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Abstract

We examine gravitational wave memory in the case where sources and detector are in an ex-

panding cosmology. For simplicity, we treat the case where the cosmology is de Sitter spacetime,

and discuss the possibility of generalizing our results to the case of a more realistic cosmology. We

find results very similar to those of gravitational wave memory in an asymptotically flat spacetime,

but with the magnitude of the effect multiplied by a redshift factor.

∗ lbieri@umich.edu
† garfinkl@oakland.edu
‡ yau@math.harvard.edu

1



I. INTRODUCTION

Gravitational wave memory, a permanent displacement of the gravitational wave detector

after the wave has passed, has been known since the work of Zel’dovich and Polnarev [1],

extended to the full nonlinear theory of general relativity by Christodoulou [2], and treated

by several authors [3–15]. As is usual in the treatment of isolated systems, all these works

consider asymptotically flat spacetimes. However, we do not live in an asymptotically flat

spacetime, but rather in an expanding universe. For sources of gravitational waves whose

distance from the detector is small compared to the Hubble radius, modeling the system as

an asymptotically flat spacetime should be sufficient. However, some of the most powerful

sources of gravitational waves (e.g. the collision of two supermassive black holes following

the merger of their two host galaxies) are at cosmological distances where the asymptotically

flat treatment is not sufficient.

In this paper we will treat gravitational wave memory in an expanding universe. To

avoid the complications of the full nonlinear Einstein equations, our treatment will use

perturbation theory. There is a well developed theory of cosmological perturbations (see

e.g. the textbook treatment in [16]). However, this standard cosmological perturbation

theory uses metric perturbations, and we have found [11] that the properties of gravitational

memory are made more clear when using a manifestly gauge invariant perturbation theory

based on the Weyl tensor. Cosmological perturbation theory using the Weyl tensor was

developed by Hawking [25]. We will use a treatment similar to that of [25], but also,

using the conformal flatness of Friedman-Lemâıtre-Robertson-Walker (FLRW) spacetimes,

a treatment that draws heavily on the techniques used in [11].

Cosmological perturbations depend on the equation of state of the matter. The universe,

both at the current time and at any previous times from which a realistic source of gravi-

tational wave memory could come, is dominated by dust and a cosmological constant. For

simplicity, in this treatment we will treat only the case of a cosmological constant, leav-

ing the more general case of dust and a cosmological constant for subsequent work. Thus

this work treats gravitational waves in an expanding de Sitter spacetime. The perturbation

equations are developed in section II, the cosmological memory effect is calculated in section

III, and the implications of the results are discussed in section IV.
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II. EQUATIONS OF MOTION

From the Bianchi identity ∇[ǫRαβ]γδ = 0 we have

gǫα∇ǫCαβγδ = ∇[γSδ]β , (1)

where Sαβ = Rαβ −
1
6
Rgαβ and R = gαβRαβ. Using the Einstein field equation with cosmo-

logical constant

Rαβ −
1
2
Rgαβ + Λgαβ = 8πTαβ , (2)

we find that eqn. (1) becomes

gǫα∇ǫCαβγδ = 8π∇[γXδ]β . (3)

Here Xαβ = Tαβ −
1
3
Tgαβ and T = gαβTαβ .

Both the Weyl tensor, and Tαβ vanish in de Sitter spacetime. It then follows that when we

perturb eqn. (3) from a de Sitter background, the perturbed equation takes the same form

with the Weyl tensor and stress-energy replaced by their (gauge invariant) perturbations

and the metric and derivative operator replaced with their background values. We will

rewrite this perturbed equation in a convenient form making use of the conformal flatness

of de Sitter spacetime. Recall that the line element in a spatially flat Friedman-Lemâıtre-

Robertson-Walker (FLRW) spacetime takes the form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (4)

Then introducing the usual conformal time η by η ≡
∫

dt/a, we find that the line element

takes the form

ds2 = a2
[

−dη2 + dx2 + dy2 + dz2
]

. (5)

That is, the de Sitter metric takes the form gαβ = a2ηαβ where ηαβ is the Minkowski metric

with Cartesian coordinates (η, x, y, z). It then follows that the perturbed eqn. (3) takes the

form

∂α
(

a−1Cαβγδ

)

= 8π
[

a∂[γXδ]β +Xβ[γ∂δ]a+ ηβ[γXδ]λ∂
λa

]

. (6)

Here ∂α is the coordinate derivative operator with respect to the Cartesian coordinates

(η, x, y, z). Also here and in what follows we use the convention that indicies are raised and

lowered with the Minkowski metric ηαβ .
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Following the method of [11] we now decompose all quantities in terms of spatial tensors

as follows, using latin letters for spatial indicies:

Eab ≡ a−1Caηbη , (7)

Bab ≡ (a−1)1
2
ǫef aCefbη , (8)

µ = Tηη , (9)

qa = Tηa , (10)

Uab = Tab . (11)

Here ǫabc = ǫηabc where ǫαβγδ is the Minkowski spacetime volume element. Then eqn. (6)

yields two constraint equations

∂bEab = 4πa(1
3
∂a(2µ+ U c

c)− ∂ηqa) , (12)

∂bBab = 4πaǫef a∂eqf , (13)

and two equations of motion

∂ηEab −
1
2
ǫa

cd∂cBdb −
1
2
ǫb

cd∂cBda

= 4πa
[

∂(aqb) −
1
3
δab∂cq

c − ∂η(Uab −
1
3
δabU

c
c)
]

+ 4πa′(Uab −
1
3
δabU

c
c) , (14)

∂ηBab +
1
2
ǫa

cd∂cEdb +
1
2
ǫb

cd∂cEda = 2πa
(

ǫa
cd∂cUdb + ǫb

cd∂cUda

)

. (15)

Here a′ = da/dη and δab, the Kronecker delta, is the spatial metric of Minkowski spacetime.

We now want to decompose the spatial tensors into tensors on the two-sphere. We intro-

duce the usual spherical polar coordinates (r, θ, φ) with the usual relation to the Cartesian

coordinates (x, y, z). We use capital latin letters to denote two-sphere components. From

the electric part of the Weyl tensor Eab we obtain a scalar Err as well as a vector and a

symmetric, trace-free tensor given by

XA = EAr , (16)

ẼAB = EAB − 1
2
HABEC

C . (17)

Here HAB is the metric on the unit two-sphere, and all two-sphere indicies are raised and

lowered with this metric. Similarly, the decomposition of the magnetic part of the Weyl

tensor yields Brr and

YA = BAr , (18)

B̃AB = BAB − 1
2
HABBC

C . (19)
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The decomposition of the spatial vector qa yields a two-sphere scalar qr and vector qA, while

the decomposition of the spatial tensor Uab yields two-sphere scalars Urr and N ≡ U c
c,

vector VA ≡ UAr and a symmetric trace-free tensor

WAB = UAB − 1
2
HABUC

C . (20)

Then the constraint equations (eqns. (12) and (13)) become

∂rErr + 3r−1Err + r−2DAXA = 4πa
(

1
3
∂r(2µ+N)− ∂ηqr

)

, (21)

∂rBrr + 3r−1Brr + r−2DAYA = 4πar−2ǫABDAqB , (22)

∂rXA + 2r−1XA − 1
2
DAErr + r−2DBẼAB

= 4πa(1
3
DA(2µ+N)− ∂ηqA) , (23)

∂rYA + 2r−1YA − 1
2
DABrr + r−2DBB̃AB = 4πaǫA

B(DBqr − ∂rqB) . (24)

Here DA is the derivative operator and ǫAB is the volume element of the unit two-sphere.

The evolution equations (eqns. (14) and (15)) become

∂ηBrr + r−2ǫABDAXB = 4πar−2ǫABDAVB , (25)

∂ηErr − r−2ǫABDAYB

= 4πa
(

∂rqr − ∂ηUrr +
1
3
∂η(N − µ)

)

+ 4πa′
(

Urr −
1
3
(2N + µ)

)

, (26)

∂ηYA + 1
2
r−2ǫCDDCẼDA + 1

4
ǫA

C(3DCErr − 2∂rXC)

= 2πa
(

ǫA
C(1

2
DC(3Urr −N)− ∂rVC) + r−2ǫBCDBWCA

)

, (27)

∂ηXA − 1
2
r−2ǫCDDCB̃DA − 1

4
ǫA

C(3DCBrr − 2∂rYC)

= 2πa(DAqr + ∂rqA)− 4πa(r−1qA + ∂ηVA) + 4πa′VA , (28)

∂ηB̃AB + 1
2
ǫA

C(DCXB + r−1ẼCB − ∂rẼCB)

+1
2
ǫB

C(DCXA + r−1ẼCA − ∂rẼCA) +
1
2
HABǫ

CDDCXD

= 2πaǫA
C(DCVB + r−1WCB − ∂rWCB)

+2πaǫB
C(DCVA + r−1WCA − ∂rWCA) + 2πaHABǫ

CDDCVD , (29)

∂ηẼAB − 1
2
ǫA

C(DCYB − ∂rB̃CB + r−1B̃CB)

−1
2
ǫB

C(DCYA − ∂rB̃CA + r−1B̃CA)−
1
2
HABǫ

CDDCYD

= 4πa
(

D(AqB) −
1
2
HABDCq

C)− ∂ηWAB

)

+ 4πa′WAB . (30)
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III. CALCULATION OF MEMORY

We now consider the behavior of the fields at large distances from the source. Unlike

the asymptotically flat case, we cannot make use of the formal definition of null infinity:

de Sitter conformal infinity is spacelike, and all gravitational radiation is negligible there.

Instead we define the optical scalar u = η− r and consider the case of large r and moderate

values of u. Note that in this case “large r” means large compared to the wavelength of the

gravitational waves emitted by the source, but not large compared to the Hubble length.

That is, we treat the case where ra′ is of order 1. In the case of Minkowski spacetime,

it is shown in [11] that stress-energy gets to large r and moderate u by traveling in null

directions: that is, the dominant component of the stress-energy takes the form

Tαβ = A∂αu∂βu . (31)

In the appendix we will show that in our case eqn. (31) continues to hold, but that now A

takes the form A = La−2r−2 where L is a function of u and the two-sphere coordinates. In

physical terms, the quantity L is the power radiated per unit solid angle. That is we have

µ = N = Urr = −qr = La−2r−2 + . . . (32)

with all other components of the stress-energy falling off more rapidly. Here . . .means “terms

higher order in r−1” It is shown in[11] that in the asymptotically flat case, the electric and

magnetic parts of the Weyl tensor behave as follows:

ẼAB = eABr + . . . (33)

B̃AB = bABr + . . . (34)

XA = xAr
−1 + . . . (35)

YA = yAr
−1 + . . . (36)

Err = Pr−3 + . . . (37)

Brr = Qr−3 + . . . (38)

where the coefficient tensor fields are functions of u and the two-sphere coordinates; and that

in the limit as |u| → ∞ the only one of these coefficient tensor fields that does not vanish

is P . In the appendix we show that these relations continue to hold. Note that because of

the relation between Cartesian and spherical coordinates ẼAB behaving like r corresponds
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to Cartesian components of the electric part of the Weyl tensor behaving like r−1. The

conditions of eqns. (33-38) are reminiscent of the usual peeling theorem for asymptotically

flat spacetimes, however the context is somewhat different. The peeling theorem of [17] is a

consequence of conformal compactification at null infinity. In contrast, de Sitter spacetime

has a spacelike conformal completion, and the corresponding peeling theorem [18] essentially

says that at sufficiently late times all physical curvatures decay exponentially with time. In

contrast, we want to look at the behavior of fields in null directions in de Sitter spacetime

at a time that is not large compared to the Hubble time. In depth treatments of this issue

are contained in recent works of Ashtekar et al[19–22].

Now keeping only the dominant terms in eqns. (21-24) and using the fact that ra′ is of

order unity, we obtain

−Ṗ +DAxA = −8πLa−2(a+ ra′) , (39)

−Q̇ +DAyA = 0 , (40)

−ẋA +DBeAB = 0 , (41)

−ẏA +DBbAB = 0 . (42)

Here an overdot means derivative with respect to u. Similarly, keeping only the dominant

terms in eqns. (25-30) yields

Q̇ + ǫABDAxB = 0 , (43)

Ṗ − ǫABDAyB = 8πLa−2(a+ ra′) , (44)

ẏA + 1
2
ǫCDDCeDA + 1

2
ǫA

C ẋC = 0 , (45)

ẋA − 1
2
ǫCDDCbDA − 1

2
ǫA

C ẏC = 0 , (46)

ḃAB + ǫA
C ėCB = 0 , (47)

ėAB − ǫA
C ḃCB = 0 . (48)

From here, the analysis proceeds essentially as in [11]. By convention, the scale factor a

is unity at the present time. Therefore at the position of the detector, η is the same as the

usual time, Eab (despite the factor of a
−1 in eqn. (7)) is equal to the physical electric part of

the Weyl tensor and thus is directly related to tidal force, and a′ is equal to H0, the Hubble

constant. Note that eqn. (48) is redundant, since it is equivalent to eqn. (47). Since eAB

and bAB vanish as u → −∞, it follows from eqn. (47) that bAB = −ǫA
CeCB. This can be
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used to eliminate bAB from eqns. (42) and (46) which then become

ẏA + ǫCDDCeDA = 0 , (49)

ẋA − 1
2
DCeCA − 1

2
ǫA

C ẏC = 0 . (50)

Combining eqn. (49) with eqn. (45) then yields

ẏA + ǫA
BẋB = 0 . (51)

However, since xA and yA vanish as u → −∞, it then follows from eqn. (51) that

yA = −ǫA
BxB . (52)

Thus, we can eliminate yA from eqns. (40) and (44) which then become

Q̇+ ǫABDAxB = 0 , (53)

Ṗ −DAxA = 8πL(1 + rH0) . (54)

But these equations are then redundant, since they are equivalent to eqns. (43) and (39) re-

spectively. Thus the only independent quantities are eAB, xA, P, Q and L. These quantities

satisfy the following equations

DBeAB = ẋA , (55)

ǫBCDBeCA = ǫA
C ẋC , (56)

DAx
A = Ṗ − 8πL(1 + rH0) , (57)

ǫABDAxB = −Q̇ . (58)

Now let’s consider how to use eqns. (55-58) to find the memory. Recall that eAB is (up

to a factor involving the distance and the initial separation) the second time derivative of

the separation of the masses. Thus we want to integrate eAB twice with respect to u. Define

the velocity tensor vAB, memory tensor mAB and a tensor zA by

vAB ≡
∫ u

−∞
eABdu , (59)

mAB ≡
∫ ∞

−∞
vABdu , (60)

zA ≡
∫ ∞

−∞
xAdu . (61)

Now consider two masses in free fall whose initial separation is d in the B direction. Then

after the wave has passed they will have an additional separation. Call the component of
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that additional separation in the A direction ∆d. Then it follows from the geodesic deviation

equation that

∆d = −
d

r
mA

B . (62)

To find mAB we first integrate eqns. (55) and (56) to obtain

DBvAB = xA , (63)

ǫBCDBvCA = ǫA
CxC . (64)

Then integrating again from −∞ to ∞ we obtain

DBmAB = zA , (65)

ǫBCDBmCA = ǫA
CzC . (66)

Now integrating eqns. (57) and (58) from −∞ to ∞ yields

DAz
A = ∆P − 8πF (1 + rH0) , (67)

ǫABDAzB = 0 , (68)

where the quantities ∆P and F are defined by ∆P = P (∞)− P (−∞) and F =
∫∞
−∞Ldu.

In physical terms, F is the amount of energy radiated per unit solid angle. In deriving eqn.

(68) we have used the fact that Q vanishes in the limit as |u| → ∞. Since zA is curl-free,

there must be a scalar Φ such that zA = DAΦ. Then using eqns. (67) and (65) we find

DAD
AΦ = ∆P − 8πF (1 + rH0) , (69)

DBmAB = DAΦ . (70)

IV. DISCUSSION

We now consider the physical implications of these results, and in particular of eqns. (69-

70). As in the asymptotically flat case, there are two kinds of gravitational wave memory:

an ordinary memory due to sources that do not get out to infinity and a null memory due

to sources that do get out to infinity. The ordinary memory is sourced by ∆P , that is the

change in the radial component of the electric part of the Weyl tensor. The null memory

is sourced by F , the energy per unit solid angle radiated to infinity. However, in contrast

to the asymptotically flat case, there is a factor of 1 + rH0 multiplying F . Note that in
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cosmology, the wavelength of light from distant sources is redshifted by a factor of 1+ z and

that to first order in z we have 1 + z = 1 + rH0. Thus, expressed in terms of F and r it

seems that the null memory is enhanced by a factor of 1 + z. However, r is not a directly

observed property of a distant object: instead we observe the luminosity of the object and

infer a luminosity distance dL related to r by dL = r(1 + z)r. Since the observed memory

is given by eqn. (62) which has a factor of r−1, it follows that when expressed in terms of

F and dL, the null memory is enhanced by a factor of (1 + z)2. However, F is the energy

radiated per unit solid angle as measured by the observer, who is at cosmological distance

from the source. Instead, one might want to calculate the local F (which we will call Floc)

as measured by an obsever who is sufficiently far from the source to be in its wave zone but

still at a distance small compared to the Hubble radius. That is, Floc is the F that source

would have in Minkowski spacetime. Because the energy of radiation is diminished by a

factor of 1/(1 + z), it follows that F = Floc/(1 + z). Therefore, when expressed in terms of

Floc and the luminosity distance, the memory is enhanced by a factor of 1 + z.

This behavior of memory in the cosmological setting is what would be expected from

the properties of gravitational waves treated in the geometric optics (i.e. short wavelength)

approximation, as done by Thorne [23]. This issue will be covered in depth elsewhere [24].

In particular, in [24] we use the geometric optics approximation to extend our treatment of

cosmological memory to the case with both dust and a cosmological constant. As shown

by Hawking [25] the inclusion of dust leads to a set of coupled equations involving the

Weyl tensor and the shear of the fluid. However, we show that in the geometric optics

approximation these equations decouple leading to a simple result for the gravitational wave

memory.
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Appendix: Stress-energy and Weyl tensors at large r

We now consider the behavior of the stress-energy tensor and the Weyl tensor at large r.

Since the metric can be written as gαβ = a2ηαβ it follows that for any vector ωα we have

∇αωβ = ∂αωβ − Γγ
αβωγ , (A.1)

where the Christoffel symbols are given by

Γγ
αβ =

a′

a
(δγβ∂αη + δγα∂βη − ηαβ∂

γη) . (A.2)

It then follows that the conservation of stress-energy gαγ∇γTαβ = 0 becomes

∂α(a2Tαβ)− aa′T∂βη = 0 . (A.3)

where T = ηαβTαβ . Define u ≡ η − r and ℓα ≡ −∇αu. In [11] it is shown that in the

asymptotically flat case, the stress-energy tensor at large distances takes the form Tαβ =

Aℓαℓβ + . . . where + . . . means plus terms that are higher order in powers of r−1. Flat space

conservation of energy (i.e. ∂αTαβ = 0) implies that A takes the form r−2L where L is a

function of u and the angular coordinates. However, in de Sitter spacetime conservation

of stress-energy takes the form given in eqn. (A.3). This is still compatible with Tαβ =

Aℓαℓβ + . . . but now implies that A takes the form A = a−2r−2L where L is a function of u

and the angular coordinates. That is, the stress-energy has the form

Tαβ = a−2r−2Lℓαℓβ + . . . (A.4)

and therefore its components have the properties given in eqn. (32).

We now turn to the properties of the Weyl tensor. Denote the right hand sides of eqns.

(12-15) as respectively αa, βa, γab and λab. Then applying ∂η to eqn. (14) and using the

other three equations we obtain

∂µ∂µEab =
3
2

(

∂(aαb) −
1
3
δab∂

cαc

)

− 1
2
ǫa

cd∂cλdb −
1
2
ǫb

cd∂cλda − ∂ηγab . (A.5)

Similarly, applying ∂η to eqn. (15) and using the other three equations we obtain

∂µ∂µBab =
3
2

(

∂(aβb) −
1
3
δab∂

cβc

)

+ 1
2
ǫa

cd∂cγdb +
1
2
ǫb

cd∂cγda − ∂ηλab . (A.6)

Thus we have that the electric and magnetic parts of the Weyl tensor satisfy the flat space-

time wave equation with a source that consists of derivatives of components of the stress-

energy tensor. It then follows that the Cartesian components of the electric and magnetic
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parts of the Weyl tensor go like r−1 at large r and moderate u. Note that the relation

between Cartesian coordinates and angular coordinates then implies that the angular com-

ponents EAB and BAB go like r. We now demonstrate that radial components of the electric

and magnetic parts of the Weyl tensor must fall off faster than Cartesian components. First

note that ∂au = −ra where ra is a unit vector in the radial direction. Now consider Eab as

a power series in r−1 with coefficients that depend on u and the angular coordinates. Then

it follows that

∂cEab = −rc
∂

∂u
Eab +O(r−2) . (A.7)

But the electric part of the Weyl tensor satisfies ∂aEab = αb from which (using eqn. (A.4)

to establish the appropriate falloff of αb) it follows that Era goes like r−2 and therefore that

ErA goes like r−1. Now defining va = Era the same line of reasoning shows that rava must

fall off one power of r faster than va and therefore that Err goes like r−3. Finally, the same

argument that we have used for the electric part of the Weyl tensor also applies to the

magnetic part. Thus, we have established the fall off rates given in eqns. (33-38).

We now consider the behavior of the asymptotic Weyl tensor at large |u|. We will assume

that at both early and late times the matter consists of widely separated objects moving

at constant velocity. Therefore the Weyl tensor is a linear combination of translated and

boosted Schwarzschild perturbations of deSitter spacetime (essentially Schwarzschild-de Sit-

ter spacetime with small mass). But in our coordinates, the Weyl tensor of Schwarzschild-de

Sitter falls off like r−3. This property also holds under translations and boosts. It then fol-

lows that eAB, bAB, xA and yA vanish as |u| → ∞. In the rest frame, Schwarzschild-de

Sitter has a purely electric Weyl tensor, and while this changes under boosts, the Brr com-

ponent remains zero. Therefore as |u| → ∞, we have that Q vanishes but P does not.

In principle, our widely separated objects should be treated as boosted Kerr perturbations

of de Sitter spacetime if they are black holes, or as boosted perturbations with some other

gravitational multipole structure if they are not black holes. However, in general higher mul-

tipoles (whether of Kerr black holes or of nonspherical objects) give effects that are higher

order in powers of r−1. Therefore we expect that our treatment using boosted Schwarzschild
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perturbations of de Sitter is sufficient for our purposes.
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