E6 [22–24].
For NG = 2, the possibilities are

NG = 2 : (ca, r), (cs, r), (ca, ca), (ca, cs), (cs, cs) ,
(2.1)
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TABLE I: Classification of some direct-product chiral gauge the-
ories. See text for further discussion.

Type NG G

(ca, r), (cav, r) 2 SU(N)⊗ SU(2) with N ≥ 3

(cav, cav) 2 SU(N)⊗ SU(M) with N,M ≥ 3

(r, ca) 2 SU(2)⊗ U(1)

(ca, ca), (cav, ca) 2 SU(N)⊗ U(1) with N ≥ 3

(cav, r, ca) 3 SU(Nc)⊗ SU(2)L ⊗ U(1)Y

(cav, r, r) 3 SU(N)⊗ SU(2)L ⊗ SU(2)R

(cav, r, r, cav) 4 SU(Nc)⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

(cs, r) 2 SO(4k + 2)⊗ SU(2) with k ≥ 2

(cs, cav) 2 SO(4k + 2)⊗ SU(N) with N ≥ 3

(cs, cs) 2 SO(4k + 2)⊗ SO(4k′ + 2) with k, k′ ≥ 2

where we do not distinguish the order of factor groups,
so, for example, (cs, ca) and (ca, cs) are the same type.
Let us consider a factor groupGi in (1.1) which is of the

form Gca, and set the gauge couplings of the other factor
groups to zero. If the resultantGca theory is vectorial (v),
then we denote this as Gcav. This is the case, for exam-
ple, with the color SU(3)c factor group in the Standard
Model. Thus, a further classification of direct-product
chiral gauge theories can be carried out in which, for
for each factor group of the form Gca, one distinguishes
whether or not it is of the form Gcav. The Standard
Model gauge group is of the type (cav, r, ca) in this clas-
sification. We illustrate the classification of some chiral
gauge theories considered in this paper in Table I.
Our requirement that each non-Abelian factor group

in the direct product (1.1) is asymptotically free enables
us to describe the theory perturbatively in the deep ul-
traviolet. We discuss the evolution from the UV to the
IR next. To each factor group Gi, i = 1, ..., NG, there
corresponds a running gauge coupling gi(µ), and we de-
fine αi(µ) = gi(µ)

2/(4π) and ai(µ) ≡ gi(µ)
2/(16π2).

The argument µ will often be suppressed in the nota-
tion. The UV to IR evolution of the gauge coupling is
determined by the beta function, βgi = dgi/dt, or equiv-
alently, βGi

= dαi/dt = [g/(2π)]βgi , where dt = d lnµ.
This has the series expansion

βGi
= −8πa2i

[

bGi,1ℓ +

NG
∑

j=1

bGi,2ℓ;ijaj

+

NG
∑

j,k=1

bGi,3ℓ;ijkajak + ...

]

, (2.2)

where an overall minus sign is extracted and the dots
... indicate higher-loop terms. Here, bGi,1ℓ is the one-
loop (denoted (1ℓ)) coefficient, multiplying a2i , bGi,2ℓ;ij is
the two-loop coefficient, multiplying a2i aj , and so forth
for higher-loop loops. The property of asymptotic free-
dom for the non-Abelian gauge interactions means that

βGi
< 0 for small αi, i = 1, ..., NNA. The set (2.2) consti-

tutes a set of NG coupled nonlinear first-order ordinary
differential equations for the quantities αi, i = 1, ..., NG.
To leading order, i.e., to one-loop order, the set of dif-
ferential equations decouple from each, and one has the
simple solution for each i ∈ {1, ..., NG}:

αi(µ1)
−1 = αi(µ2)

−1 − bGi,1ℓ

2π
ln
(µ2

µ1

)

, (2.3)

where we take µ1 < µ2.
In the following discussion, we assume that the funda-

mental Lagrangian has no fermion mass terms, so that
all fermion masses are generated dynamically by chiral
symmetry breaking. For a pair of gauge interactions cor-
responding to the factor groups Gi and Gj in Eq. (1.1),
the respective beta functions βGi

and βGj
in the deep

UV are fixed once we choose the fermion content of a
given theory. The values of the corresponding αi(µ1)
and αj(µ1) at lower Euclidean scales are determined by
(i) the initial values of αi(µ2) and αj(µ2) in the UV; (ii)
the values of βGi

and βGj
; and (iii) the occurrence of

bilinear fermion condensate formation at some scale(s)
as the theory evolves from the deep UV toward the IR,
which produce dynamical masses for the fermions in-
volved in these condensates. Since we do not assume
that the direct-product group (1.1) is contained in a sim-
ple group in the deep UV, we are free to consider various
different orderings of the sizes of the couplings αi(µ2)
in the UV. Furthermore, because of the condensation
process(es) (iii), the fermions involved in these conden-
sates, together with gauge bosons corresponding to bro-
ken generators of gauge symmetries, acquire dynamical
masses and are integrated out of the low-energy effective
field theories that are applicable as the Euclidean refer-
ence scale decreaes below each condensation scale. The
reduction in massless particle content in (iii) produces
changes in the beta functions of the gauge interactions
involved. Because of this, even if βGi

> βGj
with all

fermions initially present in the deep UV, it can happen
that at a lower scale this inequality is reversed. The vari-
ation of gauge couplings in the deep UV embodied in the
input (i) above was carried out in the earlier work [13]
where both of the cases of relative sizes of αETC and
αHC were considered, and in [2], where both of the cases
of relative sizes of couplings for SU(3)c and SU(2)L were
considered. Henceforth, for notational simplicity, we set
bGi,1ℓ ≡ bGi,1. There have been a number of interesting
studies of renormalization-group (RG) flows in quantum
field theories with multiple interaction couplings using
perturbatively calculated beta functions, e.g., [25]. Here,
as in the earlier works involving gauge theories with mul-
tiple gauge couplings [2, 13, 15], we will focus on the
nonperturbative phenomenon of fermion condensate for-
mation and the associated pattern of gauge symmetry
breaking. The one-loop result (2.3) will be sufficient for
our purposes here since we focus on this nonperturbative
fermion condensate formation. These condensates also
generically break global chiral symmetries.
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In general, a fermion condensate may involve differ-
ent fermion fields or the same fermion field. If the fields
are the same, we may write the bilinear fermion operator
product abstractly as follows. Assume that the gauge
group G in Eq. (1.1) contains t ≤ NG non-Abelian fac-
tors Gk and that the relevant fermion field f transforms
as the representation R ≡ (R1, ...,Rt) under the direct
product of these non-Abelian factor groups. Then the
bilinear fermion product of a given fermion field is

fT
R,i,LCfR,j,L , (2.4)

where C is the Dirac conjugation matrix, gauge group
indices are suppressed in the noation, and i, j are copy
(flavor) indices. From the property CT = −C together
with the anticommutativity of fermion fields, it follows
that the bilinear fermion operator product (2.4) is sym-
metric under interchange of the order of fermion fields
and therefore is symmetric in the overall product

[

t
∏

k=1

(Rk ×Rk)
]

Sij , (2.5)

where Sij abstractly denotes the symmetry property un-
der interchange of flavors, with Sij = (ij) and Sij = [ij]
for symmetric and antisymmetric flavor structure, re-
spectively. For example, for the case t = Ng = 2 and
flavor indices i, j, the symmetry property (2.5) means
that fT

i,LCfj,L is of the form (s, s, s), (s, a, a), (a, s, a),

or (a, a, s), where here s and a indicate symmetric and
antisymmetric and the three entries refer to the repre-
sentations R1 of G1, R2 of G2, and Sij . Thus, as an
illustration, in the last case, (a, a, s), the product (2.4)
would transform as antisymmetric representations in the
Clebsch-Gordan products of Rj × Rj for j = 1, 2 and
would be symmetric in flavor indices, with Sij = (ij),
and so forth for other cases.
The main perturbative information that we will use

is the one-loop coefficients of the beta functions for the
non-Abelian gauge interactions. We require that these
interactions must be asymptotically free so that we have
perturbative control over them in the deep UV. If αi(µ)
becomes strong, i.e., O(1) in the IR, one can no longer
use perturbative methods reliably, but one can make use
of several approximate methods to explore possible non-
perturbative properties of the theory. First, one may in-
vestigate whether the fermions in the theory satisfy the
’t Hooft anomaly-matching conditions. For this purpose,
one determines the global flavor symmetry group of the
theory is invariant and then checks whether candidate
operators for gauge-singlet composite spin-1/2 fermions
match the anomalies in the global flavor symmetries. If
this necessary condition is satisfied, then it is possible
that in the infrared the strong chiral gauge interaction
could confine and produce massless composite spin-1/2
fermions.
A different possibility in a strongly coupled chiral

gauge theory is that the gauge interaction can produce

bilinear fermion condensates. This will be the main fo-
cus of our analysis here. In an irreducibly chiral theory
these condensates break one or more gauge symmetries,
as well as global flavor symmetries. A commonly used
method for suggesting which type of condensate is most
likely to form in this case is the most-attractive-channel
(MAC) method [10]. For possible condensation of chiral
fermions in the representations RGi,1 and RGi,2 of the
factor group Gi in (1.1) in various channels of the form
RGi,1 ×RGi,2 → RGi,cond., the MAC approach predicts
that the condensation will occur in the channel with the
largest (positive) value of the quantity

∆C2 ≡ C2(RGi,1) + C2(RGi,2)− C2(RGi,cond.) , (2.6)

where C2(R) is the quadratic Casimir invariant for the
representation R (see Appendix A). This is only a rough
measure, based on one-gluon exchange [26]. The form of
the condensate determines the resultant symmetry and
form of vacuum alignment [11].

III. METHODS FOR CONSTRUCTING CHIRAL

GAUGE THEORIES

In this section we mention some useful methods for
constructing anomaly-free direct-product chiral gauge
theories.

A. Reduction Method

Let us say that we have a chiral gauge theory with the
NG-fold direct product gauge group (1.1) and a given
fermion content that satisfies the constraints that the
theory must be free of any anomaly in gauged currents,
any possible global SU(2) anomaly, and, if G includes
abelian factor groups, also any mixed gravitational-gauge
anomaly. One can then construct a set of chiral gauge
theories by a process of reduction, setting one or more
of the gauge couplings {g1, ..., gNG

} equal to zero. As an
example, if one starts with a modified and extended Stan-
dard Model with gauge group (7.1) and fermion content
(7.2)-(7.4) below, of type (cav, r, ca), then (i) by turn-
ing off the SU(Nc) gauge coupling, one gets an SU(2)L⊗
U(1)Y gauge theory of type (r, ca); (ii) by turning off
the SU(2)L gauge coupling, one gets an SU(Nc)⊗U(1)Y
gauge theory of type (cav, ca); and (iii) by turning off
the U(1)Y coupling, one gets an SU(Nc)⊗ SU(2)L gauge
theory of type (cav, r). Given that the original theory
has the requisite property that all non-Abelian gauge in-
teractions are asymptotically free, the theory derived by
turning off some gauge coupling(s) also has this property.
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B. Extension Method to Construct G = G̃ ⊗Gs

Theories

Here we present a method for constructing a direct-
product chiral gauge theory with an (NG+1)-fold direct-
product gauge group, starting from a given chiral gauge
theory with an NG-fold direct-product gauge group G̃ by
adjoining a safe group Gs to G̃ to produce

G = G̃⊗Gs (3.1)

and extending the fermion representations of G̃ to those
of G = G̃⊗Gs. Here Gs may be Gr or Gcs. The proce-
dure is as follows:

1. Start with an anomaly-free chiral gauge theory with

the NG-fold gauge group G̃ =
⊗NG

i=1Gi and a set of
fermion representations {RG̃}, where each of these
is

RG̃ = (RG1
, ...,RGNG

) (3.2)

2. Choose the safe group Gs, of type Gr or Gcs, i.e.,
either a group with real representations, such as
SU(2), or a safe group with complex representa-
tions, such as SO(4k + 2) with k ≥ 2 or the excep-
tional group E6.

3. Extend each fermion representation RG̃ of G̃ to a
representation RG of G using a single representa-
tion RGs

of Gs to form RG = (RG̃,RGs
). As far as

the G̃ group is concerned, this simply amounts to
a replication of its original (anomaly-free) fermion
content by dim(RGs

) copies, so the resulting ex-
tended fermion content is also anomaly-free.

4. Apply the constraint that if the safe group is Gs =
SU(2), then the resultant theory must be free of a
global SU(2) Witten anomaly associated with the
homotopy group π4(SU(2)) = Z2 [27, 28]. With
RGs

= , the necessary and sufficient condition to
satisfy this constraint is that the total number of
SU(2) doublets is even [27].

5. Apply the constraints that each of the gauge inter-
actions corresponding to non-Abelian factor groups
in G̃ must remain asymptotically free in the larger
group G, and the Gs gauge interaction must also
be asymptotically free.

This method can be used to construct many types of
direct-product chiral gauge groups. Among the NG = 2
cases, for example, these types include all of the ones
listed in Eq. (2.1).

IV. Gcav ⊗ SU(2) THEORIES

In this section we construct and study a class of NG =
2 direct-product chiral gauge theories with a gauge group

G1 ⊗G2 = Gcav ⊗ SU(2) . (4.1)

This class is the special case (cav, r) of the class Gca⊗Gr

discussed in Section II in which Gca = Gcav, i.e., Gca

is a group with complex representations and AR 6= 0
and the fermion content is such that if the SU(2) gauge
interaction is turned off, then the Gcav gauge interac-
tion is vectorial. This property guarantees that there
is no cubic triangle anomaly in gauged currents in the
Gcav sector. Furthermore, as already indicated above,
since SU(2) has (pseudo)real representations, it has no
anomaly. The only anomaly constraint is then the re-
quirement that the SU(2) group must be free of a global
anomaly. We consider theories of this type with chiral
fermion content (written here as left-handed)

{fns,ns} =
∑

R

p
R
(R, ) , (4.2)

{fns,s} = 2
∑

R

p
R̄
(R̄, 1) , (4.3)

and optionally,

{fs,ns} = p1 (1, ) , (4.4)

where the subscripts ns and s are abbreviations for “non-
singlet” and “singlet”; R denotes a (nonsinglet) represen-
tation of the group G1; and the first and second entries in
subscripts and in the parentheses refer to the representa-
tions of Gcav and SU(2)L, respectively, with being the
fundamental representation in standard Young tableaux
notation.
If the fermion sector includes only a single R, then

we set pR ≡ p for brevity. We shall use interchangeably
a notation with Young tableaux and dimensionalities to
identify the representation: (R, ) ↔ (dim(R), 2). In
general, we will allow for several types of (nonsinglet)
representations R, but will focus on minimal theories
with only one R. The subscript indices i, j are copy
(“flavor”) indices, and the total number of copies of the
fns,ns fermions transforming as the R representation of
G1 is denoted pR. We shall mainly focus on irreducibly
chiral theories, i.e., those for which the chiral gauge the-
ory forbids any bare mass terms, but we shall also dis-
cuss some chiral gauge theories with vectorlike subsec-
tors. The global symmetries depend on p and p1; we will
discuss them for specific models below.
The number of SU(2) chiral fermion doublets in this

theory, which we shall denote Nd, is

Nd = p1 +
∑

R

p
R
dim(R) . (4.5)

The condition that the SU(2) gauge sector must be free
of a global anomaly is that

Nd is even . (4.6)

Because Nd is necessarily even, one could take half of
the left-handed SU(2)-doublet fermions, rewrite them
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as right-handed charge-conjugates, and thereby put the
SU(2) gauge interaction into vectorial form.
As noted, we shall also impose two further require-

ments on the theory, namely that the G1 and the SU(2)
gauge interactions must both be asymptotically free.
From the general results in [29], we find that the one-loop
coefficient of the beta function of the G1 gauge interac-
tion is

b1,G1
=

1

3

[

11C2(G1)− 8
∑

R

p
R
T (R)

]

, (4.7)

so the requirement that the G1 gauge interaction should
be asymptotically free implies that

∑

R

p
R
T (R) <

11C2(G1)

8
. (4.8)

Here and below, if p1 = 0 and the theory contains
fermions in one (nonsinglet) representationR of G1, then
only nonzero values of pR ≡ p are relevant, since if p = 0,
then the theory is a pure (direct-product) gauge theory
and hence is not a chiral gauge theory.
The one-loop coefficient of the beta function of the

SU(2) gauge interaction is

b1,SU(2)L =
1

3
(22−Nd)

=
1

3

[

22−
(

p1 +
∑

R

p
R
dim(R)

)]

, (4.9)

so the requirement that the SU(2) gauge interaction
should be asymptotically free implies that

p1 +
∑

R

p
R
dim(R) < 22 . (4.10)

V. SU(N)⊗ SU(2) THEORIES

In this section we construct and study several models
with a direct-product gauge group of the form (4.1) with
the first gauge group being SU(N), i.e., with

G = G1 ⊗G2 = SU(N)⊗ SU(2) (5.1)

and various chiral fermion contents, which we denote as
Models A, B, and C. All three of these models are of type
(cav, r), as indicated in Table I.

A. Model A

The first model that we consider, denoted Model A, is
a minimal one in three respects: (i) it contains no G1-
singlet fermions, i.e., p1 = 0; (ii) the fermions transform
according to only one representation R of G1 and its
conjugate; and (iii) this representation R is the simplest

nontrivial one, namely the fundamental, R = . The
chiral fermions are

ψa,α
i,L , i = 1, ..., p : p ( , ) = p (N, 2), (5.2)

and

χa,j,L, j = 1, ..., 2p : 2p ( , 1) = 2p (N̄ , 1) . (5.3)

Here, a and α are SU(N) and SU(2) gauge indices and i, j
are copy (“flavor”) indices. For N ≥ 3, the chiral gauge
symmetry forbids any bare mass terms for the fermions.
In contrast, if N = 2, then gauge-invariant bare mass
terms such as

ǫabχT
a,i,LCχb,j,L , i 6= j, 1 ≤ i, j ≤ 2p (5.4)

and

ǫabǫαβψ
a,α T
i,L Cψb,β

j,L , 1 ≤ i, j ≤ p (5.5)

can occur. Closely related to this, if N = 2, then the
SU(N) and SU(2) gauge interactions can both be written
in vectorial form, so the theory is not a chiral gauge the-
ory. Therefore, henceforth we shall assume that N ≥ 3
for this class of theories. In the notation introduced
above, the fermion content of this Model A can be cate-
gorized as being of the form

{fns,ns, fns,s} . (5.6)

The fermion terms in the Lagrangian for this model are

L =

p
∑

j=1

ψ̄j,LiD/ψj,L +

2p
∑

j=1

χ̄j,LiD/χj,L , (5.7)

(where we have indicated the sums over flavor indices ex-
plicitly). In connection with the discussions in Sections
III A and VII, we note that one realization of a Model
A theory is the gauge and quark sector of the general-
ized Standard Model with the Higgs field removed, the
weak hypercharge gauge coupling turned off, and with
the identifications N = Nc and p = Ng, where Ng de-
notes the number of fermion generations. In this case, the
correspondence of fermion fields here and in Eqs. (7.2)
and (7.3) is as given below in Eqs. (7.11) and (7.12).
This correspondence motivates the property that the La-
grangian (5.7) is diagonal in copy indices; if one were to
include terms of the form χ̄j,LiD/χk,L with j 6= k, some of
these would correspond, in the generalized SM, to terms
of the form ūj′,LiD/ dk′,L that would violate U(1)Y and
electromagnetic U(1)em gauge symmetries. Although
Model A has no U(1)Y factor, we will restrict the La-
grangian to the form (5.7) which could be derived from
the generalized SM by the reduction process of Section
IIIA.
For this Model A, the condition that the SU(2) gauge

sector should be free of a global anomaly is

Nd = pN is even, (5.8)
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TABLE II: Values of N and p in the Model A SU(N) ⊗ SU(2)L
chiral gauge theory allowed by the inequalities (5.10) and (5.12)
arising from the constraint of asymptotic freedom for the SU(N)
and SU(2) gauge interactions, respectively, and the requirement
that the theory must not have any global SU(2) anomaly, Eq. (5.8).
The notation 12 ≤ Neven ≤ 20 denotes the even values of N in this
range. The notation 13 ≤ Nodd ≤ 21 denotes the odd values of N
in this range. For N ≥ 22, the inequality (5.12) has only the trivial
solution p = 0 for which the theory is a pure gauge theory with no
fermions and hence is not a chiral gauge theory.

N allowed values of p

3 p = 2, 4, 6

4 1 ≤ p ≤ 5

5 p = 2, 4

6 1 ≤ p ≤ 3

7 p = 2

8 p = 1, 2

9 p = 2

10 p = 1, 2

11 no sol. with p 6= 0

12 ≤ Neven ≤ 20 p = 1

13 ≤ Nodd ≤ 21 no sol. with p 6= 0

N ≥ 22 no sol. with p 6= 0

and we require that this condition must be satisfied.
From the general result (4.7), we have, for the one-loop

coefficient of the SU(N) beta function,

b1,SU(N) =
1

3
(11N − 4p) . (5.9)

Therefore, the requirement that the SU(N) gauge inter-
action should be asymptotically free, expressed by the
inequality (4.8), reads

p <
11N

4
. (5.10)

From the general result (4.9), we find, for the one-loop
coefficient of the SU(2) beta function,

b1,SU(2)L =
1

3
(22− pN) . (5.11)

Hence, the requirement that the SU(2) gauge interaction
should be asymptotically free, given by the inequality
(4.10), is

pN < 22 . (5.12)

In Fig. 1 we show the boundaries of the region in the
(N, p) plane satisfying the inequalities (5.10) and (5.12).
The allowed values ofN and p are thus the integersN ≥ 3
and p ≥ 1 in this allowed region that satisfy the condi-
tions (5.10), (5.12), and (5.8). We list these in Table II.
Several comments are in order concerning these allowed
values of N and p. First, as N increases through the

2

4

6

8

10

12

14

p

2 4 6 8 10

N

FIG. 1: Plot of the region in N and p allowed by the re-
quirement of of asymptotic freedom for the SU(N) and SU(2)
gauge interactions in the SU(N) ⊗ SU(2)L Model A chiral
gauge theory. The boundaries of this region are given by the
line from the inequality (5.10) and the hyperbola from the
inequality (5.12). The allowed values of N and p are thus the
integers N ≥ 3 and p ≥ 1 in this allowed region that also sat-
isfy the condition that the theory must not have any global
SU(2) anomaly, Eq. (5.8). See text for further discussion.

value N = 22, the maximum value of p allowed by the
inequality (5.12) decreases below 1, so that for N > 22,
this inequality (5.12) has only the trivial (integral) solu-
tion p = 0 for which the theory is a pure gauge theory
with no fermions and hence not of interest here. Second,
for odd N , one sees that the condition (5.8) for the the-
ory to be free from a global SU(2) anomaly restricts p to
even values.
We next analyze the UV to IR evolution and gauge

symmetry breaking in this model. If the SU(N) gauge
interaction is sufficiently strong and if it dominates over
the SU(2) gauge interaction, then this SU(N) interaction
forms bilinear fermion condensates that break the SU(2)
gauge symmetry. We denote the scale at which this oc-
curs as Λ. As regards the SU(N) gauge interaction, the
most attractive channel for fermion condensation is

SU(N) : × → 1, (5.13)

in terms of Young tableaux, or equivalently, N × N̄ → 1,
in terms of the dimensionalities of the SU(N) represen-
tations, with associated condensates

〈
N
∑

a=1

ψa,α T
i,L Cχa,j,L〉 , (5.14)

where i ∈ {1, ...p} and j ∈ {1, ..., 2p}. (Here and below,
when a condensate is given, it is understood that the
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hermitian conjugate condensate is also present.) This
channel has

∆C2 = 2C2( ) =
N2 − 1

N
. (5.15)

Each of the condensates in Eq. (5.14) breaks the SU(2)
gauge symmetry completely (and is invariant under the
SU(N) gauge symmetry, as is clear from (5.13)). The
fermions involved in these condensates, and the SU(2)
gauge bosons, gain dynamical masses of order Λ.
If, on the other hand, the SU(2) interaction is suffi-

ciently strong and if it dominates over the SU(N) in-
teraction, then this SU(2) interaction produces bilinear
fermion condensates in the most attractive SU(2) channel
2× 2 → 1, with associated condensates of the form

〈ǫαβψa,α T
i,L Cψb,β

j,L〉 . (5.16)

We denote the scale where this occurs as Λ′. The attrac-
tiveness measure for condensate formation in this chan-
nel is ∆C2 = 2C2( ) = 3/2. From the general symmetry
property (2.5), it follows that if, as in Eq. (5.16), one con-
tracts the SU(2) gauge indices α and β antisymmetrically
via the SU(2) ǫαβ tensor, then the combination of SU(N)
and generational indices is antisymmetric. That is, in the
operator product (5.16), either the SU(N) gauge indices
are antisymmetric and the generational indices are sym-
metric, so the condensate is proportional to

〈ǫαβ(ψa,α T
i,L Cψb,β

j,L − ψb,α T
i,L Cψa,β

j,L

+ ψa,α T
j,L Cψb,β

i,L − ψb,α T
j,L Cψa,β

i,L )〉 (5.17)

or the SU(N) gauge indices are symmetric and the gen-
erational indices are antisymmetric, so the condensate is
proportional to

〈ǫαβ(ψa,α T
i,L Cψb,β

j,L + ψb,α T
i,L Cψa,β

j,L

− ψa,α T
j,L Cψb,β

i,L − ψb,α T
j,L Cψa,β

i,L )〉 . (5.18)

The SU(N) gauge interaction, although assumed to be
weaker than the SU(2) gauge interaction, is not assumed
to be negligible, and it prefers the condensation channel
that is the MAC as regards SU(N). Now

∆C2 =
N + 1

N
for × → (5.19)

whereas

∆C2 = −N − 1

N
for × → (5.20)

so the × → channel is the MAC, and indeed, the
× → channel is repulsive. Therefore, we conclude

that in this case where SU(2) is more strongly coupled
than SU(N), the expected condensation channel is, in an
obvious notation,

( , 2)× ( , 2) → ( , 1) (5.21)

with associated condensate (5.17). This condensate,
which is of the form 〈T [ab]〉, where T [ab] is a rank-2 an-
tisymmetric tensor of SU(N), breaks SU(N) as follows
[30]:

〈T [ab]〉 : SU(N) → H =

{

SU(2) if N = 3
SU(N − 2)⊗ SU(2) if N ≥ 4

(5.22)
The fermions involved in the condensate and the gauge
bosons in the coset SU(N)/H gain dynamical masses of
order Λ′ and are integrated out of the low-energy effective
field theory that is operative as the reference scale µ de-
creases below Λ′. The fermion condensates that form in
both the strong-SU(N) and strong-SU(2) situations also
break global flavor symmetries. Since we have already
analyzed this sort of global flavor symmetry breaking in
our previous works [17, 18], we will not pursue this here,
instead focusing on the gauge symmetry breaking.

B. Model B

This model, denoted Model B, has the same gauge
group as Model A, but has an enlarged chiral fermion
sector which also contains p1 ≡ p′ copies of the SU(N)-
singlet, SU(2)-doublet fermion

ηαj,L , j = 1, ..., p′ : p′(1, 2) . (5.23)

Thus, the fermion content of Model B can be categorized
as being of the form

{fns,ns, fns,s, fs,ns} (5.24)

in the notation of Eq. (5.6). Depending on the value of
p′, these additional fermions may have gauge-invariant
bare mass terms of the form

ǫαβη
α T
i,L Cηβj,L , (5.25)

where i 6= j and 1 ≤ i, j ≤ p′. Using the general sym-
metry property (2.5) and taking account of the antisym-
metric contraction of the SU(2) gauge indices α and β
with the ǫαβ tensor, it follows that the fermion operator
in (5.25) is automatically antisymmetrized in the flavor
indices i and j, so if p′ = 1, then it vanishes identically. If
p′ ≥ 2, then the {fs,ns} fermions constitute a vectorlike
subsector in the full chiral gauge theory.
The sector of SU(N)-nonsinglet fields in Model B is the

same as in Model A, so the SU(N) gauge interaction is
again vectorial and hence is free from any gauge anomaly,
as is the SU(2) gauge interaction. The condition that
the SU(2) part of the theory should be free of any global
anomaly is that the number of SU(2) doublets, denoted
Nd, is even, i.e.,

Nd = pN + p′ is even, (5.26)

and we require that this condition be satisfied.
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The one-loop coefficient of the SU(N) beta function,
b1,SU(N), is given by (5.9), as in Model A, so p is subject
to the same upper bound from the requirement that the
SU(N) interaction must be asymptotically free, namely
(5.10).
The one-loop coefficient of the SU(2) beta function is

b1,SU(2)L =
1

3
[22− (pN + p′)] , (5.27)

so the requirement that the SU(2) gauge interaction
should be asymptotically free implies that

pN + p′ < 22 . (5.28)

The allowed values of N , p, and p′ for Model B are thus
the integers N ≥ 3, p ≥ 1, and p′ ≥ 1 satisfying the con-
ditions (5.10), (5.28)), and (5.26). There are too many
values to list in a table analogous to Table II, but we
mention that for N = 3, the allowed values of (p, p′) are
(1, 2k + 1) with 0 ≤ k ≤ 8; (2, 2k) with 1 ≤ k ≤ 7;
(3, 2k + 1) with 0 ≤ k ≤ 5; (4, 2k) with 1 ≤ k ≤ 4;
(5, 2k + 1) with 0 ≤ k ≤ 2; and the single pair (6, 2).
As in Model A, as N increases, the allowed set of values
of p and p′ is progressively reduced, and for sufficiently
large N , there are no nontrivial solutions to the three
conditions. For example, for N = 16, there are only two
allowed sets of (p, p′), namely (1,2) and (1,4); for N = 17,
there are again two sets, namely (1,1) and (1,3), while for
N = 18, there is only one, (1,2), and for N = 19, there
is only one, (1,1). For N ≥ 20, there are no allowed
(nonzero) values of p and p′ in this model.
Since Model B is the same as Model A as regards the

SU(N)-nonsinglet fermion content, it follows that if the
SU(N) gauge interaction is sufficiently strong and domi-
nates over the SU(2) interaction, then the resultant bilin-
ear fermion condensate formation is the same as in Model
A.
However, if the opposite is the case, i.e., if the SU(2)

gauge interaction is strong enough and dominates over
the SU(N) interaction, then, depending on the value of
p′, two additional type of fermion condensates may be
produced. These all have the same SU(2) attractiveness
measure, as given before, namely, ∆C2 = 3/2 and hence,
if SU(N) interactions are negligible, they are expected
to form at essentially the same Euclidean scale, which
we again denote as Λ. Thus, in addition to the conden-
sate(s) (5.17), the SU(2) gauge interaction can lead to
condensation in the channel

(1, 2)× (1, 2) → (1, 1) (5.29)

with the associated condensate(s)

〈ǫαβηα T
i,L Cηβj,L〉 , (5.30)

where 1 ≤ i, j ≤ p′. From (2.5), it follows that the bilin-
ear fermion operator product in (5.30) is antisymmetric
in the copy indices i and j and hence vanishes identically
if p′ = 1. As is evident from (5.29), this condensate (5.30)

preserves the full SU(N)⊗SU(2)L gauge symmetry. The
fermions involved in these condensates gain dynamical
masses of order the condensation scale, denoted Λ, and
are integrated out in the low-energy effective field theory
that is operative as the reference scale µ decreases below
Λ.
The second possible additional condensation channel

is

(N, 2)× (1, 2) → (N, 1) (5.31)

with the associated condensate(s)

〈ǫαβψa,α T
i,L Cηβj,L〉 , (5.32)

where 1 ≤ i ≤ p and 1 ≤ j ≤ p′. Consider the conden-
sates (5.32) with a given i, say i = 1. This set of conden-
sates (5.32) breaks SU(N) to SU(N−p′) if 1 ≤ p′ ≤ N−2
and and breaks SU(N) completely if p′ ≥ N − 1. To
show this, note that without loss of generality we may
pick a = N and j = 1 for one of these condensates. This

condensate, 〈ǫαβψN,α T
1,L Cηβ1,L〉, breaks SU(N) to the sub-

group SU(N−1). The fermions ψN,α
1,L and ηβ1,L involved in

this condensate gain dynamical masses of order the scale
at which this condensate forms. Next, consider the con-
densate of the form (5.32), where now only the SU(N−1)
gauge indices a ∈ {1, ..., N − 1} are dynamical. Again,
by convention, we may pick the SU(N − 1) gauge index
in this condensate to be N − 1 and the copy index on

the ηβj,L fermion to be j = 2. This breaks SU(N − 1) to

SU(N − 2) and the fermions ψN−1,α
1,L and ηβ2,L involved

in this condensate gain dynamical masses of order the
condensation scale. This process continues until SU(N)
is broken to SU(N − p′) if N − p′ ≥ 2 or until SU(N) is
completely broken if N − p′ ≤ 1. A vacuum alignment
argument suggest that it is plausible that this pattern
of breaking would also hold for other values i = 2, ..., p.
As noted above, since the SU(2) attractiveness measure
of all of these condensates, ∆C2 = 3/2 is the same, one
expects that they form at essentially the same scale.

VI. EXAMINATION OF SOME OTHER

SU(N)⊗ SU(2) THEORIES

Here we examine some NG = 2 chiral gauge theories
with gauge groups of the form G1⊗G2 = SU(N)⊗SU(2)
in which the G1 sector is of Gca type rather than the Gcav

type studied in the previous section. Two of the simplest
cases for the fermion content of the SU(N) sector involve
chiral fermions transforming according to symmetric and
antisymmetric rank-2 tensor representations of SU(N),
denoted S2 and A2, together with the requisite number
of fermions in the conjugate fundamental representation.
Two minimal anomaly-free SU(N) sectors are the follow-
ing, which we shall label as S2F̄ and A2F̄ :

S2F̄ : + (N + 4) for N ≥ 3 (6.1)
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and

A2F̄ : + (N − 4) for N ≥ 5. (6.2)

We restrict the S2F̄ theory to have N ≥ 3, since for
N = 2 it is a vectorial, rather than chiral, gauge theory.
Similarly, we restrict the A2F̄ theory to have N ≥ 5 be-

cause for N = 4, the representation is self-conjugate,

so the SU(4) AF̄ theory is a vectorial, rather than chi-
ral, gauge theory. Given the contributions to the SU(N)
triangle anomaly from the fermions in the S2 and A2 rep-
resentations (see Appendix A), these respective SU(N)
theories are anomaly-free. However, we shall show that
neither of these can be used to construct an NG = 2
direct-product chiral gauge theory in which the SU(2)
gauge interaction is asymptotically free.
We form the embeddings of the S2F̄ and A2F̄ sectors in

an SU(N)⊗SU(2) chiral gauge theory with the respective
fermion contents

( , 2) + (N + 4) ( , 2) for N ≥ 3 (6.3)

and

( , 2) + (N − 4) ( , 2) for N ≥ 5 . (6.4)

We will denote these as the S2F̄ and A2F̄ SU(N)⊗SU(2)
theories respectively, and as the T2F̄ SU(N)⊗SU(2) the-
ories (where T2 stands for rank-2 tensor) when we refer
to them together, with T2 = S2 or A2. These two respec-
tive direct-product chiral gauge theories are clearly free
of any anomalies in gauged currents. With the respective
restrictions on N , these theories are of type (ca, r).
The numbers of SU(2)-doublet fermions in these two

respective T2F̄ SU(N)⊗ SU(2) theories are

Nd =
3N(N ± 3)

2
, (6.5)

where the upper and lower signs refer to the S2F̄ and
A2F̄ SU(N) ⊗ SU(2) theories respectively. In each case,
Nd must be even in order for the theory to avoid a global
SU(2) anomaly.
The one-loop coefficients in the SU(N) beta function

in these respective theories are

b1,SU(N) =
1

3
(7N ∓ 12) , (6.6)

where again the upper and lower signs refer to the S2F̄
and A2F̄ SU(N) ⊗ SU(2) theories respectively. In both
cases this is positive, so the SU(N) sector is asymptoti-
cally free.
However, the one-loop coefficients in the SU(2) beta

function in the respective theories are

b1,SU(2) =
1

3

[

22− 3N(N ± 3)

2

]

for T2F̄ . (6.7)

We find that for the S2F̄ SU(N)⊗SU(2) theory, b1,SU(2)

is negative for all relevant N ≥ 3. (with N extended

to the positive real numbers, b1,SU(2) < 0 for N >

[−9 +
√
609]/6 = 2.613), so none of these theories has

the required asymptotically free SU(2) gauge interaction.
Also, many cases are independently excluded by the fact
that Nd is odd. Regarding the A2F̄ SU(N)⊗ SU(2) the-
ory, the N = 5 case has a positive b1,SU(2) (equal to
7), but is excluded because it has an odd value of Nd,
namely Nd = 15. All other values of N for the A2F̄
SU(N)⊗ SU(2) theories are excluded because b1,SU(2) is
negative. (With N extended to the positive real num-

bers, b1,SU(2) < 0 for N > [9 +
√
609]/6 = 5.613.) Many

of these cases are also excluded independently because
they have odd Nd. Therefore, our examination of these
T2F̄ SU(N) ⊗ SU(2) theories shows that none of them
yields an acceptable chiral gauge theory for our analysis.

VII. SU(Nc)⊗ SU(2)L ⊗ U(1)Y THEORIES

Here we shall study the nonperturbative behavior of a
chiral gauge theory with a gauge group of the form (1.1)
with NG = 3, namely

GGSM = SU(Nc)⊗ SU(2)L ⊗U(1)Y , (7.1)

where the subscript GSM stands for “generalized Stan-
dard Model”. In this section we will follow an tradi-
tional convention in writing some of the fermion fields as
right-handed and, related to this, in denoting the SU(2)
gauge group as SU(2)L. The fermion content is (with
i = 1, ..., Ng, where Ng = number of generations)

Qaα
i,L =

(

uai
dai

)

L

: Ng(Nc, 2)YQL
(7.2)

(i.e., Qa1
i,L = uai,L and Qa2

i,L = dai,L),

qai,R, Ng(Nc, 1)YqR
, q = u, d (7.3)

Lα
i,L =

(

νℓi
ℓi

)

L

: Ng(1, 2)YLL
(7.4)

(i.e., L1
i,L = νℓi,L and L2

i,L = ℓi,L),

νℓi,R, Ng(1, 1)YνR
, (7.5)

and

ℓi,R : Ng(1, 1)YℓR
. (7.6)

Here, a and α are color and SU(2)L gauge indices, respec-
tively, and i is a generational index. As listed in Table
I, this theory is of type (cav, r, c). For our discussion, we
will allow the number of colors, Nc, and Ng and to be ar-
bitrary, subject to the constraints of asymptotic freedom
of the SU(Nc) and SU(2)L gauge interactions and the
absence of an SU(2)L global anomaly. The capital L in
Eq. (7.4) stands for “lepton” and the subscript L for the
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left-handed chiral component. As in the SM, the (chiral)
SU(2)L⊗U(1)Y gauge group contains a vectorial electro-
magnetic U(1)em subgroup, and the electric charge satis-
fies Qem = T3L+(Y/2). Since Qem,fL = Qem,fR ≡ Qem,f

for all fermions f , it follows that the hypercharges of
the left-handed and right-handed fermions are related ac-
cording to

YfR = 2T3L,FL
+ YFL

, (7.7)

where here F stands for the left-handed quark or lepton
SU(2)L doublets, Q, L.
This theory is a modification of the Standard Model

with the following changes: (i) the color gauge group is
changed from SU(3)c to SU(Nc) and (ii) Ng is arbitrary,
both being subject to the three above-mentioned con-
straints; (iii) the hypercharge assignments are generalized
from their real-world values, subject to the constraint
that there must not be any gauge anomaly; (iv) two types
of SU(Nc)⊗SU(2)L-singlet fermions are present, namely
ℓi,R and νℓi,R, are present; and (v) the Higgs scalar bo-
son is removed. The SU(Nc) subsector of this theory is
vectorial and hence is free of any anomalies in gauged
currents. As before, the SU(2)L sector has no pure cubic
SU(2)L triangle anomaly in gauged currents. Given the
structure of this GSM theory, the conditions that there
be no triangle anomalies in gauged currents of the form
SU(Nc)

2U(1)Y and U(1)3Y are the same. If one imposes
the condition that these constraints should be satisfied
for each fermion generation individually, as we will (and
as is the case in the SM), then the resultant condition is

NcYQL
+ YLL

= 0 (7.8)

for each fermion generation. The properties of this the-
ory were studied for the usual case YLL

= −1 in [31]
and for general fermion hypercharge assignments in [32].
Provided that the hypercharge assignments satisfy Eq.
(7.8), they also yield a vanishing mixed gravitational-
gauge anomaly (for each generation) [32]. The generic
classes of hypercharge assignments and resultant proper-
ties of the theory were given in [32], together with certain
special classes. We comment on these further below.
The condition that the SU(2)L gauge sector should be

free of a global anomaly associated with the homotopy
group π4(SU(2)) = Z2 is that the number of SU(2)L dou-
blets,

Nd = Ng(Nc + 1) (7.9)

is even, i.e.,

Ng(Nc + 1) is even, (7.10)

and we require that this condition be satisfied. As was
noted in [32], if Ng is even, then this constraint allows
arbitrary Nc, while if Ng is odd, then it allows only odd
Nc. Similarly, if Nc is odd, then this constrain allows any
value of Ng, while if Nc is even, it requires that Ng to be
even.

We note that if one were to turn off the U(1)Y gauge in-
teraction and set Nc = N , then this model would reduce
to the special case of Model B in Sect. V with p = p′ =
Ng (together with some gauge-singlet fermions). The cor-
respondences between fermion fields in these models is

Qa,α
i,L ↔ ψa,α

i,L , 1 ≤ i ≤ p , (7.11)

{uai,L, dai,L} ↔ χa,j,L , 1 ≤ i ≤ p; 1 ≤ j ≤ 2p (7.12)

and

Lα
i,L ↔ ηαi,L , 1 ≤ i ≤ p′ . (7.13)

One reason that we used abstract notation for the
fermions in the Models A, B, and C of Sect. V is that
they have a different structure than the GSM theory con-
sidered here in several respects: (i) the condition for the
absence of anomalies in gauge currents is different, since
they have no U(1) factor; and (ii) p and p′ need not be
equal, whereas in the GSM p = p′ = Ng. Since the νi,R
and ℓi,R fields are singlets under SU(Nc)⊗ SU(2)L, they
have no (nonsinglet) corresponding fields in Model B of
Sect. V.
We shall require that both the SU(Nc) and SU(2)L

gauge interactions in the GSM must be asymptotically
free. The one-loop coefficient of the SU(Nc) beta function
is

b1,SU(Nc),GSM =
1

3
(11Nc − 4Ng) , (7.14)

so the requirement that the SU(Nc) gauge interaction
must be asymptotically free implies that Ng satisfies

Ng <
11Nc

4
. (7.15)

The one-loop coefficient of the SU(2)L beta function is
b1,SU(2),GSM = (1/3)(22−Nd), i.e.,

b1,SU(2),GSM =
1

3
[22−Ng(Nc + 1)] , (7.16)

so the requirement that the SU(2)L gauge interaction
must be asymptotically free implies that the number of
SU(3)L doublets (7.9) is bounded above according to

Ng(Nc + 1) < 22 . (7.17)

The weak hypercharge U(1)Y gauge interaction is non-
asymptotically free, and the associated gauge coupling
g′ decreases as the Euclidean reference scale µ decreases.
If, as we assume, g′ is weak at a high scale in the UV,
then it remains weak at lower scales. Thus, the possi-
ble nonperturbative behavior in the theory is due to the
growth of the gauge couplings of the non-Abelian gauge
interactions.
In our generalized theory, if the SU(Nc) gauge interac-

tion is sufficiently strong and dominates over the SU(2)L
interaction, then the former breaks GEW to U(1)em, as
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in dynamical theories of electroweak symmetry breaking.
The most attractive channel is

(N̄c, 2)× (Nc, 1) → (1, 2) (7.18)

with attractiveness measure given by (5.15) with N =
Nc. The associated condensates are

〈Q̄a,α,i,Lu
a
j,R〉 (7.19)

and

〈Q̄a,β,i,Ld
a
j,R〉 (7.20)

(and hermitian conjugates). With no loss of generality,
one may choose α = 1 in Eq. (7.19), so that this conden-
sate takes the form 〈ūa,i,Luaj,R〉. Since the fermions are
massless, one can order the flavor basis of the uaj,R fields
so that the condensate is diagonal in flavor and hence has
the form

〈ūa,i,Luai,R〉 , i = 1, ..., Ng . (7.21)

This condensate thus breaks the electroweak gauge sym-
metry according to SU(2)L⊗U(1)Y → U(1)em. As noted
in [14], a vacuum alignment argument implies that the
condensate (7.20) aligns in a manner so as to preserve
this residual U(1)em gauge symmetry, so that β = 2 in
(7.20). With an appropriate ordering of the flavor basis
of the daj,R, this condensate thus takes the form

〈d̄a,i,Ldai,R〉 , i = 1, ..., Ng . (7.22)

If, on the other hand, the SU(2)L gauge interaction is
sufficiently strong and dominates over the SU(Nc) gauge
interaction, then the gauge symmetry breaking is differ-
ent. The most attractive channel for the SU(2)L interac-
tion is, as before, 2×2 → 1. There are three types of con-
densates that can form in this channel, which we denote
for short as 〈QQ〉, 〈QL〉, and 〈LL〉. These were noted in
[2] for the Standard Model without a Higgs field, corre-
sponding to the special case of the GSM with Nc = 3 and
YLL

= 0. Here we extend this analysis to the full GSM.
The simplest condensate is 〈LL〉, which has the form

〈ǫαβLα T
i,L CLβ

j,L〉 . (7.23)

Using the general property (2.5) and taking into account
the contraction with ǫαβ , it follows that the bilinear
fermion operator in (7.23) is antisymmetric in the gen-
eration indices i and j. Hence, if Ng = 1, it is absent.
Assuming Ng ≥ 2, so that the condensate (7.23) forms,
it preserves the SU(Nc)⊗ SU(2)L part of GGSM and, for
all but a set of measure zero of hypercharge assignments,
it breaks the U(1)Y weak hypercharge gauge symmetry,
transforming as a ∆Y = 2YLL

operator. The only excep-
tion is the case denoted class C2ℓ,sym = C2q,sym in [32]
(see Tables I and II in [32]), for which YLL

= 0 = YQL
.

The condensate (7.23) also breaks the (global) lepton
family number U(1)Li

and total lepton number U(1)L

symmetries. However, these global symmetries are al-
ready broken by SU(2)L instantons, and since we as-
sume that SU(2)L is strongly coupled, these SU(2)L in-
stantons are not suppressed as they are (at zero tem-
perature) in the Standard Model. Note that if one as-
sumes conventional weak hypercharge assignments, so
that νi,R fermions are GSM-singlets, then νTi,RCνj,R Ma-
jorana mass terms are, in general, present, and explicitly
break both lepton family number and total lepton num-
ber.
The second type of condensate, denoted 〈QL〉, has the

form

〈ǫαβQaα T
i,L CLβ

j,L〉 . (7.24)

where 1 ≤ i, j ≤ Ng. This is analogous to the condensate
(5.32) in the SU(N) ⊗ SU(2)L Model B of Section V,
with the correspondence N = Nc and p = p′ = Ng,
so our analysis in that section applies here, with these
identifications. In particular, if Ng ≤ Nc − 2, then this
set of condensates breaks SU(Nc) down to SU(Nc−Ng),
while if Ng ≥ Nc− 1, then this set of condensates breaks
SU(Nc − Ng) completely. These condensates also break
baryon number and (total and family) lepton number.
The third type of condensate, denoted 〈QQ〉, has the

form

〈ǫαβQaα T
i,L CQbβ

j,L〉 . (7.25)

The same analysis that we gave above for the condensate
(5.17) in the SU(N) ⊗ SU(2) gauge theory applies here,
withN = Nc and p = Ng From this analysis we infer that
the condensation channel is Eq. (5.21) with N = Nc, and
the type of 〈QQ〉 condensate that is produced here is

〈ǫαβ(Qα,a T
i,L CQβ,b

j,L −Qα,b T
i,L CQβ,a

j,L

+ Qα,a T
j,L CQβ,b

i,L −Qα,b T
j,L CQβ,a

i,L )〉 . (7.26)

This is invariant under SU(2)L and breaks SU(Nc) ac-
cording to Eq. (5.22) with N = Nc. For all but a
set of measure zero of weak hypercharge assignments,
the condensate (7.26) also breaks U(1)Y , transforming
as a ∆Y = 2YQL

operator. The sole exception is the
case where YQL

= 0 = YLL
, denoted as class C2q,sym =

C2ℓ,sym in [32] (see Tables I and II in [32]). The conden-
sate (7.26) also breaks baryon number, U(1)B, but, as
noted, this is already broken by the SU(2)L instantons.

VIII. SU(Nc)⊗ U(1)Y THEORIES WITH Nc ≥ 3

In this and the next two sections we shall apply the
reduction procedure discussed in Section III A to obtain
two (anomaly-free) NG = 2 chiral gauge theories starting
with the generalized Standard Model theory discussed
in Section VII. These are obtained by turning off the
SU(2)L coupling and the SU(Nc) coupling, respectively.
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The third possibility, namely to turn off the U(1)Y cou-
pling, yields a theory with the group SU(Nc) ⊗ SU(2)L,
which was already analyzed in Section V.
We begin by turning off the SU(2)L coupling in the

generalized Standard Model, thereby obtaining the gauge
group

G = SU(Nc)⊗U(1)Y (8.1)

with the (nonsinglet) fermion content given by Eqs. (7.2)
and (7.3). This theory is of the type (cav, ca) in the clas-
sification of Section II. As in the GSM itself, because
the SU(Nc) gauge interaction is vectorial, the SU(Nc)

3

anomaly is zero. In the GSM, YQL
denotes the general-

ized weak hypercharge of the left-handed quark doublet
in Eq. (7.2); here, since the theory does not have any
SU(2)L, we take it simply to be the common value of
Y for uai,L and dai,L (and the same for all i = 1, ..., Ng).

Because the original GSM contains a vectorial U(1)em ⊂
SU(2)L ⊗ U(1)Y , which yields the relation (7.7), it fol-
lows in the present truncated model that if we specify
YQL

, then the hypercharges YuR
and YdR

are determined.
Thus, just as was true in the GSM, as discussed in [32],
in this truncated version, there is actually an infinite
one-parameter family of models that depend, here, on
YQ. For any member of this family, as a special case of
the situation in the GSM, it follows that the theory is
free of (i) any SU(Nc)

2U(1)Y triangle anomaly, (ii) any
U(1)3Y anomaly, and (iii) any mixed gravitational-gauge
anomaly involving the U(1)Y gauge group.
The one-loop coefficient for the SU(Nc) beta function

is given by Eq. (7.14), so the upper bound on Ng to
ensure the asymptotic freedom of the SU(Nc) gauge in-
teraction is the same as in (7.15). As the theory evolves
from the UV to the IR and the SU(Nc) gauge couplings
gets sufficiently large, the theory forms bilinear quark
condensates in the SU(Nc) MAC, which is × → 1. A
priori, these condensates would be

〈ūa,i,Luaj,R〉 , 〈d̄a,i,Ldaj,R〉 , 〈ūa,i,Ldaj,R〉 , 〈d̄a,i,Luaj,R〉 (8.2)

(and their hermitian conjugates). However, a vacuum
alignment argument can be used to infer that the conden-
sate formation is such as to preserve the U(1)em subgroup
of the U(1)Y gauge symmetry, i.e., only the 〈ūa,i,Luai,R〉
and 〈d̄a,i,Ldai,R〉 condensates (and their hermitian conju-

gates) form. Since the theory has no bare mass terms,
for a fixed ordering of the generational indices of the left-
handed quarks uai,L and dai,L, we can always choose the
order of the the generational indices of the uaj,R and daj,R
so that the condensates are diagonal in generation in-
dices. The 〈ūa,i,Luai,R〉 and 〈d̄a,i,Ldai,R〉 condensates each
break U(1)Y to U(1)em.

IX. SU(2)⊗ U(1)Y THEORIES

Here we obtain a chiral gauge theory of the type (r, ca)
by starting with with the generalized Standard Model of

Section VII and turning off the SU(Nc) gauge coupling,
thereby obtaining the gauge group

SU(2)⊗U(1)Y . (9.1)

The fermions are given by (7.2) and (7.4) of the GSM,
with the modification that now the color index is a global,
rather than gauge, index. The condition that the SU(2)
theory must not have any global anomaly is the same
as Eq. (7.10), and, as in the GSM, if one imposes it
individually on each generation, then it is the statement
that Nc must be odd.
The one-loop coefficient in the SU(2)L beta function

is the same as in Eq. (7.16), and the resultant upper
bound on Ng(Nc + 1) resulting from the condition that
the SU(2)L gauge interaction must be asymptotically free
is thus the same as in (7.17). As the theory evolves from
the UV to the IR and the SU(2) grows, if it becomes suf-
ficiently large, it can produce condensates in the SU(2)
MAC, 2 × 2 → 1, of the three forms discussed in Sec-
tion VII, denoted for short as 〈LL〉, 〈QL〉, and 〈QQ〉,
with associated condensates (7.23), (7.24), and (7.26).
As discussed in Section VII, except for a set of mea-
sure zero, namely the case where YQL

= YLL
= 0, de-

noted C2q,sym = C2ℓ,sym in [32], these condensates break
U(1)Y .

X. SU(N)⊗ SU(2)L ⊗ SU(2)R THEORIES WITH

N ≥ 3

In this section we consider another chiral gauge the-
ory with a gauge group of the form (1.1) with NG = 3,
namely

GN22 = SU(N)⊗ SU(2)L ⊗ SU(2)R (10.1)

with N ≥ 3 and the fermions

ψa,αL

i,L , i = 1, ..., p : p ( , , 1) = p (N, 2, 1) , (10.2)

ψa,αR

i,R , i = 1, ..., p : p ( , 1, ) = p (N, 1, 2) , (10.3)

χαL

j,L, j = 1, ..., p′ : p′ (1, , 1) = p′ (1, 2, 1) , (10.4)

and

χαR

j,R, j = 1, ..., p′′ : p′′ (1, 1, ) = p′′ (1, 1, 2) . (10.5)

Here the three representations in the parentheses refer,
respectively, to the three factor groups in Eq. (10.1).
As indicated in Table I, this theory is of type (cav, r, r).
Since the SU(N) gauge interaction is vectorial, it has no
gauge anomaly, and both the SU(2)L and SU(2)R gauge
sectors are safe (anomaly-free). The conditions that the
SU(2)L and SU(2)R gauge sectors should be free of a
global anomaly are, respectively,

pN + p′ is even (10.6)
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and

pN + p′′ is even. (10.7)

As with our other models, we shall require that all
three non-Abelian gauge interactions are asymptotically
free. The one-loop coefficient of the SU(N) beta func-
tion is the same as in the SU(N) ⊗ SU(2)L model of
Sect. V, Eq. (5.9) (applicable to both Models A and B
of that section) so the condition that the SU(N) gauge
interaction should be asymptotically free is the inequal-
ity (5.10). The one-loop coefficient of the SU(2)L beta
function is the same as in the SU(N)⊗SU(2)L Model B,
Eq. (5.27), so the requirement that the SU(2)L gauge in-
teraction be asymptotically free is the inequality (5.28).
Finally, the one-loop coefficient of the SU(2)R beta func-
tion is the same as Eq. (5.27) with p′ replaced by p′′,
so the requirement that the SU(2)R gauge interaction be
asymptotically free is given by the inequality (5.28) with
p′ replaced by p′′, namely Np+ p′′ < 22.
We denote the gauge couplings as gN , gL, and gR, with

αN = g2N/(4π), αL = g2L/(4π), and αR = g2R/(4π). If
the initial values of these couplings are such that, as the
Euclidean reference scale µ decreases from large values in
the deep UV, the SU(N) interaction becomes sufficiently
strong and dominates over the SU(2)L and SU(2)R gauge
interactions, then it is expected to produce condensation
in the most attractive channel, which is

(N̄ , 2, 1)× (N, 1, 2) → (1, 2, 2) , (10.8)

with attractiveness measure (5.15). The associated bilin-

ear fermion condensate is

〈ψ̄a,αL,i,Lψ
a,αR

j,R 〉 . (10.9)

This breaks SU(2)L⊗SU(2)R gauge symmetry to the di-
agonal (= vector) subgroup, SU(2)V . That is, if elements
of SU(2)L and SU(2)R are denoted as UL and UR, then
SU(2)V is the subgroup of SU(2)L ⊗ SU(2)R defined by
the condition UL = UR.

If the SU(2)L interaction is sufficiently strong and
dominates over both the SU(N) and SU(2)R interaction,
then it can produce the three types of condensates and
corresponding symmetry breaking discussed in our anal-
ysis of the SU(N)⊗ SU(2)L Model B above.

Finally, if the SU(2)R interaction is sufficiently strong
and dominates over both the SU(N) and SU(2)L inter-
action, our discussion of the condensate formation in the
SU(N) ⊗ SU(2)L Model B above applies, with all sub-
scripts L changed to R.

XI. SU(Nc)⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L THEORIES

Here we analyze the chiral gauge theory with a gauge
group of the form (1.1) with NG = 4, namely

GN221 = SU(Nc)⊗SU(2)L⊗SU(2)R⊗U(1)B−L . (11.1)
We denote the gauge couplings as gNc

, gL, gR, and gU ,
with αNc

= g2Nc
/(4π), and so forth for the other cou-

plings. The quarks and leptons in this theory are

Qa,αL

i,L , i = 1, ..., Ng : Ng ( , , 1)1/Nc
= Ng (Nc, 2, 1)1/Nc

, (11.2)

Qa,αR

i,R , i = 1, ..., Ng : Ng ( , 1, )1/Nc
= Ng (Nc, 1, 2)1/Nc

, (11.3)

LαL

i,L, i = 1, ..., Ng : Ng (1, , 1)−1 = Ng (1, 2, 1)−1 , (11.4)

and

LαR

i,R, i = 1, ..., Ng : Ng (1, 1, )−1 = Ng (1, 1, 2)−1 . (11.5)

Here the three numbers in the parentheses are the dimen-
sionalities of the SU(Nc), SU(2)L, and SU(2)R represen-
tations, and the subscripts are the value of B−L, where
B and L denote baryon and lepton number. The capital
L in Eqs. (11.4) and (11.5) stands for “lepton” and the
subscripts L and R for left- and right-handed chiral com-
ponents, as before. This theory is of type (cav, r, r, cav)
(see Table I) and is a modification of the model of Ref.
[34] in that (i) the number of colors, Nc ≥ 3 and (ii) the

number of generations, Ng, are arbitrary, subject to con-
straints to be discussed below; and (iii) the Higgs field is
removed. One of the interesting features of the original
model of Ref. [34] is that the B − L operator applied
to the full set of quarks and leptons in each generation
has zero trace. Our generalized model retains this prop-
erty, since B = 1/Nc for each quark. A second interest-
ing feature of the original model is that electric charge
Qem = T3L + T3R + (B − L)/2 is quantized, since T3L,
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T3R, B, and L are rational (indeed, L is integral). Again,
our generalized model retains this feature.
The SU(Nc) gauge interaction is vectorial, and hence

has no gauge anomaly, and both the SU(2)L and SU(2)R
gauge sectors are also free of any pure cubic gauge
anomalies. The theory is also free of SU(2)2LU(1)B−L,
SU(2)2RU(1)B−L, and U(1)3B−L triangle gauge anomalies.
The theory is also free of any mixed gravitational-gauge
anomaly. The conditions that the SU(2)L and SU(2)R
gauge sectors are each free of any global anomaly are the
same, namely the condition (7.10).
We shall require that the three non-Abelian gauge in-

teractions be asymptotically free. The one-loop coeffi-
cient of the SU(Nc) beta function is the same as in the
generalized Standard Model, Eq. (7.14), so the condition
that the SU(Nc) gauge interaction must be asymptoti-
cally free is the same as the inequality (7.15). The respec-
tive one-loop coefficients of the SU(2)L and SU(2)R beta
functions are equal to each other and given by Eq. (7.16),
so the condition that the SU(2)L and SU(2)R gauge in-
teractions must be asymptotically free is the same as the
inequality (7.17). The U(1)B−L gauge interaction is non-
asymptotically free, and the associated gauge coupling gU
decreases with decreasing scale µ. If, as we assume, gU
is weak at a high scale in the UV, then it remains weak
at lower scales. Thus, the possible nonperturbative be-
havior in the theory is due to the growth of the gauge
couplings of the three non-Abelian gauge interactions.
If the initial values of these couplings are such that,

as the Euclidean reference scale µ decreases from large
values in the deep UV, the SU(Nc) interaction becomes
sufficiently strong and dominates over the SU(2)L and
SU(2)R gauge interactions, then it is expected to produce
condensation in the most attractive channel, which is

(N̄c, 2, 1)−1/Nc
× (Nc, 1, 2)1/Nc

→ (1, 2, 2)0 . (11.6)

The associated bilinear fermion condensate is the same
as the one given in Eq. (10.9). As is evident from (11.6),
this preserves the SU(Nc) and U(1)B−L gauge symme-
tries and breaks SU(2)L ⊗ SU(2)R to SU(2)V .
If the SU(2)L interaction is sufficiently strong and

dominates over both the SU(Nc) and SU(2)R interaction,
then it can produce the three types of condensates dis-
cussed in our analysis of the generalized Standard Model
above, with appropriate changes of weak hypercharge to
B−L. The first of these is the condensate denoted (7.23)
with the replacements α, β → αL, βL and our discussion
in connection with this condensate applies here. In par-
ticular, assuming Ng ≥ 2, so that this condensate forms,

it preserves the SU(Nc)⊗SU(2)L⊗SU(2)R part of GN221

and breaks the U(1)B−L gauge symmetry, transforming
as |∆L| = 2.

The second type of condensate has the form of (7.24)
with i, j = 1, ..., Ng. This condensate is invariant under
the SU(2)L⊗SU(2)R part of GN221 and, for a given i, j, it
breaks SU(Nc) to SU(Nc−1). Without loss of generality,
we may choose a = Nc, so that the residual subgroup
SU(Nc− 1) operates on the indices a ∈ {1, ..., Nc− 1}. It
also breaks U(1)B−L, since it transforms as an operator
with |B − L| = |N−1

c − 1| 6= 0.

The third type of condensate is 〈QQ〉, which has the
form of (7.25) with α, β → αL, βL. The same anal-
ysis that we gave above for this condensate in our dis-
cussion of the generalized Standard Model applies here,
with the obvious change of α, β just noted. Thus, again,
using MAC and vacuum alignment arguments, we may
infer that the condensate has the explicit structure of Eq.
(7.26). This is invariant under the SU(2)L⊗SU(2)R part
of GN221 and breaks SU(Nc) according to Eq. (5.22)
with N = Nc. It also breaks U(1)B−L, transforming as
a |∆B| = 2/Nc operator.

Finally, if the SU(2)R interaction is sufficiently strong
and dominates over both the SU(Nc) and SU(2)L interac-
tion, then it can produce the three types of condensates
discussed directly above, with the obvious changes of chi-
ralities of fermion fields from L to R and the resultant
changes of symmetry-breaking patterns.

XII. SU(Nc + 1)⊗ SU(2)L ⊗ SU(2)R THEORIES

As noted above, in the original model with an SU(3)c⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L electroweak gauge group
[34], the B −L operator applied to the full set of quarks
and leptons in each generation has zero trace. Owing
to this property, one can embed the U(1)B−L gauge
symmetry together with SU(3)c in an SU(4) group [35]
such that the B − L operator diag(1/3, 1/3, 1/3,−1) is
proportional to the last diagonal generator of the Car-
tan subalgebra of su(4). The resultant gauge group is
SU(4) ⊗ SU(2)L ⊗ SU(2)R. We may carry out the same
process for our generalized group and thus consider the
chiral gauge theory with gauge group

G = SU(Nc + 1)⊗ SU(2)L ⊗ SU(2)R . (12.1)

The fermion content is

FL = (Qa,αL

i , LαL

i )L, i = 1, ..., Ng : Ng ( , , 1) = Ng (Nc + 1, 2, 1) , (12.2)

FR = (Qa,αR

i , LαR

i )R, i = 1, ..., Ng : Ng ( , 1, ) = Ng (Nc + 1, 1, 2) , (12.3)
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where, a, αL, and αR are, respectively, SU(Nc + 1),
SU(2)L, and SU(2)R gauge indices and i is a generation
index. The three numbers in the parentheses are the di-
mensionalities of the SU(Nc + 1), SU(2)L, and SU(2)R
representations. The Cartan subalgebra of su(Nc + 1)
has dimension Nc + 1 and its last Cartan matrix is
proportional to a diagonal matrix whose first Nc en-
tries are 1/Nc and whose Nc + 1’th entry is −1, i.e.,
diag(1/Nc, ..., 1/Nc,−1).
We observe that this model is a special case of the chi-

ral gauge theory that we analyzed in Section X obtained
by setting N = Nc+1, p = Ng, p

′ = p′′ = 0, ψa,αL

i,L = FL,

and ψa,αR

i,R = FR. Thus, this special case of our analysis
in Section X applies for the theory of this section.

XIII. SO(4k + 2)⊗ SU(2) THEORIES

It is also of interest to study chiral gauge theories with
direct-product groups group that involve a safe SO(N)
group. We recall that if N is odd or if N is even and N =
4k, k ≥ 1, then SO(N) has only real representations,
while if N = 4k + 2 with k ≥ 2, then the theory has
complex representations but is safe (i.e., has no anomaly
for any representation) [22]. With this motivation, we
consider chiral gauge theories with the gauge group

G = SO(4k + 2)⊗ SU(2) with k ≥ 2 . (13.1)

These are of the form (cs, cs) in the general classification
given in Section II. Since N is even, it is also convenient
to introduce an integer r = N/2:

N = 4k + 2 = 2r , k ≥ 2 , (13.2)

so r = 2k + 1. As before, we write all fermions as left-
handed. We start by considering the general fermion
content

∑

R, R′

[

nR (R, 1) + p (R′, )
]

, (13.3)

where R and R′ are representations of SO(4k + 2). We
include only complex R and R′ since the use of a real R
or R′ would lead to a vectorlike subsector, so the model
would not be irreducibly chiral.
Using the relevant group invariants, we calculate the

one-loop term in the beta function for the SO(N) gauge
coupling with N given by (13.2) to be

bSO(4k+2),1 =
2

3

[

11(r − 1)−
∑

f

(

nRTR + 2pR′TR′

)]

.

(13.4)
We calculate the one-loop term in the SU(2) beta func-
tion to be

bSU(2),1 =
1

3

[

22− 2
∑

R′

pR′dim(R′)
]

. (13.5)

Because the first terms in square brackets in Eq. (13.4)
and (13.5) are, respectively, linear in r and a constant,
while the relevant TR, TR′ , and dim(R′) grow expo-
nentially rapidly with r, the asymptotic freedom of the
SO(2r) and SU(2) gauge interactions places strong re-
strictions on the fermion content and the value of N . For
our purposes, it will be sufficient to consider the simplest
models of this type, with (complex) R = R′. We will
consider three specific models, which we label Models A,
B, and C.

A. Model A

We first briefly consider the case where the fermion
sector has the form {fns,s}, i.e, all of the fermions are
singlets under SU(2). In this case, the gauge group
effectively reduces to SO(N), with N given by (13.2).
We choose the minimal complex representation for the
fermions, namely the spinor representation, denoted S,
of dimension dim(S) = 2r−1 = 22k (see Appendix A) and
include n copies of these, so the fermion content is

ωi,L, i = 1., , , n : n (S, 1) , (13.6)

where the first and second entries in the parentheses here
and below are the representations of SO(N) and SU(2),
respectively. The general formula for the one-loop term
in the beta function for the SO(N) gauge coupling, Eq.
(13.4) for this Model A reduces to

bSO(2r),1 =
2

3

[

11(r − 1)− 2r−4n
]

. (13.7)

The requirement that the SO(N) gauge interaction
should be asymptotically free implies that

n <
11(r − 1)

2r−4
. (13.8)

This has only a finite number of solutions for n that are
nontrivial, i.e., have n ≥ 1, and, indeed, also a finite
number of solutions for r.

G1 = SO(10) (i.e., k = 2, r = 5) ⇒ n ≤ 21 (13.9)

G1 = SO(14) (i.e., k = 3, r = 7) ⇒ n ≤ 8 (13.10)

G1 = SO(18) (i.e., k = 4, r = 9) ⇒ n ≤ 2 (13.11)

For k ≥ 5, i.e., r ≥ 11, the upper bound on n is less than
unity, precluding any fermions.
We assume some initial value of the SO(2r) gauge cou-

pling in the deep UV and then evolve the theory down-
ward in Euclidean scale µ. Recall that the direct product
of two spinor representations of SO(N) with N given by
(13.2) is [23]

S × S = 22k × 22k =

k−1
∑

ℓ=0

A2ℓ+1 +R2k+1;2 , (13.12)
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where At denotes the rank-t antisymmetric tensor repre-
sentation and R2k+1 is a certain self-dual representation.
The symmetry of the At with respect to the interchange
of the two spinor representations in the direct product is
given by (−1)u(r,t), where u(r, t) = (r − t)(r − t − 1)/2
[23]. Thus, for example, one has, for the lowest relevant
value of k, namely k = 2, i.e., G1 = SO(10),

SO(10) : S × S = 24 × 24 = A1 + A3 +R5;2

= 10s + 120a + 126s , (13.13)

where the subscripts s and a denote the symmetric and
antisymmetric property of these representations under
interchange of the spinors in the direct product. In gen-
eral, for SO(2k + 2), from the form of u(r, t), it follows
that A1 is symmetric (resp. antisymmetric) under inter-
change of the spinors in the direct product for even k
(resp. odd k), while A3 is antisymmetric (resp. symmet-
ric) under interchange of these spinors for even k (resp.
odd k).
Assuming that the SO(N) coupling becomes strong

enough to produce a bilinear fermion condensate, the
MAC is

SO(N) MAC : S × S → , (13.14)

with attractiveness measure (written, for convenient ref-
erence, in terms of each of the three related parameters
N , r, and k)

∆C2 = 2C2(S)− C2( ) =
(N − 1)(N − 4)

8

=
(2r − 1)(r − 2)

4
=

(4k + 1)(2k − 1)

4
.

(13.15)

Since r ≥ 5, i.e., k ≥ 2, this is always positive. The as-
sociated condensate is 〈ωT

i,LCωj,L〉, where 1 ≤ i, j ≤ n.

From the general result (2.5), it follows that the bilinear
fermion operator ωT

i,LCωj,L in this condensate is (i) sym-
metric under interchange of spinors in the S × S direct
product in (13.14) and hence symmetric in the flavor in-
dices i, j if k is even; (ii) antisymmetric under interchange
of spinors and hence antisymmetric in the flavor indices
i, j if k is odd. Therefore, explicitly,

k even ⇒ 〈ωT
i,LCωj,L + ωT

j,LCωi,L〉 , 1 ≤ i, j ≤ n
(13.16)

and

k odd ⇒ 〈ωT
i,LCωj,L − ωT

j,LCωi,L〉 , 1 ≤ i, j ≤ n .
(13.17)

In both cases, if this condensate forms, then, since it
transforms as the fundamental (vector) representation of
the gauge group SO(4k + 2), it breaks this symmetry to
SO(4k+1), which is vectorial and does not break further.

However, if n = 1 and k is odd, e.g., for SO(14) (i.e.,
k = 3), then this condensate in the MAC channel van-
ishes identically. In this case, we consider the next chan-
nel in Eq. (13.12), namely

S × S → A3 (13.18)

with attractiveness measure

∆C2 = 2C2(S) − C2(A3) =
(N − 4)(N − 9)

8

=
(r − 2)(2r − 9)

4
=

(2k − 1)(4k − 7)

4
.

(13.19)

For the relevant value of k, namely k = 3, this is ∆C2 =
25/4.

B. Model B

Here we consider a model with the gauge group (13.1)
with (13.2) and fermion content of the form {fns,ns},
namely

ψα
i,L, i = 1, ..., p : p (S, ) . (13.20)

We denote this as Model B. Since there are an even num-
ber of SU(2) doublets, this theory has no global SU(2)L
anomaly.
The general formulas for the one-loop coefficients in

the SO(N) beta function (with N given by (13.2)) and
in the SU(2) beta function displayed in Eqs. (13.4) and
(13.5) reduce, for this Model B, to

bSO(2r),1 =
2

3
[11(r − 1)− 2r−3p] (13.21)

and

b1,SU(2)L =
2

3
(11− 2r−2p) . (13.22)

Hence, the respective conditions that the SO(2r) and
SU(2) gauge interactions should be asymptotically free
are

p <
11(r − 1)

2r−3
(13.23)

and

p <
11

2r−2
. (13.24)

Since we take k ≥ 2, i.e., r ≥ 5, for our theories, the only
possible nontrivial value for p allowed by the constraint
(13.24) is p = 1 and, furthermore, this is only possible
for the lowest value of k, namely k = 2, and thus G1 =
SO(10). No SO(4k+2) theories of this Model B type with
nonzero fermion content are allowed by the asymptotic
freedom constraint if k ≥ 3.
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We note that there is consequently no (continuous)
nonanomalous global flavor symmetry of the Lagrangian
for this theory. Since there is only one copy of the (S, )
fermion ψα

i,L, we shall henceforth drop the flavor index
and write this field simply as ψα

L.
If the SO(10) gauge interaction is sufficiently strong

and dominates over the SU(2) gauge interaction, then
it produces a condensate in the SO(10) MAC, (13.14),
thereby breaking the SO(10) gauge symmetry to SO(9),
which is vectorial and does not break further. The con-
densate is 〈ψα T

L Cψβ
L〉. As noted above in Section XIII A,

for SO(4k + 2), the = A1 that occurs in the Clebsch-
Gordan decomposition of the direct product S × S in
(13.14) is symmetric (resp. antisymmetric) under inter-
change of these spinors if k is even (resp. odd). Since
k = 2 is even here, it follows that this representation is
symmetric under interchange of the spinors in the direct
product. From the property (2.5), it then follows that
the SU(2) gauge indices must also be symmetric, i.e., the
SU(2) channel is 2 × 2 → 3s, so the operator product
transforms as the adjoint (equivalently, the rank-2 sym-
metric tensor) representation of SU(2) and hence can be
written as proportional to

〈ψα T
L Cψβ

L + ψβ T
L Cψα

L〉 . (13.25)

Hence, including both factor groups, in this case of a
strong and dominant SO(10) gauge interaction with even
k (viz., k = 2), the condensation is in the channel

k even ⇒ (S, )× (S, ) → ( s, adjs) = ((4k+2)s, 3s) .
(13.26)

In addition to breaking SO(10) to SO(9), this condensate
SU(2) to a subgroup U(1) ⊂ SU(2).
The 2 × 2 → 3s channel is actually a repulsive chan-

nel for the SU(2) interaction, with ∆C2 = −1/2. If the
SU(2) gauge interaction is weak enough, this does not
matter, but if it is moderately strong, although weaker
than the SO(10) gauge interaction, it might prevent the
condensate from forming. However, we assume that the
SO(10) coupling is sufficiently strong at a given scale µ
so that this condensate does form.
Having analyzed the situation in which the SO(10)

gauge coupling is strong and dominates over the SU(2)
gauge coupling, we next analyze the opposite situation
in which the SU(2) gauge coupling becomes sufficiently
strong and dominates over the SO(10) coupling. The
condensate then forms in the MAC for SU(2), which is
2 × 2 → 1a, involving an antisymmetric contraction of
SU(2) indices with the ǫαβ tensor.

〈ǫαβψα T
L Cψβ

L〉 . (13.27)

The general result (2.5) then implies that the relevant
representation in the Clebsch-Gordan decomposition of
the direct product S ×S is antisymmetric, and we there-
fore denote it as Ra. As discussed above, given that
k is even here, the representation that would normally
be favored as the MAC in the direct product of two

spinors, (13.12), namely the representation, is symmet-
ric rather than antisymmetric, and hence Ra cannot be
. Instead, the lowest-dimension representation in the

expansion (13.12) that is odd under interchange of the

spinors is A3 with dimension
(

4k+2
3

)

, so the condensation
channel is

(S, )× (S, ) → ((A3)a, 1a) . (13.28)

The measure of attractiveness of this channel is given
by the ∆C2 in Eq. (13.19) and is always positive for
k ≥ 2. Explicitly, for our SO(10) Model B theory, the A3

representation has dimension 120. When expressed as a
sum of product representations of various SO(10) sub-
groups, the 120-dimensional representation has no sin-
glets under either of the maximal (i.e., rank-5) subgroups
SU(5) ⊗ U(1) and SU(4) ⊗ SU(2) ⊗ SU(2), or the rank-
4 subgroup SO(9), but does contain a singlet under the
rank-4 subgroup SO(7)⊗ SU(2) [23]. It therefore breaks
SO(10) to SO(7)⊗ SU(2).

C. Model C

Here we analyze a model, denoted Model C, that has
a fermion sector which is a combination of the fermion
sectors of Model A in Section XIII A and Model B in
Section XIII B, and thus is of the form {fns,s, fns,ns}.
These fermions consist of n copies of the (S, 1) fermion
ωi,L, i = 1, ..., n, as in Eq. (13.6) and a single copy of the
(S, ) fermion, ψα

1,L, as in Eq. (13.20).
The one-loop coefficient in the beta function of the

SU(2) gauge interaction in this Model C is the same as
(13.22) for Model B, and hence the requirement that the
SU(2) gauge interaction must be asymptotically free re-
stricts p ≤ 1. The case p = 0 reduces to Model A, which
we have already discussed. Therefore, as indicated, we
take p = 1 here. This, in turn, restricts k to be equal to
2, i.e., G1 = SO(10).
The one-loop coefficient in the SO(10) beta function

for this Model C is

b1,SO(10) =
2

3
(20− n) , (13.29)

so the asymptotic freedom of the SO(10) gauge interac-
tion implies that n < 20.
If the SO(10) gauge interaction is sufficiently strong

and dominates over the SU(2) interaction, then the re-
sultant condensates include those analyzed for Models A
and B above, together with a new type of condensate.
This new condensate occurs in the channel

(S, 1)× (S, ) → ( , ) (13.30)

with corresponding condensate

〈ωT
i,LCψ

α
L〉 , i ∈ {1, ..., n} . (13.31)

This condensate breaks SO(10) to SO(9), which is vecto-
rial and does not break further.
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If, on the other hand, the SU(2) gauge interaction is
sufficiently strong and dominates over the SO(10) inter-
action, then the condensate formation and symmetry-
breaking is the same as for Model B, discussed in Section
XIII B.

XIV. SO(4k + 2)⊗ SU(M) THEORY

Here we consider a chiral gauge theory with the gauge
group

SO(N)⊗ SU(M) ,with N = 4k + 2 = 2r and M ≥ 3 .
(14.1)

We will show that the constraint of asymptotic freedom
of both gauge interactions limits k to the single value
k = 2, but in order to show this, we must first keep
k ≥ 2 general. The fermion content is the sum over
representations R of

dim(RSU(M)) (RSO(4k+2), 1) + (R̄SO(4k+2), R̄SU(M))

+ dim(RSO(4k+2)) (1,RSU(M)) . (14.2)

In the classification of Section II), this theory is of the
(cs, cav) type. We take M ≥ 3 since the theory with
M = 2 has a vectorlike subsector comprised of the (1, 2)
fermions and is therefore not irreducibly chiral. Note that
even if M = 2, this theory does not coincide with any of
Models A, B, or C in Section XIII because those mod-
els also avoided (1, ) = (1, 2) fermions that would have
constituted a vectorlike subsector. However, if one were
to take M = 2, then the SO(4k + 2)-nonsinglet fermion
sector would coincide with that of Model B in Section
XIII. We will show below that M is limited to a finite
set of values by the constraint of asymptotic freedom.
For our present purposes, it will suffice to consider the
simplest realization of this theory, with a single represen-
tation R of SO(4k+2), namely the smallest complex one,
the spinor, and the smallest nonsinglet representation of
SU(2), namely the fundamental. The resultant fermion
content is thus

p (S, ) , 2r−1p (1, ) . (14.3)

The one-loop coefficient of the SO(4k+2) beta function
(with 4k + 2 = 2r) is

bSO(4k+2) =
2

3

[

11(r − 1)− 2r−4pM
]

. (14.4)

The requirement that the SO(4k + 2) gauge interaction
must be asymptotically free then yields the upper bound

p <
11(r − 1)

2r−4M
. (14.5)

Although we restrict M ≥ 3, we note that if one were to
take M = 2, then this would be the same as the upper
bound (13.23) on p for Model B in Section XIII). The

fact that we takeM ≥ 3 here makes this a more stringent
upper bound than (13.23).
We denote the fermion fields for this theory as

ψα
i,L , i = 1, ..., p : p (S, ) (14.6)

and

ηα,j,L , j = 1, ..., 2r−1p : 2r−1p (1, ), (14.7)

where α is an SU(M) gauge index and i, j are flavor in-
dices.
The one-loop coefficient of the SU(M) beta function is

bSU(M) =
1

3
(11M − 2rp) . (14.8)

The requirement that the SU(M) gauge interaction must
be asymptotically free then yields the upper bound

p <
11M

2r
. (14.9)

For the relevant rangeM ≥ 3, these two asymptotic free-
dom constraints can only be satisfied for r equal to its
minimal value, r = 5, i.e., k = 2 and G1 = SO(10); fur-
thermore, given that k = 2, there are only a finite set
of pairs (M,p) that satisfy the constraints. For the two
integer intervals 3 ≤ M ≤ 5 and 11 ≤ M ≤ 21, only
the value p = 1 is allowed, while for 6 ≤ M ≤ 10, p
may take on the values 1 or 2. If M ≥ 22, there are no
allowed solutions for p. Our general construction is thus
reduced to the finite family of chiral gauge theories with
the gauge groups SO(10)⊗SU(M) with 3 ≤M ≤ 21 and
the aforementioned possible values of p as a function of
M .
If the SO(10) gauge coupling becomes sufficiently large

and dominates over the SU(M) gauge coupling, then the
former can produce condensation in the SO(10) MAC,
namely (13.14). Since the is symmetric under inter-
change of the spinors in (13.14) for even k and hence,
in particular, for k = 2, i.e., SO(10), it follows from our
general result (2.5) that the combination of the SU(M)
and flavor product Sij must be symmetric. For the val-
ues of M , namely 3 ≤ M ≤ 5 and 11 ≤ M ≤ 21 that
allow only p = 1, it follows that the flavor product must
be symmetric, as Sij = S11 and hence that the channel
is, in terms of the full representations,

(S, )× (S, ) → ( s, ) (14.10)

with the condensate

〈ψα T
1,L Cψ

β
1,L〉 (14.11)

The SO(10) ∆C2 measure of attractiveness for this chan-
nel is given by the N = 10 special case of Eq. (13.15),
namely 27/4. However, the SU(M) ∆C2 value is nega-
tive, as is evident from Eq. (5.20), setting M = N , so
this is a repulsive channel as regards the SU(M) inter-
action. This breaks SO(10) to SO(9), which is vectorial,
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and does not break further. Using a vacuum alignment
argument, one may infer that α = β so that the conden-
sate (14.11) breaks SU(M) to SU(M − 1).
For the interval 6 ≤ M ≤ 10 where the theory allows

p = 2, the dynamics could instead produce a condensate
in the channel

(S, )× (S, ) → ( s, ) (14.12)

where the flavor product Sij is antisymmetric, so that
the condensate is

〈ψα T
1,L Cψ

β
2,L − ψα T

2,L Cψ
β
1,L〉 . (14.13)

In addition to being attractive as regards the SO(10)
interaction, the channel (14.12) is also attractive with
respect to the SU(M) interaction, with ∆C2 given by
Eq. (5.19) with N = M . Hence, for M in the interval
6 ≤ M ≤ 10 where p = 2 is allowed, we infer that the
preferred condensation channel in the case where SO(10)
is strong is (14.12). This breaks SO(10) to SO(9) and
SU(M) to SU(M − 2)⊗ SU(2).

XV. SO(4k + 2)⊗ SO(4k′ + 2) THEORY

Here we explore a chiral gauge group of the (cs, cs)
type, in our classification from Section (II). For this pur-
pose, we choose the gauge group

SO(4k + 2)⊗ SO(4k′ + 2) , where k, k′ ≥ 2 (15.1)

and fermion content consisting of p copies of the bi-spinor
representation, (S,S). We set N = 4k + 2 = 2r and
N ′ = 4k′ + 2 = 2r′. Although this family of theories
ostensibly depends on the three parameters k, k′, and
p, we will show that there is only one allowed choice for
these three parameters.
The one-loop coefficients in the SO(4k + 2) and

SO(4k′ + 2) beta functions are

bSO(4k+2),1 =
2

3

[

11(r − 1)− 2r+r′−5p
]

(15.2)

and

bSO(4k′+2),1 =
2

3

[

11(r′ − 1)− 2r+r′−5p
]

. (15.3)

The requirements that the SO(4k + 2) and SO(4k′ + 2)
gauge interactions must be asymptotically free yield the
upper bounds

p <
11(r − 1)

2r+r′−5
(15.4)

and

p <
11(r′ − 1)

2r+r′−5
(15.5)

These can only be satisfied by the single set of values
r = r′ = 5 and p = 1, i.e., for the group SO(10)⊗SO(10)

with p = 1 copy of the (S,S) fermion. The structure
of this theory is thus symmetric under interchange of
the two factor groups. If we break this symmetry by
setting one αi to be large and the other small in Eq.
(2.3), then we can obtain situations in which one SO(10)
coupling dominates over the other. However, because
of the structural symmetry, in contrast to the generic
behavior that we have found for the other direct-product
chiral gauge theories that we have investigated, here the
pattern of symmetry breaking is the same regardless of
which SO(10) gauge coupling is large and dominant.
If the first SO(10) gauge coupling gets large enough

and dominates over the second SO(10) gauge coupling,
or vice versa, this can produce fermion condensation in
the channel

(S,S) × (S,S) → ( s, s), i.e.,

(16, 16)× (16, 16) → (10s, 10s) (15.6)

where we have used the fact that k and k′ are even to
infer the symmetry properties of ( , ) in the Clebsch-
Gordan decomposition of the direct product of the
spinors. This condensation breaks the gauge symmetry
SO(10)⊗SO(10) to SO(9)⊗SO(9), which is vectorial and
does not break further.

XVI. SU(N) ⊗ SU(M) THEORY

A. General Formulation

In this section we analyze a chiral gauge theory with a
gauge group

G = SU(N)⊗ SU(M) (16.1)

and fermion content consisting of a sum overRSU(N) and
RSU(M) of

dim(RSU(M)) (RSU(N), 1) + (R̄SU(N), R̄SU(M))

+ dim(RSU(N)) (1,RSU(M)) , (16.2)

where RSU(N) and RSU(M) denote representations of
SU(N) and SU(M), respectively. This theory is of type
(cav, cav) in the classification of Section II. A special
case of this theory with RSU(N) and RSU(M) both equal
to the fundamental representation was studied before in
[5, 6], but in both of these previous works, it was stud-
ied as an example of a preon theory that might confine
without spontaneous symmetry breaking and hence pro-
duce massless composite fermions. Here we consider it
in a different way, as a theory that can self-break with
bilinear fermion condensate formation, and we study the
generalized theory with fermion representations higher
than the fundamental.
The numbersM ≥ 2 and N ≥ 2, subject to the asymp-

totic freedom constraint (16.9) below. This is an irre-
ducibly chiral gauge theory, so the chiral gauge invariance
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precludes any mass terms in the fundamental Lagrangian
of the theory. One easily checks that this theory is free
of any anomalies in gauged currents. It is also free of any
global anomalies in the case where N or M is equal to 2.
To see this, consider, for example, the case where N = 2
and the fermions that are nonsinglets under this group
transform as doublets. From Eq. (16.2) one sees that the
number of SU(2) doublets is 2dim(RSU(M)) and hence is
even.
We calculate the one-loop coefficients in the SU(N)

and SU(M) beta functions to be

b1,SU(N) =
1

3

[

11N − 4 dim(RSU(M))T (RSU(N))
]

(16.3)

and

b1,SU(M) =
1

3

[

11M − 4 dim(RSU(N))T (RSU(M))
]

.

(16.4)

Hence, the requirements that the SU(N) and SU(M)
gauge interactions should be asymptotically free imply,
respectively, that

dim(RSU(M))T (RSU(N)) <
11N

4
(16.5)

and

dim(RSU(N))T (RSU(M)) <
11M

4
. (16.6)

B. Model with Fermions (F, F )

Here we consider the version of the general theory of
type (16.1) containing fermions with RSU(N) = and
RSU(M) = (an equivalent notation is F = ). Then

b1,SU(N) =
1

3
(11N − 2M) (16.7)

and

b1,SU(M) =
1

3
(11M − 2N) , (16.8)

so the inequalities (16.5) and (16.6) read M < 11N/2
and N < 11M/2, and the range of N and M allowed by
these two constraints is given by

2

11
<
M

N
<

11

2
. (16.9)

We denote the fermion fields as

ωa
i,L , i = 1, ...,M : M (N, 1) , (16.10)

ζa,α,L : (N̄ , M̄) , (16.11)

and

ηαj,L , j = 1, ..., N : N (1,M) , (16.12)

where a and α denote, respectively, SU(N) and SU(M)
gauge indices and i ∈ {1, ...,M} and and j ∈ {1, ..., N}
are copy (flavor) indices.
As noted, one possibility is confinement without any

spontaneous chiral symmetry breaking, leading to mass-
less composite spin 1/2 fermions that are singlets under
SU(N) ⊗ SU(M). We investigate here the alternative
possibility of condensate formation and associated chiral
symmetry breaking. If the SU(N) gauge interaction is
sufficiently strong and dominates over the SU(M) inter-
action, then this SU(N) interaction can produce conden-
sation in the most attractive channel N × N̄ → 1. For
the full theory, this is the channel

(N, 1)× (N̄ , M̄) → (1, M̄) , (16.13)

with attractiveness measure given by ∆C2 = 2C2(N) =
(N2 − 1)/N . The associated condensates are of the form

〈ωa T
i,L Cζa,α,L〉 , i = 1, ...,M (16.14)

(where the sum over a here and below is from a = 1 to
a = N). Consider the condensate (16.14) with i = 1.
Since this transforms as a M̄ representation of SU(M),
it breaks this symmetry to SU(M − 1). By convention,
we may use the initial SU(M) invariance to pick α =M
in this condensate, so that it is

〈ωa T
1,L Cζa,M,L〉 . (16.15)

We denote the scale where this condensate forms as Λ.
The fermions ωa

1,L and ζa,M,L with 1 ≤ a ≤ N involved in
this condensate thus gain dynamical masses of order Λ, as
do the 2M−1 gauge bosons in the coset SU(M)/SU(M−
1). In the resultant SU(N) ⊗ SU(M − 1) chiral gauge
theory, we consider the condensate (16.14) with i = 2 and
α ∈ {1, ...,M−1}. Again, by convention, we may use the
residual SU(M − 1) gauge invariance to pick α =M − 1
in this condensate, so that it is

〈ωa T
2,L Cζa,M−1,L〉 . (16.16)

This preserves SU(N) and transforms like the conjugate
fundamental representation of SU(M−1), thereby break-
ing SU(M −1) to SU(M −2). This fermion condensation
process continues with the formation of the condensates

〈ωa T
i,L Cζa,M−i+1,L〉 , i ≤M , (16.17)

breaking SU(M) completely. The last-enumerated con-
densate is 〈ωa T

M,LCζa,1,L〉. Since all of the condensates of

the form (16.14) have the same attractiveness measure,
∆C2, they are expected to form at approximately the
same scale, Λ. All of the chiral fermions ωa

i,L and ζa,α
with 1 ≤ i ≤M , 1 ≤ a ≤ N , and 1 ≤ α ≤M are involved
in these condensates and gain dynamical masses of order
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Λ, as do the full set ofM2−1 SU(M) gauge bosons. This
leaves a theory with an SU(N) gauge invariance contain-
ing the N2 − 1 SU(N) gauge bosons and a set of MN
massless SU(N)-singlet fermions, namely the ηαj,L with

1 ≤ α ≤ M and 1 ≤ j ≤ N . The SU(N) pure gluonic
theory then forms a spectrum of SU(N)-singlet glueballs.
Clearly, if the SU(M) gauge interaction is sufficiently

strong and dominates over the SU(N) gauge interaction,
then the above discussion applies with the replacements
M ↔ N and ωa

i,L → ηαj,L. In this case, the SU(M) in-

teraction breaks the SU(N) gauge symmetry completely,
leaving the MN massless SU(M)-singlet fermions ωa

i,L

with 1 ≤ a ≤ N and 1 ≤ i ≤ M . The SU(M) pure
gluonic theory then forms a spectrum of SU(M)-singlet
glueballs.
The version of the general theory with gauge group

(16.1) and fermion representations RSU(N) = and

RSU(M) = exhibits the same properties as those that
we have analyzed, with obvious changes, so we do not
discuss it separately.

C. Model with (F,A2)

We next analyze a model with the gauge group (16.1)
and fermion representations RSU(N) = and RSU(M) =

. Since = for SU(M) = SU(3), we restrict M ≥ 4.
For this model the general equations (16.3) and (16.4)
read

b1,SU(N) =
1

3
[11N −M(M − 1)] (16.18)

and

b1,SU(M) =
1

3
[11M − 2N(M − 2)] . (16.19)

The general inequalities (16.5) and (16.6) guaranteeing
the asymptotic freedom of the SU(N) and SU(M) gauge
interactions read, respectively,

N >
M(M − 1)

11
(16.20)

and

N <
11M

2(M − 2)
. (16.21)

In Fig. 2 we show a plot of the corresponding curves,
as a function of M . The lower bound on N from (16.20)
is N > 2 for M = 4 and increases as M increases. The
upper bound on N from (16.21) is N < 11 for M = 4
and decreases as M increases. The curves for the upper
and lower bounds on N as a function of M cross each
other at

M =
3 + 9

√
3

2
= 9.294 (16.22)
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FIG. 2: Plot of the region in M and N allowed by the require-
ment of of asymptotic freedom for the SU(N) and SU(M)
gauge interactions in the SU(N) ⊗ SU(M) Model with the
(F,A2) fermion content. The allowed values of M and N lie
between the two curves. See text for further discussion.

where

N =
123 + 18

√
3

22
= 7.008 , (16.23)

where the floating point values are given to the indicated
accuracy. The allowed values ofM and N thus lie within
the enclosed region between the upper and lower curves
in Fig. 2. This region has finite area and hence there
are only finitely many allowed values of M and N . This
is in contrast to the joint asymptotic freedom constraint
for the model with (F, F ) fermions, (16.9), which is an
infinite wedge-shaped region in the M , N plane. As is
evident, for a given M ≥ 4, the range of allowed values
of N decreases with increasing M . For M = 4, N may
take on values in the range 2 ≤ N ≤ 10, while forM = 8,
the allowed values of N are N = 6, 7, and for M = 9,
there is only one allowed value of N , namely N = 7.
If M ≥ 10, there are no values of N that satisfy the
inequalities (16.20) and (16.21).

XVII. CONCLUSIONS

In summary, in this paper we have analyzed patterns
of dynamical gauge symmetry breaking using a variety
of chiral gauge theories with direct-product gauge groups
containing asymptotically free non-Abelian gauge inter-
actions of both unitary and orthogonal types. Our re-
sults on the strong-coupling behavior of these theories
show that these patterns of symmetry breaking are typ-



23

ically quite different depending on the structure of the
factor groups in the direct product and on which gauge
interaction dominates in the formation of fermion con-
densates. These theories provide useful theoretical lab-
oratories demonstrating explicitly the generic behavior
that if the gauge coupling for one of the factor groups
Gi ⊂ G gets sufficiently strong and dominates over the
other(s), then it can produce bilinear fermion conden-
sates that can self-break the Gi symmetry itself and/or
break other gauge symmetries Gj ⊂ G. If the Gi gauge
interaction that is dominant is vectorial, then it does not
self-break, although it typically still breaks other gauge
symmetries in the direct-product group. The theories
that we have studied also yield useful examples of se-
quential gauge symmetry breaking. These results further
elucidate the behavior of strongly coupled chiral gauge
theories and are of value in extending the understanding
of nonperturbative behavior of quantum field theories.
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Appendix A: Some Relevant Group Invariants

For reference, we list some group invariants here. We
first define some notation. Let us denote the generators of
the associated Lie algebra } as Ta, where a = 1, ..., o(G),
where o(G) is the order of the group. These genera-
tors satisfy the commutation relation [Ta, Tb] = icabdTd,
where cabc are the structure constants. For a represen-
tation R, the Casimir invariants C2(R) and T (R) are
defined as

dim(R)
∑

i,j=1

DR(Ta)ijDR(Tb)ji = T (R)δab (A1)

and

o(G)
∑

a=1

dim(R)
∑

j=1

DR(Ta)ijDR(Ta)jk = C2(R)δik , (A2)

where Ta are the generators of G, and DR is the matrix
representation (Darstellung) of R. These satisfy

T (R) o(G) = C2(R) dim(R) , (A3)

where dim(R) is the dimension of the representation R.
For an SU(N) group, the rank is N − 1 and group in-

variants (with the normalization convention Tr(TaTb) =
(1/2)δab) include the following (e.g., [23, 24])

C2( ) =
N2 − 1

2N
, (A4)

C2( ) =
(N + 2)(N − 1)

N
, (A5)

and

C2( ) =
(N − 2)(N + 1)

N
. (A6)

The rank of SO(N) is the integral part of N/2. We de-
note At the rank-t antisymmetric tensor representation,
with dimension

(

N
t

)

, where
(

a
b

)

= a!/[b!(a − b)!]. Note
that for SO(N), the adjoint representation is the same
as A2 and the vector, fundamental, and A1 representa-
tions are the same. With an appropriate normalization
convention for the generators of SO(N) (which does not
affect the physics), one has [23, 24]

T (adj) = C2(adj) = N − 2 , (A7)

T ( ) = 1 , (A8)

and

C2( ) =
N − 1

2
. (A9)

For SO(N) with N = 2r and S the spinor representation,

dim(S) = 2r−1 (A10)

T (S) = 2r−4 (A11)

C2(S) =
r(2r − 1)

8
. (A12)

Denoting the antisymmetric rank-t tensor representation
of SO(2r) as At, one has

C2(At) =
t(2r − t)

2
. (A13)

From the structure of the triangle diagram, it follows
that triangle anomaly in gauged currents is proportional
to

Tr(DR(Ta), {DR(Tb),DR(Tc)}) = dabcAR (A14)

Groups for which AR = 0 include those with real or
pseudoreal representations, SO(4k + 2) for k ≥ 2, and
E6 [22, 23]. For the symmetric and antisymmetric rank-t
tensor representations of SU(N), the anomaly is, respec-
tively [22]

A(St) =
(N + t)! (N + 2t)

(N + 2)! (t− 1)!
. (A15)

and, for 1 ≤ t ≤ N − 1,

A(At) =
(N − 3)!(N − 2t)

(N − t− 1)!(t− 1)!
. (A16)
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In particular, A(S2) = N + 4 and A(A2) = N − 4.
A gauge theory in d = 4 dimensions with gauge group

G contains instantons if πd−1(G) = π3(G) is nontrivial.
One has [28]

π3(SU(N)) = Z (A17)

and

π3(SO(N)) = Z if N ≥ 5 . (A18)

The global anomaly in an SU(2)L gauge theory is due to

π4(SU(2)) = Z2 (A19)

Further,

π4(SU(N)) = ∅ if N ≥ 3 (A20)

and

π4(SO(N)) = ∅ if N ≥ 6 . (A21)
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