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A new approach to construct initial data for binary systems with neutron star components is
introduced. The approach is a generalization of the puncture initial data method for binary black
holes based on Bowen-York solutions to the momentum constraint. As with binary black holes, the
method allows setting orbital configurations with direct input from post-Newtonian approximations
and involves solving only the Hamiltonian constraint. The effectiveness of the method is demon-
strated with evolutions of double neutron star and black hole – neutron star binaries in quasi-circular
orbits.

PACS numbers:

I. INTRODUCTION

Compact object binaries with black hole (BH) and neu-
tron star (NS) components are main targets of gravita-
tional wave (GW) observations. GWs from binary black
holes (BBHs) have been recently detected by the Laser
Interferometer Gravitational Wave Observatory (LIGO),
first detection in the transient event GW150914 [1] and
second detection in the transient event GW151226 [2].
As advanced LIGO reaches designed sensitivity, GWs
from double neutron star (DNS) and black hole - neutron
star (BH-NS) binaries will very likely also be detected.
Not surprisingly, numerical relativity (NR) simulations
played an important role in the analysis of the GW150914
and GW151226 events. Specifically, best fits of a NR
waveform to the data were included in the detection pa-
per [1]. The papers on parameter estimation [3] and tests
of general relativity [4] mentioned that results from BBH
simulations were involved in the construction of the phe-
nomenological and effective-one-body waveform models
used in the analysis. The same applies to the paper on
the burst-type analysis of GW150914 [5].

As with GW150914 and GW151226, our ability to dis-
tinguish in future GW observations whether a signal orig-
inated from a BBH, a DNS, or a BH-NS binary will rely
on waveform templates with input from NR. This would
be particularly important during the last orbits and co-
alescence of the binary, where strong dynamical gravity
is the most relevant. In this regard, NR simulations of
binary systems with NS companions have experience a
boost in accuracy and sophistication. These days the
simulations routinely include realistic equations of state,
magnetic fields, and radiation. But the predicting power
of simulations not only hinges on the multi-physics in-
cluded. The degree to which the initial data represent
an accurate astrophysical setting is also crucial. Another
important aspect connected to the initial data is the ca-
pability to explore a vast range of scenarios. And for this
to happen, one needs initial data methodologies that are
computationally inexpensive. In BBH simulations, low-
cost and efficient methods to construct astrophysically
relevant initial data have been available for some time [6–
8], which is not exactly the case for binaries with NSs.

A popular method to construct initial data represent-
ing a binary system in a quasi-circular orbit is the confor-
mal thin sandwich approach. The method has been used
for BBHs by Grandclément et al. [9], for DNS by Gour-
goulhon et al. [10], and for BH-NS binaries by Etienne
et al. [11]. The key in those studies was the identification
of a helical Killing vector field, so the initial data are ap-
proximately time-symmetric, ensuring that the compact
objects are in a quasi-circular orbit. The conformal thin
sandwich approach requires solving a set of five elliptic
equations for the conformal factor, lapse function and
shift vector [12–14]. Many groups have used the Lorene
code from the Meudon group [15, 16] for this purpose,
and other groups have developed their own infrastruc-
ture [17–23].

This paper introduces a new approach to construct ini-
tial data for binary systems with NS components. The
method is simpler than the thin sandwich one, and it has
a computational cost similar to that of the BBH puncture
method. In the BBH puncture approach [24], one only
solves the Hamiltonian constraint for the conformal fac-
tor. The solution to the momentum constraint is given
by the Bowen-York extrinsic curvature [25]. Each ini-
tial data set is then fully specified by the masses, spins
and momenta of the BHs, and their separation. All of
these parameters are obtained from integrating the post-
Newtonian (PN) equations of motion. The integration
starts at large separations and ends at the separation
where the NR initial data are constructed. This method
is known to yield initial data suitable for stitching to-
gether NR and PN evolutions.

The new initial data proposal in this paper recycles
most of the elements of the puncture BBH initial data,
including the ability of specifying masses, spins and mo-
menta of the compact objectss from PN approximations.
The key step is constructing an extrinsic curvature for
NSs similar to the Bowen-York for BHs. The paper is
organized as follows: In Section II, we provide a quick
review of York’s initial data formulation. Section III
reintroduces the Bowen-York extrinsic curvature for ar-
bitrary, spherically symmetric momentum sources. Sec-
tion IV discusses an approach to specifying the mat-
ter source functions for the initial data equations. Sec-
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tion V summarizes the steps to construct initial data.
Section VI reviews the stellar model we will use to repre-
sent NSs. Section VII presents tests with an isolated NS.
Results of simulations of DNS and BH-NS binaries are
presented in Section VIII. Paper ends with conclusions
in Section IX.

The numerical simulations in the present work were
carried out with our Maya code [26–31]. The code is
based on the BSSN formulation of the Einstein equa-
tions [32] and the moving puncture gauge condition [33,
34]. Maya is very similar to the Einstein code in the Ein-
stein Toolkit [35]. That is, it operates under the Cactus
infrastructure [36], with Carpet providing mesh refine-
ments [37] and thorns (modules) generated by the pack-
age Kranc [38].

II. INITIAL DATA AT A GLANCE

When the Einstein equations of general relativity are
viewed as an initial value problem, the initial data are
not completely freely specifiable. They must satisfy the
Hamiltonian and momentum constraints:

R+K2 −KijK
ij = 16π ρH (1)

∇j(Kij − γijK) = 8π Si . (2)

Above, γij and Kij are the metric and extrinsic curva-
ture of the space-like hypersurfaces in the foliation. In
addition, R is the Ricci scalar, and ∇i denotes covari-
ant differentiation associated with γij . The sources ρH

and Si are obtained from the stress-energy tensor Tab as
follows:

ρH = nanbTab (3)

Si = −γibncTbc , (4)

where na is the unit normal to the space-like hypersur-
faces. We are using units in which G = c = 1. Latin
indices from the beginning of the alphabet denote space-
time indices and from the middle of the alphabet spatial
indices. For a perfect fluid, the stress-energy tensor reads

Tab = (ρ+ p)uaub + p gab

= ρ0 huaub + p gab , (5)

where h = 1+ε+p/ρ0 is the enthalpy, p is the pressure, ua

is the 4-velocity of the fluid, ρ0 is the rest-mass density,
ε is the specific internal energy density, and ρ = ρ0(1+ ε)
is the total mass-energy density. In terms of these quan-
tities, the sources in the Hamiltonian and momentum
constraints read:

ρH = (ρ+ p)W 2 − p = ρ0 hW
2 − p (6)

Si = (ρ+ p)Wui = ρ0 hWui (7)

where W = −naua is the Lorentz factor between normal
and fluid observers.

Since the initial data consist of the set
{γij ,Kij , ρH, S

i}, the pressing issue is to identify
which “pieces” in these data are to be fixed by the
constraint Eqs. (1) and (2), and which data are indeed
freely specifiable.

Motivated by the work of Lichnerowicz [12], York and
collaborators [39] developed an elegant way of achieving
this task. The basis of this approach is using conformal
transformations and transverse-traceless decompositions
to single out the four quantities fixed by the constraint
equations. One quantity, the conformal factor Φ, is ob-
tained from the spatial metric by applying the conformal
transformation:

γij = Φ4γ̄ij . (8)

The remaining three quantities, the components of the
vectorWi, are obtained by applying to the extrinsic cur-
vature Kij the following conformal transformations and
decompositions:

Kij = Aij +
1

3
γijK (9)

Aij = Φ−2Āij (10)

Āij = ĀTT
ij + (L̄W)ij , (11)

with K ≡ Ki
i, (L̄W)ij ≡ ∇̄iWj + ∇̄jWi − 2

3 γ̄
ij∇̄kWk

and ∇̄iĀijTT = 0. The operator ∇̄ denotes covariant dif-
ferentiation associated with the confomal spatial metric
γ̄ij . Notice that Aij and Āij are traceless, and ĀTT

ij is
transverse. With these transformations, Eqs. (1) and (2)
reduce to

8∆̄Φ− Φ R̄− 2

3
Φ5K2 + Φ−7ĀijĀ

ij

= −16πΦ5 ρH (12)

(∆̄LW)i − 2

3
Φ6 ∇̄iK = 8πΦ10Si (13)

respectively, with (∆̄LW)i ≡ ∇̄j(L̄W)ij , ∆̄ ≡ ∇̄i∇̄i, and
R̄ the Ricci scalar of the conformal space.

Given Eqs. (12) and (13), constructing initial
data translates into freely specifying the quantities
{γ̄ij ,K, ĀTT

ij , ρH, S
i}, and solving for the conformal fac-

tor Φ and vector the Wi. A common choice, which we
adopt, is to assume conformal flatness (γ̄ij = ηij), maxi-
mal slicing (K = 0), and ĀTT

ij = 0. Under these assump-
tions, the constraints (12) and (13) assume the form

∆̄Φ +
1

8
Φ−7ĀijĀ

ij = −2πΦ5 ρH (14)

(∆̄LW)i = 8πΦ10Si (15)

with Āij = (L̄W)ij . We exploit the freedom to confor-
mally transform ρH and Si and set

ρ̄H = ρH Φ8 , (16)

S̄i = Si Φ10 , (17)
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and thus Eqs. (14) and (15) read

∆̄Φ +
1

8
Φ−7ĀijĀ

ij = −2πΦ−3 ρ̄H (18)

(∆̄LW)i = 8π S̄i . (19)

The transformations (16) and (17), and the expressions
(6) and (7) suggest setting in the stress-energy tensor
ρ̄ = Φ8ρ, p̄ = Φ8 p and ūi = Φ2ui, and therefore

ρ̄H = (ρ̄+ p̄)W 2 − p̄ , (20)

S̄i = (ρ̄+ p̄)W ūi , (21)

Notice from uaua = −1 that W 2 − 1 = γiju
iuj =

γ̄ij ū
iūj = W̄ 2 − 1. Then, with the help of Eq. (21),

W 2 − 1 = γ̄ij ū
iūj =

S̄2

W 2(ρ̄+ p̄)2
, (22)

and thus

W 2 =
1

2

(
1 +

√
1 +

4 S̄2

(ρ̄+ p̄)2

)
, (23)

where S̄2 = γ̄ijS̄
iS̄j .

In summary, constructing initial data reduces to first
specifying ρ̄H and S̄i, next solving Eq. (19) for Wi to
construct Āij , and finally solving for Φ from Eq. (18).

III. EXTRINSIC CURVATURE

We now consider solutions to the momentum con-
straint equation (∆̄LW)i = 8π S̄i. We will first recall
the solution that represents BHs and next reintroduce
the one suitable to model NSs. For BHs (S̄i = 0),
Bowen and York [25] found that point-source solutions
to (∆̄LW)i = 0 are given by

Wi = − 1

4 r

[
7P i + li(P · l)

]
(24)

Wi =
1

r2
εijkljJk , (25)

with li = xi/r a unit radial vector and P · l = P ili. In
these solutions, the constant vectors P i and Ji are respec-
tively interpreted as the linear and angular momentum
of the BH. From Āij = (L̄W)ij , the extrinsic curvature
associated with these solutions are:

Āij =
3

2 r2

[
P ilj + P j li − (ηij − lilj)(P · l)

]
(26)

Āij =
6

r3
l(iεj)klJkll (27)

Next is to consider solutions to (∆̄LW)i = 8π S̄i that
can be used to build the extrinsic curvature of a NS.
Following Bowen [40], we assume sources of the form

S̄i = P i σ(r) (28)

S̄i = εijk J
jxk κ(r) . (29)

At this point, P i and J i arbitrary constant vectors, and
σ and κ radial functions with compact support on r ≤ r0.
The specific form of these functions will be determined
in the next section using the following conditions.

From the definition of ADM linear momentum [41],
one has that

P iADM =
1

8π

∫
∂Σ∞

Aij dSj

=
1

8π

∫
Σ

∇̄jĀij
√
η d3x

=

∫
Σ

S̄i
√
η d3x

= P i
∫

Σ

σ
√
η d3x . (30)

Thus, for P iADM = P i to hold, σ must satisfy the follow-
ing normalization condition:∫

Σ

σ
√
η d3x = 4π

∫ r0

0

σ r2 dr = 1 . (31)

Similarly, from the definition of ADM angular momen-
tum [12], we have that

JADM
i =

1

8π
εijk

∫
∂Σ∞

xjAkm dSm

=
1

8π
εijk

∫
Σ

xj∇̄mĀkm
√
η d3x

= εijk

∫
Σ

xjS̄k
√
η d3x

= εijkε
klm

∫
Σ

xjJlxm κ
√
η d3x

=

∫
Σ

r2
(
Ji − liljJj

)
κ
√
η d3x . (32)

Adopting Cartesian coordinates and aligning the angular
momentum with the z-axis, one gets that

JADM
i = Ji

∫
Σ

r2 sin2 θ κ
√
η d3x . (33)

Thus, in order to have JADM
i = Ji, the following normal-

ization condition must hold

2π

∫ r0

0

∫ π

0

sin3 θ r4κ dθ dr =
8π

3

∫ r0

0

κ r4 dr = 1 . (34)

Given the normalization condition Eq. (31) for σ, the
solution to (∆̄LW)i = 8π P i σ reads [40]

Wi = −2P iF +
1

2
P iH +

1

2
li(P · l) rH ′ , (35)

where primes denote differentiation with respect to the
radial coordinate r. The functions F and H are given
respectively by

F =
1

r

∫ r

0

4π σ r̃2 dr̃ +

∫ r0

r

4π σ r̃ dr̃ , (36)

H =
1

r3

∫ r

0

F r̃2 dr̃ . (37)
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With the help of ∇̄ir = li and ∇̄ilj = (ηij − lilj)/r,
substitution of Eq. (35) into Āij = (L̄W)ij yields

Āij = (−2F ′ +H ′)(P ilj + P j li)

+ (rH ′′ −H ′)(P · l)lilj

+
1

3
(4F ′ − rH ′′ −H ′)(P · l)ηij . (38)

With the help of

Q =

∫ r

0

4πσr̃2 dr̃ (39)

J =

∫ r0

r

4πσr̃ dr̃ (40)

C =

∫ r

0

2

3
πσr̃4 dr̃

=

∫ r

0

(
1

2
Qr̃2 +

1

3
Jr̃3

)
dr̃ , (41)

and

F = Q/r + J (42)

H = Q/2r + J/3− C/r3 (43)

F ′ = −Q/r2 (44)

H ′ = −Q/2r2 + 3C/r4 (45)

H ′′ = Q/r3 − 12C/r5 , (46)

the expression (38) for the extrinsic curvature can be
rewritten as

Āij =
3Q

2 r2

[
P ilj + P j li − (ηij − lilj)(P · l)

]
+

3C

r4

[
P ilj + P j li + (ηij − 5 lilj)(P · l)

]
. (47)

For r > r0 (exterior solution), Q = 1, thus the first
term in Eq. (47) becomes the Bowen-York curvature for
a point mass (26). Furthermore, Eq. (47) has the correct
point mass limit since Q = 1 and C = 0 for r0 = 0.

For a spherically symmetric source function κ with
angular momentum J i, the solution to (∆̄LW)i =
8π εijkJ

jxk κ is given by [42]

Wi = εijk x
jJkG (48)

where

G =
1

r3

∫ r

0

8π

3
r′4 κ dr′ +

∫ r0

r

8π

3
κ r′ dr′ . (49)

Notice that G = r−3 for r ≥ r0. Substitution of Eq. (48)
into Āij = (L̄W)ij yields

Āij =
6

r3
l(iεj)klJkllN (50)

where

N =

∫ r

0

8π

3
r′4 κ dr′ (51)

Exterior to the source, N = 1, and the extrinsic curvature
reduces to the point-like solution (27).

In summary, Eqs. (26) and (27) are the extrinsic cur-
vatures for a point-like source with linear and angular
momentum, respectively. In addition, Eqs. (47) and (50)
are the extrinsic curvatures for a spherically symmetric
source with linear and angular momentum, respectively.
To construct initial data for compact object binaries, the
extrinsic curvature for the binary system will be simply
given by a superposition of these solutions, point-like for
the BH and spherically symmetric source for the NS. The
only input needed are the locations of the compact ob-
jects, their linear and angular momenta, and the source
functions σ and κ. As with BBHs, the linear and angular
momenta of the sources, and their binary separation will
be provided by the outcome of integrating the PN equa-
tions of motion. It is very important to keep in mind
that, because of the spherical symmetry assumption in
the source functions σ and κ, the extrinsic curvature will
not be able to account for tidal deformations of the star.
We are currently considering a generalization that relaxes
the spherical symmetry assumption.

IV. SOURCE FUNCTIONS

The next step is to specify the source functions σ and
κ, as well as the source ρ̄H = (ρ̄ + p̄)W 2 − p̄ in the
Hamiltonian constraint. The starting point is the density
ρ̄ and pressure p̄ from the stellar model of our choice,
Recall from Eq. (4) that S̄i = (ρ̄+ p̄)W ūi . Thus, for the
case of linear momentum, we have that

S̄i = (ρ̄+ p̄)W ūi = P i σ . (52)

We then set

σ = (ρ̄+ p̄)/M , (53)

withM a constant determined by the normalization con-
dition Eq. (31) for σ. That is,

1 = 4π

∫ r0

0

σ r2 dr =
4π

M

∫ r0

0

(ρ̄+ p̄) r2 dr , (54)

and thus

M = 4π

∫ r0

0

(ρ̄+ p̄) r2 dr , (55)

Notice that Eq. (53) restricts our choice for ρ̄ and p̄ to be
spherically symmetry solutions since by assumption σ(r).
With this choice for σ, the linear momentum satisfies
P i = WM ūi. Since by construction P i and M are
constants, W ūi must also be constant within the source
distribution. Finally, notice also from Eqs. (23), (52) and
(53) that the Lorentz factor is then given by

W 2 =
1

2

(
1 +

√
1 +

4P 2

M2

)
. (56)



5

where P 2 = ηijP
iP j .

For a source with angular momentum,

S̄i = εijk J
jxk κ = (ρ̄+ p̄)W ūi . (57)

As with the previous case, we set

κ = (ρ̄+ p̄)/N , . (58)

From the normalization condition Eq. (34), one has that

1 =
8π

3

∫ r0

0

κ r4 dr =
8π

3N

∫ r0

0

(ρ̄+ p̄) r4 dr , (59)

and thus the constant N is given by

N =
8π

3

∫ r0

0

(ρ̄+ p̄) r4 dr , (60)

The Lorentz factor in this case reads

W 2 =
1

2

1 +

√
1 +

4 J2r2 sin2 θ

N 2

 . (61)

where J is the magnitude of the angular momentum and
θ the angle between J i and li. Notice that in this case
the Lorentz boost factor is not constant within the star.

An important aspect to keep in mind is how the spin
enters for consistency in several ways during the con-
struction of initial data. The spin enters explicitly in the
extrinsic curvature tensor and, as a consequence, in the
source of the momentum constraint. It is also involved
in the normalization condition imposed by the ADM an-
gular momentum. Finally, the spin appears in the source
of the Hamiltonian constraint through the Lorentz boost
factor.

V. INITIAL DATA PROCEDURE

The centerpiece of our method is solving Eq. (18), or
equivalently

∆̄Φ +
1

8
Φ−7ĀijĀ

ij = −2πΦ−3[(ρ̄+ p̄)W 2 − p̄] . (62)

In this equation, the boost factor W for the stellar model
is given by Eq. (56) for linear momentum or Eq. (61)
for angular momentum. In the same equation, Āij is
given by the Bowen-York extrinsic curvatures. For point
masses, Eq. (26) provides the extrinsic curvature with
linear momentum and Eq. (27) the corresponding extrin-
sic curvature with angular momentum. Similarly, the
extrinsic curvature associated with the stellar model is
given by Eq. (47) for linear momentum and Eq. (50) for
angular momentum.

In general terms, the sequence of steps to construct
initial data for binaries with BHs and NSs components
under the proposed method is as follows:

1. Choose masses M1,2 of the compact objects and
their initial separation d0 deep in the PN regime,
with M = M1 + M2 the total mass of the binary
and q = M1/M2 its mass ratio. Integrate the PN
equations of motion at the highest order available
and stop at a separation d where the NR evolution

will begin. Read off the linear momentum ~P1,2 and

spin ~S1,2 for each of the binary components.

2. Identify the massM1(2) with the ADM massMADM
1(2)

of a star in isolation if a NS and with the irreducible
mass M irr

1(2) if a BH, where

MADM = − 1

2π

∫
∂Σ∞

∇̄iΦ dSi , (63)

and Mirr ≡
√
A/16π for a BH with apparent hori-

zon area A [12].

3. If object 1(2) is a BH, set its puncture bare mass
m1(2) = M1(2). If object 1(2) is a NS, construct
a spherically symmetric stellar model with ADM
mass MADM

1(2) . Compute also its rest mass M0
1(2)

from

M0 =

∫
Σ

ρ0W
√
γ d3x , (64)

and save the ratio ξ1(2) ≡MADM
1(2) /M0

1(2).

4. If the compact object is a NS, calculate the func-
tions σ and κ from Eqs. (53) and (58), respectively.

5. Use the ~P and ~S vectors to construct the extrinsic
curvature using Eqs. (26) and (27) if a BH, and
Eqs. (47) and (50) if a NS. The functions σ and
κ will also be needed if a NS. The total extrinsic
curvature is Āij = Āij1 + Āij2 .

6. Construct the term [(ρ̄+ p̄)W 2− p̄] in the r.h.s. of
Eq. (62) for each NS. Superpose the terms if the
binary involves a DNS.

7. Solve the Hamiltonian constraint in the form given
by Eq. (62).

8. If a BH, compute the new irreducible M̂ irr
1(2), and

if a NS calculate the new rest mass M̂0
1(2). Us-

ing ξ1(2) from Step 3, estimate the new ADM mass

M̂ADM
1(2) = ξ1(2)M̂

0
1(2). Notice that we are assuming

that the ratio ξ1(2) does not change significantly
from iteration to iteration.

9. Next, identify the new mass M̂1(2) with M̂ADM
1(2) if

a NS and M̂1(2) with M̂ irr
1(2) if a BH. Calculate the

new total mass M̂ = M̂1 + M̂2 and mass ratio q̂ =
M̂1/M̂2. If the new values differ from the values in
Step 1 by more than a specified tolerance, adjust
the bare masses of the BH or central densities of
the NS according to a 2D secant algorithm [43],
and return to step 3.



6

For the present work, we solve Eq. (62) using a modi-
fied version of the 2Punctures spectral code. 2Punctures
was originally developed by Ansorg [7] to construct BBH
initial data; that is, to solve Eq. (62) with vanishing r.h.s.
and Aij given by Eqs. (26) and/or (27).

Once the conformal factor Φ is found from solving
Eq. (62), the spatial metric and extrinsic curvature are
obtained from γij = Φ4ηij and Kij = Φ−2Āij , respec-
tively. The last step is constructing the hydrodynamical
fields ρ, p, W and ui. Given Φ, ρ̄H and S̄i, we have that
ρH and Si are considered as known since ρH = Φ−8ρ̄H
and Si = Φ−10S̄i. On the other hand,

ρH = (ρ+ p)W 2 − p (65)

Si = (ρ+ p)Wui , (66)

and from the second equation,

γijS
iSj = (ρ+ p)2W 2γiju

iuj

= (ρ+ p)2W 2(W 2 − 1) , (67)

where in the last equality we used that γiju
iuj = W 2−1

as implied by uaua = −1. If we view that p is given by
an equation of state, Eqs. (65) and (67) can be used to
solve for ρ and W . And the last step is to construct ui

from Eq. (66).

VI. TOLMAN-OPPENHEIMER-VOLKOFF
MODEL IN ISOTROPIC COORDINATES

For the present work, we use a Tolman-Oppenheimer-
Volkoff (TOV) stellar model to represent a NS, with a
polytropic equation of state p = K ρΓ

0 . Since we assume
conformal flatness, it is natural to recast the TOV model
in isotropic coordinates. TOV models are commonly con-
structed in coordinates in which the metric takes the form

ds2 = −α2(r̂) dt2 +

[
1− 2m(r̂)

r̂

]−1

dr̂2 + r̂2 dΩ . (68)

On the other hand, the form of the metric (isotropic)
compatible with our conformal flatness assumption is

ds2 = −α2(r) dt2 + Φ(r)4(dr2 + r2 dΩ) . (69)

In these coordinates, the equations that one needs to
solve are the so called “conformal thin sandwich” equa-
tions [12].

∂i∂iΦ = −1

8
Φ−7ĀijĀ

ij − 2πΦ5 ρH (70)

∂j∂jβ
i +

1

3
∂i∂jβ

j = 2 Āij∂j(αΦ−6) + 16π αΦ4 Si

(71)

∂i∂i(αΦ) = αΦ

[
7

8
Φ−8ĀijĀ

ij + 2πΦ4(ρH + 2S)

]
(72)

where βi is the shift vector, ρH is given by Eq. (6), Si by
Eq. (7) and S = Si i with Sij = γai γ

b
jTab.

For the metric (69), the conformal thin sandwich equa-
tions reduce to

1

r2
(r2 Φ′)′ = −2πΦ5 ρ (73)

1

r2
(r2 Θ′)′ = 2πΘΦ4(ρ+ 6 p) (74)

where primes denote differentiation with respect to r and
Θ ≡ αΦ. Notice also that in this case βi = 0, Aij = 0,
Si = 0 and ρH = ρ. Finally, from∇bT ab = 0, one obtains

p′ = −(ρ+ p)
α′

α
= −(ρ+ p)

(
Θ′

Θ
− Φ′

Φ

)
(75)

Therefore, together with an equation of state, construct-
ing TOV stellar models in isotropic coordinates involves
solving Eqs. (73), (74) and (75). Integration constants
are chosen such that in the exterior of the star

Φ = 1 +
M

2 r
(76)

Θ = 1− M

2 r
, (77)

with

M = 2π

∫ r0

0

r2Φ5ρ dr (78)

the total mass of the star. Notice that M = MADM the
ADM mass since Eq. (78) can be rewritten as Eq. (63).

If we denote by Φtov, ρtov and ptov the TOV solutions
in isotropic coordinates, we then set

ρ̄ = Φ8
tovρtov (79)

p̄ = Φ8
tovptov , (80)

and rewrite the Hamiltonian constraint Eq. (62) as

∆̄Φ +
1

8
Φ−7ĀijĀ

ij =

−2πΦ−3 Φ8
tov[(ρtov + ptov)W 2 − ptov] (81)

Notice that for an isolated TOV stellar model without
linear or angular momentum (Āij = 0, W = 1 and Φ =
Φtov), Eq. (81) reduces to Eq. (73), namely

∆̄Φtov = −2πΦ5
tov ρtov . (82)

VII. SINGLE NEUTRON STAR WITH LINEAR
AND ANGULAR MOMENTUM

We test the proposed method in the simple case of
an isolated NS. We will first consider a star with linear
momentum along the x-axis. As mentioned before, we
model the star as a polytrope with equation of state p =
K ρΓ

0 , setting Γ = 2 and K = 123.641M2
�. The star has
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FIG. 1: ADM mass MADM (dots), rest mass M0 (triangles)
and M∗W (squares) as a function of P/M∗ for a single NS.
Solid line represents a fit to MADM = M∗ + cP 2.

mass M∗ = 1.543M�, radius R∗ = 13.4 km, and central
density ρc = 6.235 × 1014gr cm−3. We endow the star
with linear momentum within the range 0 ≤ P/M∗ ≤ 0.4.

Figure 1 depicts with dots the ADM mass MADM as
a function of P/M∗, and with triangles the rest mass
M0. In the same figure, squares denote the quantity
M∗W , where the Lorentz boost factor W is calculated
from Eq. (56). Notice that for small values of the linear
momentum MADM ≈ M∗W . Also, it is not difficult to
show from Eq. (63) and the Hamiltonian constraint (81)
that MADM = M∗ + O(P 2), consistent with the growth
observed in Fig. 1.

To further understand the changes that the momen-
tum introduces to the TOV solution, we plot in Fig. 2
the relative differences with respect to the TOV solution
of the total mass-energy density ρ (top panel) and con-
formal factor Φ (bottom panel) along the x-axis, after
solving the Hamiltonian constraint for a star with a lin-
ear momentum P/M∗ = 0.1. The relative differences are
computed as follows:

δρ =
ρ− ρtov

ρtov
(83)

δΦ =
Φ− Φtov

Φtov
(84)

The differences in the mass-energy density are entirely
due to the conformal factor. From ρ = Φ−8 ρ̄ and ρ̄ =
Φ8

tov ρtov, one has that ρ = (Φ/Φtov)−8ρtov, and thus
from (83) δρ = (Φ−8 − Φ−8

tov)/Φ−8
tov .

In general terms, the evolutions of the initial data
for a single neutron star with linear momentum were
satisfactory. The evolutions were carried out with the
same gauge conditions used for puncture BH evolu-
tions [33, 34]. We noticed, however, few percent varia-
tions in the size and internal structure in the star during
the course of the evolution. The changes in the size of

−2.0
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0.0
0.5
1.0
1.5
2.0

δρ

×10−2

-10 -5 0 5 10
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−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

δΦ

×10−3

FIG. 2: Relative differences along the x-axis between the TOV
solution and the corresponding solution for a TOV star with
momentum P/M∗ = 0.1. Top panel shows the relative differ-
ences δρ in total mass-energy and bottom panel those in the
conformal factor δΦ.
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FIG. 3: Density ρ profiles along the x-axis for a TOV star with
P/M∗ = 0.1 at various times throughout the evolution. The
profiles have been normalized to the initial central density ρc
and shifted to be centered at x = 0.

the star with linear momentum ~P/M∗ = 0.1 x̂ are shown
in Fig. 3 along the x-axis and in Fig. 4 along the y-axis.
Notice that the deformations are more prominent in the
leading edge of the star (i.e. positive x-axis). Oscilla-
tions reveal themselves also in the central density of the
star. Fig. 5 shows the evolution of the central density in
the star for the same case.

Next, we consider a single star with angular momen-
tum. The TOV model for the star is as in the previous
case (i.e. polytrope with equation of state p = K ρΓ

0 ,
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FIG. 4: Density ρ profiles for the same case as in Fig. 3 but
along the y-direction. Becuase of reflection symmetry, only
half of the profile is shown. The profiles have been normalized
to the initial central density ρc and intersect with the point
of maximum density along the x-axis at all times.
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FIG. 5: Evolution of the central density of the star in Fig. 3
normalized to the initial central value ρc.

Γ = 2, K = 123.641M2
�, mass M∗ = 1.543M�, ra-

dius R∗ = 13.4 km, and central density ρc = 6.235 ×
1014gr cm−3). Figure 6 shows the evolution of the cen-
tral density, normalized to the initial central value ρc,
for J/M2

∗ = 0, 0.025, 0.05, and 0.075, with the angular
momentum along the z-axis. Notice the presence of os-
cillations for all cases, including the non-spinning case.
The amplitude of the oscillations increases with the mag-
nitude of the spin, but the frequency seems to remain
unchanged. Notice also that the frequency of these spu-
rious oscillations is comparable to the one observed case
with linear momentum (see Fig. 5). Finally, Figures 8
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FIG. 6: Evolution of the central density of the spinning star
model for J/M2

∗ ranging from 0 to 0.075, with densities nor-
malized to the initial central value ρc.
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FIG. 7: Density ρ profiles along the z-axis (rotation axis) for
a TOV star with J/M2

∗ = 0.05 at various times throughout
the evolution. The profiles have been normalized to the initial
central density ρc.

and 7 density ρ profiles along the z-axis (rotation axis)
and x-axis, respectively, for a TOV star with angular
momentum J/M2

∗ = 0.05 at various times throughout
the evolution. The profiles have been normalized to the
initial central density ρc. Notice that changes are more
pronounced along the x-axis.
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FIG. 8: Density ρ profiles along the x-axis for the TOV star
in Fig. 7.

VIII. COMPACT OBJECT BINARY
EVOLUTIONS

Next, we test the performance of our prescription to
construct initial data with evolutions of DNS and BH-NS
binary systems.

A. Non-spinning Double Neutron Star Binary

We consider first an equal-mass DNS system. The NSs
have a mass of 1.568M�, coordinate radius 13.1 km, and
they are initially separated by 54.6 km. The configu-
ration is similar to the model 1.62-45 in Baiotti et al.
[44]. In their case, the stars have a mass of 1.62M�,
and their initial coordinate separation is 45 km. The
results of this simulation were obtained using 7 levels
of mesh refinement. The finest mesh had resolution of
0.150M� = 0.221 km and extent of 26.6 km. The wave-
zone grid resolution was 9.58M� = 14.1 km.

Figure 9a shows the coordinate trajectory of one of the
NS stars and Fig. 9b the corresponding coordinate sepa-
ration of the binary. The data in both figures end at the
“point-of-contact” (PoC), which occurs at approximately
18 ms after the start of the simulation or at a separation
of approximately 25 km. A hypermassive neutron star
(HMNS) forms 4 ms after the PoC, which collapses to a
BH in approximately 8 ms. The collapse of the HMNS
in Baiotti et al. [44] is 10 ms, a difference that we at-
tribute primarily to resolution effects.

Figure 9c shows the evolution of the central density
normalized to its initial value. For comparison, see
Fig. 12 in Baiotti et al. [44]. The oscillations in Fig. 9c
for times earlier than 18 ms are similar, and likely due to

the same reasons, to those seen in the case of a single NS
with linear momentum (see Fig. 5). Since the amplitude
of the oscillations decrease by increasing the initial sep-
aration of the binary, we suspect that the origin of the
oscillations is because the TOV star has not been able to
adjust to the linear momentum added and to the gravi-
tational field by its companion. Similar oscillations have
been observed in other initial data methods, for instance,
in the work by Tsatsin and Marronetti [19]. To mitigate
the oscillations, instead of using a straightforward super-
position of the matter sources of each star, Tsatsin and
Marronetti [19] apply a weighted average of hydrodynam-
ical fields (see Eq. 9 in [19]), where the weights are func-
tions of the lapse of individual stars. We are currently
investigating whether this superposition prescription will
also work in our case.

Figure 9d shows the 2,2 mode of the Weyl scalar Ψ4,
extracted at 462M� from the binary, as a function of
retarded time. At the beginning of the waveform, there
is a small burst. This is the characteristic unphysical
burst of radiation observed in NR simulations that start
with conformally flat initial data. After the burst, Ψ4

shows the expected chirp-like structure, the ringing of
the HMNS during the time interval 18 ms ≤ t ≤ 24 ms,
and the quasi-normal-mode (QNM) ring-down of the final
BH.

Next, we analyze the convergence properties of the
Weyl scalar Ψ4, focusing only in the time segment be-
fore merger. We were unable to get “clean” convergence
estimates during the HMNS phase since numerical dissi-
pation due to resolution effects leads to significant differ-
ences in the longevity of the resulting HMNS [45]. Fig-
ure 10 shows differences of amplitude and phase from
three simulations with resolutions in the finest grid of
0.45 km (Low), 0.315 km (Medium), and 0.225 km (High).
The red line shows the difference (Medium–Low) and the
blue line (High–Medium). Assuming 2nd order conver-
gence, the three resolutions imply that (Medium–Low)
≈ 2.49×(High–Medium). The black line in Fig. 10 de-
picts 2.49×(High–Medium) and thus consistency with
2nd order convergence. For reference, the sector of the
Maya code handling the geometrical fields is by design 6nd

order convergent. The hydrodynamical sector however is
at best 3rd order, but near shocks and local extrema can
deteriorate to 1st order, as seen in codes similar to ours
where convergence order could be as low as 1.8 [46].

Finally, Fig. 11 depicts snapshots of the rest-mass den-
sity during the evolution. Panels (a), (b) and (c) show
the xy-plane and panel (d) the xz-plane. All densities are
in units of g cm−3 and distances in units of M = 3.14M�

B. Spinning Double Neutron Star Binary

The second example of evolution of initial data with
the proposed scheme is again an equal-mass binary but
now with spinning NSs. Both stars have identical spins,
anti-aligned to the orbital axis. The NSs have a mass
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(d) Mode 2,2, of the Weyl scalar Ψ4.

FIG. 9: Non-spinning NS binary system.

of 1.57M�, coordinate radius 13.1 km, and dimension-
less spin parameter χs = −0.05. At the beginning of
the simulation, the NSs are separated by 61.2 km. With
this choice of parameters, the binary system is simi-
lar to the case Γ−−050 in Bernuzzi et al. [47]. The grid
structure is as follows: the finest mesh has resolution
0.299M� = .442 km and extent 26.6 km. The radiation
zone has resolution 19.2M� = 28.3 km.

Figure 12a shows the coordinate trajectory of one of
the NS stars and Fig. 12b the corresponding coordinate
separation of the binary. Notice from Fig. 12a that the
system performs 6 full orbits before merger. Also no-
ticeable is the slight kink or sudden drop in separation
observed in Fig. 12b at the beginning of the evolution.

After the drop, the inspiral proceeds very smoothly, with
minimal spurious eccentricity. As with the previous case,
the data in both figures are depicted up to the PoC, which
occurs at approximately 25 ms after the start of the sim-
ulation or at a separation of 26 km.

Figure 12c shows the evolution of the central density
normalized to its initial value. Here again, we observe
oscillations in the central density before merger. The
HMNS forms at 26.2 ms and lasts for 1.3 ms before it col-
lapses. From the waveform in Fig. 12d, we notice that
the HMNS undergoes two bursts. Also, the collapse to
BH is faster than in the non-spinning case. This is ex-
pected since the spins of NS are anti-aligned with the
orbital angular momentum and thus the HMNS is rotat-
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FIG. 10: Amplitude (left panel) and phase (right panel) differences of the Weyl scalar Ψ4 for three different resolutions of
non-spinning DNS system simulations. The resolutions in the finest grid are: 0.45 km (Low), 0.315 km (Medium), and 0.225 km
(High). The (Medium–High) resolution is also presented in black re-scaled with a factor of 2.49, corresponding to 2nd order
convergence.

ing slower than the HMNS in the non-spinning DNS. The
energy radiated is estimated to be approximately 0.7% of
total mass-energy, and the angular momentum radiated
is 16% of total angular momentum. These values are
slightly different form those reported by Bernuzzi et al.
[47]—which are 1.2% and 18% respectively.

Finally, Fig. 13 depicts snapshots of the rest-mass den-
sity during the evolution. Panels (a), (b) and (c) show the
xy-plane and panel (d) the xz-plane. All densities are in
units of g cm−3 and distances in units of M = 3.14M�.

C. BH-NS Binary

The final example of evolution of initial data is for the
case of a BH-NS binary system. The NS has a mass of
1.54M� and a coordinate radius of 13.0 km, and the BH
has a mass of 7.7M� (i.e. 5:1 mass ratio binary). Both
compact objects are non-spinning. The coordinate sep-
aration between the BH and the NS is 117 km. With
these parameters, the BH-NS binary is similar to the
M50.145b system in Shibata et al. [48]. As with the
DNS system, we cover the star with a single mesh whose
side length is the diameter of the star. The grid struc-
ture has 8 levels of refinement, with finest resolution of
0.303M� = 0.448 km. The finest mesh around the BH
has extent 9.10M� = 13.4 km. The radiation zone has
resolution of 38.8M� = 57.3 km.

Figure 14a shows the trajectories of the BH (solid line)
and NS (dashed line). The orbital separation of the bi-
nary is shown in Fig. 14b. There is clear indication of
spurious eccentricity. We attribute this eccentricity to
the relatively small initial separation. Figure 14c shows
the maximum rest mass density during the course of the
evolution. The central density fluctuates as in the pre-
vious two cases, with the oscillations decaying at later

times. The point at which the central density drops sig-
nals the time when the star is disrupted and swallowed
by the BH. This is also clear in the 2,2 mode of the Weyl
scalar Ψ4 (see Fig. 14d). At approximately 36 ms, Ψ4

shows the characteristic QNM ringing of a BH.
Figure 15 depicts snapshots of the rest-mass density

during the BH-NS binary evolution. Panels (a), (b) and
(c) show the xy-plane and panel (d) the xz-plane. All
densities are in units of g cm−3 and distances in units of
M = 3.14M�

IX. CONCLUSIONS

We have introduced a new scheme to construct ini-
tial data for compact object binaries with NS compan-
ions. The method is a generalization of the approach
to construct initial data for BBHs in which the BHs
are modeled as punctures and the extrinsic curvature is
given by the Bowen-York solution to the momentum con-
straint [25]. In the method introduced in the present
work, the extrinsic curvature for the NSs is given by
the solution derived by Bowen for spherically symmetric
sources with linear momentum [40] and angular momen-
tum [42]. Given these extrinsic curvature solutions, we
developed an iterative prescription to construct compact
object binary initial data of DNSs or BH-NSs. The pre-
scription has a relatively low computational cost since
it only requires solving the Hamiltonian constraint. As
with the BBH case, the method also allows one to spec-
ify the intrinsic and orbital parameters of the binary with
direct input from PN approximations. The quality of the
initial data method was demonstrated with a few exam-
ples of evolutions: an isolated NS with linear momentum,
DNS binaries, including spinning NSs, and a BH-NS sys-
tem. The evolutions showed general agreement with sim-
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(a) 0 ms (b) 20.3 ms

(c) 26.9 ms (d) 24.6 ms

FIG. 11: Rest-mass density snapshots from the non-spinning DNS binary evolution. Panels (a), (b) and (c) show the xy-plane
and panel (d) the xz-plane All densities are in units of g cm−3 and distances in units of M = 3.14M�.

ilar cases found in the literature [44, 47, 48].

In this initial incarnation, the method was not de-
void of defects. The NSs showed spurious breathing
that translated into oscillations in their density struc-
ture. We are currently investigating applying the sug-
gestion by Tsatsin and Marronetti [19] to mitigate the
oscillations. In addition, for BH-NS binaries and DNS
binaries with unequal masses, there is slight drift of the
coordinate center-of-mass. In extreme cases, the drift
complicates waveform extraction.
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FIG. 12: Spinning NS binary system
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(a) 0 ms (b) 24.6 ms

(c) 26.1 ms (d) 29.0 ms

FIG. 13: Rest-mass density snapshots from the spinning DNS binary evolution. Panels (a), (b) and (c) show the xy-plane and
panel (d) the xz-plane All densities are in units of g cm−3 and distances in units of M = 3.14M�.
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FIG. 14: BH-NS binary system
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(a) 0 ms (b) 34.4 ms

(c) 35.9 ms (d) 37.9 ms

FIG. 15: Rest-mass density snapshots from the bhns binary evolution. Panels (a), (b) and (c) show the xy-plane and panel (d)
the xz-plane All densities are in units of g cm−3 and distances in units of M = 3.14M�.
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and B. Brügmann, Phys. Rev. D 77, 044037 (2008),
URL http://link.aps.org/doi/10.1103/PhysRevD.

77.044037.
[25] J. M. Bowen and J. W. York, Jr., Phys. Rev. D 21, 2047

(1980).
[26] R. Haas et al., Astrophys.J. 749, 117 (2012), 1201.4389.
[27] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D. M.

Shoemaker, and N. Yunes, Classical and Quantum Grav-
ity 29, 232002 (2012), 1112.3928.

[28] T. Bode, P. Laguna, and R. Matzner, Phys. Rev. D 84,
064044 (2011), 1106.1864.

[29] T. Bode, T. Bogdanovic, R. Haas, J. Healy, P. Laguna,
et al., Astrophys.J. 744, 45 (2012).

[30] T. Bode, R. Haas, T. Bogdanovic, P. Laguna, and
D. Shoemaker, Astrophys. J. 715 (2010).

[31] J. Healy, J. Levin, and D. Shoemaker, Phys. Rev. Lett.
103, 131101 (2009).

[32] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1999), gr-qc/9810065.

[33] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlo-
chower, Phys. Rev. Lett. 96, 111101 (2006).

[34] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and
J. van Meter, Phys.Rev.Lett. 96, 111102 (2006), gr-
qc/0511103.

[35] et-web, einstein Toolkit home
page:http://www.einsteintoolkit.org.

[36] G. Allen, T. Goodale, and E. Seidel, in 7th Sympo-
sium on the Frontiers of Massively Parallel Computation-
Frontiers 99 (IEEE, New York, 1999).

[37] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quant.
Grav. 21, 1465 (2004).

[38] S. Husa, I. Hinder, and C. Lechner, Computer Physics
Communications 174, 983 (2006).

[39] L. L. Smarr, ed., Sources of gravitational radiation; Pro-
ceedings of the Workshop, Seattle, Wash., July 24-August
4, 1978 (1979).

[40] J. M. Bowen, General Relativity and Gravitation 11, 227
(1979).

[41] M. Shibata and K. Taniguchi, Living Reviews in Rela-
tivity 14 (2011), URL http://www.livingreviews.org/

lrr-2011-6.
[42] K. Oohara and T. Nakamura, Progress of Theoretical

Physics 81, 360 (1989).
[43] E. Kvaalen, BIT Numerical Mathematics 31, 369 (1991),

ISSN 0006-3835, URL http://dx.doi.org/10.1007/

BF01931297.
[44] L. Baiotti, B. Giacomazzo, and L. Rezzolla, Phys. Rev.

D 78, 084033 (2008), 0804.0594.
[45] K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi,

Y.-i. Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev.
D 88, 044026 (2013), URL http://link.aps.org/doi/

10.1103/PhysRevD.88.044026.
[46] L. Baiotti, B. Giacomazzo, and L. Rezzolla, Class. Quant.

Grav. 26, 114005 (2009), 0901.4955.
[47] S. Bernuzzi, T. Dietrich, W. Tichy, and B. Brügmann,
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