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Lattice QCD calculations with chiral fermions of the πN sigma term σπN and strangeness sigma
term σsN including chiral interpolation with continuum and volume corrections are provided in this
work, with the excited-state contaminations subtracted properly. We calculate the scalar matrix
element for the light/strange quark directly and find σπN = 45.9(7.4)(2.8) MeV, with the discon-
nected insertion part contributing 20(12)(4)%, and σsN = 40.2(11.7)(3.5) MeV, which is somewhat
smaller than σπN . The ratio of the strange/light scalar matrix elements is y = 0.09(3)(1).

PACS numbers: 11.15.Ha, 12.38.Gc, 12.39.Mk

I. INTRODUCTION

The πN sigma term σπN for the light quark is defined
as

σπN ≡ m̂〈N |ūu+ d̄d|N〉, (1)

where m̂ = (mu+md)/2 is the averaged light quark mass,
|N〉 represents the nucleon state which is normalized as
〈N |N〉 = L3 in this case for the unpolarized nucleon at
rest, and ūu and d̄d are the quark bilinear operators. The
strangeness sigma term σsN is similarly defined with fNs
being its fraction of the nucleon mass

σsN ≡ ms〈N |s̄s|N〉, fNs =
σsN
mN

. (2)

As measures of both explicit and spontaneous chiral
symmetry breakings in the baryon sector, σπN and σsN
are fundamental quantities which pertain to a wide range
of issues in hadron physics, such as the quark mass con-
tribution in the baryon which is related to the Higgs
coupling to the observable matter [1–3], the pattern of
SU(3) breaking [2], πN and KN scatterings [4, 5], and
kaon condensate in dense matter [6]. Using a sum rule
for the nucleon mass, the heavy quark mass contribu-
tion can be deduced from that of the light flavors, in
the leading order of the strong coupling and the heavy
quark limit [1, 7]. At the same time, precise values of the
quark mass term for various flavors, from light to heavy,
are of significant interest for dark matter searches [8–
10], where the popular candidates for dark matter (such
as the weakly interacting massive particle) interact with
the observable world through the Higgs couplings, so that
the precise determination of the σπN and σsN can pro-
vide remarkable constraints on the direct detection of the
dark matter candidates.

Phenomenologically, the σπN term is typically ex-
tracted from the πN scattering amplitude. To lowest
order in m2

π, the unphysical on-shell isospin-even πN
scattering amplitude at the Cheng-Dashen point corre-
sponds to σ(q2 = 2m2

π) [4, 5] which can be determined
from πN scattering via fixed-q2 dispersion relation [5].
σπN at q2 = 0 can be extracted through a soft correlated

two-pion form factor [11–13]. Also, baryon chiral per-
turbation theory and Cheng-Dashen theorem have been
used to analyze the πN scattering amplitude for σπN (0).
They give σπN values in the range ∼ 45− 64 MeV, while
the most recent analysis [14] gives 59.1(3.5) MeV.

Both σπN and σsN are amenable to lattice QCD cal-
culations and there are two ways to calculate them. One
is via the Feynman-Hellman theorem and the other is
by directly calculating the matrix elements through the
ratio of 3-pt and 2-pt correlation functions.

Following the Feynman-Hellman theorem (FH)

σπN = mq
∂mN (mq)

∂mq
|mq=m̂phys (3)

where m̂phys is the quark mass corresponding to the phys-
ical mπ, one can calculate the nucleon mass at different
quark masses and obtain σπN . A number of such calcu-
lations have been performed [15–20], and analyses with
chiral extrapolation based on lattice data have also been
carried out [2, 3, 21–23]. Similarly, there have also been
a number of direct calculations of σπN scalar matrix ele-
ments (ME) over the years [24–29], that use Wilson-type
fermions which explicitly break chiral symmetry. The
most recent three lattice calculations obtained consistent
results regardless of whether with the FH theorem [20] or
direct matrix element calculation [28, 29], but the com-
mon value is around 37(4) MeV and is almost 5σ smaller
than the recent phenomenological analysis [14] mentioned
above.

Before investigating other avenues to understand the
tension between the lattice simulation and phenomeno-
logical analysis [30], a question that cannot be avoided is
whether the explicit breaking of chiral symmetry by lat-
tice artifacts, as in the case of Wilson-type fermions, is
responsible for the difference. Due to explicit chiral sym-
metry breaking, the quark mass has an additive renor-
malization and the flavor-singlet and non-singlet quark
masses renormalize differently. As a consequence, the
strangeness content can be mixed with those of u and
d [26, 31] leading to a larger value. Attempts have been
made to take the flavor-mixing into account which reduce
σsN [26, 29, 32], with the renormalization factors of the
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singlet and iso-vector part of the scalar ME differing by
as much as 40% [26].

In contrast, simulations with overlap fermion for the
valence quarks have exact chiral symmetry at finite lat-
tice spacing, and thus they are free of the flavor-mixing
problem which afflicts Wilson-type fermions. But the
inversion of the chiral fermion is known to be one magni-
tude more expensive than a Wilson-type fermion, which
makes the approach numerically challenging. The ma-
jor task of this work is overcoming the numerical dif-
ficulty to address the role of chiral symmetry for this
quantity. The properties of the overlap action allow us
to apply the multi-mass algorithm to calculate a number
of quark masses ranging from the light u/d quark to the
strange with little overhead (compared to inversion with
one mass). This, together with the use of the low-mode
substitution (LMS) technique described in Ref. [1, 33],
allows us to obtain hundreds of measurements with just
a few inversions, thus overcoming the expensive cost of
the overlap action required to obtain precise results.

We also present here a direct ME calculation of σsN
without any systematic uncertainty about the flavor mix-
ing of a Wilson-type fermion. As in the case of σπN , one
can take the derivative of the proton mass with respect to
the strange quark mass in the sea to get σsN . But both
the calculations based on the FH theorem [20, 34, 35]
and phenomenological determinations [2, 3, 11, 23, 36]
are not very precise since the strange quark dependence
of the proton mass is very weak. On the other hand,
there are several calculations which use the direct ME
calculation [1, 26–29, 31, 37, 38]. The present work is
the first direct ME calculation with chiral fermions on
2+1 flavor configurations where the pion mass is at the
physical point.

In addition to σπN and σsN , the renormalization inde-
pendent ratio often quoted in the literature,

y =
2〈N |s̄s|N〉
〈N |ūu+ d̄d|N〉

, (4)

can be obtained and it is useful to delineate the SU(3)
breaking pattern in the octect baryon spectrum. Its value
has not been well determined and the estimates change
over time, reflecting the range of uncertainties of σπN
and σsN .

Since a precise value of σsN is hard to obtain from
the FH theorem approach and we want to present both
σπN and σsN within the same framework to access the
correlation between them, we choose to use the direct
ME calculation for both σπN and σsN to obtain the final
predictions.

The numerical setup and the details are described in
Sec. II. Sec. III provides our simulation results of σπN
and σsN , as well as a comparison with the results from
phenomenological analyses and other lattice calculations.
This article will be closed by a short summary in Sec. IV.

II. NUMERICAL SETUP

In this work, we use the valence overlap fermions
on 2 + 1 flavor domain-wall fermion (DWF) configura-
tions [39] to carry out the calculation. The effective quark
propagator of the massive overlap fermion is the inverse
of the operator (Dc + m) [40, 41], where Dc is chiral,
i.e. {Dc, γ5} = 0 [42] and its detailed definition can be
found in our previous works [1, 33, 43]. Numerical details
regarding the calculation of the overlap operator, eigen-
mode deflation in inversion of the quark matrix, and the
Z(3) grid smeared source with LMS to increase statistics
are given in [1, 33, 43].

TABLE I. The parameters for the RBC/UKQCD
configurations[44]: spatial/temporal size, lattice spac-
ing, residual mass of the DWF sea, the sea strange quark
mass under MS scheme at 2 GeV, the pion mass with the
degenerate light sea quark (both in unit of MeV), and the
number of configurations used in this work.

Symbol L3 × T a (fm) m
(s)
resa m

(s)
s mπ Ncfg

24I 243 × 64 0.1105(3) 0.00315(4) 120 330 203
32I 323 × 64 0.0828(3) 0.00067(1) 110 300 309
48I 483 × 96 0.1141(2) 0.00061(1) 94.9 139 81

The 2 + 1 flavor RBC/UKQCD DWF gauge configu-
rations used are on 243 × 64 (24I), 323 × 64 (32I) [39]
and 483 × 96 (48I) [44] lattices. Other parameters of
the ensembles used are listed in Table I. We used 5
quark masses from the range mπ ∈(250, 400) MeV on the
first two ensembles, and 8 quark masses from mπ ∈(114,
400) MeV on the last ensemble which has larger volume
and thus allows a lighter pion mass with the constraint
mπL > 3.

Both the connected and disconnected insertions
(CI/DI) contribute to the light quark contents, while the
strange sigma term just comes from the disconnected in-
sertion.

The scalar matrix elements are obtained from the ratio
of the three-point function to the two-point function

R(tf , t) =
〈0|

∫
d3yΓeχ(~y, tf )O(t)

∑
~x∈G χ̄S(~x, 0)|0〉

〈0|
∫
d3yΓeχ(~y, tf )

∑
~x∈G χ̄S(~x, 0)|0〉

,(5)

where χ is the standard proton interpolation field and
χ̄S is the field with gaussian smearing applied to all
three quarks. All the correlation functions from the
source points ~x in the grid G are combined to improve
the the signal-to-noise ratio (SNR). O(t) is the scalar
current

∫
d3xψf (x, t)ψf (x, t) located at time slice t and

Γe = 1
2 (1+γ4). When tf is large enough, R(tf , t) is equal

to the bare scalar matrix element

gS ≡
Tr[Γe〈P |

∫
d3xψf (x)ψf (x)|P 〉]

Tr[Γe〈P |P 〉]
, (6)
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which is t independent, plus t-dependent corrections,

R(tf , t) = gS + C1e
−∆E(tf−t) + C2e

−∆Et + C3e
−∆Etf ,

(7)

where ∆E is the energy difference between the ground
state and the first excited state and C1,2,3 are the combi-
nations of weights involving the excited states. Then the
gS we want to extract corresponds to the case 0 � t �
tf .

For each quark mass on each ensemble, we constructed
the ratio R(tf , t) for three sink-source separations tf from
0.9 fm to 1.4 fm, and for all the current insertion times t
between the source and sink.

A. Connected and Disconnected insertion

For the connected insertion, we use the stochastic
sandwich method (SSM) with low-mode substitution
(LMS) [33] to improve the SNR of the calculation. The
stochastic sandwich method uses the stochastic source
at the sink time slices to avoid repeating the produc-
tion of the sequential propagators for different sinks and
hadron states, but the final SNR is sensitive to that addi-
tional stochastic noise. Our improved stochastic method
replaces the long-distance part of the stochastic propaga-
tor from the sink to the current by its all-to-all version,
using the low-lying eigensystem of Dc, which suppresses
the influence of the stochastic noise on the sink propaga-
tor.

A regular grid with 2 smeared sources in each spatial
direction for the 24I and 32I lattices (4 for the 48I lattice)
are placed on 2 time slices for the 24I and 32I lattices (3
for the 48I lattice). The separation between the centers
of the neighboring grids in the same time slice is ∼ 1.3
fm and each smeared source has a radius of ∼ 0.5 fm. On
the sink side, several noise point-grid sources are placed
at three slices tf which are 0.9 − 1.4 fm away from the
source time slices. Furthermore, the matrix elements of
the light scalar contents are dominated by the low-mode
part of Dc so that the use of LMS on the propagators
from the current to the sink notably reduces the number
of noise propagators (from tf ) needed. More details of the
stochastic sandwich method with low-mode substitution
are given in Ref. [33].

The simulation setup for the connected insertion on
three ensembles is listed in Table II. We note that al-
though the 48I ensemble has a larger volume which can
accommodate more smeared grid points for the source
which improves the SNR with a single inversion, the SNR
around the physical point is still small. So we used 5
propagators at the source to improve the SNR on the
48I by a factor of 2. The total cost on the 48I ensemble
dominates and can be estimated by 34 inversions (with
residual 10−7) per configuration. (The cost of the con-
traction with LMS is about 1 inversion per source prop-
agator.) The number of ideal equivalent measurements
Nmeas for the grid source at the physical point on the

TABLE II. The source/sink setup on the ensembles, for the
connected insertion. Ngrid is the pattern of the smeared
points on a grid source with noises and Nsrc is the number of
the propagators with such a kind of source. Three sets of the
pair (∆i

t, N
i
sink) are for the sink propagators, with ∆i

t being
the physical distance between the source and sink and N i

sink

the number of noises with such a ∆i
t.

Ensemble Ngrid Nsrc
∆1
t (fm),
N1
sink

∆2
t (fm),
N2
sink

∆3
t (fm),
N3
sink

24I 23 × 2 1 0.88, 5 1.11, 5 1.33, 5
32I 23 × 2 1 0.99, 3 1.16, 3 1.24, 3
48I 43 × 3 5 0.91, 4 1.14, 8 1.37, 12

48I ensemble is 192 (points in grid) × 5 (sources)= 960
per configuration and 77,760 in total for the connected
insertion.

The same noise grid-smeared sources are used in the
production of the nucleon propagator for the discon-
nected insertion, and we loop over all the time slices for
the nucleon source. The position of the grid is randomly
shifted on each time slice. As has been carried out in
previous studies of the strangeness content [1] and quark
spin [45], the quark loop is calculated with the exact low
eigenmodes (low-mode average (LMA)) while the high
modes are estimated with 8 sets of Z4 noise on the same
(4,4,4,2) grid with odd-even dilution and additional di-
lution in time. The vacuum expectation value of the
quark loops has been subtracted before combining with
the proton propagator to get the correlated three-point
function.

The fact that the long-distance part of the proton two-
point correlation function is dominated by the precise
low-lying eigensystem of Dc allows us to use a larger
residual of 10−4 for the high-mode inversion without af-
fecting the final accuracy. We also used the low-precision
inversion with the same residual for the quark loops, since
most of the contribution to the disconnected insertion
part of gS comes from the low-mode part of the quark
loop, as shown in Fig. 1. So we can treat the quark loop
with the scalar insertion as almost being exact. Note
that we need 4 inversions to get a set of the noise propa-
gators, two for different time slices and two for odd-even
dilution for the spatial grid [1].

On the 48I ensemble, the cost of a low-precision (with
residual 10−4) inversion is just 1/3 of that for a high pre-
cision inversion (with residual 10−7) and the final cost is
equivalent to 37 high-precision inversions per configura-
tion, 32 for the proton propagators with the overhead of
LMS, and 5 for the 4 sets of the noise propagators for
the loops.. The total number of the measurements of the
proton propagator in the ideal case is 43 per configura-
tion. Therefore the total number of the measurements of
our DI results can be as large as 497,664 in total, if LMS
is perfect and all the measurements are independent.



4

-6

-4

-2

 0

 2

 4

 6

 0  2  4  6  8  10  12  14  16

S
R

(t
f)
 

tf

m
π
=148 MeV

gS,l, H+L
gS,l, H    
gS,s, H+L
gS,s, H    

-1

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16

S
R

(t
f)
 

tf

m
π
=330 MeV

gS,l, H+L
gS,l, H    
gS,s, H+L
gS,s, H    

FIG. 1. The light (mπ=148/330 MeV in the upper/lower
panel respectively) gS,l and strange quark loops gS,s, with the
quark mass in the nucleon the same as that of the light quark
loop, from the 48I lattice are plotted. High-mode contribution
(H) and the sum of the high- and low-mode contributions
(H+L) to the DI part of the scalar matrix elements are shown
separately. The contributions from the stochastic high-mode
part of the quark loops are quite small and the results are
dominated by the exact low-mode part of the quark loop, so
that the LMA method is very effective.

B. Two-state fit

To exclude some excited-state contamination, we
dropped the data for which the distance between the cur-
rent insertion and source (or sink) is smaller than 0.2 fm,
and applied the two-state fit in Eq. (7) to obtain the
scalar matrix element in the proton for the light quark
and also for the strange quark. We show the case of
mπ=148 MeV on the 48I ensemble in Fig. 2, in which the
connected and disconnected insertion parts of the light
quark are summed before applying the fit. Note that the
curves in Fig. 2 predicted by the fit agree with the data
well and their asymmetry around zero on the horizontal
axis is due to the different treatment of source and sink
(smeared source and point sink).
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FIG. 2. The ratio R(tf , t), as a function of the separation tf
(three curves for three separations) and the current position
t (the data points on the curves), for each of the light (upper
panel) and strange (lower panel) scalar matrix elements in
proton, gS , is plotted at mπ = 148 MeV (on the 48I ensemble)
which is close to the physical point. The green bands show the
results extrapolated to infinite separation which correspond to
the predictions of gS . The excited-state contaminations are
obvious with the final uncertainties much larger than those
for the finite separations.

In Fig. 3, the ratio R(tf , t) for mπ ∼ 280 MeV for
each of the 24I/32I/48I ensembles is plotted to show the
SNR in the relatively heavier pion mass region, and to
highlight the qualities of our two-state fit. All curves
predicted by the fit agree with the data well, and χ2/d.o.f
is smaller than 1.4 and the Q-value is larger than 0.1, for
all the quark masses on all ensembles used in this work.

From the fit, we see that the excited-state contamina-
tions are substantial and the final prediction of gS (the
green band) is one or two sigma higher than the ratio
R(tf , t) with the largest separation. The error bar on gS
is larger than that on R(tf , t) at finite separation time tf
due to the extrapolation to infinite tf .

III. RESULTS

Fig. 4 shows the computed σπN and σsN data points for
the three ensembles, as a function of m2

π corresponding
to the valence quark mass.

The chiral behavior of σπN as a function of mπ can be
deduced from the chiral behavior of the nucleon mass it-
self (as suggested by partially quenched SU(2) χPT [46–
48]), by taking the derivative with respect to both valence
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FIG. 3. The ratio R(tf , t), as a function of the sink-source separation tf (three curves for three separations) and the current
position t (the data points on the curves) for the light and strange matrix elements (left and right panels respectively). Three
sets of the panels from top to bottom show the cases for mπ ∼ 280 MeV on the 24I/32I/48I ensembles respectively. The
green bands show the results extrapolated to infinite separation which corresponds to the prediction of gS . The excited-state
contaminations are obvious and the final uncertainties are larger than those on the finite separations.
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FIG. 4. The summary figures of the light/strange quark con-
tent at 18 quark masses on the three ensembles (24I/32I/48I
as defined in Table I), as a function of the square of the pion
mass. Both the lattice spacing and sea quark mass depen-
dence are mild. The curve in each figure shows the behavior
in the infinite volume and continuum limits without the par-
tially quenching effect. In each case, the band of the total
error is almost the same as that of the statistical error, and
thus is barely visible.

and sea quark masses,

σπN (mv
l ,m

s
l , a, L) = Cπ0m

2
π,vv + Cπ1m

3
π,vv

+Cπ2m
2
π,vsm

mix
π,vs + Cπ3 a

2

+Cπ4 (
m2
π,vv

L
−m3

π,vv)e
−mπ,vvL, (8)

with lattice spacing a and lattice size L depen-
dence. The symbol mπ,vv appearing in the above equa-
tion is the valence-valence pion mass and mmix

π,vs =√
m2
π,vs + a2∆mix is the mixed valence-sea pion mass.

(The value of ∆mix in our case is small and contributes a
shift of only ∼10 MeV to the pion mass at 300 MeV for
the 32I lattice [49].)

The chiral log term is dropped since it can be fully ab-
sorbed by the polynomial terms within our present data
precision, and will be considered as a systematic uncer-
tainty. Even for the fit of the proton mass itself where a
higher precision is attainable, the coefficient of the chiral-
log term obtained by Ref. [48] is still consistent with zero
with large uncertainty. The functional form of the vol-

ume dependence is derived from the leading order of the
proton mass [50, 51] in χPT.

For σsN , we used the same functional form for the chi-
ral behavior as in Ref. [1] and added a volume-dependent
term

σsN (mv
l ,m

s
l , a, L) = Cs0 + Cs1m

2
π,vv + Cs2m

2
π,vs + Cs3a

2

+Cs4e
−mπ,vvL. (9)

We fit all the data points of σπN and σsN with
mπ < 350 MeV simultaneously with a correlated fit, with
1000 bootstrap re-samples on each ensemble, and the fi-
nal χ2/d.o.f. is 0.89 with 16 degrees of freedom. The
values of the parameters are summarized in Table III.
The curves in the infinite volume and continuum limit
without the partial quenching effect are plotted in Fig. 4,
with bands corresponding to the total error. All the data
points stay on that curve within one or two standard de-
viations, which means that the finite lattice spacing, sea
quark mass and volume dependences are mild.

TABLE III. The fitted parameters for σπN and σsN . All the
parameters are in units of a power of GeV.

σπN Cπ0 Cπ1 Cπ2 Cπ3 Cπ4
– 2.9(5) -3.3(1.5) -0.2(7) -0.00(3) 47(111)
σsN Cs0 Cs1 Cs2 Cs3 Cs4

– 0.037(13) 0.00(2) 0.13(6) -0.02(3) -19(138)

We estimate the systematic errors of σπN and σsN as
follows:

Discretization errors: We estimate the systematic er-
rors by the differences between the fitting predictions in
the continuum limit and those from the ensemble with
the smallest lattice spacing (32I).

Finite volume corrections: Similarly, we estimate the
systematic errors by the difference between the fitting
predictions on the ensemble with the largest volume (48I)
and those in the infinite volume limit.

Chiral extrapolation: The difference between the fit-
ting predictions at the physical pion mass of the 48I en-
semble, and those from the interpolations of the neigh-
boring quark masses are considered as systematic errors.

Strange quark mass: The strange quark mass we used
is 101(3)(6) MeV. Since the scalar element will be smaller
when the corresponding quark mass is larger, there is just
a 1.0 MeV deviation if we change the strange quark mass
by 1σ.

Mixed action: We removed the ∆mix term in the mixed

valence-sea pion mass mmix
π,vs =

√
m2
π,vs + a2∆mix and

repeated the fit to simulate the case with the same action
for both the valence and sea quark, and the difference
turns out to be two orders of magnitude smaller than the
statistical error.

Chiral log: We added the chiral-log term and repeated
the fit for σπN . The coefficient of the chiral-log term is
consistent with zero while the uncertainty of the final
prediction increases. The prediction will be changed by
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FIG. 5. The results of σπN and fNs , from both phenomenology and lattice simulations. Numbers are from [11] (GLS), [13]
(Pavan), [2] (Young et al.), [36, 52] (Alarcon et al.), [53] (Chen et al.), [3] (Shanahan et al.), [21] (Alvarez et al.), [22] (Lutz et
al.), [23] (Ren et al.), [14] (Hoferichter et al.), [15, 31, 37] (JLQCD), [26] (QCDSF), [27, 28, 54] (ETMC), [29] (RQCD), [16, 20]
(BMWc), [34] (MILC), [17] (QCDSF-UKQCD), [38] (Engelhardt et al.), [35] (Junarkar et al.), and [1] (χQCD). The narrow
error bar for each data point is the statistical and the broad one is that for the total uncertainty. The physical proton mass
938MeV is used to obtain fNs in this work.

2.2 MeV and we take this as a systematic uncertainty of
σπN .

The final prediction of σπN is 45.9(7.4)(2.8) MeV
where the first error is statistical and the second system-
atic, as combined in quadrature from those of the con-
tinuum and volume extrapolations, chiral and strange
quark mass interpolations, the use of the mixed ac-
tion and dropping the chiral log term. That of σsN
is 40.2(11.7)(3.5) MeV. We determine that the discon-
nected insertion part contributes 20(12)(4)% of σπN . We
compare our results with other lattice determinations and
phenomenological results in Fig. 5.

IV. SUMMARY

Summary− We have computed σπN and σsN for 18
quark masses including the physical point on three 2+1
flavor ensembles including one with the physical pion
mass. Since we use chiral fermion in this calculation,
there is no additive renormalization of the quark mass for
the valence overlap fermion and σπN and σsN are renor-
malization group invariant. As a result, there should be
no concern about flavor-mixing of the scalar matrix el-
ements. A global fit is employed to take into account
chiral interpolation, finite lattice spacing, and finite vol-
ume effects. The total uncertainty for σπN we achieved
is 17%. Our result straddlies those of the lattice simu-
lations with Wilson-type fermions and the phenomeno-
logical predictions, while none of them can be excluded

by our present uncertainty. More precise measurements
for the disconnected insertion part are required to make
a clear adjudication.

The error of σsN is somewhat larger than the former
estimate of our collaboration (40(12) MeV versus 33(6)
MeV) [1], mostly due to a better control of the excited-
state contamination. Even so, it is still the most precise
result among 2+1 flavor lattice calculations today which
include all the systematic uncertainties. Our results show
that the contributions from the quark mass of the two
light flavors and that from the strange flavor are close
to each other. Based on the values of σπN and σsN , we
obtain the ratio y = 0.09(3)(1).

ACKNOWLEDGMENTS

We thank the RBC and UKQCD collaborations for
providing us their DWF gauge configurations. This work
is supported in part by the U.S. DOE Grant No. DE-
SC0013065. A.A. is supported in part by the National
Science Foundation CAREER grant PHY- 1151648 and
by U.S. DOE Grant No. DE-FG02-95ER40907. Y. Y.
also thanks the Department of Energy’s Institute for Nu-
clear Theory at the University of Washington for its par-
tial support and hospitality. This research used resources
of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

[1] M. Gong et al. (χQCD), Phys. Rev. D88, 014503 (2013),
arXiv:1304.1194 [hep-ph].

[2] R. D. Young and A. W. Thomas, Phys. Rev. D81, 014503
(2010), arXiv:0901.3310 [hep-lat].



8

[3] P. E. Shanahan, A. W. Thomas, and R. D. Young, Phys.
Rev. D87, 074503 (2013), arXiv:1205.5365 [nucl-th].

[4] L. S. Brown, W. J. Pardee, and R. D. Peccei, Phys. Rev.
D4, 2801 (1971).

[5] T. P. Cheng and R. F. Dashen, Phys. Rev. D4, 1561
(1971).

[6] D. B. Kaplan and A. E. Nelson, Phys. Lett. B175, 57
(1986).

[7] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,
Phys. Lett. B78, 443 (1978).

[8] T. Falk, A. Ferstl, and K. A. Olive, Phys. Rev. D59,
055009 (1999), [Erratum: Phys. Rev.D60,119904(1999)],
arXiv:hep-ph/9806413 [hep-ph].

[9] J. R. Ellis, K. A. Olive, and C. Savage, Phys. Rev. D77,
065026 (2008), arXiv:0801.3656 [hep-ph].

[10] J. Giedt, A. W. Thomas, and R. D. Young, Phys. Rev.
Lett. 103, 201802 (2009), arXiv:0907.4177 [hep-ph].

[11] J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett.
B253, 252 (1991).

[12] T. Becher and H. Leutwyler, Eur. Phys. J. C9, 643
(1999), arXiv:hep-ph/9901384 [hep-ph].

[13] M. M. Pavan, I. I. Strakovsky, R. L. Workman, and
R. A. Arndt, Meson nucleon physics and the structure of
the nucleon. Proceedings, 9th International Symposium,
MENU 2001, Washington, USA, July 26-31, 2001, PiN
Newslett. 16, 110 (2002), arXiv:hep-ph/0111066 [hep-
ph].

[14] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and
U.-G. Meißner, Phys. Rev. Lett. 115, 092301 (2015),
arXiv:1506.04142 [hep-ph].

[15] H. Ohki, H. Fukaya, S. Hashimoto, H. Matsufuru,
J. Noaki, T. Onogi, E. Shintani, and N. Yamada
(JLQCD), Proceedings, 26th International Symposium on
Lattice field theory (Lattice 2008), PoS LATTICE2008,
126 (2008), arXiv:0810.4223 [hep-lat].

[16] S. Durr et al., Phys. Rev. D85, 014509 (2012), [Erratum:
Phys. Rev.D93,no.3,039905(2016)], arXiv:1109.4265
[hep-lat].

[17] R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L.
Rakow, G. Schierholz, A. Schiller, H. Stuben, F. Winter,
and J. M. Zanotti (QCDSF-UKQCD), Phys. Rev. D85,
034506 (2012), arXiv:1110.4971 [hep-lat].

[18] C. Alexandrou, V. Drach, K. Jansen, C. Kallido-
nis, and G. Koutsou, Phys. Rev. D90, 074501 (2014),
arXiv:1406.4310 [hep-lat].

[19] G. S. Bali et al., Nucl. Phys. B866, 1 (2013),
arXiv:1206.7034 [hep-lat].

[20] S. Durr et al., Phys. Rev. Lett. 116, 172001 (2016),
arXiv:1510.08013 [hep-lat].

[21] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and
M. J. Vicente-Vacas, Phys. Rev. D88, 054507 (2013),
arXiv:1304.0483 [hep-ph].

[22] M. F. M. Lutz, R. Bavontaweepanya, C. Kobdaj,
and K. Schwarz, Phys. Rev. D90, 054505 (2014),
arXiv:1401.7805 [hep-lat].

[23] X.-L. Ren, L.-S. Geng, and J. Meng, Phys. Rev. D91,
051502 (2015), arXiv:1404.4799 [hep-ph].

[24] S. J. Dong, J. F. Lagae, and K. F. Liu, Phys. Rev. D54,
5496 (1996), arXiv:hep-ph/9602259 [hep-ph].

[25] M. Fukugita, Y. Kuramashi, M. Okawa, and A. Ukawa,
Phys. Rev. D51, 5319 (1995), arXiv:hep-lat/9408002
[hep-lat].

[26] G. S. Bali et al. (QCDSF), Phys. Rev. D85, 054502
(2012), arXiv:1111.1600 [hep-lat].

[27] S. Dinter, V. Drach, R. Frezzotti, G. Herdoiza,
K. Jansen, and G. Rossi (ETM), JHEP 08, 037 (2012),
arXiv:1202.1480 [hep-lat].

[28] A. Abdel-Rehim, C. Alexandrou, M. Constantinou,
K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Kout-
sou, and A. V. Aviles-Casco (ETM), (2016),
arXiv:1601.01624 [hep-lat].

[29] G. S. Bali, S. Collins, D. Richtmann, A. Schäfer,
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