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Large-angle fluctuations in the cosmic microwave background (CMB) temperature induced by
the integrated Sachs-Wolfe (ISW) effect and Compton-y distortions from the thermal Sunyaev-
Zeldovich (tSZ) effect are both due to line-of-sight density perturbations. Here we calculate the
cross-correlation between these two signals. Measurement of this cross-correlation can be used to
test the redshift distribution of the tSZ distortion, which has implications for the redshift at which
astrophysical processes in clusters begin to operate. We also evaluate the detectability of a yT
cross-correlation from exotic early-Universe sources in the presence of this late-time effect.

I. INTRODUCTION

The standard ΛCDM cosmological model provides a
remarkably good fit to an array of precise measurements.
However, there still remain some tensions between dif-
ferent measurements which must be resolved, and the
physics responsible for the generation of primordial per-
turbations has yet to be delineated. This paper addresses
both these issues.

Large-angle fluctuations in the cosmic microwave back-
ground (CMB) temperature (T ) are induced not only by
density perturbations at the CMB surface of last scatter
(the Sachs-Wolfe effect; SW), but also by the growth of
density perturbations along the line of sight (the inte-
grated Sachs-Wolfe effect; ISW) [1]. Although the CMB
frequency spectrum is very close to a blackbody, there are
small distortions, of the Compton-y type, induced by the
rare scattering of CMB photons from hot electrons in the
intergalactic medium (IGM) of galaxy clusters [2]. This y
distortion has been mapped, as a function of position on
the sky, by Planck with an angular resolution of a frac-
tion of a degree [3, 4], and there are vigorous discussions
of future missions, such as PIXIE [5] and PRISM [6], that
will map the y distortion with far greater sensitivity and
resolution.

Given that both the tSZ and ISW fluctuations are in-
duced by density perturbations at relatively low redshifts,
there should be some cross-correlation between the two
[7], and the purpose of this paper is to calculate this cross-
correlation. The motivation for this work is two-fold:
First, there is some tension between the measured am-
plitude of y fluctuations and the amplitude of density per-
turbations inferred from CMB measurements [8–11]. The
tension, though, is based upon theoretical models that
connect the y-distortion and density-perturbation am-
plitudes. Ingredients of these models include nonlinear
evolution of primordial perturbations, gas dynamics, and
feedback processes, all of which can become quite compli-
cated. Any empirical handle on this physics would there-
fore be useful. To quantify how well the cross-correlation
can constrain these processes, we introduce a parame-

ter, ε, which describes the peak redshift of the cross-
correlation signal. If clusters were to develop a hot enve-
lope earlier than currently expected from theory, ε would
increase. We design this parameter so that it does not
affect the tSZ signal, merely the cross-correlation. Using
our formalism we quantify how well the cross-correlation
breaks the degeneracy between structure formation pa-
rameters (such as the amplitude of fluctuations, σ8) and
the astrophysical processes which lead to the halo pres-
sure profile.

The second motivation involves the search for ex-
otic early-Universe physics. Recent work has shown
that primordial non-gaussianity may lead to a yT cross-
correlation which may be used to probe scale-dependent
non-gaussianity [12]. The present calculation will be used
to explore whether this early-Universe signal can be dis-
tinguished from late-time effects that induce a yT corre-
lation.

This paper is organized as follows. In Section II we
derive expressions for the power spectra for the ISW ef-
fect, the tSZ effect, and their cross-correlation, and then
present numerical results. In Section III we evaluate the
prospects to infer some information about the redshift
distribution for tSZ fluctuations from measurement of
the tSZ-ISW cross-correlation. In Section IV we esti-
mate the sensitivity of future measurements to the tSZ-
ISW cross-correlation from primordial non-gaussianity.
We conclude in Section V.

II. CALCULATION

A. The ISW Effect

The integrated Sachs-Wolfe (ISW) effect describes the
frequency shift of CMB photons as they traverse through
time-evolving gravitational potentials. The fractional
temperature fluctuation in a direction n̂ due to this fre-
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quency shift is

∆T

T
(n̂) = − 2

c2

∫
dη

dφ

dη
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(1)
where φ(~x, z) is the gravitational potential at position ~x
and redshift z, η the conformal time, c the speed of light,
and r the distance along the line of sight.

The potential φ is related to the density perturbation
through the Poisson equation ∇2φ = 4πGρ, where ∇ is
a gradient with respect to physical position, G Newton’s
constant, and ρ the matter density. We write ρ(~x; z) =
ρ̄[1 + δ(~x; z)] in terms of the mean matter density ρ̄ and
fractional density perturbation δ(~x; z). We then use the
Friedmann equation to write ρ̄ = (3/8πG)ΩmH

2
0a

−3 in
terms of the matter density Ωm (in units of the crit-
ical density), Hubble parameter H0, and scale factor
a = (1+z)−1. We further write the density perturbation
δ(~x; z) = D(z)δ(~x; z = 0) in terms of the linear-theory
growth factor D(z). We can then re-write the Poisson
equation as

φ(~x; z) = −3

2
ΩmH

2
0

D(z)

a(z)

[
∇−2
c δ(~x; z = 0)

]
, (2)

where ∇c = ∇/a is the gradient with respect to the co-
moving coordinates.

The power spectrum for ISW-induced angular temper-
ature fluctuations is then obtained using the Limber ap-
proximation, which can be stated as follows: If we ob-
serve a two-dimensional projection,

p(n̂) =

∫
dr q(r)δ(rn̂), (3)

of a three-dimensional field δ(~x), with line-of-sight-
distance weight function q(r), then the angular power
spectrum, for multipole l, of p(n̂) is

Cpl =

∫
dr

[q(r)]2

r2
P

(
l + 1/2

r

)
, (4)

in terms of the three-dimensional power spectrum P (k),
for wavenumber k, for δ(~x).

Using Eqs. (1), (2), and (4), we find the power spec-
trum for ISW-induced temperature fluctuations to be,
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, (5)

in terms of the matter-density power spectrum P (k) to-
day. Note that we used the relation dz = −(H/c)dr to
get from the first to the second line in Eq. (5), and we
have defined in the last line the ISW transfer function,

∆isw
l (z) =

3ΩmH
2
0

c3(l + 1/2)2
r(z)H(z)

d

dz

(
D(z)

a(z)

)
. (6)

B. The Thermal Sunyaev-Zeldovich Effect

The thermal SZ effect (tSZ) arises from inverse-
Compton scattering from the hot electrons in the inter-
galactic medium of galaxy clusters. This upscattering in-
duces a frequency-dependent shift in the CMB intensity
in direction n̂ which we write as a brightness-temperature
fluctuation,(

∆T

T

)
ν

(n̂) = g(ν)y ≡
(
x
ex + 1

ex − 1
− 4

)
y(n̂), (7)

where y(n̂) is the y distortion in direction n̂, and x ≡
hν/kBT , with ν the frequency, kB the Boltzmann con-
stant, h the Planck constant, and T = 2.7255 K the CMB
temperature [13]. The Compton-y distortion is given by
an integral,

y(n̂) ≡ kBσT
mec2

∫
ds ne(sn̂)Te(sn̂), (8)

along the line of sight, where s is the (physical) line-of-
sight distance, σT the Thomson cross section, ne(~x) the
electron number density at position ~x, and Te(~x) the elec-
tron temperature. The hot electrons that give rise to this
distortion are assumed to be housed in galaxy clusters
with a variety of masses M and a variety of redshifts z.
The spatial abundance of clusters with masses between
M and M + dM at redshift z is (dn/dM)dM in terms of
a mass function (dn/dM)(M, z), a function of mass and
redshift. Galaxy clusters of mass M at redshift z are dis-
tributed spatially with a fractional number-density per-
turbation that is assumed to be b(M, z)δ(~x) in terms of
a bias b(M, z). The spatial fluctuations to the electron
pressure Pe(~x) = kBne(~x)Te(~x) that give rise to angu-
lar fluctuations in the Compton-y parameter induced by
clusters of mass M and redshift z can then be modeled
as b(M, z) times a convolution of the density perturba-
tion δ(~x) with the electron-pressure profile of the clus-
ter. Since convolution in configuration space corresponds
to multiplication in Fourier space, the Limber derivation
discussed above can be used to find the power spectrum
for angular fluctuations in the Compton-y parameter to
be [3, 7, 14–16],

Cyy,2hl =

∫
c dz

H(z)
[∆y

l (z)]
2
P

(
l + 1/2

r

)
, (9)

in terms of a transfer function,

∆y
l (z) = r(z)D(z)

∫
dn

dM
dMyl(M, z)b(M, z). (10)

Here, yl(M, z) is the 2d Fourier transform of the
Compton-y image, on the sky, of a cluster of mass M at
redshift z and is given in terms of the electron pressure
profile Pe(M, z;x), as a function of scale radius x in the
cluster. We neglect relativistic effects, which are second-
order for our purposes [17]. We use for our numerical
work the electron-pressure profiles of Ref. [18, 19] with
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the parameters described in [20]. We assume the halo
mass function of Ref. [22] and the halo bias of Ref. [23].

The “2h” superscript in the y-parameter power spec-
trum indicates that this is the “two-halo” contribution,
the y autocorrelation that arises from large-scale density
perturbations. There is an additional “one-halo” contri-
bution that arises from Poisson fluctuations in the num-
ber of clusters. This is [21],

Cyy,1hl =

∫
dz [r(z)]

2 c

H(z)

∫
dM

dn(M, z)

dM
|yl(M, z)|2 .

(11)

The total y-parameter power spectrum is Cyyl = Cyy,1hl +

Cyy,2hl . To avoid our signal being dominated by unphys-
ical z ∼ 0 objects, we place a lower integration limit of
z = 0.02, the redshift of the COMA cluster.

C. ISW-tSZ cross-correlation

Given that the temperature fluctuation induced by the
ISW effect and the two-halo contribution to tSZ fluctu-
ations are both generated on large angular scales by the
same fractional density perturbation δ(~x), there should
be a cross-correlation between the two. From the expres-
sions, Eq. (5) and (9), it is clear that this cross-correlation
is

CyTl =

∫
c dz

H(z)
∆isw
l (z)∆y

l (z)P

(
l + 1/2

r

)
. (12)
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FIG. 1. The ISW power spectrum C isw
l (green) and the two-

halo contribution (y, 2h) to Cyy
l (blue) are shown in dashed

lines, while CyT
l is shown in solid red. The one-halo contri-

bution (y, 1h) to Cyy
l is dotted. The CMB power spectrum is

shown dot-dashed for comparison.

D. Numerical results and approximations

Fig. 1 shows the resulting power spectra. For our nu-
merical results, we use a vacuum-energy density (in units
of critical) ΩΛ = 0.721, matter density Ωm = 0.279,
baryon density Ωb = 0.046, a critical density for col-
lapse of δc = 1.686, and dimensionless Hubble parameter
h = 0.701, although the large-angle results that will be
our primary focus are largely insensitive to these details.
In practice, we find that over ninety percent of the con-
tribution comes from the redshift range z = 0 − 3 and
the halo mass range 1013M� and 1015M�. We therefore
integrate over slightly wider ranges; z = 0.02−4 and halo
mass 1012M� and 1016M�.

The large angle (low-l) behaviors of the ISW-ISW au-
tocorrelation, the yT cross-correlation, and the one- and
two-halo contributions to the yy power spectra are easy
to understand qualitatively. Let us begin with the ISW
effect. Here, the l dependence of the transfer function
is ∆isw

l ∝ l−2, and for large angles (l . 20), the power
spectrum is P (l/r) ∝ l, assuming l + 1/2 ≈ l. As a re-
sult, l2C isw

l ∝ l−1 for l . 20. Next consider the tSZ
power spectra. Galaxy clusters subtend a broad distri-
bution of angular sizes but are rarely wider than a de-
gree. Thus, for l . 20, they are effectively point sources.
The Fourier transform is thus effectively approximated
by yl(M, z) ' yl=0(M, z) which is itself precisely the in-
tegral of the y-distortion over the cluster image on the
sky, or equivalently, the total contribution of the cluster
to the angle-averaged y. As a result of the independence

of yl on l and P (l/r) ∝ l for l . 20, we infer l2Cyy,2hl ∝ l
and l2CyTl ∝ const for l . 20. Finally, the one-halo con-
tribution to Cyyl is nearly constant (i.e., l2Cl ∝ l2) for
l . 20 as expected for Poisson fluctuations in what are
(at these angular scales) effectively point sources.

III. SZ REDSHIFT DISTRIBUTION

We now discuss the prospects to learn about the red-
shift distribution of the galaxy clusters that produce the
Compton-y distortion. As seen above, the yT correlation
is significant primarily at multipole moments l . 100,
where the window function yl(z) is largely independent
of l. The amplitude of the cross-correlation, relative to
the auto-correlations, can be largely understood by ex-
amining the overlap between the redshift dependences
of the two transfer functions ∆y

l (z) and ∆isw
l (z). These

transfer functions are shown in Fig. 2. More precisely,
we plot–noting that P (l/r) ∝ l/r for the relevant an-

gular scales—∆l/ [H(z)r(z)]
1/2

, the square root of the
integrands for Cl, as it is the overlap of these two func-
tions that determines the strength of the cross-correlation
relative to the auto-correlation. We also normalize the
curves in Fig. 2 to both have the same area under the
curve.

Given the current fairly precise constraints to dark-
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FIG. 2. We plot the transfer functions ∆isw
l (z) and ∆y

l (z),

divided by [r(z)H(z)]1/2, at l = 20. The squares of the plotted
quantities are the redshift (z) integrands for the ISW power
spectrum C isw

l and the two-halo contribution to the tSZ power
spectrum Cyy

l . Both curves are normalized so that the areas
under the curve are the same. The tSZ-ISW cross-correlation
CyT

l is obtained from the overlap of these two.

energy parameters, the predictions for ∆isw
l (z) has rela-

tively small uncertainties. The prediction for ∆y
l (z) de-

pends, however, on the redshift distribution of the halo
mass function, bias parameters, and cluster pressure pro-
files, all of which involve quite uncertain physics. Mea-
surement of the yT correlation will, however, provide an
additional empirical constraint on the redshift evolution
of the y parameter.

To see how this might work, we replace

∆y
l (z)→ ∆y

l (z) [1 + ε(z − z0)] , (13)

where

z0 =

∫
dz

r(z)H(z)z∆
y
l (z)∫

dz
r(z)H(z)∆y

l (z)
' 0.04

(
l

100

)
. (14)

The functional form in Eq. (13), is chosen so that, with
z0 given in Eq. (14), the auto-correlation power spectrum
Cyyl will remain unaltered for small ε. This alteration
thus describes, for ε > 0, a weighting of the Compton-y
distribution to smaller redshifts (and vice versa for ε < 0)
in such a way that leaves the total y signal unchanged.

We now estimate the smallest value σε of ε that will be
detectable with future measurements. This is given by

1

σ2
ε

'
∑
l

(
∂CyTl /∂ε

)2

(
σyTl

)2 , (15)

where

∂CyTl
∂ε

=

∫
c dz

H(z)
∆isw
l (z)∆y

l (z)(z − z0)P (l/r). (16)
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FIG. 3. The derivative ∂CyT
l /∂ε of the ISW-tSZ cross-

correlation with respect to ε (solid blue), and the ISW-tSZ

noise σyT
l (dashed green). We also show the same quantities

restricting to z > 0.3 (solid red and dashed cyan, respec-
tively), which substantially increases the signal-to-noise.

Fig. 3 shows ∂CyTl /∂ε and σyTl .

The error with which each CyTl can be determined is(
σyTl

)2

=
1

2l + 1

[(
CyTl

)2

+ CTTl
(
Cyyl +NlW

−2
l

)]
,

(17)
where CTTl is the CMB temperature power spectrum,

Wl = e−l
2σ2

b/2 is a window function, and Nl = (4π/N)σ2
y

is the noise in the measurement of Cyyl . Here, σb the
beam size and, σy the root-variance of the y-distortion
measurement in each pixel, and N the number of pixels.

The Planck satellite has now measured the tSZ power
spectrum and found good agreement with the expecta-
tions from the one-halo contribution to Cyyl . They have
now even presented good evidence for detection of the
two-halo contribution at l . 10. From this we infer that
the noise contribution Nl to the yy measurement is al-
ready small compared with Cyyl , and it will be negligible
for future experiments like PIXIE or PRISM. We also

note from the numerical results that
(
CyTl

)2

is small

compared with Cyyl CTTl —this makes sense given that the
cross-correlation of y with the ISW effect is small and
further that the ISW effect provides only a small contri-
bution to large-angle temperature fluctuations. We may
thus approximate(

σyTl

)2

' 1

2l + 1
CTTl Cyyl . (18)

The smallest detectable value of ε evaluates to σε '
2.3, for z0 = 0.13. This is still a considerable uncertainty,
but the signal to noise can be increased. While the major-
ity of the cross-correlation signal is at low redshifts, the 1-
halo tSZ term, which appears as noise in Eq. (17), peaks
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even more strongly at low redshift. Thus the lowest-
redshift bins are substantially noise dominated.1 If we
remove all information at redshifts z < 0.3, possible by
explicitly detecting resolved clusters and masking them
from the tSZ map, then the noise can be considerably
reduced. In this case, the smallest detectable value be-
comes σε ' 0.57, which, if achieved, would provide some
valuable information on the redshift distribution of tSZ
fluctuations, constraining the formation of massive clus-
ters to the era of dark energy dominance.

We also considered the profile of Ref. [21], which
produces a larger tSZ signal and thus a larger cross-
correlation. However, since the 1-halo tSZ term domi-
nates the noise, this actually slightly decreased the sen-
sitivity. Thus our results should be largely insensitive to
the electron pressure profile used.

IV. PRIMORDIAL NON-GAUSSIANITY

We now review the yT cross-correlation from the
scale-dependent primordial non-gaussianity scenario of
Ref. [12]. If primordial perturbations are non-gaussian,
the amplitude of small-wavelength power can be modu-
lated by long-wavelength Fourier modes of the density
field. The dissipation of primordial Fourier modes with
wavenumbers k ' 1 − 50 Mpc−1 (which takes place at
redshifts 1100 . z . 5 × 104) gives rise to primordial
Compton-y distortions. If there is non-gaussianity, then
the angular distribution of this y distortion may be cor-
related with the large-scale density modes that give rise,
through the Sachs-Wolfe effect, to large-angle fluctua-
tions in the CMB temperature.

The predictions for this primordial yT correlation de-
pend on the yet-unmeasured isotropic value 〈y〉 of the
Compton-y parameter for which we take as a canonical
value 4 × 10−9. The yy and yT power spectra for the
scenario are then,

l2Cyy,ng
l ' 5.5× 10−20

(
fynl

200

)2( 〈y〉
4× 10−9

)2

, (19)

l2CyT,ng
l ' 5.8× 10−15

(
fynl

200

)(
〈y〉

4× 10−9

)
. (20)

Here, fynl is the non-gaussianity parameter for squeezed
bispectrum configurations in which the wavenumber of
the long-wavelength mode is of the ∼Gpc−1 scales of
modes that contribute to the ISW effect, while the two
short-wavelength modes have wavelengths 1 Mpc−1 .
k . 50 Mpc−1 As discussed in Ref. [12], there are no
existing model-independent constraints on fynl.

1 Eq. 17 assumes Gaussian fluctuations for Cyy
l . This assumption

is invalid at z ∼ 0, where a single nearby large cluster can domi-
nate large angular scales. The z ∼ 0 signal is already extremely
small, however, so this does not change our conclusions.

We now estimate the detectability of the yT cross-
correlation from non-gaussianity, discussed in Ref. [12].

In that work, the late-time contribution to Cyyl and CyTl
was neglected, and the detectability of the primordial sig-
nal inferred assuming that detection of y fluctuations was
noise-limited. Here we re-do those estimates taking into
account the late-time yT correlation calculated above.

If the late-time yT is somehow known precisely, the
signal-to-noise with which an early-Universe yT signal

with power spectrum CyT,ng
l can be distinguished from

the null hypothesis is

(
S

N

)
=

∑
l

(
CyT,ng
l

)2

(σyTl )2


1/2

. (21)

Using Eq. (18) and the numerical results for Cyyl , we
then obtain a signal-to-noise (S/N) ' (fynl/1065)(〈y〉 /4×
10−9). This calculation differs from that of Ref. [12] in
two respects; we have included the late-time contribu-
tion to Compton-y fluctuations, which degrades the de-
tectability fynl by about a factor of 4, even if the late-time
yT correlation is assumed to be known precisely. The de-
tectability is, moreover, limited by cosmic variance and
not from measurement noise. We have included in the
sum in Eq. (21) angular modes up to l ≤ 1000; the signal-
to-noise improves if the sum is extended to higher l.

This calculation overestimates the smallest detectable
signal, as there is a theoretical uncertainty in the late-
time yT correlation, as discussed in Section III; it must
instead be determined from the data. There is thus an
additional uncertainty to the inferred value of fynl that
will arise after marginalizing over the uncertain late-time
yT amplitude. We thus assume that the total yT power

spectrum is a combination CyT,tot
l = αCyTl + CyT,ng

l of
the late-time and non-gaussian contributions. Here α ∼ 1
accounts for uncertainty in the amplitude of yT . We then
calculate the Fisher matrix [24],

Fij =
∑
`

(
∂CyT,tot

l /∂si

)(
∂CyT,tot

l /∂sj

)
(
σyTl

)2 , (22)

where s = {fynl, α} is the set of parameters to be deter-
mined from the data, and the partial derivatives are eval-
uated under the null hypothesis fnl = 0 and α = 1. The
noise with which fnl can be determined, after marginal-

izing over α, is then
[(
F−1

)
fy
nlf

y
nl

]1/2
and the signal-to-

noise (S/N) is fynl divided by this quantity. Numerically,
we find (S/N) ' (fynl/1100)(〈y〉 /4 × 10−9). Thus, the
marginalization over the ISW-tSZ effect only slightly de-
creases the detectability.

Since the noise is again dominated by the tSZ 1-halo
term, we can perform a similar cleaning to low-redshift
sources to that used in Section III. If we remove all z <
0.3 clusters, we find that we can detect a smaller value
of fnl. Numerically, using the Fisher matrix as above
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to marginalise over uncertainty in the yT amplitude, we
find (S/N) ' (fynl/400)(〈y〉 /4×10−9), closer to the value
estimated in Ref. [12].

V. CONCLUSION

Here we have calculated the tSZ-ISW cross-correlation,
investigated its use in constraining the redshift distri-
bution of y-parameter fluctuations, and evaluated the
detectability of an early-Universe yT cross-correlation.
We showed that measurement of the yT cross-correlation
can be used to constrain the redshift distribution of
the sources of y-parameter fluctuations, as long as low-
redshift tSZ clusters can be masked, something that may
be of utility given uncertainties in the cluster-physics and
large-scale-structure ingredients (pressure profiles, halo

biases, mass functions) that determine these fluctuations.
We also showed that estimates, that neglect the yT cor-
relations induced at late times, of the detectability of
early-Universe yT correlations may be optimistic by fac-
tors of a few.
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