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Abstract

The topological terms of the bulk effective action for the integer quantum Hall effect, cap-

turing the dynamics of gauge and gravitational fluctuations, reveal a curiosity, namely, the

Abelian potential for the magnetic field appears in a particular combination with the Abelian

spin connection. This seems to hold for quantum Hall effect on complex projective spaces of

arbitrary dimensions. An interpretation of this in terms of the algebra of symplectic transfor-

mations is given. This can also be viewed in terms of the metaplectic correction in geometric

quantization.



1 Introduction

There has recently been a lot of research elucidating the effective action for the quantum Hall

effect on manifolds of different geometries and topologies [1]-[6]. This was partly motivated by

the fact that, even though from the experimental point of view, we may only be interested in

spaces of trivial topology, nontrivial geometry and topology can shed light on various physical

quantities such as transport coefficients. The mathematical structures involved have also been

of interest in their own right. In two dimensions, the effective action under discussion is

best represented as an expansion in powers of the derivatives of external fields, such as the

electromagnetic and gravitational fields. The leading terms of such a series are topological in

character, expressed as a sum of Chern-Simons type terms in the fields. The term involving just

the electromagnetic field and the mixed term involving both electromagnetic and gravitational

fields have been known for a long time [2, 3]. The addition of the purely gravitational part

and the generalization to include higher Landau levels revealed an interesting curiosity [4,

5, 6]. Apart from the gravitational framing anomaly, the electromagnetic field and the spin

connection of the manifold combine in a particular way [4]. It is possible to understand the

way this combination comes about, both in terms of isolating the framing anomaly and in

terms of the gravitational anomaly due to possible edge modes in the case of a droplet. But

a more general point of view, based on ideas of geometric quantization, is the subject of this

paper.

The quantum Hall effect has also been generalized to higher dimensions [7]-[13] for a number

of different spaces such as the four-sphere [7] and complex projective spaces [8]. Unlike the

two-dimensional case, the background gauge fields, the analogue of the electromagnetic field,

can be Abelian or nonabelian. It is useful to characterize the dynamics of a quantum Hall

state by an effective action. The part of this effective action which describes the boundary

excitations was obtained in [10, 11] as a Wess-Zumino-Witten theory, gauged with respect

to the fixed background gauge field. If fluctuations in the gauge field are possible, there is

also nontrivial bulk dynamics. The leading terms of the bulk part of the effective action in

this case are topological, being of the Chern-Simons type. These bulk terms involving the

gauge field were given in [12, 13], and the general boundary action allowing for fluctuations

of the gauge field was given in [12]. Cancellation of anomalies occurs between the bulk and

boundary terms. More recently, we have obtained a general form of the topological terms of

the bulk effective action valid in all dimensions [14], including fluctuations in the gravitational

and gauge fields. This is done by using the index density in the Dolbeault index theorem as

an effective expression for the charge density and then integrating up to obtain the action.

The purely gravitational terms can also be added via the standard descent procedure. In

expanding out the various terms for the complex projective spaces, one again notices the same

curiosity mentioned above: The Abelian part of the gauge field and the Abelian part of the

spin connection appear in a particular combination. The recurrence of this combination in this

generalized context sharpens the need for a deeper explanation.

2



It is possible to view the lowest Landau level of a quantum Hall system on a Kähler manifold

as the Hilbert space obtained by the geometric quantization of a symplectic form which is a

suitable multiple of the Kähler form. One of the subtleties of geometric quantization is the

appearance of the metaplectic structure [15, 16, 17]. This arises because we need a quantization

procedure which can accommodate changes of polarization, since physical results should not

depend on the polarization one uses. This leads to the introduction of half-forms. The effect

of this augmented formalism is that the operator expressions for certain classical functions get

corrections, the so-called metaplectic correction. One can also understand this correction in

terms of the realization, at the quantum level, of the algebra of symplectic transformations.

We show that the particular combination of the Abelian part of the gauge field and the spin

connection arises in this way. These are the main results of this paper.

In the next section, we review the effective action and formulate in more precise terms the

problem we are addressing. In section 3, we consider the lowest Landau level using geometric

quantization and show the role of the symplectic transformations and how the metaplectic

correction emerges.

2 The effective action and the statement of the problem

We start by recalling some of the essential features of the problem. We will consider quantum

Hall effect on a complex Kähler manifold K of complex dimension k (so that the relevant

spacetime is R×K). The background gauge fields are valued in the algebra of U(k) (which is

the holonomy group for K). The Abelian part of the background gauge field will be a multiple

of the Kähler form Ω on K. (We are interested in the response of the system to fluctuations of

all gauge fields and gravitational fields around the background values). The standard approach

is to set up the Hamiltonian for a single particle (corresponding to a field of given spin and

charges) and solve the Landau problem, construct multiparticle wave functions, etc. However,

if we are only interested in the lowest Landau level, the wave functions can be obtained by the

geometric quantization of a certain symplectic form. We will consider these two aspects of the

Hall effect here.

The single particle Hamiltonian, apart from any additional potential energy which may

be needed for confinement of the particles to a droplet, will be proportional to the Laplace

operator on K,

H Ψ = − 1

4m
(D+iD−i +D−iD+i)Ψ (1)

where D±i are (holomorphic/antiholomorphic) derivatives on K, suitably covariantized in

terms of their action on Ψ. The eigenstates of this Hamiltonian fall into distinct Landau

levels. The lowest Landau level will obey a holomorphicity condition,

D−i ΨLLL = 0 (2)

The number of solutions to this condition, and therefore the degeneracy of the lowest Landau
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level, is given by the Dolbeault index theorem [18]. Thus, for the case of a completely filled

lowest Landau level, where all the available states are occupied by (spinless) electrons, each

carrying a unit charge, the index density is identical to the charge density, except for terms

which can integrate to zero. In the case of manifolds which are group cosets, such as for

CP
k = SU(k + 1)/U(k), the solutions to (2) can be constructed from group representation

theory [10].

While most of the discussion will be of general validity, it is useful to focus on a specific

family of manifolds to see how details work out. We will use CP
k for most of what we do.

This manifold has constant Riemannian curvatures valued in the algebra of U(k), and the

background values for the gauge fields are taken to be proportional to the curvatures. This

means also that we can have an Abelian part for the background gauge field (corresponding

to the U(1) part of U(k) ∼ SU(k) × U(1)) and nonabelian gauge fields valued in SU(k). The

Landau problem of particles in a constant background gauge field is thus obtained.

Points on the manifold CP
k can be parametrized by an element g of SU(k + 1), with the

identification g ∼ g h, h ∈ U(k) ⊂ SU(k+1), so that wave functions can be viewed as functions

on SU(k+1) with specified transformation properties under U(k). Let tA, A = 1, 2, · · · , k2+2k,

denote a basis of hermitian (k+1)× (k+1)-matrices viewed as the fundamental representation

of the Lie algebra of SU(k + 1), with the normalization Tr (tAtB) =
1
2δAB . The commutation

rules of the Lie algebra are of the form [tA, tB ] = ifABC tC , with structure constants fABC .

The generators tA can be split into a set of generators for the SU(k) part of U(k) ⊂ SU(k+1)

(denoted by ta, a = 1, 2, · · · , k2−1) and the generator for the U(1) direction in U(k) (denoted

by tk2+2k). The coset generators split into conjugate sets t±i, i = 1, 2, · · · , k.
The matrix elements of g for all the finite-dimensional representations form a basis for

functions on the group SU(k + 1). These are the Wigner D-functions, which are defined as

D(J)
l;r (g) = 〈J, l| g |J, r〉 (3)

where l, r stand for two sets of quantum numbers specifying the states within the representa-

tion. Further, we can define the left and right translation operators on g by

L̂A g = TA g, R̂A g = g TA (4)

where TA are the SU(k + 1) generators in the representation to which g belongs.

We identify the covariant derivatives on CP
k in terms of the right translation operators on

g as

D±i = i
R̂±i

r
(5)

where r is a parameter with the dimensions of length, defining the scale of the manifold. The

commutator [R̂+i, R̂−j ] is in the algebra of U(k). Since this is proportional to the commutator

of the derivatives, we can specify the constant background fields by the conditions

R̂a ΨJ
m;α(g) = (Ta)αβΨ

J
m;β(g) (6)
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R̂k2+2k ΨJ
m;α(g) = − nk

√

2k(k + 1)
ΨJ

m;α(g) (7)

where m = 1, · · · ,dimJ gives the degeneracy of the Landau level. The wave functions ΨJ
m;α

transform on the right as a representation J̃ of SU(k), (Ta)αβ being the representation matrices.

Likewise, (7) shows that ΨJ
m;α carry a particular charge for U(1) ⊂ U(k); n is the strength

of the Abelian part of the background gauge field. (The corresponding field strength is nΩ,

where Ω is the Kähler form and n is an integer by the Dirac quantization condition.) α, β label

states within the SU(k) representation J̃ (which is itself contained in the representation J of

SU(k + 1)). The index α carried by the wave functions ΨJ
m;α(g) is basically the gauge index.

The wave functions are sections of a U(k) bundle on CP
k. By virtue of (5, 6, 7), we can write

H Ψ =
1

2mr2

[

R̂+iR̂−i +
i

2
f−i,+i,a Ta +

i

2
f−i,+i,k2+2k

(

− nk
√

2k(k + 1)

)]

Ψ (8)

The Hamiltonian H is proportional to
∑

i R̂+iR̂−i, apart from additive constants. The lowest

Landau level evidently satisfies

R̂−iΨ = 0 (9)

This is the holomorphicity condition (2) in terms of the group translation operators. Writing

ΨJ
m;α(g) ∼ 〈J,m|g|J, α,w〉, the conditions (9, 6, 7) become

R̂−i |J, α,w〉 = 0 (10)

R̂a |J, α,w〉 = (Ta)αβ |J, β,w〉, R̂k2+2k |J, α,w〉 = − n k
√

2k(k + 1)
|J, α,w〉 (11)

According to (10), for the lowest Landau level, the state |J, α,w〉 must be a lowest weight

state in the representation J , with weight w = −n k√
2k(k+1)

, specified by (11). The representation

J is completely fixed by (10), (11).

We now recapitulate the essential features of the effective action from [14]. In that paper,

we argued that higher Landau levels for spinless electrons, say the s-th level, could be viewed

for the purpose of the effective action, as the lowest Landau level for higher spin fields. For

the case of CP
k, these higher spin fields couple to the constant background field of the form

F̄ = −i
(

nΩ1+ sR̄0
1+ R̄aTa

)

= F̄ + R̄s (12)

where R̄0, R̄a are the curvature components for CP
k corresponding to the U(1) and SU(k)

subgroups of the holonomy group SU(k + 1) and Ta, 1 are U(k) matrices in the appropriate

spin representation, s being the U(1) spin. We will also include fluctuations around these

background values in what follows. The strategy in [14] was to consider the number of solutions

to the holomorphicity condition (2) as given by the Dolbeault index theorem [18],

Index(∂̄V ) =

∫

K
td(TcK) ∧ ch(S ⊗ V ) (13)
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where ch denotes the Chern character given by

ch(S ⊗ V ) = Tr
(

ei(Rs+F )/2π
)

= ch(S) ∧ ch(V ) (14)

In this equation, Rs is the curvature in the representation appropriate to the chosen spin and

F is in the representation for the (gauge) charge rotations of the particles under consideration.

Further, in (13), td(TcK) denotes the Todd class for the complex tangent bundle of the phase

space, given explicitly by traces of products of curvatures. Explicit formulae are given in

many places, including [18] and [14]. Taking the index density as the charge density we can

derive the effective action for a completely filled lowest Landau level by “integrating” the

index density with respect to the time-component of the Abelian gauge field A0 and making

the result covariant [14]. The effective action is then given by

S
(s)
2k+1 =

∫

[

td(TcK) ∧
∑

p

(CS)2p+1(ωs +A)
]

2k+1
+ 2π

∫

Ωgrav
2k+1 + S̃ (15)

Here ωs is the spin connection corresponding to Rs and A is the connection for the gauge field

F . Ωgrav
2k+1 is defined by

[td(TcK) ∧ ch(S)]2k+2 = dΩgrav
2k+1 +

1

2π
d
[

td(TcK) ∧
∑

p

(CS)2p+1(ωs)
]

2k+1
(16)

Thus dΩgrav
2k+1 gives the (2k + 2)-form in td(TcK). Further, we note that the Chern-Simons

term is related to the curvatures by

1

2π
d(CS)2p+1(A) =

1

(p + 1)!
Tr

(

iF

2π

)p+1

(17)

Also, S̃ in (15) refers to nontopological terms including those due to the fact that the charge

density could differ from the index density as given by the integrand in (13) by terms which

are total derivatives integrating to zero. These terms are expected to be of higher order in a

derivative expansion for the external fields.

Various special cases of this action have been discussed in [14]. For the present discussion,

we will consider CP
k, k = 1, 2, 3. For simplicity, we will consider only the spinless case so that

s = 0 (i.e. only the lowest Landau level) with the background gauge fields being purely Abelian

(valued in U(1)). This will suffice to illustrate the main point. For the 2+1 dimensional case,

the action becomes

S3d =
i2

4π

∫

{

(

A+
1

2
ω
)

d
(

A+
1

2
ω
)

− 1

12
ω dω

}

(18)

(We may note that this result agrees with [4]-[6] as well.) In 4 + 1 dimensions, we have

S5d =
i3

(2π)2

∫

{

1

3!

(

A+ ω0
)[

d
(

A+ ω0
)]2

− 1

12

(

A+ ω0
)

[

(dω0)2 +
1

2
Tr(R̃ ∧ R̃)

]}

(19)
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where R̃ is the SU(2) part of the curvature and ω0 is the U(1) part of the spin connection. In

(6 + 1) dimensions, the effective action is

S7d =
1

(2π)3

∫

{

1

4!

(

A+
3

2
ω0

)[

d

(

A+
3

2
ω0

)]3

− 1

16

(

A+
3

2
ω0

)

d

(

A+
3

2
ω0

)[

(dω0)2 +
1

3
Tr(R̃ ∧ R̃)

]

+
1

1920
ω0dω0

[

17(dω0)2 + 14Tr(R̃ ∧ R̃)
]

+
1

720
ω0Tr(R̃ ∧ R̃ ∧ R̃)

}

+
1

120

∫

(CS)7(ω̃) (20)

where R̃ is now the SU(3) curvature and ω̃ the corresponding connection.

The fields A, ω0, ω̃ in (18-20) include fluctuations around the background values pertinent

to CP
k. Notice that the gauge field appears in the combination A + k

2ω
0. Further, even if

we set the combination A + k
2ω

0 to zero, there are purely gravitational terms in (18-20) for

d = 2+ 1 and 6+ 1, not for d = 4+ 1. It may be possible to understand these left-over purely

gravitational terms in terms of the gravitational anomaly due to boundary excitations. Here

we are still considering a closed manifold with no boundary, but if we think of enlarging the

context by considering a droplet of fermions of finite size, excitations on the edge or boundary of

the droplet are possible. These edge modes would be described by a chiral theory in (2k−1, 1)

dimensions, and such a theory can have a gravitational anomaly only if k is an odd integer [19].

The cancellation of the anomaly between the boundary and the bulk would necessitate purely

gravitational bulk terms. Once such terms are identified and isolated, it should be possible

to see why the remainder of the action involves the combination A+ k
2ω

0. Analysis from this

point of view, in two dimensions, has been carried out in [4, 5].

But we can ask: Is there an independent way of seeing why the combination A + k
2ω

0 is

natural? This is the question we seek to address in this paper. If such an argument works

out, we may be able to utilize this to shed some light on the nature of the edge modes, if we

propose to consider a droplet.

3 The perspective of geometric quantization

As mentioned in the last section, the second way to think about this problem is to focus on the

lowest Landau level and obtain the wave functions via geometric quantization [15]. We will

be interested in the case of K = CP
k, with the background gauge field being entirely Abelian;

i.e., we have a trivial representation for SU(k) in (11). For the geometric quantization of CP
k,

we can consider the symplectic form nΩ, where Ω is the Kähler form. Upon quantization,

this leads to the lowest Landau level as given by (10, 11). The holomorphicity condition

(10) becomes the Bargmann (or Kähler) polarization condition on the wave functions. An
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alternative approach is to consider the flat space Ck+1, use the obvious symplectic form on this

space, carry out the quantization and then reduce via a constraint to obtain results relevant

to the projective space.

There are then slightly different ways to argue for the emergence of the combination A+

(k/2)ω0. One way is to start with Ck+1, quantize and then require the implementation of a

set of symplectic transformations. This can be done via the operators realizing the algebra of

the symplectic transformations.The closure of the algebra will naturally lead to U(k + 1) ∼
SU(k + 1) × U(1) transformations with a modified operator for the U(1) part. This will

ultimately lead to the combination A + (k/2)ω0. We can then argue that the generators of

U(k+1) descend to the CP
k+1 space of interest. Another approach would be to consider Ck+1

again, and obtain the correction to the generator of the U(1) from “half-forms”. Again, one

can argue that this descends to CP
k. We will consider these two related ways in turn. A third

approach would be to directly start with CP
k classically and then quantize using “half-forms”

and obtain the corrected operators of interest. We will not pursue this here, but it remains an

interesting question.

We start with the following symplectic two-form on Ck+1,

M = i dZα ∧ dZ̄α. (21)

We can then impose the constraint

Z̄αZα − c = 0 (22)

for some constant c. The symplectic reduction of Ck+1 by this constraint leads to CP
k. In

other words, (22) is to be viewed as a first class constraint in the sense of Dirac’s theory of

constraints. The condition (22) reduces the space Ck+1 to the sphere S2k+1 and a gauge-fixing

constraint conjugate to (22) eliminates an overall phase for the Z’s, giving CP
k as S2k+1/S1.

The quantization of (21) in the holomorphic polarization leads to the usual coherent state

wave functions

Ψ = exp
(

−1
2 Z̄ · Z

)

h(Z) (23)

where h(Z) is holomorphic. The operators corresponding to Zα, Z̄α are a†α, aα respectively,

with [aα, a
†
β] = δαβ . The coherent states are of the form

|Z̄〉 = exp
(

−1
2 Z̄ · Z

)

eZ̄·a† |0〉 (24)

where |0〉 is the Fock vacuum, aα|0〉 = 0. The quantum version of constraint (22) is of the form

a† · a − c′, for some value c′. We consider the reduction of the Hilbert space for (21) by this

constraint, choosing a particular value c′ = n. This means that the states should now obey

(a† · a− n) |n〉 = 0, (25)

so that |n〉 is given by a†α1
a†α2

· · · a†αn
|0〉. The wave functions corresponding to this are, up to

normalization,

Ψ ∼ 〈Z| a†α1
a†α2

· · · a†αn

|0〉 ∼ Zα1
Zα2

· · ·Zαn
e−

1
2 Z̄·Z (26)
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If we relate Zα to an SU(k+1) element gα k+1 via Zα = λ gαk+1, then these wave functions are

seen to be proportional to the Wigner functions 〈J, l|g|J, 0, w〉; the functions Ψ ∼ 〈J, l|g|J, 0, w〉
satisfy (6) and (7) with R̂aΨ = 0.

Let us now start again with (21) before the imposition of the constraint (22). Rather than

using the complex coordinates Z, Z̄, let us consider using real coordinates pα, qα, with

Zα =
1√
2
(pα + iqα), Z̄α =

1√
2
(pα − iqα) (27)

This is equivalent to viewing Ck+1 as R2k+2; the two-form M is now M = dpα∧dqα. One could

also consider new complex combinations, say, ξα, ξ̄α of pα, qα, other than the ones in (27), and

consider the holomorphic quantization of M , holomorphicity being defined by the new choice.

For example, if we choose

ξα =
1√
2
[pα +Gαβ pβ +Hαβ pβ + i (qα +Gαβ qβ −Hαβ qβ)]

ξ̄α =
1√
2

[

pα +G∗
αβ pβ +H∗

αβ pβ − i
(

qα +G∗
αβ qβ −H∗

αβ qβ
)]

(28)

where Gαβ is antihermitian, G∗
αβ = −Gβα, and Hαβ is symmetric, it is easily verified that

M = dpα ∧ dqα = i dξα ∧ dξ̄α (29)

to linear order in G, H. If we quantize using coherent states defined by the ξ, ξ̄ or by the

original Z, Z̄, the quantum theory should be the same, since they both correspond to the same

M = dpα ∧ dqα. This means that we should be able to implement the change from Z, Z̄ to

ξ, ξ̄ by a unitary transformation in the quantum theory.

To see how this works out, we first write ξα, ξ̄α directly in terms of the Zα, Z̄α as
(

ξα

ξ̄α

)

=

{[

δαβ 0

0 δαβ

]

+

[

Gαβ Hαβ

H∗
αβ G∗

αβ

]} (

Zβ

Z̄β

)

(30)

This is the infinitesimal transformation, since we only kept Gαβ , Hαβ to linear order in verifying

(29). But finite transformations can be constructed by a sequence of infinitesimal transfor-

mations and they too preserve (29). The finite transformations corresponding to (30) form

the symplectic group Sp(k + 1,R). The classical generating function for the G and H-type

transformations are

G = iGαβZβZ̄α, H =
i

2
HαβZ̄αZ̄β , (31)

respectively. The quantum version of these are the operators

Ĝ = iGαβ a
†
β aα + ordering ambiguities

Ĥ =
i

2
Hαβ aα aβ (32)

There are ordering ambiguities for Ĝ, affecting the terms with α = β. Classically, the Poisson

bracket of i
2HαβZ̄αZ̄β and its conjugate gives the generators of the G-type transformation,
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the full algebra being the Lie algebra of Sp(k + 1,R). Quantum mechanically, commuting the

generator of the H-type transformation and its conjugate we find

[aαaβ, a
†
γa

†
δ] = (δαγJδβ + δαδJγβ + δβγJδα + δβδJγα) +

2

k + 1
(δαγδβδ + δαδδβγ) Q

Jαβ = a†αaβ − δαβ
k + 1

a† · a

Q = a† · a+ 1
2 (k + 1) (33)

Jαβ are the generators of SU(k + 1) and Q generates a U(1) transformation.

We now want to consider the reduction to CP
k. The key point is that while the generator Ĥ

and its conjugate do not commute with the constraint a†·a−n, Jαβ does commute with it. Thus

we expect the action of Jαβ to descend to the case of CP
k. In fact, the SU(k+1) transformations

generated by Jαβ are the isometries of the reduced space. Similarly Q commutes with the

constraint a† · a − n and we should expect its action to descend to CP
k as well. The key

point is that the Lie algebra of Sp(k + 1,R) at the level of Ck+1 chooses a certain operator

ordering, giving the unambiguous quantum expressions for the generators, before we consider

their descent to CP
k. (The relevance of the Sp(k+1,R) in quantizing (21) is discussed in [16].

Our main point is that since Jαβ , Q commute with the constraint (22), we can easily adapt

that discussion to the case of CP
k.)

From the commutator of Q with aα and a†α, we see that it generates the phase transforma-

tion,

eiQθ aα e
−iQθ = e−iθ aα, eiQθ a†α e

−iQθ = eiθ a†α (34)

Classically, this is the transformation Zα → eiθZα, Z̄α → e−iθZ̄α. The product Zα1
Zα2

· · ·Zαn

gets an overall phase eiθn. However, notice that Q has a value n + 1
2(k + 1) for the state

a†α1
a†α2

· · · a†αn
|0〉. Thus there is an additional “zero-point” value for Q. This is the “correction”

we are after.

To complete this part of the story, we now show that this extra “zero-point” charge couples

to the spin connection when gravitational fluctuations are introduced. The identification Zα ∼
gαk+1 shows that the phase transformation Zα → eiθZα is equivalent to a right transformation

of g by an element of U(1) ⊂ U(k). This U(1) is the transformation generated by R̂k2+2k.

In the description of CP
k as SU(k + 1)/U(k), with coordinates given by gα k+1 ∈ SU(k + 1),

the right action by R̂k2+2k, R̂a generate the isometries. Thus the U(1) under discussion does

correspond to the U(1) part of the isometry group; hence its gauging is indeed done by the

U(1) spin connection. Further, the background magnetic field, chosen to be proportional to the

spin connection and specified by (11) leads to the monomial Zα1
Zα2

· · ·Zαn
. Since we do have

the extra Q charge even in the absence of a magnetic field, we must interpret this extra charge
1
2(k + 1) as the coupling constant for the spin connection. Thus we expect the combination

α (n+ 1
2(k+1))ω0 where α takes care of any overall normalization for the fields. Actually our

chosen normalization for the spin connection was such that dω0 = k+1
k Ω, while the gauge field

10



obeyed dA = nΩ (see [14]), so that d(nω0) = ((k + 1)/k)dA and

α (n+ 1
2(k + 1))ω0 = α

k + 1

k

(

A+
k

2
ω0

)

(35)

Fluctuations in the fields can be introduced at this stage and so, we have arrived at the following

conclusion about the shift of A: The implementation of the symplectic transformations (30),

which is itself rooted in the need to allow for different choices of coordinates before reduction

to CP
k, naturally leads to the combination A+ k

2ω
0 observed in the effective action.

Now once again, we start with (21) and consider its geometric quantization. The symplectic

potential corresponding to M is

A =
i

2
(Zα dZ̄α − Z̄α dZα) (36)

Under canonical transformations (which preserve M), A transforms as A → A + d f (for

some function f), thus behaving as a U(1) gauge field. The wave functions are charged under

this U(1), transforming with a phase. One must also consider covariant derivatives of the form

DαΨ = (∂α− iAα)Ψ, D̄αΨ = (∂̄α− iĀα)Ψ in formulating the polarization condition. The wave

functions are thus sections of a holomorphic line bundle on Ck+1 with curvature M .

Explicitly, the covariant derivatives are

Dα =
∂

∂Zα
− 1

2 Z̄α, D̄α =
∂

∂Z̄α
+ 1

2Zα (37)

The polarization condition D̄αΨ = 0 on the prequantum wave functions leads to the coherent

states (23), with the inner product defined by the symplectic (Liouville) volume element for

the phase space,

〈1|2〉 =
∫

∏

α

dZαdZ̄α e−Z̄·Z Ψ∗
1Ψ2 (38)

The prequantum operator corresponding to a function f on the phase space is defined in

geometric quantization as [15, 16, 17]

P(f) = −iX · D + f (39)

where X is the vector field corresponding to f defined by Xµ Mµν = −∂νf . We find easily that

XZα
= −i (∂/∂Z̄α), XZ̄α

= i (∂/∂Zα). The action of the corresponding prequantum operators

are

P(Z)Ψ = (−DZ̄α

+ Z)Ψ = e−
1
2 Z̄·Z Z h(Z)

P(Z̄)Ψ = (DZα
+ Z̄α)Ψ = e−

1
2 Z̄·Z ∂

∂Zα
h(Z) (40)

This is consistent with the assignment of Zα as a†α and Z̄α as aα.

This is all standard and well known. However, this picture of quantization is known to

be incomplete. On a general symplectic manifold, we can consider other polarizations, not
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necessarily the holomorphic one. For example, on a phase space which is the cotangent bundle

T ∗M of a real manifold M , one can consider wave functions in the coordinate representation.

(This possibility applies to the present case as well, since we can consider R2k+2 as the cotan-

gent bundle of Rk+1.) In such cases, because Ψ∗Ψ depends only on half of the phase space

coordinates, one has to use a volume element on the subspace of such coordinates to define the

inner product for the wave functions.

The problem is that there is no such volume element defined by the given data on the phase

space. The phase volume is naturally defined (in terms of powers of the symplectic structure)

and can be used for the holomorphic polarization (for which Ψ∗Ψ depends on all phase space

coordinates in general). But for real polarizations the phase volume is not appropriate. On

the other hand, we would like to formulate quantization in a way which applies to any choice

of polarization, since physical results should be independent of polarization (even though we

may not have a real polarization for manifolds of interest). One solution is to introduce “half-

forms” whose transformation property is such that the product of two such forms transforms

as the volume form of the submanifold over which Ψ∗Ψ is to be integrated. We then consider

the product of the line bundle (with curvature equal to the symplectic two-form) and a bundle

of half-forms, the wave functions being identified as sections of this product bundle. The

transformation property of half-forms implies defining a square root of the Jacobian of a

symplectic diffeomorphism, so that at the level of linear transformation, we need to consider a

double cover of the symplectic group, which is named the metaplectic group.

For the case of holomorphic polarization, which is our focus here, seemingly one can avoid

using half-forms since the volume element for the full phase space can be used in the inner

product. However, the half-forms do add certain terms to the expressions for the operators;

these additions are the “metaplectic corrections”. We want to argue that in the combination

A+ k
2ω

0, the second term arises from such a correction.

The main point is that, generally, for all polarizations, the wave functions are of the form

Ψ ∼ e−
1
2 Z̄·Z h(Z) σ−1/2(Z) (41)

where σ−1/2(z) indicates the appropriate section of the half-form. For the case of holomorphic

polarization, we do not need to know an explicit form for σ−1/2(Z), only its transformation

property is important. In fact, we may think of it as a pure phase, which would not affect the

inner product. However, the vector fields corresponding to a function can have a nontrivial

action on σ−1/2(Z), and so the expression for the operator has to be modified. With the

half-form σ−1/2, this is given by [15, 16, 17]

P(f)Ψσ−1/2 = [(−iX · D + f)Ψ] σ−1/2 −Ψ (iLXσ−1/2) (42)

where LXσ−1/2 is the Lie derivative of σ−1/2 with respect to X. Explicitly, if X preserves the

polarization, we must have

[X, (∂/∂Z̄α)] = C β
α (∂/∂Z̄β) (43)
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For such cases, one can show that

−iLXσ−1/2 = −iX · ∂σ−1/2 −
i

2
∂ ·X σ−1/2 = − i

2
TrC σ−1/2 (44)

where TrC = Cα
α . This shows that it is possible to view P(f) as acting just on Ψ according to

P(f)Ψ =

[

(−iX · D + f)− i

2
TrC

]

Ψ (45)

and reabsorb σ−1/2 and its conjugate into the measure of integration, where they cancel out

leaving just the phase volume defined by the symplectic form. The extra term − i
2TrC in P(f)

is the metaplectic correction. The vector fields XZα
, XZ̄α

commute with the polarization,

Cβ
α = 0 in (43) for these vectors, so the expressions for the quantum version of Zα, Z̄β are

unchanged. However, for the vector field corresponding to Z̄αZα, (43) gives Cβ
α = i δβα and

hence

P(Z̄αZα)Ψ = e−
1
2 Z̄·Z

(

Zα
∂

∂Zα
+ 1

2(k + 1)

)

h(Z) (46)

This is equivalent to saying that the quantum operator corresponding to Z̄αZα is a† ·a+ 1
2(k+1),

which is the Q we obtained previously in (33) in terms of the Sp(k + 1,R) algebra. We see

that the “zero-point” charge can indeed be interpreted as the metaplectic correction.

Here we have pursued the description of CP
k as the reduced phase space obtained via

symplectic reduction from Ck+1. This simplified the analysis since the geometric quantization

of Ck+1 is fairly straightforward and we could then use those features which descend to CP
k

to arrive at the combination A + k
2ω

0. But a direct geometric quantization of CP
k is also

possible. The identification of σ−1/2 within such an approach and the direct calculation of the

metaplectic correction (or the Mpc correction [20]) would be very interesting.
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