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Gravitational waves propagating through a stationary gauge field transform into gauge field waves
and back again. When multiple families of flavor-space locked gauge fields are present, the grav-
itational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves
like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy
conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional
sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmolog-
ical scenarios based on flavor-space locked gauge fields.

In a remarkable series of papers starting with the work
of Gertsenshteyn [1], the authors showed that a gravita-
tional wave propagating through a stationary magnetic
field converts into an electromagnetic wave and back
again [2–4]. Now that gravitational waves have been di-
rectly detected [5], no doubt there will be searches for
this effect [6].

Here we consider the more general phenomenon of the
conversion of a gravitational wave into a stationary gauge
field, as may be present in the early stages of the Uni-
verse [7–9]. In particular, we show that gravitational
waves transform into tensor waves of a gauge field, dis-
appearing and reappearing much like neutrino flavor os-
cillations. More complicated oscillation patterns are pos-
sible for multiple families of gauge fields. Quantization
of these gravitational and gauge field tensor modes re-
veals a novel relationship between the energy and flavor
eigenstates that may leave an imprint on a spectrum of
primordial gravitational waves, or even suggest a new
mechanism for the origin of a primordial spectrum.

We consider a gauge field under general relativity,
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)
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with metric signature −+++, MP is the reduced Planck
mass, and where Lm represents any other fields that may
be present. We take an SU(2) field

~Fµν = ∂µ ~Aν − ∂ν ~Aµ − gY ~Aµ × ~Aν (2)

where gY is the Yang-Mills coupling and the vector no-
tation indicates direction in the three-dimensional flavor
space. It is essential for this effect that the gauge field
have a vev, the analog of a stationary electric or mag-
netic field. To match the symmetries of our cosmological
spacetime, we build a homogeneous and isotropic con-
figuration as recently considered in the context of cosmic
acceleration for inflation [7–9] or dark energy [10–12]. We

work in the time-like gauge, so that ~At = 0, and require
that the remaining components, one per each group gen-
erator, be spatially-independent in order to ensure ho-
mogeneity. Isotropy is then achieved by identifying the
global symmetry of SU(2) with the rotational O(3) sym-

metry of Euclidean space. Hence, we write ~Aµ = φ(τ)~eµ

where ~eµ is a set of three mutually-orthogonal, space-
like basis vectors. That is, the vector fields for fla-
vors 1, 2, 3 point along the x-, y-, z-directions, and we
call this configuration flavor-space locked. The equation
of motion in an expanding spacetime with line element
ds2 = a2(τ)(−dτ2+d~x2) is φ′′+2g2Y φ

3 = 0, which may be
solved exactly in terms of elliptic Jacobi functions. The
classical field amplitude simply oscillates. The flavor-
space locked configuration under this model is stable, as
shown through a full cosmological perturbation analysis
in Refs. [13, 14]. Hence, we find that the gauge field

strength tensor ~Fµν has non-zero components where we
expect to find an electric field. Due to the coupling gY
there is also a magnetic field which, for each flavor, is
coaligned with the electric field. This vev enables the
gauge field to support transverse, traceless, synchronous
tensor fluctuations which couple to gravitational waves.

We generalize this scenario and find a much richer vari-
ety of behavior by considering multiple SU(2) subgroups
embedded in a larger SU(N) gauge group. To do so, we
consider its Cartan subalgebra whose N − 1 dimensional
basis elements each can be used to form linearly inde-
pendent SU(2) subgroups, N of which do not share any
generators, where N is the largest integer less than or
equal to N/2. Hence for SU(3) there is only N= 1 such
subgroup, but for SU(4) and SU(5) there are N= 2.

As an example, in the case of SU(4), we identify the
N = 2 subgroups by considering the 4 × 4 matrix rep-
resentation of its 15 generators. It is straightforward to
find matrix representations of the two SU(2) subgroups
which do not share any generators and are what we infor-
mally call “non-overlapping” in that the structure con-
stants fabc are zero when a is from the first subgroup and
b is from the second subgroup. We use these two SU(2)
subgroups of SU(4) to build a pair of isotropic, homo-
geneous, flavor-space locked field configurations. This
amounts to singling out the x-, y-, z-axes N times us-
ing the same mapping between the generators and real
space, so that our construction is equivalent to the direct
product of N SU(2) subgroups. The equation of motion
for the field amplitude of each SU(2) subgroup φn for
n = 1, 2, ...N is similarly φ′′n + 2g2Y φ

3
n = 0 so that each

subgroup is independent of the others, and stable. For
simplicity, we assume the gauge field vev has the same
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amplitude in all subgroups.
As a worked example, we consider a gravitational wave

and N gauge field waves propagating in an expanding
spacetime with line element ds2 = a2(τ)(−dτ2 + d~x2).
We follow the notation in Ref. [13–16], where the be-
havior of the coupled system for N = 1 was stud-
ied in the context of inflation and other cosmological
scenarios. We consider weak distortions of the space-
time metric and the gauge field, δgµν = a2hµν and

δ ~Aµ ·~eν = ayµν , where hµν , yµν are transverse, traceless,
and synchronous. Since the Yang-Mills coupling breaks
the chiral symmetry of left- and right-circular polariza-
tions [17], it is practical to express the gravitational and
gauge field waves with amplitudes hp, ypn in a chiral ba-
sis with p = L, R for n = 1, 2, ... , N. A further change
of variables, h = H

√
2/aMP and y = Y/

√
2a, puts the

action into canonical form. The Lagrangian for gravi-
tational and gauge field waves, propagating with Fourier
wavenumber k much greater than both the expansion rate
and the gauge field time rate of change, is given by

L=
1
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1
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+kgY φY
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HR

(
kgY φ

2YRn + φ′Y ′Rn
)]
. (3)

The prime indicates the derivative with respect to con-
formal time, τ . The equations for HL, YLn are obtained
by replacing k → −k or gY → −gY . The chiral asymme-
try can be removed by setting gY = 0, which corresponds
to flavor electrodynamics since the theory then consists
of three copies of Maxwell electrodynamics.

At the most basic level, the Lagrangian above describes
N+ 1 coupled oscillators, apart from the dynamics of
the background field and cosmic expansion. At high fre-
quency, H and each of Yn oscillate with frequency k. The
gravitational wave couples to each gauge field wave; each
gauge field wave couples only to the gravitational wave.

The gravitational wave – gauge field oscillations are
revealed by the rms amplitude of the waves h and yn
in the high frequency limit. We write H = he−ikτ and
Yn = yne

−ikτ and choose k to be sufficiently large such
that we can treat the coefficients A1 = φ′/aMP , A2 =
gY φ

2/aMP , A3 = gY φ/2 as constants. The resulting
leading order solutions to the equations of motion are

hR = eiA3τ

[
c0 cosωτ − 1

ω
sinωτ

×
(

[A1 + iA2]NcN + iA3c0

)]
(4)

yRn = eiA3τ

[
(cn − cN)eiA3τ + cNcosωτ

+
1

ω
sinωτ

(
[A1 − iA2]c0 + iA3cN

)]
(5)

where ω2 = N(A2
1 +A2

2) +A2
3, the initial amplitudes are

h(0) = c0, yn(0) = cn, and cN = N−1
∑N

n=1 cn. Hence,
h and yn oscillate at rates set by the gauge field vev,

such that h is out of phase with the ensemble of gauge
fields yn. The magnitude of h oscillates with frequency
ω, whereas the gauge field amplitude oscillates with two
frequencies, ω and A3.

The normal modes of the system of oscillators are iden-
tified by diagonalizing the Lagrangian (3). Starting with
the gravitational and gauge field modes ψi = (h, yn)
for i = 0, 1, ... , N, we write the Lagrangian in the form
L = 1

2ψ
′†Iψ′ − 1

2ψ
†M2ψ. We transform into the eigen-

basis of M2 via ψi = Rij∆
j , where ∆j = (∆0, ∆n) are

the normal modes. Hence, the Lagrangian acquires the
form L = 1

2∆′†I∆′ − 1
2∆†Ω2∆ and Ω2 is diagonal. The

normal mode frequencies are ω + A3, ω − A3, and 2A3

with N−1-fold degeneracy. These modes are plainly seen
to comprise the gravitational and gauge field solutions in
Eqs. (4-5).

Conservation of the canonical stress-energy tensor
Θµν = ∂µψiδL/δ∂νψ

i − ηµνL yields the constant of
motion in the high frequency limit, |ψ|2. This con-
served quantity is upheld by Eqs. (4-5) whereby |ψ|2 =

|h|2 +
∑N

n=1 |yn|2 =
∑N

n=0 |cn|2, from which we deter-
mine that the gravitational and gauge field wave am-
plitudes trace a pattern on the surface of an N + 1-
dimensional sphere. This behavior is reminiscent of neu-
trino flavor oscillations, where the mass eigenstates re-
main in phase while the flavor eigenstates oscillate.

We show the time evolution for selected parameters
to illustrate the variety of behavior of the gravitational
and gauge field amplitudes. In the top panel of Fig. 1,
we show the simplest case, A1 = 1, A2 = A3 = 0, as
an example of flavor electrodynamics. The second panel
shows a second case of flavor electrodynamics, but with
two families. In the bottom two panels, we set N = 3
and turn on the coupling gY such that A3 � A2 < A1.
Between oscillations of the gravitational wave, different
gauge field waves dominate. As we introduce A3, the
gauge fields oscillate with an additional time scale. In
Fig. 2 we show both polarizations for a case with N= 3
and A1 = A2 = 2|A3|. Since A3 < ω, the gauge fields
repeat on a longer timescale. In this specific case, dif-
ferent gauge fields are seen to dominate with seemingly
irregular cadence.

Our procedure is easily generalized to cases in which
the field strengths and couplings are different for each
of the N subgroups, although numerical solution of the
equations of motion is necessary. Fig. 3 shows such a
case for N = 2 with A1 = A2 = A3 for the first SU(2)
subgroup (shown in red), and A1 = 4A2 = 2A3 for the
second (blue). The gravitational wave maintains fixed
oscillations, but its height varies between different ex-
trema.

To show more than two gauge subgroups, it is useful to
visualize the amplitudes directly as oscillators. In Fig. 4
we represent the amplitudes as pistons with height deter-
mined by the amplitudes h, yn. The placement of the
pistons illustrates the relative roles of gravitational and
gauge fields. Through this visual tool it is easier to see
the interplay between the gauge fields and the pacemak-
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Figure 1. The oscillations of the gravitational wave amplitude
h (black) and gauge field y (dashed) are shown for N= 1, 2
and 3 (bottom two panels). In all cases, |ψ|2 = 1 and the
coefficients Ai are scaled so that ω = 1. The bottom panel
shows that the squared amplitudes sum to unity.

ing gravitational wave, and the implications of a region
of stationary gauge fields for gravitational wave physics
and cosmology come into focus.

The existence of a new source of tensor modes opens
the possibility of a greater variety of gravitational wave
spectra in early Universe scenarios. In an inflationary
scenario, the procedure for evaluating the primordial
gravitational wave spectrum begins by quantizing the

Figure 2. The oscillations of the gravitational wave amplitude
h (black) and gauge field y (dashed) are shown for N= 3 and
A1 = A2 = 2|A3|. The upper and lower panels show the right-
and left-circular polarizations.

high frequency gravitational wave modes (e.g. Ref. [19]
for a pedagogic review). In a model involving flavor-space
locked gauge fields [7, 8], a Lagrangian of the form of
Eq. (3) describes the gravitational and gauge field waves
and their interaction. Quantum fluctuations in the grav-
itational field give rise to a homogeneous solution Hh of
the gravitational wave equations of motion, with the am-
plitude of c0 set by considerations of the Bunch-Davies
vacuum, and all other coefficients zero. Fluctuations in

Figure 3. The oscillations of the gravitational wave amplitude
h (black) and gauge field y (dashed) are shown for N= 2 with
different field strengths and couplings for the two SU(2) sub-
groups. The gravitational wave responds to these different
couplings, and varies between different extrema. The am-
plitudes are normalized |ψ|2 = 1 and the coefficients Ai are
scaled so that the oscillations repeat with a period 2π.
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Figure 4. The gravitational wave – gauge field oscillations in
Fig. 2 (upper) are illustrated using oscillating pistons. The
gravitational and gauge field waves are represented by the
central and surrounding pistons. (View in Adobe Reader to
play animation, or download from Ref. [18].)

the gauge fields create n = 1, ... , N inhomogeneous solu-
tions Hih,n, each with only one cn non-zero. Whereas
the individual homogeneous and inhomogeneous solu-
tions display the characteristic oscillations that modu-
late the amplitude, the observable power spectrum is pro-

portional to the sum |Hh|2 +
∑N

n=1 |Hih,n|2. The infla-
tionary prescription for quantizing the gravitational and
gauge field modes fixes the coefficients c to have equal
amplitude, in which case Eqs. (4-5) can be used to show
the time-dependent modulations cancel out. A different
quantization procedure for inflationary fields, and the im-
pact of flavor-space locked gauge field families on early
Universe scenarios such as a bouncing cosmology [20] or
ekpyrosis [21] remain to be explored.

In a scenario in which relic gauge fields contribute a
species of dark radiation [13, 14], the effect explored in
this paper would imprint a novel signature on an in-
flationary spectrum of primordial gravitational waves.
When long wavelength modes enter the horizon and be-
gin to oscillate, a portion of the gravitational wave will
transform into a gauge field wave and back again, de-
pending on the relative abundance of the gauge field ra-
diation. Through this process, the modulation of the
gravitational wave amplitude in time is translated into a
present-day modulation in frequency. Hence, the oscilla-
tions seen in Figs. 1-3 are transferred onto the otherwise
power-law gravitational wave spectrum. If all N of the
gauge field waves are zero at early times, then the be-
havior will be identical to the N = 1 case, illustrated

in Fig. 4 of Ref. [14]. Not only will the gravitational
wave spectrum carry a record of the thermal history of
the Universe [22], it will also carry the imprint of the
gravitational wave - gauge field oscillations.

In a cosmological scenario in which dark energy is due
to flavor-space locked gauge fields [11, 12], one may ex-
pect the dimensionful quantities Ai to be of the order
of the comoving Hubble scale. In this case, all subhori-
zon gravitational waves traveling across cosmological dis-
tances are modulated due to the interconversion with
gauge fields, including gravitational waves from the bi-
nary merger of black holes. Since the gravitational wave
amplitude from these astrophysical events have been pro-
posed as a standard siren [23] to determine luminosity
distance, our modulation effect will lead to a systematic
discrepancy with electromagnetic measures of the lumi-
nosity distance to an object at the same redshift. In order
to estimate the size of this effect, we solve the equations
of motion for h, y in the case that the gauge coupling gY
and field strength φ are dictated by a gauge quintessence
scenario [11]. We consider a scenario in which the dark
energy contributes ΩDE ' 0.7 with an average equation
of state w̄ = −0.9, roughly in line with the constraints
in Ref. [24]. We express the discrepancy in terms of
the luminosity distance, ∆h/h = −∆dL/dL, obtaining
∆dL/dL ' 0.01 for objects out to redshift z ' 1; a small
but non-negligible effect compared to the errors forecast
in Ref. [23]. In this scenario the gauge quintessence
also behaves like dark radiation during the radiation-
dominated epoch, and so will imprint a frequency mod-
ulation on an inflationary spectrum of primordial gravi-
tational waves, as described above. We leave for future
work the evaluation of observational constraints and fore-
cast of the impact on standard sirens.

We note that only the gravitational wave affects space-
time geometry and couples universally to other forms of
matter. Hence, a gravitational wave detector appropri-
ately positioned would sense a modulated signal, as the
gravitational waves convert into gauge fields and back
again, for the cases illustrated in Figs. 1-4. In principle,
fermionic matter charged under the same group as the
gauge fields can be used to detect the complementary
modulation.
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