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Weak gravitational lensing is becoming a mature technique for constraining cosmological param-
eters, and future surveys will be able to constrain the dark energy equation of state w. When
analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear
correlations. We forecast parameter constraints on the triplet (Ωm, w, σ8) for an LSST-like photo-
metric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts
and higher convergence moments. We find that redshift tomography with the power spectrum re-
duces the area of the 1σ confidence interval in (Ωm, w) space by a factor of 8 with respect to the
case of the single highest redshift bin. We also find that adding non-Gaussian information from the
peak counts and higher-order moments of the convergence field and its spatial derivatives further
reduces the constrained area in (Ωm, w) by a factor of 3 and 4, respectively. When we add cosmic
microwave background parameter priors from Planck to our analysis, tomography improves power
spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional
factor of 2, and adding both moments and peaks improves by almost a factor of 3, over power
spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift
errors on the parameter constraints. We find that different statistics lead to different bias directions
in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
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I. INTRODUCTION

Weak gravitational lensing is a promising technique to
probe the large scale structure of the universe in which
the tracers are intrinsically unbiased [1]. This tech-
nique has the potential of significantly improving the con-
straints on the dark energy equation of state parameter
w because it is most sensitive to the matter density fluc-
tuations at the non–linear stage. Cosmology inferences
from weak lensing observations have been produced for
past (CFHTLenS [2], COSMOS [3]) and current (DES
[4]) surveys, and are being planned for future experi-
ments as well (e.g. LSST [5], WFIRST [6], Euclid [7]).
Because of the non-linear nature of the density fluctua-
tions probed by weak lensing, cosmological information
might leak from quadratic statistics (such as two-point
functions and power spectra) into more complicated non-
Gaussian statistics, for which forward modeling requires
numerical simulations of cosmic shear fields.
Several different examples of these non-Gaussian

statistics, and their cosmological information content,
have been studied in the past as well (see [8–15] for
a non-comprehensive list). The constraining power of
weak lensing power spectra with the addition of redshift
tomography information have been extensively investi-
gated in the literature (see e.g. [16–18]). In this work
we concentrate on the constraining power of a subset of
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non-Gaussian statistics, combined with redshift tomog-
raphy in an LSST-like survey. [19] investigated the
cosmological constraining power of shear peaks
tomography. Previous work on redshift tomography
with weak lensing Minkowski functionals is also present
in the literature [8].

Tomography relies on assigning accurate redshifts to
galaxies. We therefore also investigate the effects of un-
corrected photometric redshift systematics on parameter
constraints when using redshift tomography. This work
is organized as follows: in § II we outline the shear sim-
ulations we use in this work, followed by descriptions of
the convergence reconstruction procedure, forward mod-
eling of galaxy shape and photometric redshift system-
atics, and the parameter-inference techniques we used to
forecast constraints on cosmology. In § III we present our
main results, which we discuss in § IV. In § V we present
our conclusions as well as prospects for future work.

II. METHODS

A. Cosmic shear simulations

We review the procedure used for generating simu-
lated shear catalogs. We consider a fiducial flat ΛCDM
universe with parameters (h,Ωm,ΩΛ,Ωb, w, σ8, ns) =
(0.72, 0.26, 0.74, 0.046,−1, 0.8, 0.96) [20, 21]. We exam-
ine different variations of the p = (Ωm, w, σ8) triplet and
run one N–body simulation for each choice of p, using
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the public code Gadget2 [22]. The simulations have a
comoving box size of Lb = 260Mpc/h and contain 5123

dark matter particles, which correspond to a mass reso-
lution of Mp ≈ 1010Msun per particle.
The largest mode observed in our N–body sim-

ulations corresponds to a wavenumber of kb ≈
1/Lb ≈ 0.004hMpc−1. For the sake of recovering
cosmological information from WL, this limita-
tion does not create a concern, as several authors
(see [17] for example) have shown that modes
above Lb contribute very little to parameter con-
straints. Moreover, the purpose of this work
is to estimate the parameter constraints achiev-
able in a weak lensing analysis incorporating to-
mography, not to produce simulations accurate
enough for analyzing the data set that will be
available from LSST and other surveys a decade
hence. To analyze the datasets that these surveys
will produce, mode couplings between large and
small scales, which can cause effects such as su-
per sample covariance [23–25], will need to be in-
cluded. Baryonic effects will need to be included
as well. Larger and more accurate N–body sim-
ulation techniques are currently under develop-
ment in the community for this purpose [26, 27].
The three dimensional outputs of the N–body simu-

lations are sliced in sequences of two dimensional lenses
120Mpc thick, which are lined up perpendicular to the
line of sight between the observer on Earth and a source
at redshift zs. We make use of the multi–lens–plane
algorithm [28, 29] to trace the deflections of light rays
originating at z = 0 through the system of lenses out
to redshift z. To accomplish this task, we make use of
the LensTools [30, 31] implementation of the multi–lens–
plane algorithm. An observed galaxy position θθθ on the
sky today corresponds to a real galaxy angular position
βββ(θθθ, zs), which can be calculated using the LensTools

pipeline by solving the ordinary differential lens equa-
tions up to redshift zs. The Jacobian of βββ(θθθ, zs) is a 2×2
matrix that contains information about the cosmic shear
field at θθθ integrated along the line of sight.

∂βi(θθθ, zs)

∂θj
=

(

1− κ(θθθ)− γ1(θθθ) −γ2(θθθ)
−γ2(θθθ) 1− κ(θθθ) + γ1(θθθ)

)

(1)

The quantities that appear in equation (1) are the conver-
gence κ, which is the source magnification due to lensing,
and the cosmic shear γγγ, which is a measurement of the
source ellipticity due to lensing from large scale structure,
assuming the non-lensed shape is a circle.
We simulate Ng = 106 random galaxy positions {θθθg}

distributed uniformly in a field of view of size θ2FOV =
(3.5deg)2, which correspond to a galaxy surface density
of ng = 22 arcmin−2. The galaxies have a distribution
in redshift which mimics the one expected in the LSST
survey,

n(z) = n0

(

z

z0

)2

exp

(

−
z

z0

)

, (2)

with z0 = 0.3 and n0 a normalization constant fixed
so that n(z) integrates to the total number of galaxies
Ng. The galaxies have a maximum redshift zmax = 3.
For each galaxy, we compute the cosmic shear at θθθg us-
ing equation (1), producing a shear catalog {γγγg}. Dif-
ferent random realizations of a shear catalog {γγγg}r can
be obtained rotating and periodically shifting the large
scale structure in the N–body snapshots according to
the procedure explained in [32]. We produce Nr =
16000 pseudo–independent realizations of the shear cat-
alog {γγγg}. These shear realizations all together cover
10 times the total survey area of LSST. We repeat the
above procedure for P = 100 different combinations of
the parameter triplet p, sampled according to a Latin
hypercube scheme. The sampling procedure is the same
as described in [33, 34]. The parameter space sampling
we adopted for our simulations is shown in Figure 1.
For each of the parameter choices in Figure 1, the N–

body initial conditions are generated using the same ran-
dom seed. In addition to these simulations, we produce
simulated shear catalogs for a fiducial ΛCDM universe
with p0 = (0.26,−1, 0.8). In this case the randomiza-
tion procedure is based on 5 independent N–body sim-
ulations, and the same number Nr = 16000 of pseudo–
independent catalog realizations is produced. This addi-
tional simulation set serves two purposes: it provides an
independent dataset from which to measure covariance
matrices, and it provides a way to construct simulated
observations that are independent of the simulations on
which the cosmological forward model is trained. For
the fiducial dataset we chose to base the shear random-
ization procedure on 5 independent N–body simulations
to ensure the independence of the Nr realizations for the
purpose of estimating covariance matrices. Ref. [32] re-
cently showed that, even with only one N–body simula-
tion a few 104 independent realizations can be produced.

B. Forward modeling of systematics

We next give an overview of the shear systematics in-
cluded in this work.
The measured galaxy ellipticity ǫǫǫ is an estimate of the

cosmic shear γγγ due to large scale structure if the non–
lensed galaxy shape is a circle. Because the galaxies
have intrinsic noncircular shapes, the measured galaxy
ellipticity ǫǫǫm is the sum of a cosmic shear term and the
intrinsic ellipticity (galaxy shape noise) [1]

ǫǫǫm = γγγ + ǫǫǫn (3)

where ǫǫǫn is a random Gaussian variable with zero mean
and redshift dependent variance σn(zs) = 0.15+0.035zs.
This is equivalent to saying that the cosmic shear inferred
from ellipticity observations γγγm can be written as the sum
of the true cosmic shear plus a noise term γγγn with the
same statistical properties as ǫǫǫn. We add independent
random realizations of the shape noise γγγn to each of the
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FIG. 1. Parameter space sampling chosen for our simulations. We show the sampling in the (Ωm, w) (left), (Ωm, σ8) (center)
and (σ8, w) (right) projections of the parameter space. The fiducial cosmology has been marked in red.

Nr shear catalogs. Each shape noise realization is gen-
erated with a different random seed. The same random
seeds are used to generate shape noise catalogs across
simulations with different cosmological parameters {pi}.
In addition to shape noise contributions to the ob-

served galaxy ellipticity, we consider photometric red-
shift errors as an additional contamination in the simu-
lated catalogs. In photometric surveys such as LSST, the
source redshift zs is estimated measuring the source lumi-
nosity in a small finite set of optical frequency bands. Us-
ing this compressed luminosity information rather than
the full spectrum introduces biases in redshift estimation.
Forward modeling of the cosmic shear using the proce-
dure described in § II A, as well as the shape noise con-
tributions, assume a correct redshift distributions n(z).
An incorrect binning of observed galaxy redshifts accord-
ing to the measured photometric distribution np(zp) can
propagate the redshift measurement errors all the way to
cosmological parameter constraints if the latter take ad-
vantage of redshift tomography. One of the goals of this
work is to evaluate the size of this effect, assuming pho-
tometric redshift errors (photo-z) are left uncorrected.
The study of photometric redshift errors is an active

subject of research, and includes investigation of tech-
niques such as spectroscopic calibration, catastrophic er-
rors and cross-correlation techniques that we do not ex-
plore in this work (see for example [35, 36] for a more
thorough discussion). We model the effect of photo-z er-
rors as a constant bias term bph(zs) plus a random Gaus-
sian component with variance σph(zs),

zp(zs) = zs + bph(zs) + σph(zs)N (0, 1), (4)

where N (0, 1) is the standard normal distribution. We
bin the Ng galaxies in our simulated catalogs into 5 red-
shift bins z̄b, b = 1...5. Several models have been pro-
posed in the literature for the photometric bias bph(zs)
(see for example [18]) and variance σph(zs) (see for ex-
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FIG. 2. Galaxy distribution assumed throughout this work
(see equation (2)), along with the choice of the redshift bins
z̄b. Our galaxy sample consists of Ng = 106 galaxies. The
figure shows the number of galaxies Ng(z) at each redshift z.

ample [36]). We chose the photo-z bias and variance
functions in equation (4) to be the science requirements
contained in the LSST Science Book [36], namely b(zs) =
0.003(1 + zs) and σ(zs) = 0.02(1 + zs).

We generate simulated observations by applying an in-
dependent random realization of the photo-z correction
(4) to each catalog realization in the fiducial cosmology
p0 and by re–binning the galaxies according to their pho-
tometric redshifts zp. In the remainder of the paper we
use the following notation: we indicate a shear realization
r in cosmology p with shape noise added as γ̂γγr(θθθg, zg;p),
and we indicate a simulated observation in the fiducial
cosmology as γ̂γγobs(θθθg, zg).
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C. Convergence reconstruction

In this section we describe the procedure we use to
construct convergence maps κ from the simulated shear
catalogs γγγ. We consider a two dimensional square pixel
grid of area θ2FOV and with 512 pixel per side. This corre-
spond to a linear pixel resolution of 0.5arcmin. We assign
a shear value γγγ(θθθp, z̄b) to each pixel θθθp according to the
following procedure

γγγ(θθθp, z̄b) =

∑Ng

g=1 γγγ(θθθg, zg)W (θθθg, θθθp; zg, z̄b)
∑Ng

g=1 W (θθθg, θθθp; zg, z̄b)
(5)

We chose a top–hat window function

W (θθθg, θθθp; zg, z̄b) =

{

1 if θθθg ∈ θθθp, zg ∈ z̄b
0 otherwise

(6)

The convergence κ(θθθp) can be reconstructed from the
E–mode of the shear field, which is evaluated from the
Fourier transform of the pixelized shear γγγ(θθθp, z̄b)

κ̃(ℓℓℓ, z̄b) =

(

γ̃1(ℓℓℓ, z̄b)(ℓ
2
x − ℓ2y) + 2ℓxℓyγ̃

2(ℓℓℓ, z̄b)

ℓ2x + ℓ2y

)

e−
ℓ2θ2

G
2

(7)
We chose the Gaussian filter smoothing scale θG =
0.5 arcmin to correspond to the linear pixel resolu-
tion. Inverting the Fourier transform yields the pix-
elized map κ(θθθp, z̄b). We apply this procedure to both
the shear realizations γ̂γγr(θθθg, zg;p) and the simulated
observations γ̂γγobs(θθθg, zg), yielding convergence realiza-
tions κ̂r(θθθp, z̄b;p) and simulated convergence observa-
tions κ̂obs(θθθp, z̄b).
We measure a variety of summary statistics from the

pixelized convergence maps, which will then be used to
forecast parameter constraints and biases. We consider
three kinds of summary statistics, namely the tomo-
graphic power spectrum P κκ(ℓ, z̄b, z̄b′), the tomographic
peak counts npk(ν, z̄b) and a set of moments µµµ(z̄b). The
tomographic power spectrum is defined as

〈κ̃(ℓℓℓ, z̄b)κ̃(ℓℓℓ
′, z̄b′)〉 = (2π)2δD(ℓℓℓ+ ℓℓℓ′)P κκ(ℓ, z̄b, z̄b′) (8)

Because the κ field is statistically isotropic, the expec-
tation value 〈〉, for each realization r, is taken over all
modes ℓℓℓ with the same magnitude ℓ = |ℓℓℓ|. Given the
fact that our simulation box is small, and we are
ignoring non–linear couplings between large and
small scale modes, we are likely underestimat-
ing the κ power spectrum when performing en-
semble averages based on a single N–body box.
[37] estimated the effect of a varying box size on
the 3D matter power spectrum, for boxes up to
512Mpc/h in size and found the variations to be
small compared to their sample variance, on spa-
tial wavenumbers up to k ∼ 0.3hMpc−1.
The peak count statistic npk(ν, z̄b) is defined as the

number of the local maxima of a certain height κmax =

νσ0, where σ0 is the standard deviation over all pixels.
The set of nine moments µµµ(z̄b) is defined as follows (see
[38–40]):

µµµ = (µµµ2,µµµ3,µµµ4)

µµµ2 = (〈κ2〉, 〈|∇κ|2〉)

µµµ3 = (〈κ3〉, 〈κ|∇κ|2〉, 〈κ2∇2κ〉)

µµµ4 = (〈κ4〉c, 〈κ2|∇κ|2〉c, 〈κ3∇2κ〉c, 〈|∇κ|4〉c).

(9)

In equation (9) the gradients ∇ are evaluated using fi-
nite differences between κ values at neighboring pixels
and the expectation values 〈〉 for each realization r are
taken over the 5122 pixels in the map. The subscript c
indicates that we consider only the connected parts of the
quartic κ moments. In the definition of the peak counts
and convergence moments we omitted the redshift index
z̄b for notational simplicity. In the next section, we de-
scribe the statistical methods we use to infer cosmolog-
ical parameter estimates p̂ from simulated observations
κ̂obs(θθθp, z̄b) using the summary statistics P κκ(ℓ, z̄b, z̄b′),
npk(ν, z̄b) and µµµ(z̄b). Concerns might arise on the
accuracy with which our simulations measure the
summary statistics mentioned above, given the
small box size and the fact that we recycle a single
N–body box for building our simulated sample.
[32] studied the dependence of the power spec-
trum and peak counts sample means as a func-
tion of the number of independent N–body boxes
and found that the variations are less than 10%
in most cases, except for the small scale power
spectrum and the highest κ peaks, for which the
variations are less than 20%.

D. Parameter inference

We adopt a Bayesian framework to forecast parameter
constraints. We indicate as d a summary statistic vec-
tor (which can be any of P κκ, npk,µµµ or a combination
of these). We label d(p) the sample mean of d over the
Nr = 16000 simulated realizations in cosmology p and
we label d̂r the summary statistic measured in realiza-
tion r of the fiducial cosmology p0. Both d(p), d̂r are
measured taking galaxy shape noise into account. We
further label d̂obs the summary statistic measured in a
simulated observation in which κ has been measured tak-
ing photo-z errors into account. d̂obs is measured averag-
ing a random sample of NFOV = 1600 realizations of the
fiducial cosmology with photo-z errors added. This num-
ber has been chosen to mimic the survey area of LSST
ΩLSST = NFOVθ

2
FOV. Assuming no prior knowledge of

the parameters p, we can write the parameter likelihood
L given the observation d̂obs using Bayes’ theorem

− 2 logL(p|d̂obs) = (d̂obs − d(p))TC−1(d̂obs − d(p))
(10)
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The parameter likelihood (10) can be evaluated at every
point p in parameter space by interpolating d(p) be-
tween simulation points {pi} using a Radial Basis Func-
tion (RBF) interpolation (see [31, 33]). C is the d co-
variance matrix and is assumed to be p–independent. In
practice we replace C with its estimated value Ĉ from
Nr = 16000 realizations of the summary statistics d̂r in
the fiducial cosmology p0 without photo-z errors

d̂mean =
1

Nr

Nr
∑

r=1

d̂r, (11)

Ĉ =
1

Nr − 1

Nr
∑

r=1

(d̂r − d̂mean)(d̂r − d̂mean)
T . (12)

Cosmological parameter values p̂ can be inferred from
equation (10) by looking at the location at which the

likelihood L(p|d̂obs) is maximum. Parameter errors ∆p̂
can be inferred from the likelihood confidence contours.
Estimates of p̂,∆p̂ can be obtained by approximating
the model statistic d(p) dependency on parameters as
linear in p, provided p is not too far from the fiducial
model p0

d(p) = d(p0) +M(p− p0) +O(|p − p0|
2) (13)

where we defined (M)iα = (∂di(p)/∂pα)p0
as the first

derivative of the statistic di(p) with respect to cosmology.
We evaluateM with finite differences on the smooth RBF
interpolation of the summary statistic d(p). This linear
approximation allows for a fast estimate of p̂ in terms of
d̂obs

p̂ = p0 + (MT Ψ̂M)−1MT Ψ̂(d̂obs − d(p0)) (14)

Here Ψ̂ ≡ Ĉ−1 denotes the summary statistic’s precision
matrix. With the linear approximation (13) the param-
eter likelihood (10) is a multivariate Gaussian in p and

its width Σ̂ can be estimated as

(Σ̂)αβ = −

(

∂2 logL(p)

∂pα∂pβ

)−1

p0

= ((MT Ψ̂M)−1)αβ (15)

The square of the 1σ parameter errors ∆p̂2 are the di-
agonal entries of Σ̂. The parameter covariance estimator
(15) is the same as one gets adopting a Fisher Matrix
formalism for parameter forecasts (see [41]).
When the dimension Nb of the summary statistics

space is large, numerical issues can arise in the estimation
of the parameter error bars if the covariance matrix Ĉ is
measured from simulations. When Nr independent real-
izations are used to estimate Ĉ, its inverse Ψ̂ is biased by
a constant factor (see [42–44]) which can be taken into
account. When the bias correction is applied, we can cal-
culate the expectation value of the covariance estimator
(15) (see again[44])

〈Σ̂〉 =

(

Nr −Nb +Np − 1

Nr −Nb − 2

)

Σ (16)

where Σ is the asymptotic covariance one obtains with
an infinite number of realizations and Np = 3 is the num-
ber of parameters we are estimating. The scatter of the
parameter estimates (14) on the other hand scales as [44]

〈Cov(p̂)〉 =

(

Nr − 2

Nr −Nb +Np − 2

)

Σ (17)

Although equations (16) and (17) agree in the limit
Nr → ∞, they can be different when a finite num-
ber of realizations is used. The degradation factor in
the parameter covariance estimate in (16) is of order
1 + (1 + Np)/Nr, while the scatter of the estimates p̂
is of order 1+(Nb−Np)/Nr. These numbers can be very
different if Nb is large. This means that the parameter
error bar estimate (16) is too conservative if Nb/Nr is of
order unity. This could be the case with the inclusion
of tomography information. If we bin the single redshift
summary statistic with Nst intervals, and consider Nz

redshift bins, this can lead to a summary statistic vec-
tor of size Nb = O(NstN

2
z ) for the power spectrum and

Nb = O(NstNz) for the remaining statistics. This can
become quickly comparable with Nr = 16000 once more
redshift bins or a finer binning of the summary statistic
are considered. In order to avoid these error degradation
issues, we apply dimensionality reduction techniques to
the summary statistics we are considering. Even if these
techniques might not play a vital role in this work, as
the maximum Nb/Nr ratio we use is of order 1%, they
will definitely be relevant in future experiments when us-
ing finely binned summary statistics or when combining
different cosmological probes. We explain the dimension-
ality reduction techniques we adopted in the next para-
graph.

E. Dimensionality reduction

We apply a Principal Component Analysis (see [41] for
example) to reduce the dimensionality of our summary
statistics while preserving the cosmological information
content. The model statistic d(p) can be regarded as a
P ×Nb matrix dpi. Consider the whitened model matrix

∆pi = P
dpi

∑P
q=1 dqi

− 1. (18)

We perform a Singular Value Decomposition (SVD) of ∆

∆ = LΛR (19)

where L is P ×Q, Λ = diag(Λ1, ...,ΛQ) and R is Q×Nb

and Q = min(P,Nb). Rni is the i-th component of the n-
th basis vector in statistics space. The singular value Λn

is the variance of the whitened summary statistic along
the n-th basis vector. We assume that only summary
statistic projections on the first Nc basis vectors contain
relevant cosmological information, where Nc < Nb is a
number that has to be determined from the simulations.
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Let R(Nc) be a matrix made of the first Nc rows of R
(we assume that the singular values Λi are sorted from
highest to lowest). We define the PCA projection of a

summary statistic d̂ on Nc principal components as

d̂n(Nc) =

Nb
∑

i=1

(R(Nc))ni

(

P
d̂i

∑P

p=1 dpi
− 1

)

(20)

Through the above procedure, we hope to capture the
cosmological information contained in d̂ by projecting it
on the Nc < Nb principal components that vary the most
with cosmology parameters.

F. Priors from CMB experiments

In this paragraph we describe how we included prior
knowledge of cosmological parameters from previous Cos-
mic Microwave Background (CMB) observations, such as
Planck [21]. CMB experiments provide tight constraints
on (Ωm, σ8), but they are not sensitive to dark energy pa-
rameters such as w. Nevertheless, prior knowledge of Ωm

and σ8 could in principle help in breaking degeneracies
between these parameters and w in weak lensing obser-
vations. The CMB parameter prior probability function
can be written as

− 2 logLCMB(p) = (p− p0)
TFCMB(p− p0) (21)

where we assumed that the best fit parameters are the
same p0 that appear in equation (13). Parameter con-
straints from the Planck CMB experiment are made
available to the public via the parameter Markov Chains
(MCMC) published on the Planck Legacy Archive [45].
We can use these MCMC data to estimate the param-
eter covariance matrix ΣCMB on the parameter multi-
plet (Ωm,Ωbh

2, θMC, τ, w, ns, σ8), marginalized over the
Planck nuisance parameters. We then compute the pa-
rameter prior Fisher matrix FCMB = Σ−1

CMB. Fixing the
values of all parameters but (Ωm, w, σ8) and applying
the prior to the weak lensing parameter likelihood (10) is
equivalent to taking the (Ωm, w, σ8) slice of FCMB, which

we call F
(Ωm,w,σ8)
CMB , and computing the parameters con-

straints subject to the CMB prior as

Σ̂lens+CMB =
(

MT Ψ̂M+ F
(Ωm,w,σ8)
CMB

)

−1

(22)

In the next section we describe the main results of this
work.

III. RESULTS

In this section we present the main results of this work.
Figure 3 shows the robustness of the dimensionality re-
duction technique we adopted for the three summary
statistics considered, namely the convergence power spec-
trum P κκ(ℓ, z̄b, z̄b′), peak counts npk(ν, z̄b) and moments
µµµ(z̄b). To measure the power spectrum we chose 15 uni-
formly spaced multipole bands between (ℓmin, ℓmax) =
(200, 2000). There are only 15 independent (z̄b, z̄b′) com-
binations (5 diagonal + 10 off-diagonal), which leads to a
total of Nb = 15(multipoles) × 15(redshift) = 225 power
spectrummeasurement bands, including cross redshift in-
formation. We bin the convergence peak counts in 30 uni-
formly spaced ν bins between (νmin, νmax) = (−2, 7), for
a total of Nb = 30(peak heights)×5(redshift) = 150 mea-
surement bands. The total size of the moments summary
statistic vector is Nb = 9(moments)× 5(redshift) = 45.
The forecast error bars on w are calculated according

to equation (15), where the covariance matrix Ĉ and its

inverse Ψ̂ have been estimated from Nr = 16000 realiza-
tions of each summary statistic in the fiducial cosmology.
Figure 4 shows a comparison between the w constraints

obtained using single redshift bins, with and without
PCA dimensionality reduction, and compares these sin-
gle redshift constraints with the ones obtained using red-
shift tomography. When we calculate parameter infer-
ences using the convergence power spectrum P κκ, we
can cross check the results obtained with our simulations
with the ones obtained with the analytical code NICAEA
[46]. This code allows to predict the convergence power
spectrum as a function of cosmological parameters p, for
an arbitrary galaxy redshift distribution n(z). Param-
eter inferences can be obtained from the NICAEA pre-
dictions for P κκ(ℓ, zi, zj) (where {zi} are the centers of
the redshift bins) using equation (15). To proceed in the
calculations we approximate the P κκ covariance matrix
with the one one would obtain in the limit in which the
κ(θθθ) field is Gaussian

〈

δP̂ℓ(z1, z2)δP̂ℓ(z3, z4)
〉

=
Pℓ(z1, z3)Pℓ(z2, z4) + Pℓ(z1, z4)Pℓ(z2, z3)

fskyδℓbin(2ℓ+ 1)
(23)

where Pℓ(z1, z2) is a shorthand for P κκ(ℓ, z1, z2),

δP̂ℓ(z1, z2) = P̂ℓ(z1, z2) − Pℓ(z1, z2) is the scatter in the

P̂ estimator, δℓbin is the width of the linearly spaced

multipole bands and fsky = θ2FOV/4π is the sky cover-
age fraction of one field of view. In this approximation
the cross variance terms between different multipoles are
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FIG. 3. 1σ errors on w, marginalized over (Ωm, σ8), as a function of the number of the principal components Nc, using the
power spectrum (top left), peak counts (top right) and moments (bottom). The thin colored lines refer to single redshift
summary statistics, while the thick black line shows the case in which the joint redshift information is included.

assumed to be zero.
Figure 5 shows the 1σ confidence contours on the

(Ωm, w) doublet calculated from equation (15) after the
PCA dimensionality reduction performed according to
equation (20), for a variety of choices of statistic and Nc.
We also show the improvements on the confidence con-
tours when combining different summary statistics after
the corresponding dimensionality reductions have been
performed. The constraints in the (Ωm, w, σ8) parameter
space for a variety of summary statistics are summarized
in Tables I (weak lensing only) and II (with priors from
Planck added).
Figure 6 shows the effect of ignoring photo-z errors

on parameter constraints. To evaluate this effect we con-
struct different simulated observations, with and without
photo-z errors, and compare the results of the parame-
ter fit according to equation (14). Using our simulation
suite, we construct 20 simulated observations: the sum-
mary statistic in each observation is calculated by taking
the mean of a random sample of NFOV = 1600 realiza-
tions of the summary statistic in the fiducial cosmology
(randomly chosen among the ensemble of Nr = 16000
that are available in the ensemble). The estimated co-

variance matrix Ĉ is scaled by a factor NFOV to take into
account the construction process of the simulated obser-
vations. This procedure allows us to forecast the results
an LSST-like survey would obtain. We stress that,
because of the small size of our simulation box
the covariance estimate that we obtain is likely
not accurate enough to produce constraints from
LSST data. Full treatment of observables covari-
ance matrices, along with larger N–body simula-
tions and SSC effects will be investigated in future
work.

IV. DISCUSSION

In this section we discuss our findings. Figure 3 shows
that our dimensionality reduction technique is robust.
In particular, for all the summary statistics we consider,
a plateau in the w error is reached for a sufficient high
number of principal components Nc. We also see that for
single redshift statistics, this plateau is reached for ∼ 5
components for the power spectrum and the moments,
and ∼ 10 components for the peak counts. Moreover,
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FIG. 4. Comparison between single-redshift w constraints (marginalized over Ωm and σ8) obtained without PCA (black bars)
and with PCA (colored bars) as a function of the redshift bin z̄b. We show constraints obtained from the power spectrum (top
left), peak counts (top right) and moments (bottom). Note the different scales on the vertical axis in the three different panels.
The black dashed lines in the top left panel refer to parameter constraints on w obtained with the public code NICAEA [46],
assuming a Gaussian covariance model for the power spectrum, as specified by equation (23).

Statistic ∆Ωm ∆w ∆σ8 106Area(Ωm, w) 109Volume (Ωm, w, σ8)

Power spectrum (z̄5) 0.0222 0.0286 0.0298 632 654

Power spectrum (tomo) 0.0038 0.0213 0.0060 76 74

Peaks (z̄5) 0.0049 0.0316 0.0050 98 99

Peaks (tomo) 0.0042 0.0271 0.0043 93 122

Moments (z̄5) 0.0027 0.0276 0.0026 48 39

Moments (tomo) 0.0020 0.0214 0.0020 28 21

Power spectrum + peaks (z̄5) 0.0040 0.0209 0.0044 58 53

Power spectrum + peaks (tomo) 0.0021 0.0153 0.0026 27 26

Power spectrum + moments (z̄5) 0.0023 0.0190 0.0025 32 26

Power spectrum + moments (tomo) 0.0016 0.0150 0.0019 18 14

Power spectrum + peaks + moments (z̄5) 0.0020 0.0127 0.0024 21 17

Power spectrum + peaks + moments (tomo) 0.0015 0.0121 0.0018 14 11

TABLE I. Constraints on the (Ωm, w, σ8) parameter triplet using different summary statistics and redshift information. Each
column (∆Ωm,∆w,∆σ8) contains the 1σ constraints on a particular parameter, marginalized over the other two. The last two
columns contain respectively the area of the (Ωm, w) 68% confidence level ellipse (marginalized over σ8) and the volume of the

68% confidence level ellipsoid in (Ωm, w, σ8) space, both calculated as the square root of the determinant of the relevant Σ̂

minors.
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FIG. 5. 1σ tomographic constraints on the (Ωm, w) parameter space, marginalized over σ8, obtained using equation (15). The

covariance matrix Ĉ and its inverse Ψ̂ have been computed from 16000 summary statistics realizations, and have been scaled
by a factor NFOV = 1600 to mimic the constraining power of an LSST-sized survey. The thick line ellipses in the right panel
refer to (Ωm, w) obtained from the weak lensing statistics considered in this work, but subject to Planck priors as described in
equation (22). The thin solid lines in the left and right panels are the same.

Statistic ∆Ωm ∆w ∆σ8 106Area(Ωm, w) 109Volume (Ωm, w, σ8)

Power spectrum (z̄5) 0.0076 0.0274 0.0084 94 96

Power spectrum (tomo) 0.0028 0.0129 0.0035 32 31

Peaks (z̄5) 0.0048 0.0237 0.0050 57 57

Peaks (tomo) 0.0041 0.0204 0.0042 55 70

Moments (z̄5) 0.0024 0.0172 0.0025 27 21

Moments (tomo) 0.0019 0.0149 0.0020 18 14

Power spectrum + peaks (z̄5) 0.0040 0.0184 0.0043 40 36

Power spectrum + peaks (tomo) 0.0021 0.0127 0.0025 20 19

Power spectrum + moments (z̄5) 0.0022 0.0145 0.0025 22 17

Power spectrum + moments (tomo) 0.0015 0.0120 0.0018 14 11

Power spectrum + peaks + moments (z̄5) 0.0019 0.0110 0.0023 16 13

Power spectrum + peaks + moments (tomo) 0.0015 0.0104 0.0018 12 9

TABLE II. Constraints on the (Ωm, w, σ8) parameter triplet using different summary statistics and redshift information, in-
cluding Fisher priors from Planck according to equation (22). Each column (∆Ωm,∆w,∆σ8) contains the 1σ constraints on a
particular parameter, marginalized over the other two. The last two columns contain respectively the area of the (Ωm, w) 68%
confidence level ellipse (marginalized over σ8) and the volume of the 68% confidence level ellipsoid in (Ωm, w, σ8) space, both

calculated as the square root of the determinant of the relevant Σ̂ minors.

Figure 4 shows that, at least for the four highest redshift
bins {z̄b : b ≥ 2}, most of the cosmological information
contained in the full (pre-PCA) summary statistic vector
can be captured with a limited number of principal com-
ponents Nc < Nb. The minimum number of components
necessary to capture most of the available information
increases when including redshift tomography, and can
reach ∼ 30 for the power spectrum and moments and
∼ 40 for the peak counts.

Figure 4 also clearly shows that, when considering a

single redshift bin and a single summary statistic, most
of the information on w is contained in the highest red-
shift galaxies. PCA does not seem to capture all the
information in the lowest redshift bin, even when enough
components are included to reach the plateau in Figure
3. This can be attributed to the fact that PCA is not
scale-invariant [41], because there is freedom in choosing
the whitening scale in equation (18). Our choice of the
whitening scale seems to affect significantly the first red-
shift bin, with the effect being mitigated for the highest
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FIG. 6. Distribution of parameter estimates in the (Ωm, w)
parameter space using the power spectrum (red), peak counts
(green) and moments (blue) to fit 20 LSST-like simulated ob-
servations. The parameter deviations (δΩm, δw) are obtained
comparing parameter estimates from equation (14) with and
without photo-z errors. The colored squares and the ellipses
correspond to respectively to the mean and 1σ level of the
(δΩm, δw) distribution, assuming the latter is Gaussian.

redshift bins. The top left panel of Figure 4 also shows
reasonable agreement between the results we obtain with
our simulations and the ones we calculate with the ana-
lytical code NICAEA.

There are two possibilities for improving the con-
straints: the use of redshift tomography and the com-
bination of different statistics. Table I shows that the
area and volume of the (Ωm, w) ellipse and (Ωm, w, σ8)
ellipsoid shrink by a factor of 8 when redshift tomography
is added to the power spectrum, while the improvement
is more modest for the remaining statistics (negligible for
the peaks, and a factor of 2 for the moments). Combining
the power spectrum and the peak counts in the highest
redshift bin leads to a factor of 10 improvement in the
(Ωm, w) and (Ωm, w, σ8) 68% confidence intervals, with
tomography further shrinking the contours by an addi-
tional factor of 2. Combining the power spectrum and
the moments in the highest redshift bin provides 20 times
tighter constraints on (Ωm, w) and (Ωm, w, σ8), with to-
mography yielding an additional factor of 2 improvement.
Table I also shows that power spectrum tomography can
help breaking the degeneracy between Ωm and σ8. The
same is not true for peaks and moments tomography,
although combining these statistics with the power spec-
trum yields a factor of respectively 2 and 3 better con-
straints on Ωm and σ8.

Table II shows that parameter priors from Planck yield
a factor of 6 improvement on the (Ωm, w) and (Ωm, w, σ8)
68% confidence intervals, even when a single redshift
bin is considered. When the Planck priors in equation
(22) are included, the improvements in constraints when
adding redshift tomography or combining different statis-
tics are more moderate. Tomography improves power
spectrum constraints by a factor of 3. Adding moments

improves by an additional factor of 2, and adding both
moments and peaks improves by almost a factor of 3 over
power spectrum tomography alone.
Figure 5 shows that peaks and moments contain cos-

mological information that is not contained in the power
spectrum, because a similar improvement cannot be ob-
tained by simply increasing the number of PCA com-
ponents in the power spectrum dimensionality reduction
procedure. This is consistent with previous work (see for
example [33])
Figure 6 quantifies the effect of uncorrected photo-z er-

rors on the (Ωm, w) constraints. Because the stochastic
nature of the observations, parameter values p̂ estimated
from equation (14) are affected by statistical fluctuations.
In Figure 6 we show 20 random draws from the proba-
bility distribution of δp̂ = p̂photo−z − p̂no−photo−z. We
can conclude that the p̂ estimator is biased if 〈δp̂〉 6= 0.
Figure 6 clearly show that photo-z errors cause parame-
ter biases at more than 1σ significance level when using
the power spectrum and the moments, while no bias is
observed for the peak count statistic within its 68% con-
fidence region. Peak histogram shapes are more ro-
bust to this kind of systematic effect since the
peak locations are determined by the informa-
tion coming from neighboring galaxies, while the
photo-z errors have no spatial correlation. Photo-
z errors are more likely to alter point estimates
of the κ distribution and larger scale correlations
which affect the power spectrum.
We also observe that photo-z errors bias the con-

straints in slightly different directions, leaving open the
possibility of identifying and correcting this bias through
self-calibration techniques.

V. CONCLUSIONS

In this work we have studied cosmological parameter
constraint forecasts for an LSST-like galaxy survey us-
ing the convergence power spectrum and a range of non-
Gaussian statistics. We make use of redshift tomography
to improve the constraints relative to their single-redshift
counterparts. We also investigate the effects of uncor-
rected photo-z systematic effects on the inferred cosmol-
ogy. Our main findings can be summarized as follows:

• Principal Component analysis is a robust technique
to keep the dimensionality of the parameter space
under control and to avoid the numerical pitfalls
explained in [43, 44, 47] and more recently in [32].
In particular, we find that only a few components
(5-10) are necessary to characterize the cosmologi-
cal information content in single redshift statistics,
while more components (30-40) are necessary when
tomography is included. Nevertheless we find that
the number of required components Nc is signifi-
cantly smaller than the full summary statistic space
dimensionality before performing PCA.
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• When considering a single redshift bin, most of the
cosmological information on w is contained in high
redshift galaxies. Constraints can be improved with
redshift tomography or combining different non-
Gaussian statistics with the power spectrum. The
improvement originating from the combination of
different statistics is attributed to the complemen-
tary information that non-Gaussian statistics carry,
as a similar improvement cannot be obtained from
a single statistic.

• Redshift tomography on the power spectrum
shrinks the (Ωm, w) 68% confidence ellipse by a
factor of 8; combining the peak counts with the
power spectrum in the highest redshift bin leads to
a factor of 10 better constraints, while adding the
moments instead reduces the size of the (Ωm, w) el-
lipse by a factor of 20. When redshift tomography
is added on top of these statistics combinations,
an additional factor of 2 improvement is observed.
Constraint improvements adding redshift tomogra-
phy and combinations of different statistics are less
dramatic when priors from CMB experiments are
included in the analysis.

• Uncorrected photo-z systematics can bias parame-
ter constraints obtained from the power spectrum
and the moments, but in slightly different param-
eter directions, leaving open possibilities of some-
what eliminating this bias via self-calibration.

This work explores the advantage of deep galaxy sur-
veys such as LSST, which have access to shape and red-
shift information of high z galaxies and provide valuable

cosmological information on the dark energy equation of
state. We also stress the fact that redshift tomography
can in some cases provide more stringent constraints on
parameters but, for this technique to be viable, accurate
knowledge of galaxy redshifts is necessary. Future work
needs to address the requirements for photometric mea-
surements accuracy when using non-Gaussian statistics,
as well as the self calibration techniques that can be used
when different summary statistics are available in addi-
tion to the power spectrum.
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V. Vishwanath, Z. Lukić, S. Sehrish, and W.-k. Liao, 42, 49 (2016), arXiv:1410.2805 [astro-ph.IM].
[28] B. Jain, U. Seljak, and S. White, ApJ 530, 547 (2000), astro-ph/9901191.
[29] S. Hilbert, J. Hartlap, S. D. M. White, and P. Schneider, A&A 499, 31 (2009), arXiv:0809.5035.
[30] A. Petri, “LensTools: Weak Lensing computing tools,” Astrophysics Source Code Library (2016), ascl:1602.009.
[31] A. Petri, Astronomy and Computing 17, 73 (2016), arXiv:1606.01903.
[32] A. Petri, Z. Haiman, and M. May, Phys. Rev. D 93, 063524 (2016).
[33] A. Petri, J. Liu, Z. Haiman, M. May, L. Hui, and J. M. Kratochvil, Phys. Rev. D 91, 103511 (2015), arXiv:1503.06214.
[34] J. Liu, A. Petri, Z. Haiman, L. Hui, J. M. Kratochvil, and M. May, Phys. Rev. D 91, 063507 (2015), arXiv:1412.0757.
[35] H. Zhan, JCAP 8, 008 (2006), astro-ph/0605696.
[36] LSST Science Collaboration, P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, J. R. P. Angel, L. Armus, D. Arnett,

S. J. Asztalos, T. S. Axelrod, and et al., ArXiv e-prints (2009), arXiv:0912.0201 [astro-ph.IM].
[37] L. Casarini, O. F. Piattella, S. A. Bonometto, and M. Mezzetti, ApJ 812, 16 (2015), arXiv:1406.5374.
[38] T. Matsubara, Phys. Rev. D 81, 083505 (2010), arXiv:1001.2321 [astro-ph.CO].
[39] D. Munshi, L. van Waerbeke, J. Smidt, and P. Coles, MNRAS 419, 536 (2012), arXiv:1103.1876 [astro-ph.CO].
[40] A. Petri, Z. Haiman, L. Hui, M. May, and J. M. Kratochvil, Phys. Rev. D 88, 123002 (2013), arXiv:1309.4460.
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