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Known entropy bounds, and the Generalized Second Law, were recently shown to imply bounds
on the information arriving at future null infinity. We complete this derivation by including the
contribution from gravitons. We test the bounds in classical settings with gravity and no matter.
In Minkowski space, the bounds vanish on any subregion of the future boundary, independently of
coordinate choices. More generally, the bounds vanish in regions where no gravitational radiation
arrives. In regions that do contain Bondi news, the bounds are compatible with the presence
of information, including the information stored in gravitational memory. All of our results are
consistent with the equivalence principle, which states that empty Riemann-flat spacetime regions
contain no classical information. We also discuss the possibility that Minkowski space has an infinite
vacuum degeneracy labeled by a choice of Bondi coordinates (a classical parameter, if physical). We
argue that this degeneracy cannot have any observational consequences if the equivalence principle
holds. Our bounds are consistent with this conclusion.

I. INTRODUCTION

Entropy bounds control the information flow through
any light-sheet [1], in terms of the area difference between
two cuts σ1, σ2 of the light-sheet:

S ≤ A[σ1]−A[σ2]

4G~
. (1)

A light-sheet is a null hypersurface consisting of null
geodesics orthogonal to σ1 that are nowhere expanding.
A cut is a spatial cross-section of the light-sheet.

In simple settings, one can take S to be the thermo-
dynamic entropy of isolated systems crossing the light-
sheet. More generally, the definition of S is subtle, be-
cause in field theory there are divergent contributions
from vacuum entanglement across σ1 and σ2. Precise
definitions of S were found only recently, leading to rig-
orous proofs of two different field theory limits (G→ 0) of
Eq. (1). The proofs apply to free [2, 3] and interacting [4]
scalar fields. Entropy bounds have also been verified [4]
or proven [5] holographically for interacting gauge fields
with a gravity dual.

Gravitational waves heat water, so they can be used to
send information. In general, it is challenging to distin-
guish between gravitational waves and a curved space-
time. This can be done approximately in a setting where
the wavelength of the radiation is small compared to
other curvature radii in the geometry. A more rigorous
notion of gravitational radiation is the “Bondi news,”
which is defined in terms of an asymptotic expansion of
the metric of asymptotically flat spacetimes [6, 7].

The Bondi news corresponds to gravitational radia-
tion that reaches distant regions (see Fig. 1). It has
been observed by monitoring test masses far from the
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source [8, 9]. Its definition contains a rescaling by a fac-
tor of the radius, so that it remains finite as the radiation
is diluted and weakened. Ultimately, it can be thought
of as a spin-2 degree of freedom on future null infinity,
I+.
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FIG. 1. Penrose diagram of an asymptotic flat space-
time. Gravitational radiation (i.e., Bondi news) arrives on a
bounded portion of I+ (red). The asymptotic regions before
and after this burst (blue) are Riemann flat. The equivalence
principle requires that observers with access only to the flat
regions cannot extract classical information; however, an ob-
server with access to the Bondi news can receive information
(see Sec. III). We find in Sec. IV that the asymptotic entropy
bounds of Sec. II are consistent with these conclusions.

Recently, bounds on the entropy of arbitrary subre-
gions of I+ were obtained as the limit of known bulk
entropy bounds [10]. These bounds constrain both the
vacuum-subtracted entropy of states reduced to the sub-
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region, and its derivatives as the subregion is varied.
However, only nongravitational fields were treated rig-
orously. In this paper, we show how to incorporate grav-
itational radiation into the asymptotic entropy bounds.

The bulk entropy bounds that formed the starting
point of Ref. [10] have been proven for certain fields [2–
5, 11]. Unless there is a discontinuity in the asymptotic
limit, we expect these proofs to apply to the asymp-
totic bounds as well. Explicit proofs have not yet been
given for a spin-2 field, however. To be conservative, the
asymptotic bounds on gravitational radiation should be
regarded as a conjecture.

Therefore, we will perform a simple consistency check:
we ask whether the bounds are compatible with the
equivalence principle. We take this principle to be the
statement that an empty, Riemann-flat spacetime region
contains no classical information. (By this we mean a
subset of Minkowski space, not of a Riemann-flat space-
time with nontrivial topology. In this paper, “flat” will
always mean Riemann-flat and devoid of matter.) In
particular, the classical information of the spacetime ge-
ometry is contained only in its Riemann curvature, and
not, for example, in the choice of coordinates.

The simplest setting is empty Minkowski space. In
any subregion of I+, our upper bounds vanish, imply-
ing that the vacuum-subtracted entropy is nonpositive
and independent of the subregion. (In particular, the
upper bounds do not depend on a “choice of vacuum”
of Minkowski space.) This is consistent with the equiva-
lence principle, which tells us that no classical informa-
tion is present.

The asymptotic metric of Minkowski space, written in
Bondi coordinates, is not uniquely fixed by fall-off con-
ditions. One can freely choose the 1/r correction to the
shape of spheres specified by setting the coordinates u
and r to constants. (Note that this correction describes
the shape of an embedded surface, whose location is de-
termined by an arbitrary coordinate choice. Its shape
is not indicative of any actual curvature of Minkowski
space, which is manifestly Riemann-flat.) The freedom
corresponds to a choice of a single real function c(Ω) of
the coordinates on the sphere.

Recently, this degeneracy in the choice of Bondi coor-
dinates has been interpreted as a degeneracy of the actual
vacuum state of Minkowski space [12, 13]. We take no
position on the formal convenience of elevating a classical
coordinate choice to a degeneracy of the vacuum.

However, the equivalence principle rules out the pos-
sibility that a coordinate choice in Minkowski space has
any measurable consequences. Therefore, c(Ω) must be
unobservable. This is consistent with the fact that our
bounds are insensitive to c(Ω) and vanish identically in
Minkowski space.

We also consider a classical gravitational wavepacket
with finite support, which arrives at I+ as Bondi news.
In portions of I+ where the news has no support, our up-
per bounds vanish. This is consistent with the absence of
classical information according to the equivalence prin-

ciple: distant regions without gravitational radiation are
Riemann-flat, so their geometry cannot be distinguished
from Minkowski space.

In Bondi coordinates, the Bondi news does change
the function c(Ω), by an integral of the news [12–14].
Since the news can be measured, this integral can be
measured; for example, it results in a permanent dis-
placement of physical detectors. Thus, in a nonvacuum
spacetime, c(Ω) is a coordinate choice only in that it can
be picked freely either before or after the burst. The
difference—the gravitational memory—is invariant and
physical. The equivalence principle, and our bounds,
constrain how the memory can be observed: namely,
only by recording the news with physical detectors (which
must be present during the burst). The memory cannot
be measured by merely probing the asymptotic vacuum
regions before and after the burst.

Outline In Sec. II, we review the derivation of asymp-
totic entropy bounds of Ref. [10] (Sec. II A), and we show
that they respond to gravitational radiation through the
square of the Bondi news (Sec. II B).

In Sec. III, we discuss implications of the equivalence
principle. In Sec. III B, we consider the term CAB(∞)
that appears in the asymptotic (Bondi) metric of asymp-
totically flat spacetimes. This term can be nonvanishing
even in Minkowski space and has been interpreted as la-
belling degenerate vacua [12, 13, 15]. Since it corresponds
to a coordinate choice in Minkowski space, the equiv-
alence principle demands that CAB be unobservable in
any experiment. In Sec. III C, we consider gravitational
memory (the integral of Bondi news). The equivalence
principle implies that the memory can only be measured
by an observer or apparatus that has access to all the
Bondi news that produces the memory. In Sec. III D,
we discuss “soft” gravitons and gravitational waves, by
which we mean waves with long wavelength compared to
some other time scale in the process that produces them.
Given enough time, such excitations can be distinguished
from the vacuum and so their information content is un-
constrained by the equivalence principle.

In Sec. IV, we discuss implications of the entropy
bounds of Sec. II A, in the same settings considered in
Sec. III. In Minkowski space, there is no news, and all
our upper bounds vanish. We also consider a classical
probabilistic ensemble (i.e., a mixed state) of classical
gravitational wave bursts. We find that our bounds per-
mit an observer to distinguish between different classical
messages if and only if the observer has access to the
news. Thus the implications of our entropy bounds are
consistent with the conclusions we draw from the equiv-
alence principle in Sec. III.

In Appendix A, we discuss an asymptotic entropy
bound proposed by Kapec et al. [16]. We focus on the
case of empty Minkowski space. Whether this bound
differs from (a special case of) ours depends on the def-
inition of the entropy, which was not fully specified in
Ref. [16]. We argue that consistency with the equiva-
lence principle requires a choice under which the bounds
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agree. We clarify that the extra term in the upper bound
of Ref. [16] originates from a difference in how the rele-
vant null surfaces are constructed before the asymptotic
limit is taken.

In Appendix B, we apply the bounds of Sec. II A to
a single graviton wavepacket. This case is not obviously
constrained by the equivalence principle and so lies out-
side the main line of argument pursued here. We find
that our bounds have implications similar to those de-
rived for the classical Bondi news in Sec. IV.

II. ASYMPTOTIC ENTROPY BOUNDS AND
BONDI NEWS

In Ref. [10], entropy bounds were applied to a distant
planar light-sheet. The bounds can be expressed in terms
of the stress tensor of matter crossing the light-sheet, and
the square of the shear of the light-sheet. It was shown
that the matter contribution is independent of the orien-
tation of the light-sheet in the asymptotic limit. However
this was not proven for the contribution from the shear.
Here we fill this gap by demonstrating that the shear
term contributes to the upper bounds as the square of
the Bondi news. Thus it is associated with gravitational
radiation reaching the boundary. In particular, this im-
plies that the asymptotic bounds of Ref. [10] are fully
independent of the orientation of the light-sheets used to
derive them.

A. Asymptotic Entropy Bounds

In this subsection we briefly review the derivation
and formulation of the asymptotic entropy bounds of
Ref. [10]. Expectation value brackets are left implicit
throughout.

We consider entropy bounds [1, 17, 18] in the general
form of Eq. (1). In the weak-gravity limit, Newton’s
constant G is taken to become small, and a light-sheet is
chosen that consists of initially parallel light-rays (θ0 =
0). An example of this is a null plane t − z = const in
Minkowski space. The effects of matter on the light-sheet
are computed to leading nontrivial order in G, from the
focussing equation [19]

− dθ

dw
= 8πGTabk

akb + ςabς
ab . (2)

Here Tab is the matter stress tensor, ka is the tangent
vector to the light-rays that comprise the light-sheet, w is
an affine parameter and ς is the shear (defined by Eq. 19).
The expansion θ is the logarithmic derivative of the area
of a cross-section spanned by infinitesimally nearby light-
rays.

By Eq. (1), the upper bound is given by the total area
loss between two cross-sections of the light-sheet. It can
be computed by integrating Eq. (2) twice along the light-
rays, and then across the transverse directions. If the

shear scales as G1/2, the area loss will scale as G, so
Newton’s constant drops out in Eq. (1). The resulting
bound involves only Planck’s constant ~, so it can be
viewed as a pure field theory statement.

Near the boundary of an asymptotically flat spacetime,
the matter stress tensor falls off as r−2 and the shear
associated with gravitational radiation falls of as r−1, so
the above argument can be carried out at finite G, as
an expansion in G/r2. In particular, one can work on a
Minkowski background,

ds2 = −du2 − 2du dr + r2dΩ2 , (3)

and compute area differences at order G/r2, by integrat-
ing the focussing equation (2).

Keeping the radiation under consideration fixed, the
area of the radiation front increases in the asymptotic
limit as the local stress tensor decreases. It is convenient
to rescale both [10], and formulate asymptotic entropy
bounds directly in terms of finite quantities on I+. The
asymptotic energy flux is the energy arriving on I+ per
unit advanced time and unit solid angle:1

T̂ = T̂uu + ς̂abς̂
ab , (4)

The first term is the energy flux of nongravitational ra-
diation,

T̂uu = lim
r→∞

r2Tuu , (5)

The second term is set by the shear of the light-sheet and
will be defined in Sec. II B. It will be shown to correspond
to the energy delivered by gravitational waves.

In Ref. [10], the basic tool for deriving the asymptotic
entropy bounds is the notion of a distant planar light-
sheet. Let p ∈ I+ be a point at affine time up and angle
ϑp = π. Let H(up) be the boundary of the past of p:

H(up) ≡ İ−(p) , p ∈ I+ . (6)

As discussed in Ref. [10], H(up) is a null hypersurface.
At O(G/u2

p)
0, it is the null plane t+z = up in Minkowski

space, with affine parameter w ≡ t−z and tangent vector
kµ = dxµ/dw. In the {u, r, ϑ, φ} coordinates, kµ has
components

ku = cos2(ϑ/2) (7)

kr = −(cosϑ)/2 (8)

kϑ = sinϑ cos2(ϑ/2)/(up − u) (9)

kφ = 0 . (10)

In Ref. [10] it was shown that a number of known weak-
gravity entropy bounds apply on H(up). Cuts on differ-
ent H(up) were identified for different up by using the

1 We will generally refer to boundary versions of bulk quantities
by adding a hat.



4

same function u(Ω) to define each cut; this function also
defines a cut on I+. Bulk entropy bounds were applied
to subregions defined by the cuts. The limit as up →∞
was taken and the bulk entropy bounds were re-expressed
in terms of the asymptotic energy flux T̂ . We will now
list these results; see Ref. [10] for details.

From the Quantum Null Energy Condition [3, 18]
(QNEC) on H(up), one obtains the Boundary QNEC,

1

δΩ

d2

du2
Ŝout[σ̂,Ω] ≤ 2π

~
T̂ . (11)

Here δΩ is a small solid angle element near a null geodesic
at angle Ω on I+. The second derivative is computed as
this element is pushed to larger u, starting a given cut σ̂
of I+. The limit as δΩ→ 0 is implicit. The entropy Ŝout

is the von Neumann entropy of the state of the subregion
of I+ above the cut. That is,

Sout ≡ −tr>σ̂ ρ log ρ . (12)

The reduced state in the region above the cut σ̂ is defined
by

ρ = tr<σ̂ ρg , (13)

where ρg is the global state on I+. We need not include
future timelike infinite since we assume that all matter
decays to radiation at sufficiently late times. Note that
all cuts of I+ have the same intrinsic and extrinsic geom-
etry. Therefore, divergent terms in Sout drop out when
differences are computed, or when derivatives are taken
(also below). With the above definition, the QNEC has
been proven for free scalar fields, and also for interacting
gauge fields with a gravity dual [5].

From the differential, weak gravity Generalized Second
Law (GSL) on H(up) [11, 20], or by integrating Eq. (11),
one obtains the Boundary GSL in differential form

− 1

δΩ

d

du
Ŝout[σ̂; Ω] ≤ 2π

~

∫ ∞
σ̂

du T̂ . (14)

From the integrated weak-gravity GSL on H(up), or by
integrating Eq. (14), one obtains the Boundary GSL in
integral form,

Ŝout[σ̂2]− Ŝout[σ̂1] ≤ 2π

~

∫ σ̂1

σ̂2

d2Ω du [u− u2(Ω)] T̂ . (15)

Finally, from the Quantum Bousso Bound (QBB) [2, 4]
on finite “slabs” of H(up) one obtains a Boundary QBB,

ŜC [σ̂1, σ̂2] ≤ 2π

~

∫ σ̂1

σ̂2

d2Ω du ĝ(u) T̂ (u,Ω) , (16)

The weighting function ĝ is different for free and interact-
ing bulk fields [2, 4]. Since fields become free asymptoti-
cally, we expect that it is given by the free field expression
ĝ(u) = (u1 − u)(u− u2)/(u1 − u2).

In Eq. (16), ŜC is the vacuum-subtracted entropy [21,
22] of a finite affine interval on I+. It is defined directly

on the finite portion of the light-sheet between σ̂1 and
σ̂2, as the difference of two von Neumann entropies

ŜC [σ̂1, σ̂2] = −tr ρ log ρ+ trχ logχ . (17)

Here the density operator ρ is obtained from the global
quantum state ρg by tracing out the exterior of the re-
gion between σ̂1 and σ̂2; and χ is similarly obtained from
the global vacuum state.2 The ultraviolet contributions
from vacuum entanglement are the same in both reduced
states, so they cancel out [2, 21, 22]. With this definition,
the QBB has been proven both for free and interacting
scalar fields. It has also been verified for gauge fields with
gravity duals [4].

For free theories, the algebra of operators factorizes
over the null geodesics that generate the light-sheet [11].
We expect that this case applies to I+. Then the von
Neumann entropy of the vacuum state restricted to the
semi-infinite region above a cut σ̂ is independent of the
cut. Therefore, we have

Ŝout[σ̂2]− Ŝout[σ̂1] = ŜC [σ̂2]− ŜC [σ̂1] , (18)

where ŜC [σ̂] is now computed on the semi-infinite regions
above σ̂1 and σ̂2. Thus we can also express other bounds,
Eqs. (11), (14) and (15), in terms of derivatives and dif-

ferences of the manifestly finite quantity ŜC , instead of
Ŝout. (We will use this form in Sec. IV.)

B. Bondi News as Shear on Distant Light-Sheets

Let ςab be the shear tensor on H(up), defined as the
tracefree part of the extrinsic curvature:

ςab = Bab −
1

2
θqab , (19)

where Bab = q ca q
d
b ∇ckd, and qab is the metric on the cuts

w = const. One could choose different cuts, but some
foliation of H(up) into cuts has to be chosen in order to
discuss the evolution of the shear. The shear tensor has
only transverse components, so its information is fully
captured by the lower-dimensional tensor

ςĀB̄ ≡ ςabeaĀe
b
B̄ . (20)

The D − 2 orthonormal vectors ea
Ā

are tangent to the
cut. Below we will denote any projection with the ea

Ā
by capital indices placed on higher-dimensional tensors.

The evolution equation for the shear is [19, 23]

d

dw
ςĀB̄ = WĀB̄ − θ ςĀB̄ , (21)

2 As discussed in the introduction, the equivalence principle re-
quires that the reduced vacuum state is unique, so it implies that
the definition of the vacuum-subtracted entropy is unambiguous.
We return to this point in App. A.
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where

WĀB̄ = −CabcdeaĀk
becB̄k

d ≡ −CĀbB̄dkbkd (22)

and Cabcd is the Weyl tensor. We now recall that at fixed
(u,Ω) there is no difference between expansions in inverse
powers of up and r, since [10]

r =
up − u

2 cos2(ϑ/2)
. (23)

The asymptotic behavior of the Weyl tensor is [24]

CĀuB̄ϑ ∼ O(r−1) , (24)

CĀuB̄r ∼ O(r−3) , (25)

CĀrB̄r ∼ O(r−4) , (26)

CĀrB̄ϑ ∼ O(r−3) , (27)

CĀϑB̄ϑ ∼ O(r−1) ; (28)

and from Eqs. (9) and (10)

kϑ ∼ O(r−1) , kφ = 0 . (29)

Hence we have

WĀB̄ = −CĀuB̄u(ku)2 +O(u−2
p ) . (30)

These Weyl components are related to the Bondi news,
NAB [24]:

CĀuB̄u = − 1

2r

d

du
NAB +O(r−2) . (31)

We have introduced an unbarred basis defined by eaA =
rea

Ā
, with the feature that in this basis boundary quan-

tities such as CAB and NAB are independent of r. Un-
barred capital indices will be raised and lowered with the
unit two sphere metric, hAB .

Since the expansion of H(up) is of order G/r2, the
θ ςĀB̄ term in Eq. (21) is always subleading in our analy-
sis. Because the Bondi news and the shear of H(up) both
vanish in the far future, Eq. (21) implies

ςĀB̄ =
1

2r
NAB cos2(ϑ/2) +O(r−2) , (32)

where we have used d2u/dw2 ∼ O(r−1).
On the other hand, the “boundary shear tensor” ap-

pearing in Eq. (4) was defined in Ref. [10] as

ς̂ab(u, ϑ, φ) ≡ 1√
8πG

lim
r→∞

r
ςab(u, r, ϑ, φ)

cos2(ϑ/2)
. (33)

Comparing the previous two equations and using
Eq. (20), we recognize that the boundary shear is the
Bondi news, up to an O(1) rescaling:3

ς̂AB =
NAB√
32πG

. (34)

3 In the Newman-Penrose formalism, the Bondi news is commonly
identified with the u-derivative of the shear of the family of out-
going null congruences specified by u = const [25]. Here we relate
the news to the shear of ingoing null congruences.

The factor of G−1/2 ensures that ς̂2 has the dimension of
an energy flux.

Returning to the definition of the total asymptotic en-
ergy flux, Eq. (4), we can now write T in terms of the
Bondi news:

T̂ = T̂uu +
1

32πG
NABN

AB , (35)

Note that the definition of the boundary shear ς̂AB was
tied to a family of null planes H(up) whose orientation
picks out a special point on the sphere. Since the Bondi
news admits an independent definition that does not re-
quire us to pick such a point, it follows that the asymp-
totic bounds derived in Ref. [10] are independent of the
orientation of the H(up).

In the remainder of this paper, we will specialize to the
case where all outgoing radiation is gravitational. Then
T̂uu = 0 and T̂ = NABN

AB/32πG. We see that the
square of the Bondi news controls the entropy flux of
gravitational radiation.

III. IMPLICATIONS OF THE EQUIVALENCE
PRINCIPLE

In this section, we consider classical aspects of grav-
itational radiation. We derive consequences of the
equivalence principle: the hypothesis that no subset of
Minkowski space contains any measurable classical infor-
mation. Since we use the notion of classical information
throughout this and the following sections, we begin with
a simple example of such information and its description,
in Sec. III A.

It is possible to find nonvacuum quantum states whose
effective stress tensor (analogous to Eq. (35)) vanishes
in a bounded region. The geometry in this region could
be Riemann-flat, yet the region could contain quantum
information. Here we only assume the absence of classical
information in Minkowski space. In particular we assume
that no observable is associated with a coordinate choice
in Minkowski space.

The geometry of Minkowski space is trivial, but of
course the coordinates are arbitrary. So the matrix of
metric components can take many different forms, both
generally and in the asymptotic region. Restricting to
Bondi coordinates does not fully fix this ambiguity. The
equivalence principle implies that any parameters of the
Bondi metric that are not unique in Minkowski space
must be unobservable, or else that parameter would con-
stitute measurable information. There is no ~ in the
metric of Minkowski space in any Bondi gauge, so the
corresponding coordinate information would be classical
information.

This includes in particular a parameter CAB (defined
below) that has been interpreted [12, 13, 15] as labelling
degenerate vacua (Sec. III B). Indeed, no observation of
this parameter has yet been made, and we are not aware
of a proposal for how it could be measured.
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A key consequence of the equivalence principle is that
the gravitational memory created by Bondi news can
be measured only by recording the news. It cannot be
measured by probing the vacuum before and after the
news (Sec. III C). Finally, we note that the equivalence
principle does not preclude soft gravitational radiation
from carrying information, if “soft” is understood in the
physically relevant sense of a small expansion parameter
(Sec. III D).

These conclusions are in harmony with our findings
in Sec. IV, where we apply the bounds of Sec. II A to
constrain the information content of gravitons and of the
vacuum.

A. Classical Information

A simple example is a classical n-bit message written
by Alice and delivered to Bob, say as a sequence of red
and blue balls shot across space. Before Bob looks at the
balls, he is ignorant of their state. Thus he can describe it
as a density operator in a 2n dimensional Hilbert space,
which is diagonal in the {red, blue}n basis, with equal
probability 2−n for each possible message. The Shannon
and von Neumann entropies are both

−
2n∑
i=1

pi log pi = −Trρ log ρ = n log 2 . (36)

This is an incoherent superposition, or classical prob-
abilistic ensemble (not to be confused with a coherent
quantum superposition of ball sequences).

By looking at the balls, Bob learns Alice’s message.
Alice cannot send Bob more information than the max-
imum entropy of the system that carries the message.
Since we can express Bob’s initial ignorance as a density
operator, quantum entropy bounds limit classical com-
munication, as a special case.

Of course, the full quantum Hilbert space is much
larger due to the internal degrees of freedom of the balls.
And even in the tiny subfactor spanned by {red, blue}n,
more general states are possible at the quantum level,
which are not product states of the individual balls.

But for classical messages represented by a quantum
density operator ρi, the ensemble interpretation [26] im-
plies that the full density operator can be written as

ρ =

2n∑
i=1

ρi . (37)

Since the ρi are classically distinguishable—and there-
fore mutually orthogonal—states, there is an irreducible
uncertainty in the von Neumann entropy: the entropy
cannot be parametrically less than the classical value,
n log 2. At the field theory level, this will remain true for
the vacuum-subtracted von Neumann entropy: it must
be parametrically at least n log 2 (assuming the region
contains all balls), since the vacuum entanglement is an

ultraviolet quantum property shared by all the classical
states.

In this paper we often consider the equivalence princi-
ple: the statement that Minkowski space, and any subset
of it, contain no classical information. It is worth reflect-
ing on what it would mean if empty Riemann flat space
did contain measurable information. In that case it could
be used by Alice to communicate a message to Bob.

To be concrete, consider an arbitrarily large patch of
flat space (say, the interior of a falling elevator, or a large
void in our universe). For it to contain information in an
operationally meaningful sense, Alice would have to be
capable of “preparing” this region, perhaps by sending a
certain sequence of gravitational waves through it. Later,
long after those waves have left the region and it is again
empty and Riemann-flat, Bob would have to be capable
of reading out the message that Alice “left behind”, by
examining only this patch.

Specifically, if c(Ω) was observable, then independent
observers with access only to the flat space region, would
all come to the same conclusion as to which coordinates
should be used to label its spacetime points. More pre-
cisely, up to corrections subleading in 1/r, such observers
would uniquely identify topological spheres on which the
Bondi coordinates u and r must be constant, thus par-
tially fixing the chart. This would indeed be a textbook
violation of the equivalence principle.

B. Empty Space Has No Classical Information

Let us consider the asymptotic metric of an asymptot-
ically flat spacetime, in standard retarded Bondi coordi-
nates (see, e.g., [6, 7, 12, 14, 15, 24]):

ds2 = −
(

1− 2mB(u,Ω)

r

)
du2 − 2 du dr

+ r2

(
hAB +

CAB(u,Ω)

r

)
×

×
(
dϑA +

DCC
AC

2r2
du

)(
dϑB +

DCC
CB

2r2
du

)
+ . . . (38)

where mB is the Bondi mass aspect, and the ellipses indi-
cate terms subleading in r. Here, CAB(u,Ω) appears as
the 1/r correction to the round two-sphere metric hAB .
It satisfies hABCAB = 0 and CAB = CBA. The Bondi
news is defined by

NAB = ∂uCAB . (39)

In Minkowski space, the news vanishes. However, the
asymptotic metric of Minkowski space can be written in
the form of Eq. (38), withmB ≡ 0 and any u-independent
choice of a tracefree symmetric CAB(Ω) satisfying

CAB = (2DADB − hABDCD
C) c(Ω) (40)
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for some function c on the sphere. But of course, the
geometry is always the same, no matter how we label
its points. There is no curvature of any kind, whatever
value we choose for c(Ω). By the equivalence principle,
this implies that c and CAB cannot be measured.
CAB does transform nontrivially under large diffeomor-

phisms of the asymptotic metric [12, 24, 27, 28]; indeed,
this is one way to see that it is non-unique in Minkowski
space. Under a BMS supertranslation, u → u + f(Ω),
one has

CAB → CAB +
(
2DADB − hABDCDC

)
f(Ω) (41)

in regions where NAB = 0. This corresponds to a well-
defined change in the shape of a large coordinate sphere
at constant u, r. It affects all such spheres equally; for
example CAB(∞) and CAB(−∞) will change by the same
amount under a supertranslation. Of course, this does
not imply that CAB is observable. A coordinate sphere is
not a physical object but a collection of spacetime points.
Its initial shape before the transformation is set by a
coordinate choice.

The transformation properties of CAB under super-
translations have been interpreted as an infinite “vac-
uum degeneracy” of Minkowski space [12, 13, 15]. Each
“vacuum” is labeled by the function c(Ω) in Eq. (40). We
conclude that the equivalence principle precludes any ob-
servable consequences of this degeneracy.4 (Refs. [29, 30]
give an argument that the vacua are indistinguishable
starting from different assumptions.)

C. Gravitational Memory

In nonvacuum spacetimes, CAB need not be constant
in u, and differences between CAB at different cuts are
observable as “gravitational memory.” However, the
value of CAB at any one cut (or its zero-mode) must
be unobservable in any asymptotically flat spacetime, or
else the equivalence principle would be violated in regions
where no news arrives. We will now discuss this.

Suppose that some process (a binary inspiral, say) pro-
duces gravitational radiation, and that the corresponding
Bondi news arrives entirely between the cuts σ̂1 and σ̂2

of I+. The integral of the news along the null direction is
called the gravitational memory produced by the process,

∆CAB(Ω) ≡
∫ σ̂2

σ̂1

duNAB(u,Ω) (42)

4 Note that the equivalence principle only precludes diffeomor-
phisms from transforming the classical vacuum into a physically
distinct configuration. The equivalence principle does not imply
that large diffeomorphisms always act trivially. When acting on
an excited state, a supertranslation generically produces a dis-
tinct excited state, for example with a different relative timing
of the Bondi news arriving at different angles.

By Eq. (42), the production of memory requires
nonzero flux of radiation, NAB . Hence memory produc-
tion occurs only in excited states, not in the vacuum.
For example, a graviton wavepacket can produce mem-
ory; but then the global state is not the vacuum, but a
one-particle state. This qualitative fact continues to hold
invariantly in the “soft limit,” as the wavepacket is taken
to have arbitrarily large wavelength.

What is the physical manifestation of ∆CAB , or equiv-
alently, how can it be measured? In Sec. II B, we showed
thatNAB is proportional to the shear of a planar null con-
gruence H(up) near I+. Hence the gravitational memory
is related to the integrated shear, i.e., the resulting strain
of the congruence. The displacement vector ηĀ of two in-
finitesimally nearby null geodesics will change by

∆ηĀ = ∆CAB
ηB̄

2r
(43)

between σ̂1 and σ̂2. This can be measured by setting
up (before σ̂1) a collection of physical, massless parti-
cles propagating along the null geodesics that consti-
tute H(up), and observing their transverse location on
a screen that they hit after σ̂2. ∆CAB can also be mea-
sured using an array of timelike detectors distributed over
a large sphere. The displacement of any two detectors
similarly suffers an overall change given by Eq. (43).

In general, the memory captures only a small fraction
of the information that arrives in distant regions: the in-
tegral of the Bondi news. It would certainly be nice to
measure this component using gravitational wave detec-
tors [31, 32]. Such a measurement would not take infinite
time, and it would not be conceptually distinct from any
other measurement of the outgoing radiation.

By Eq. (39) we can write the gravitational memory,
Eq. (42), as a difference of the metric quantity CAB eval-
uated at the two cuts,

∆CAB(Ω) = CAB [σ̂2]− CAB [σ̂1] . (44)

If CAB is interpreted as labelling a vacuum, the creation
of gravitational memory by news could be described as a
“transition” between two such vacua. However, accord-
ing to the equivalence principle this language is mislead-
ing, because CAB cannot be observed at a local cut. A
“vacuum” in the above sense is a coordinate label that
contains no physical information.

Only the difference ∆CAB is invariant (up to Lorentz
transformations [24]) and so can be observed. ∆CAB is
nonzero only in global states which are not the vacuum,
and it is fully determined by the integral of the Bondi
news. So the function CAB(u,Ω) contains no physical
information beyond what is already in its u-derivative,
the news NAB . The observable memory, ∆CAB , captures
a subset of the information in the news.

By the equivalence principle, ∆CAB can only be mea-
sured by an observer who has access to the entire region
in which news arrives. For example, if physical test parti-
cles are introduced into the asymptotic region, and their
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initial position at σ̂1 is recorded, then the memory ∆CAB
can be measured at σ̂2 by observing the new location of
these physical objects. This is an integrated measure-
ment of the Bondi news, with the dynamics of the test
masses doing the integration.

Formally, it can be convenient to consider the “zero
mode” of the news,

CAB(Ω,∞)−CAB(Ω,−∞) ≡
∫ ∞
−∞

duNAB(Ω, u) . (45)

This quantity represents the total amount of memory
produced in an asymptotically flat spacetime. As writ-
ten, it is not observable, since no experiment began in
the infinite past and will end in the infinite future. For-
tunately, in any physical process or sequence of processes,
the production of news will have a beginning and an end.
So one can record the entire memory in a finite-duration
experiment, corresponding to a sufficiently large finite
range of integration.

To summarize both this and the previous subsection,
the value of CAB at any one cut can be changed by a
global change of coordinates. By the equivalence prin-
ciple, CAB cannot be observed and contains no physical
information. Therefore, in particular, we cannot measure
the gravitational memory, ∆CAB by observing CAB lo-
cally at σ̂1 and σ̂2 and computing the difference. Rather,
physical test masses are essential for recording the news
and integrating it to obtain ∆CAB between the two cuts.
If we forgot to introduce real test masses at σ̂1, we can-
not look at empty space at σ̂2 and learn anything from
it.

D. Soft Gravitons

A soft particle is an excitation of a massless field whose
characteristic wavelength, or inverse frequency, is large
compared to some dynamical timescale that otherwise
characterizes a problem. For example, consider a binary
system composed of neutron stars or black holes. They
orbit each other with some frequency ω, which varies
slowly as they approach, until they eventually merge.
The system will emit “hard” gravitational waves with
frequency of order ω. The overall duration of the in-
spiral process is much greater than ω−1; it is charac-
terized by a second time scale τ � ω−1. Or consider
a black hole emitting Hawking radiation. The wave-
length of the “hard part” of the radiation is of order the
black hole radius, ω−1 ∼ O(R), which changes slowly.
Nonetheless, the overall process takes a much longer time,
τ ∼ O(R3/G~).

Because the emission of “hard” radiation slowly trans-
ports gravitating energy from the center to distant re-
gions, the gravitational field will vary not only with char-
acteristic frequency ω, but also over the timescale τ .
Therefore, signals with characteristic frequency as low
as τ−1 are produced in the above processes. Such signals

are referred to as “soft”. (Often the term “soft graviton”
is used, even when the signal is classical.)

This terminology is convenient when we wish to dis-
tinguish particles associated with different timescales in
a given problem. Useful results can be obtained by ex-
panding in ratios of such timescales [33]. It can also be
convenient to idealize soft particles by taking a τ → ∞
limit, for the purposes of making such expansions sharp.
It is worth stressing, however, that infinite-duration ex-
periments are not actually needed to produce and mea-
sure a soft particle. (If they were, soft particles would
have no physical relevance.) The larger time scale τ is
necessarily finite in any physical process.

Moreover, the production of observable radiation
comes at a nonzero energy cost. If a soft graviton were
added to the vacuum, one would obtain an excited state
orthogonal to the vacuum, not a new vacuum. This is
a qualitative statement, and independent of τ . Thus,
there is no fundamental difference between soft particles
and any other form of radiation that arrives in distant
regions.

Correspondingly, when we apply the boundary entropy
bounds of Sec. II A in Sec. IV, all Bondi news can be
treated on the same footing. For example, if the inter-
val under consideration in Eq. (15) or Eq. (16) is large
enough to contain a news wavepacket (hard or soft), we
will find that this graviton will contribute to the energy
side, and generically also to the entropy side of the in-
equality.

IV. ENTROPY BOUNDS ON GRAVITATIONAL
WAVE BURSTS AND THE VACUUM

In this section, we compute the upper bounds of
Sec. II A in simple asymptotically flat spacetimes:
Minkowski space, and a burst of Bondi news that creates
gravitational memory. We show that the upper bounds
are consistent with constraints derived in the previous
section from the equivalence principle.

A. Vacuum

Let us apply the bounds of Sec. II A to empty
Minkowski space: the Boundary QNEC, Eq. (11);
the Boundary GSL in integrated and differential form,
Eqs. (14) and (15); and the Boundary QBB, Eq. (16).
All of these bounds are linear in the boundary stress ten-
sor T̂ , i.e., quadratic in the Bondi news. Since T̂ = 0 in
Minkowski space, the upper bounds all vanish.

The Boundary QBB implies that the vacuum-
subtracted entropy is nonpositive in any finite subregion
of I+. The Boundary GSL implies that it is nonpositive
for any semi-infinite region above a cut, and independent
of the choice of region or deformations of the cut. The
Boundary QFC implies (redundantly with the above)
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that the second derivative under deformations also van-
ishes.

These upper bounds are consistent with all implica-
tions of the equivalence principle described in the previ-
ous section: no subset of Minkowski space contains any
classical information. Moreover, both the bounds and
the equivalence principle are consistent with the simplest
possibility for the quantum description of Minkowski
space: that the ground state is unique, and that the
vacuum-subtracted entropy precisely vanishes on any
subregion of I+.

B. Classical Bondi News

For simplicity, we will consider a single wave packet of
gravitational radiation, of characteristic wavelength λ in
the u-direction. The wave packet is roughly centered on
u = 0 and delocalized on the sphere. The wave packet
can be used to send a message to an observer at I+, for
example by encoding it in its polarization, its shape, its
direction (the angle Ω at which it arrives), or the time of
arrival, within a finite discrete set of N possible choices.

For concreteness, let us encode the information in the
energy of the wavepacket. We take the energy to be of
order E for any message, but with a grading into N dif-
ferent values. A single graviton has energy of order ~/λ.
Since we wish to work in the classical regime, the grad-
ing must be much coarser than that, so the number of
distinct classical states will satisfy

N � Eλ

~
, (46)

We assume that any of the distinct classical signals ar-
rives with equal probability 1/N . The classical Shannon
entropy is thus logN .

If we apply the Boundary QBB, Eq. (15), or the
Boundary GSL, Eq. (16), to the region occupied by the
wavepacket, we obtain

ŜC .
Eλ

~
(47)

This is consistent: in our setup, the vacuum-subtracted
entropy need not be much greater than the Shannon en-
tropy logN , which is much smaller than N and hence,
by Eq. (46), much smaller than the upper bound. Thus,
the asymptotic bounds of Sec. II A easily accommodate
the classical information contained in the Bondi news.

On the other hand, if we apply the same bounds to a
region that fails to overlap with the wavepacket, then the
upper bound vanishes:

ŜC ≤ 0 . (48)

This is consistent with the absence of classical informa-
tion in asymptotic regions that do not contain news, as
required by the equivalence principle.

In particular, the bounds are consistent with our con-
clusion in Sec. III that gravitational memory can only
be measured by an observer who has access to the news
that creates the memory. In our present setup, the news
is featureless but for its overall energy. So its integral, the
memory, contains the same amount of information as the
news, logN . [We have T ∼ NABN

AB/G ∼ E/λ, so the
memory will be of order ∆CAB ∼ NABλ ∼ (GEλ)1/2.]
By Eq. (48), this information is unavailable to an ob-
server who cannot access the news.

Appendix A: KRS Bound

Ultimately the equivalence principle is a hypothesis,
supported by a certain amount of evidence. Indeed, Stro-
minger [12] (building on earlier work of Ashtekar [15] and
others) has argued that the vacuum of asymptotically
flat spacetimes, Minkowski space, is infinitely degenerate,
i.e., that it corresponds to an infinite number of distinct
quantum states labeled by the quantity CAB in Eq. (38).

If these states could be distinguished by any observa-
tion, empty space would contain an infinite amount of
information. This would constitute a violation of the
equivalence principle in its usual, classical sense: in a ba-
sis where Minkowski-like states are labeled by CAB , they
can be naturally identified with a choice of coordinates,
so coordinates would be measurable. Kapec, Raclariu,
and Strominger [16] (KRS) recently proposed an entropy
bound that contains an extra term (denoted XKRS be-
low), designed to account for this possibility.

A precise definition of the relevant entropy was not
yet given in Ref. [16]. More importantly, no measure-
ment protocol has been suggested for extracting the in-
formation contained in empty space. Such a measure-
ment would rule out the equivalence principle experimen-
tally. Conversely, absent experimental evidence to the
contrary, we would argue that the equivalence principle
should be retained: we should not consider Minkowski
space written with different coordinate parameters CAB
to be physically distinct spacetimes.

In order to facilitate further study, we will summarize
our understanding of the differences between our bounds
and the KRS bound. We will offer a geometric interpre-
tation of the extra term XKRS. We will explain why it
appears in their derivation of an asymptotic bound but
not in ours. We will also describe how the presence of
this term conflicts with the equivalence principle.

KRS considered the asymptotic limit of bulk null hy-
persurfaces with approximately spherical cross-sections.
This simplifies the approach to I+ in spherical Bondi
coordinates, compared to our use of planar light-sheets.
Unlike the planar null surfaces H(up) used above, how-
ever, existing bulk entropy bounds become divergent and
hence trivial in the asymptotic limit of spherical null sur-
faces. Hence they cannot be used as a starting point if
one wishes to work with spherical cross-sections. A new
subtraction method was proposed to cancel the diver-
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gence [16]. The KRS bound is

SKRS
0 [σ̂2] ≤ ∆K[σ̂2] +XKRS[σ̂2;CAB(∞)] (A1)

where u2(Ω) defines the position of the cut.5 A full defi-
nition of SKRS

0 was left to future work, but we will argue
below that the choice is tightly constrained by coordinate
invariance.

Let us first consider the r.h.s. of Eq. (A1). The first
term is given by

∆K[σ̂2] ≡ 2π

~

∫ ∞
σ̂2

d2Ω du [u− u2(Ω)] T̂ . (A2)

This is precisely the r.h.s. of a special case of our in-
tegrated Boundary GSL, Eq. (15), which for σ̂1 → ∞
becomes:

ŜC [σ̂2] ≤ ∆K[σ̂2] . (A3)

However the r.h.s. of the KRS bound contains the extra
term

XKRS ≡ − 1

8G~

∫
d2Ω DAu2(Ω) DBC̄

AB (A4)

=
1

8G~

∫
d2Ω u2(Ω) DADBC̄

AB (A5)

where

C̄AB ≡ CAB(∞)− CAB0 . (A6)

Here CAB0 refers to a fiducial choice of Bondi coordinates
(or of a “late-time vacuum” in the sense of Ref. [12])
at u → ∞, whereas CAB refers to the “actual” Bondi
coordinates (or “late-time vacuum”) that will be attained
as u → ∞. Because DADBC̄

AB is a total derivative,
its average on the cut σ̂2 vanishes, so unless it vanishes
identically, it will have indefinite sign on the sphere. It
also follows that XKRS = 0 if u2 = const, so the extra
term only contributes if the cut has nontrivial angular
dependence in the chosen coordinates.

In the bulk, DADBC̄
AB arises geometrically from

a nonvanishing expansion of the null hypersurfaces at
late times, which remains after the KRS regularization.
Namely, the null expansion orthogonal to a surface of
constant u, r in Minkowski space in the metric of Eq. (38)
is

θ[CAB ] = −1

r
− 1

2r2
DADBCAB , (A7)

so the difference between two choices CAB , CAB0 yields

θ̄(Ω) = − 1

2r2
DADBC̄AB . (A8)

5 In the notation of Ref. [16], our σ̂2 is their Σ; our ∆K is
−AΣ

F /4G~; and our XKRS is (−AΣ
0 +AΣ

F )/4G~.

Substituting this result in Eq. (A5), the term XKRS can
thus be understood as an extra area difference accumu-
lated due to a nonzero regulated expansion θ̄ of the KRS
null surface at late times.

The extra term XKRS was motivated in Ref. [16] by
covariance of their geometric construction under BMS
transformations, so it is worth explaining its absence in
Eq. (A3) and our other bounds. KRS consider a coordi-
nate sphere at fixed u, r at late times, and construct a
null hypersurface orthogonal to it. BMS transformations
act nontrivially by deforming the geometry of this coordi-
nate sphere and changing its null expansion as a function
of angle. This change propagates along the entire null hy-
persurface and leads to an extra area difference XKRS as
described above.

A bulk BMS supertranslation of a given late-time
cross-section of the null plane H(up) would yield a sim-

ilar term. The null surface H̃(up) orthogonal to the
new cross-section would be neither a light-sheet nor a
causal horizon, because the expansion at late times has
the wrong sign on some generators. From this perspec-
tive, the KRS conjecture involves a modification of the
nonexpansion condition of the covariant entropy bound,
such that the permitted range of the (regulated) expan-
sion depends on the late-time Bondi frame.

However, with our definition of H(up), BMS super-
translations do not act in this way. We defined H(up)
not in terms of a given bulk cross-section, but as the
boundary of the past of a point p on I+ [10]. BMS su-
pertranslations can only move this point along the null
geodesic generator on which it lies. The boundary of
the past of any point on I+ has vanishing late-time ex-
pansion and is a causal horizon. Thus, supertranslations
map the set of all H(up) to itself. Therefore they have
no effect when the limit as up → ∞ is taken, and they
leave no imprint in our asymptotic entropy bounds.

We now turn to the l.h.s. of Eq. (A1). The indefinite
sign of DADBC

AB(∞) on the sphere constrains possible
definitions of SKRS

0 . It implies that SKRS
0 [σ2] cannot be

unique in Minkowski space, for any nonconstant cut σ2.
In particular, it is not possible for SKRS

0 to always vanish
for arbitrary subregions of the boundary of Minkowski
space regardless of the choice of coordinates.

To see this, choose asymptotic coordinates such that
C̄AB = βC̃AB where C̃AB is nonvanishing and satisfies
Eq. (40), and β is a constant. By Eq. (A4), XKRS is
linear in β so it can be made negative and arbitrarily
large in magnitude by an appropriate choice of β. This
would violate the KRS bound so SKRS

0 [σ2] must depend
on C̄AB .

The above considerations also imply that SKRS
0 cannot

be bounded from below by the Shannon entropy—not
even approximately—in the case where classical Bondi
news is present.

Indeed, KRS advocate that SKRS
0 should not be unique

in Minkowski space. Rather it should contain a “soft
term” that depends on CAB in some way, so that the
KRS bound is satisfied independently of the choice of
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the “reference vacuum” CAB0 .
Here we note that the only definition consistent with

the equivalence principle is

SKRS
0 ≡ ŜC +XKRS , (A9)

where SC has no dependence on CAB . With this choice,
the XKRS terms would cancel, and thus, all dependence
on CAB would drop out. Then Eq. (A1) would reduce to
Eq. (A3). With any inequivalent definition, the physical
content of Eq. (A1) would depend on a coordinate choice.

This is because XKRS depends on the quantity C̄AB
defined in Eq. (A6). We have argued in Sec. III B that
CAB(∞) can be changed by changing the coordinate
choice. Therefore, neither CAB(∞) nor its difference
from a fiducial value, C̄AB , can be observable, if the
equivalence principle is valid. [Note that the fiducial
value CAB0 need not correspond to the value of CAB at
any cut on I+. If it did, C̄AB could be measured, and it
would originate with physical radiation whose informa-
tion content satisfies Eq. (A3).]

In particular, if SKRS
0 could be constructed entirely

from observable quantities, then Eq. (A1) could be used
to constrain C̄AB , thus making it accessible to observa-
tion. This would be a problem: C̄AB must remain un-
observable by the equivalence principle, because it corre-
sponds to a coordinate choice in Minkowski space.

In closing, we stress again that by the equivalence prin-
ciple we mean the statement that empty Riemann-flat
space contains no classical information. In Sec. IV we
showed that the bounds of Sec. II A are consistent with
this principle. In this appendix we have argued that the
KRS bound is not consistent with it, except for a partic-
ular choice of definition of entropy under which it would
reduce to a special case of Eq. (15). We make no claims
about the compatibility of the KRS bound with any other
formulation of the equivalence principle.

Appendix B: Single Graviton Wavepacket

In this appendix, we study the implications of asymp-
totic bounds in a quantum setting; we will find that in
some cases they restrict the entropy more strongly than
the equivalence principle did for classical waves.

We consider a classical probabilistic ensemble of single
graviton wave packets, of characteristic wavelength λ in
the u-direction. Like the classical gravitational wave of
Sec. IV B, the wave packets shall be roughly centered on
u = 0, and delocalized on the sphere. This is a global
quantum state, defined on all of I+.

Any such state is orthogonal to the vacuum. Here we
shall take the global state ρg to be a mixed state with
global von Neumann entropy of order unity:

Ŝg = −tr ρg log ρg ∼ O(1) . (B1)

For example, ρg could be an incoherent superposition
of the graviton wavepacket in two different polarization

states. Alice could encode a message about the weather
in the choice of polarization, and Bob could decode this
message if he is able to measure the polarization.

In the region occupied by the wave packet, we have

NABN
AB ∼ O

(
l2P
λ2

)
, (B2)

T̂ ∼ O
(

~
λ2

)
, (B3)

NAB ∼ O
(
lp
λ

)
, (B4)

where expectation value brackets are left implicit. The
gravitational memory created by the wavepacket is

∆C∞AB =

∫ ∞
−∞

NAB du ≈
∫ λ

−λ
NAB du ∼ O(lP ) , (B5)

where

lP ≡
√
G~ (B6)

is the Planck length. Note that the memory is indepen-
dent of λ and so remains finite as λ is taken large.

a. Boundary Quantum Bousso Bound

The Boundary QBB, Eq. (16), bounds the entropy on
finite portions of I+. This is particularly relevant to ac-
tual experiments. There are no experiments that started
infinitely long ago and will complete an infinite time from
now. When we measure something, we do it in finite
time.

Hence, we will consider an experiment of finite dura-
tion of order T . It will be convenient to center this time
interval near u = 0. Thus, we consider an observer who
has access to the subregion

− T . u . T (B7)

of I+ (or to the subregion of the asymptotic region de-
fined by the same range, in Bondi coordinates). It will
not be important whether the cuts σ̂1, σ̂2 are at constant
u.

All observables that can be measured by this observer
can be computed from the reduced density operator

ρT ≡ tr6T ρg . (B8)

We must also consider the global vacuum state, restricted
to the observation interval:

χT = tr6T |0〉〈0| . (B9)

In this notation, the vacuum-subtracted entropy, Eq.
(17), is written as

ŜC = −trT ρT log ρT + trT χT logχT . (B10)

The subscript T (or 6 T ) on the trace indicates that the
trace is taken over the Hilbert space factor associated
with the observation interval (or its complement).
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u
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FIG. 2. A short observation (green shaded rectangle) cannot
distinguished the reduced graviton state from the vacuum re-
duced to the same region. The graviton delivers no informa-
tion to this observer.

Short Observation Regime We begin by considering
the case where λ � T . In this regime, the observer has
access to a region occupied by the graviton wavepacket,
but much smaller than the wavepacket (Fig. 2). The
Boundary QBB implies

ŜC . O(T̂ T 2/~) ∼ O(T 2/λ2) , (B11)

so the upper bound vanishes quadratically with T/λ.

To understand this result, it is instructive to return to
the bulk and consider the case of a scalar field wavepacket
passing through H(up). In this setting, the entropy
can be computed explicitly; and the bound has been
proven [2, 4]. A beautiful explanation of the vanishing of
the information content was given by Casini [22], build-
ing on pioneering work of Marolf, Minic, and Ross [21].

To an observer with access to a finite or semi-infinite
region, the vacuum (restricted to this region) is a noisy
state. For example, in the simplest case of a semi-infinite
region (Rindler space), the restricted vacuum is a ther-
mal state. Further restrictions only make the fluctuations
larger. This means that the global vacuum restricted to
the interval (−T, T ) is a state in which thermal-like ex-
citations with energy up to order ~/T are unsuppressed.
This energy is larger, by a huge factor λ2/T 2, than the to-
tal energy of the graviton in this region. This is the phys-
ical origin of Eq. (B11): because of thermal noise, states
with and without the graviton wavepacket cannot be dis-
tinguished by an observer with access to a small subre-
gion of the wavepacket. In short, the vacuum-subtracted
entropy is a physical quantity that correctly captures how
much information can be gained by a given observer.

We can also shift the observation interval so that it
fails to overlap with the graviton. This is analogous to
a case of classical Bondi news studied in Sec. IV B, and
it gives the same result: In this case it does not matter
how long or short the observation is; if it does not overlap
with the news, then upper bound vanishes.

Long Observation Regime Next, let us consider the
case where the observer has access to a region that in-
cludes the whole wavepacket: T � λ (Fig. 3). In the
long-observation regime, the experiment begins well be-
fore the graviton starts arriving, and ends well after.
From Eq. (B3) we see that the energy density T̂ scales

u

NAB

FIG. 3. A long observation (green shaded rectangle) can dis-
tinguish the reduced graviton state from the reduced vacuum.
The graviton carries information to this observer.

as λ−2. The Boundary QBB, Eq. (16), evaluates to

ŜC . O(T̂ Tλ/~) ∼ O
(
T

λ

)
, (B12)

as the integral has support only only on the central inter-
val of size O(λ) where ĝ ∼ O(T ). Since we have T � λ,
Eq. (B12) is consistent with the ability of the observer to
extract information from the graviton.

We may specify a “soft limit” of the long-observation
regime as follows: Let T = αλ, with α � 1 fixed. Then
we take λ to become as large as we like, while the ex-
periment always lasts longer than the wavepacket. We
note that the upper bound remains fixed in this limit,
at O(α) � 1. We can tighten the upper bound to O(1)
while remaining marginally within the long-observation
regime by taking α ∼ 1.

We can gain further intuition by returning to the bulk
and considering the same graviton as it crosses a pla-
nar light-sheet H(up). It induces focussing as dθ/dw ∼
O(G~/(Aλ2)), were A is the transverse area on which
the wavepacket has support. Integrating twice along the
light-rays and once transversally, we see that the area
loss between the two ends of the wave packet is of order
the Planck area for α ∼ 1. Thus, a single quantum in-
duces loss of about a Planck area in planar light-sheets,
independently of wavelength [34]. Hence the bound on
its entropy is of order unity.

We will not try to compute the entropy of the graviton
directly, but we expect it to be of order unity. To see this,
let us again consider instead a scalar field wavepacket,
for which the QBB has been proven [2, 4]. We under-
stand the presence of nonzero entropy: the experiment
can access the whole wavepacket, and the excitation can
be distinguished reasonably well from the thermal noise
that pollutes any finite-duration measurements [21, 22].
Thus as α ∼ 1, the bound becomes approximately satu-
rated at the order-of-magnitude level.

b. Boundary Generalized Second Law

Finally, let us consider an observer with access to a
semi-infinite region above some cut σ̂2 of I+. The bound
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that applies to this case is the integrated Boundary GSL,
Eq. (15), with the special choice σ̂1 → ∞. In this limit,
the state above σ̂1 is the Rindler vacuum, so we can write
the l.h.s. of Eq. (15) as a vacuum-subtracted entropy, and
the r.h.s. as a modular Hamiltonian:

ŜC [σ̂2] ≤ ∆K[σ̂2] , (B13)

where

∆K[σ̂2] ≡ 2π

~

∫ ∞
σ̂2

d2Ω du [u− u2(Ω)] T̂ . (B14)

We stressed earlier that all real experiments are finite.
Nevertheless, the above bound is a useful approximation
for long but finite observations: first specify the global
state, which must obey fall-off conditions [35] on the
news. Then restrict to an interval (u2, T ) such that T
lies far inside the future region with essentially no news,
and consider the QBB for this interval. Since the slope of
ĝ is unity near the lower end of the interval, and since ŜC
will no longer depend on T in this regime, the Boundary
QBB reduces to Eq. (B13).

u

NAB

FIG. 4. A graviton conveys O(1) information as long as it has
appreciable support in the region of observation.

Let us apply Eq. (B13) to a graviton wavepacket with
support in the region (−λ, λ). First suppose that the
cut σ̂2 lies, say, around the center of the wavepacket,
as depicted in Fig. 4. By the previous paragraph, the

results will be the same as for the QBB in the regime
α ∼ 1: the asymptotic geometry can be distinguished
from Minkowski space, and the upper bound will be of
order unity. On the other hand, if we shift the wavepacket
so as to lie entirely prior to σ̂2, then the upper bound
vanishes.

We can also consider the differential version of the
Boundary GSL, which can be written as

− 1

δΩ

d

du
ŜC [σ̂2; Ω] ≤ 2π

~

∫ ∞
σ̂2

du T̂ . (B15)

This vanishes if the news has no support in the region
above the cut σ̂2. Thus, for the case of news that arrives
entirely prior to σ̂, the upper bounds on the entropy, and
on its variation under deformations of σ̂, both vanish.
This is the same behavior we encountered for the classical
case in Sec. IV B.

In the case where a graviton wavepacket lies partially
or entirely above the cut (Fig. 4), we see that the deriva-

tive of ŜC is bounded by the energy of the wavepacket.
This is nonzero for any finite λ. We note that the upper
bound depends on the energy, not on the gravitational
memory created by the wavepacket. Therefore, the up-
per bound on the derivative of ŜC vanishes in the soft
limit as λ becomes large, even though ∆CAB remains
fixed in this limit. Thus, the differential Boundary GSL
implies that the variation in entropy of the region above a
cut σ̂, under fixed length deformations of σ̂, is insensitive
to the addition of gravitons of much greater wavelength.
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