
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Low-energy effective action for pions and a dilatonic meson
Maarten Golterman and Yigal Shamir

Phys. Rev. D 94, 054502 — Published  8 September 2016
DOI: 10.1103/PhysRevD.94.054502

http://dx.doi.org/10.1103/PhysRevD.94.054502


Low-energy effective action for pions and a dilatonic meson

Maarten Goltermana and Yigal Shamirb

aDepartment of Physics and Astronomy, San Francisco State University,

San Francisco, CA 94132, USA

bRaymond and Beverly Sackler School of Physics and Astronomy,

Tel Aviv University, 69978, Tel Aviv, Israel

Numerical simulations of QCD-like theories in which the number of flavors

is adjusted so that the beta function is very small, but confinement and chiral

symmetry breaking nevertheless take place, appear to reveal the presence of

a flavor-singlet scalar meson which can be as light as the pions. Because the

breaking of dilatation symmetry, quantified by the beta function, is small relative

to QCD, a possible explanation is that the scalar meson is a pseudo Nambu-

Goldstone boson associated with the approximate dilatation symmetry. We

use this observation to systematically develop a low-energy effective action that

accounts for both the pions and the “dilatonic” scalar meson. In order to justify

the power counting that controls the couplings of the dilatonic meson we invoke

the Veneziano limit, in which the number of fundamental-representation flavors

Nf grows in proportion with the number of colors Nc, while the ratio Nf/Nc

is kept close to, but below, the critical value where the conformal window is

entered.
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I. INTRODUCTION

A non-abelian gauge theory with Nc colors and Nf flavors of massless Dirac fermions can

be in one of three phases. For small Nf , the renormalized coupling becomes strong toward

the infrared, leading to confinement and chiral symmetry breaking. As Nf is increased

the running slows down until eventually an infrared-attractive fixed point (IRFP) develops

[1, 2]. The long-distance theory is then conformal, exhibiting neither confinement nor chiral

symmetry breaking. Finally, if Nf gets too large, asymptotic freedom is lost.

In this paper we consider “walking” theories, where confinement and chiral symmetry

breaking still occur, but Nf has become so large that the theory is on the verge of developing

an IRFP. This is manifested in a non-perturbative beta function that is much smaller than

in QCD.1 Recent lattice studies of some candidate walking theories reveal the presence of

a flavor-singlet, parity-even scalar meson that can be as light as the pions at the fermion

masses used in those simulations, and much lighter than any other hadronic states in the

theory. A light scalar meson was found in the SU(3) theory with Nf = 8 Dirac fermions in

the fundamental representation [4, 5], which current evidence favors to be chirally broken and

confining [6–10]. A light scalar was also found in the SU(3) theory with two Dirac fermions

in the sextet (two-index symmetric) representation [11]. Because the non-perturbative study

of the beta function is very difficult [12], it is still not entirely certain whether this model is

chirally broken or infrared conformal. While the results of Ref. [13] favor the chirally broken

option, other recent studies are inconclusive [14, 15].

The standard low-energy effective theory for the pions—the pseudo Nambu-Goldstone

bosons (pNGBs) of spontaneously broken chiral symmetry—is the chiral lagrangian [16–

18].2 But when the scalar meson is as light as the pions, a consistent, unitary low-energy

effective theory must accommodate this scalar state as well. Moreover, if the scalar is much

lighter than all other states apart from the pions, it is natural to ask for an effective field

theory description of this scalar, even if fermion masses are taken so small that the pions

become lighter than this scalar.

A natural question is whether, like the pions, the light scalar meson can be interpreted

as a pNGB associated with the spontaneous breaking of another approximate symmetry.

1 For a recent review of lattice results, see Ref. [3].
2 For a recent review of chiral perturbation theory with applications to lattice QCD, see Ref. [19].
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In this paper we will attempt to provide such a framework, where the new approximate

symmetry is the invariance under dilatations, or scale transformations. For this reason, we

will refer to the scalar meson in this paper as the dilatonic meson.3

It is far from obvious that such an interpretation makes sense. In the case of chiral

symmetry, the fermion mass m is a parameter that can be tuned continuously such that,

for m → 0, exact chiral symmetry is recovered, and the pions become massless. By con-

trast, while scale invariance is broken softly by the fermion mass, its breaking by the scale

dependence of the renormalized coupling constitutes a hard breaking. Even if we dial the

fermion mass to zero, we do not have another parameter that would allow us to continuously

control the explicit breaking of scale invariance encoded in the beta function. Moreover, if

ultimately confinement and chiral symmetry breaking are to take place, it is unavoidable

that the coupling will keep growing as the energy scale is lowered. The hard breaking of di-

latation symmetry by the running (or walking) of the coupling is therefore of a very different

nature than the soft breaking of chiral symmetry by a fermion mass term.

A hint is provided by the effective low-energy treatment of the anomalous axial symmetry

U(1)A. In this case, too, there is no way to “turn off” the anomaly within a given theory. In

order to overcome this problem one takes the familiar large-Nc limit: the number of colors

Nc is taken to infinity, while the number of flavors is held fixed [22–25]. In this limit the axial

anomaly becomes vanishingly small, and the flavor-singlet pseudoscalar meson eventually

becomes as light as the pions. A large-Nc extension of the standard chiral lagrangian that

accommodates the U(1)A symmetry was systematically developed in Refs. [18, 26].

Here we will invoke a different large-N limit [27]. Considering SU(Nc) gauge theories

with Nf Dirac fermions in the fundamental representation, the so-called Veneziano limit is

defined as the limit N → ∞, in which we take Nc = N , while the ratio

nf =
Nf

Nc
, (1.1)

is held fixed. Asymptotic freedom imposes the restriction nf < 11/2. For each Nc, we let

N∗
f (Nc) be the largest number of flavors such that the theory confines, and chiral symmetry

is broken spontaneously in the chiral limit m → 0. The conformal window, in which the

3 For a previous treatment of this problem, see Ref. [20]. For a discussion of the effective theory for a light

dilatonic scalar in theories with approximate scale invariance, but without spontaneously broken of chiral

symmetry, see Ref. [21].
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coupling runs into an IRFP and the long-distance theory is conformal, thus corresponds to

Nf values in the range

N∗
f (Nc) < Nf < (11/2)Nc . (1.2)

In the Veneziano limit, the conformal window becomes

n∗
f < nf < 11/2 , (1.3)

where

n∗
f = lim

Nc→∞

N∗
f (Nc)

Nc

. (1.4)

In this paper we are interested in chirally broken theories, and thus we will only consider

theories for which

nf < n∗
f . (1.5)

Since Nc and Nf are integers, the increments one can make in nf are steps of size 1/N . It

follows that, in the Veneziano limit, nf effectively becomes a continuous parameter. For the

fundamental representation, the increments in the coefficients of the two-loop beta function

also come in steps of size 1/N , suggesting that nf − n∗
f is the parameter controlling the

smallness of the beta function, or the “walking” nature of the theory.

Our analysis will be based on the conjecture that dilatation symmetry is recovered in a

triple limit: the chiral limit m→ 0; the Veneziano large-N limit; and finally the limit nf ր
n∗
f . We will assume that in this triple limit the trace anomaly becomes vanishingly small

towards the infrared, both inside and outside of the conformal window. Correspondingly,

the effective low-energy theory developed in this paper aims to provide the broken phase

with a systematic expansion in three small parameters: the fermion mass, 1/N , and nf −n∗
f .

As usual, it involves a derivative expansion as well.

This paper is organized as follows. In Sec. II we discuss the microscopic theory. We

briefly review the trace anomaly, and show how it can be encoded in the coupling of the

microscopic theory to an external dilaton source σ(x). In addition, we introduce the familiar

external sources for scalar and pseudoscalar fermion bilinears. As usual, the external fields

allow us to match correlation functions between the microscopic and the effective theory,

and ultimately, to determine the coupling constants of the effective theory order by order in

the low-energy expansion.
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In Sec. III we begin with a more detailed discussion of the triple limit which is the starting

point of our low-energy expansion. We specify the assumptions, or conjectures, that must

be made in order to justify the expansion.

Having introduced the power counting, we proceed to address a complication in the

construction of the low-energy theory that was previously encountered in treatment of the

U(1)A symmetry in large Nc [18, 26]. In principle, each term in the effective low-energy

lagrangian can be multiplied by an arbitrary invariant potential V (τ −σ), where τ(x) is the

effective field that represents the dilatonic meson. Like the U(1)A symmetry, the dilatation

symmetry is abelian. As a result, it does not impose any algebraic constraints on these

potentials, and the coefficients of their power-series expansion in τ − σ are independent

parameters of the low-energy theory. If nothing further could be done, the power-series

coefficients would constitute an infinitely large set of low-energy parameters, and our effective

field theory ends up having no predictive power. Fortunately, however, the matching of the

microscopic and the effective theories for nf ր n∗
f imposes a power-counting hierarchy on

the coefficients of the invariant potentials. As a consequence, out of the four potentials that

we encounter a-priori in the leading-order lagrangian, three are eliminated altogether. The

remaining potential, denoted Vd, gets truncated to a linear function

Vd(τ − σ) = c0 + c1(τ − σ) . (1.6)

In Sec. IV we proceed to study the classical ground state, which turns out to have some

delicate features. In the chiral limit, the classical vacuum is controlled by the potential of the

dilatonic meson, which in turn is proportional to e4τVd(τ). The parameter c1, introduced in

Eq. (1.6) above, is the only parameter of the leading-order lagrangian that accounts for the

hard breaking of scale invariance via the walking of the coupling in the microscopic theory.

We find that the c1 term is crucial for the existence of a stable classical vacuum. We also

study the tree-level masses, the dilatation current, and the fermion condensate.

As an application, we study in Sec. V the one-loop effective potential. This provides a

concrete example that the renormalization of the effective theory works in essentially the

same way as in standard chiral perturbation theory. We summarize our results in Sec. VI.

Various technical details are relegated to several appendices.
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II. THE MICROSCOPIC THEORY

In this section we discuss the relevant properties of the microscopic theory. We begin

in Sec. IIA with a brief review of the dilatation current and the trace anomaly. As a

further gearing up, we recall in Sec. II B the basic steps in the construction of the chiral

lagrangian. Apart from the obviously needed dynamical effective fields, a set of source fields

with appropriate transformation properties, or spurions, is needed to match the effective

theory to the low-energy sector of the microscopic theory. We also review how the anomalous

U(1)A symmetry of QCD can be accommodated in the effective field theory framework, since

this provides us with a useful lesson. In Sec. IIC we return to dilatation symmetry, and

discuss how the operatorial trace of the energy-momentum tensor can be encoded in the

coupling of the microscopic theory to an external source with the transformation properties

of a dilaton.

A. Dilatation current and trace anomaly

The dilatation current is given by

Sµ = xνTµν . (2.1)

where Tµν is the symmetric, gauge-invariant energy-momentum tensor. Being a conserved

current, Tµν does not renormalize.4 In the asymptotically-free gauge theories that we will

study in this paper the dilatation current is not conserved. Its divergence is given by the

trace of the energy-momentum tensor,

∂µSµ = Tµµ ≡ −T . (2.2)

On shell, the trace of the energy-momentum tensor is [30]

T = Tcl + Tan , (2.3a)

Tcl = m[ψψ] , (2.3b)

Tan = β̃ [F 2] + γmm [ψψ] . (2.3c)

4 This would not be true in the presence of elementary scalar fields, because of the existence of an “im-

provement term” with which Tµν can mix [28, 29].
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The operatorial trace divides into a classical part Tcl and a quantum part Tan. We use the

shorthand F 2 = F a
µνF

a
µν , where F

a
µν is the non-abelian field strength, while [· · · ] denotes

renormalized operators. Since Tµν is renormalization-group invariant, so is Sµ, and thus T .

Moreover, m[ψψ] is invariant by itself, and hence Tcl and Tan are separately renormalization-

group invariant.5 The renormalization-group evolution of the renormalized coupling and

fermion mass is controlled by

β̃ =
β(g)

2g
, β(g) = µ

∂g

∂µ
, (2.4)

γm = γm(g) = − µ

m

∂m

∂µ
. (2.5)

B. Chiral symmetry and spurions

The explicit breaking of dilatation symmetry must be incorporated into the low-energy

effective theory that we will construct in the following sections. We can learn how to do this

from the conceptually similar problem of extending the chiral lagrangian to accommodate

the anomalous U(1)A symmetry in the ’t Hooft large-Nc limit.

We first recall the key steps in the construction of the standard chiral lagrangian [16–18].

We introduce a dynamical effective field Σ(x) taking values in the Nambu–Goldstone-boson

manifold, and endow it with appropriate transformation properties under chiral symmetry.

For Nf Dirac fermions, the chiral symmetry is SU(Nf )L × SU(Nf )R. The effective field is

unitary, Σ(x) ∈ SU(Nf ), and transforms according to

Σ(x) → gLΣ(x)g
†
R , gL,R ∈ SU(Nf )L,R . (2.6)

The order-by-order construction of the effective lagrangian is dictated by the power count-

ing

δ ∼ m/ΛIR ∼ p2/Λ2
IR . (2.7)

Here δ is a generic name for the small expansion parameter of the effective theory, m is

the fermion mass, and p2 is a characteristic momentum(-squared) of the pNGBs. ΛIR is the

non-perturbative dynamical scale of the theory which we will discuss later on (see Sec. IIIA).

At leading order the effective lagrangian consists of terms of order δ in the power counting,

the next to leading order consists of terms of order δ2, and so on.

5 For an explicit verification, see Ref. [31].
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The effective lagrangian at each order is fixed by matching correlation functions calcu-

lated in the microscopic theory with the corresponding correlation functions calculated in

the effective theory. In order to facilitate this matching, a common set of source fields is

introduced in both the microscopic and effective theories. In the matching process we can

make use of any correlation function obtained by multiple differentiations of the (micro-

scopic and effective) partition functions with respect to the external sources. For the basic

chiral lagrangian, one needs a scalar source SAB(x), A,B = 1, 2, . . . , Nf , which couples to

the bilinear ψA(x)ψB(x); and a pseudoscalar source PAB(x) that couples to the bilinear

ψA(x)iγ5ψB(x). The chiral transformation properties are

ψ → (gRPR + gLPL)ψ , (2.8a)

ψ → ψ(PLg
†
R + PRg

†
L) , (2.8b)

χ → gLχ g
†
R , (2.8c)

where we have promoted the external sources to spurions, and

χ = S + iP . (2.9)

This allows us to add the invariant

Lm = ψ(χPR + χ†PL)ψ , (2.10)

to the microscopic lagrangian, thus coupling the theory to the sources S and P.

The actual theory is recovered by setting the source fields to their “expectation values,”

S(x) = m , P(x) = 0 . (2.11)

For simplicity, we assume in this paper that all fermions have a common mass m. Thus,

chiral symmetry is softly broken for m 6= 0. By dialing m → 0 exact chiral symmetry is

recovered, and the pions become massless.

In general, any dependence of the effective theory on the expectation value of a spu-

rion field encodes some explicit breaking of a symmetry, because the effective lagrangian is

only invariant under the simultaneous transformation of the dynamical and spurion (source)

fields. In the standard chiral lagrangian, this manifest itself as the breaking of chiral sym-

metry by the fermion mass, as we have just discussed. Let us next see how this comes into

play when dealing with the anomalous U(1)A symmetry.
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The axial anomaly can be formally cancelled by augmenting the lagrangian of the micro-

scopic theory with a new term

−cg2Nf θ(x) trF (x)F̃ (x) . (2.12)

Here θ(x) is the axion field, which couples to (minus) the anomalous divergence of the singlet

axial current. Under a U(1)A transformation the axion field transforms by a shift, and this

allows us to cancel the anomaly generated by the dynamical fermions against the variation

of the axion-dependent term, Eq. (2.12).

The low-energy theory will now depend on the axion field θ(x). As long as we treat

the axion field as a spurion, which transforms under the U(1)A symmetry, the effective

lagrangian will maintain U(1)A invariance. But once we assign to the axion field a fixed

expectation value, the axial anomaly will manifest itself in the effective theory.

The expectation value of the axion field is the vacuum angle θ0. The effective theory fails

to be invariant under U(1)A even if we set the vacuum angle to zero. The effective theory now

includes an additional dynamical field η(x) associated with the flavor-singlet pseudoscalar

meson, which couples to the U(1)A current. Algebraically, the η(x) field is similar to the

axion, in that they both transform by a shift under U(1)A. Any function of the difference

η − θ is invariant under the abelian U(1)A transformations. As discussed in Refs. [18, 26],

already at leading order the effective low-energy theory depends on several such arbitrary

non-derivative functions, or potentials VI(η − θ).6 When we set θ(x) = θ0 = 0, all that

happens is that VI(η − θ) becomes VI(η). The presence in the effective theory of the VI(η)

potentials represents an explicit breaking of U(1)A. The question of how this arbitrariness

can be controlled is postponed to Sec. III.

C. Encoding the explicit breaking of dilatations

As explained in the previous subsection, the construction of the low-energy effective

theory begins with the identification of the dynamical effective fields and the external source

fields. The latter are then promoted to spurions. The new effective field that describes the

dilatonic meson will be introduced in the next section. Here we discuss how to encode the

6 Because of parity, VI(η − θ) is an even function of its argument.
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anomalous divergence of the dilatation current by coupling the microscopic theory to an

external dilaton field σ(x).

We consider an asymptotically free gauge theory with Nf Dirac fermions in the funda-

mental representation. After a rescaling of the bare gauge and fermion fields by the bare

coupling, we express the bare action in d dimensions as

Sev(σ) =

∫

ddx e(d−4)σ(x)L0(x) , (2.13)

L0 =
1

g20
(Lk + Lsrc) , (2.14)

Lk =
1

4
F a
µνF

a
µν +

Nf
∑

i=1

ψi /Dψi , (2.15)

Lsrc = ψ(S + iPγ5)ψ , (2.16)

where the covariant derivative is Dµ = ∂µ + iAµ, and the field strength is Fµν = F a
µνT

a =

−i[Dµ, Dν ].

The dilaton field σ(x) has been introduced in Eq. (2.13) via an overall factor multiplying

the entire bare lagrangian. We have denoted the action by Sev(σ), with a subscript “ev” to

indicate that the dependence on σ(x) comes from the evanescent part of the bare lagrangian.

Sev(σ) is manifestly invariant under the d-dimensional dilatation

Aµ(x) → λAµ(λx) , (2.17a)

ψ(x) → λ3/2ψ(λx) , ψ(x) → λ3/2ψ(λx) , (2.17b)

S(x) → λS(λx) , P(x) → λP(λx) , (2.17c)

σ(x) → σ(λx) + log λ , (2.17d)

g0 → g0 . (2.17e)

With the obvious exception of σ(x), which plays a special role, in this setup the (dynamical

and external) bare fields transform according to their canonical mass dimension in d = 4

dimensions. The bare parameter g0 is dimensionful in d 6= 4 dimensions, but the anticipated

transformation of 1/g20 has been taken up by the factor of e(d−4)σ(x).

In order to see how the σ dependence encodes the anomalous trace of the energy-

momentum tensor, Tan, we proceed to consider the renormalized lagrangian. Differentiating

the bare action once with respect to σ(x) and then setting it to zero we have

∂

∂σ(x)
Sev(σ)

∣

∣

∣

∣

σ(x)=0

= (d− 4)L0(x) . (2.18)
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It was shown in Ref. [30] that the evanescent operator on the right-hand side occurs in

the d-dimensional trace of the energy-momentum tensor, alongside with the classical (four-

dimensional) trace, and with terms proportional to equations of motion. Taking the d → 4

limit and discarding terms proportional to equations of motion then yields Tan(x). Hence

Sev(σ) = Sren(σ) +O(σ2) , (2.19)

Sren(σ) =

∫

ddx
(

Lren
k + Tcl(S,P) + σ Tan(S,P)

)

, (2.20)

where Lren
k is equal to g−2

0 Lk reexpressed in terms of the renormalized fields and coupling,

and the renormalization scale µ. Here (compare Eq. (2.3))

Tcl(S,P) = [ψSψ] + [ψ iPγ5ψ] , (2.21a)

Tan(S,P) = β̃ [F 2] + γm

(

[ψSψ] + [ψ iPγ5ψ]
)

. (2.21b)

Chiral symmetry constrains the renormalization of the sources S(x) and P(x) to be the

same as that of the fermion mass m. The operators Tcl(S,P) and Tan(S,P) are therefore

renormalization-group invariant, too.

The O(σ2) terms in Eq. (2.19) are needed to ensure exact dilatation invariance of the

regularized action in d dimensions. However, our derivation of the low-energy action will

not depend on these terms, and therefore we do not consider them any further.

III. POWER COUNTING AND THE LEADING-ORDER LAGRANGIAN

In QCD, exact chiral symmetry is restored when the fermion mass m tends to zero. The

chiral lagrangian is a low-energy expansion around the chiral limit. The systematic nature

of the low-energy expansion derives from the fact that m is a parameter of the microscopic

theory that can be varied continuously. When the fermion mass vanishes, so does the mass

of the pions.

As mentioned in the introduction, the anomalous U(1)A symmetry, and its associated

flavor-singlet pseudoscalar meson, can be incorporated into the framework of the low-energy

expansion by invoking the ’t Hooft large-Nc limit, in which the number of colors Nc tends

to infinity, while the number of flavors is held fixed. For m = 0, the anomalous divergence

of the singlet axial current is

∂µJ5µ = cg2Nf trFF̃ , (3.1)
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where the numerical constant c depends on the representation in which the fermions trans-

form. The axial anomaly is proportional to g2, which scales as 1/Nc, because in large-Nc

counting the product g2Nc is O(1). As a result, for Nc → ∞ (and fixed Nf ) the mass of the

flavor-singlet pseudoscalar meson tends to zero.7

The starting point of the systematic low-energy expansion then involves a double limit:

the chiral limit m → 0, together with the limit Nc → ∞. The power-counting suppression

of the axial anomaly in the microscopic theory is communicated to the low-energy effective

theory by matching correlation functions obtained by differentiating both partition functions

with respect to the axion source θ(x). Using this, one can show that the coefficients of

the power-series expansion of the VI(η − θ) potentials, introduced in Sec. II B, adhere to a

natural power-counting hierarchy. This limits the number of linearly independent low-energy

constants occurring at each order of the expansion to be finite [18, 26].

In our case, we are interested in the different limit already introduced in Sec. I, in which

the dilatation current is effectively conserved in the infrared, while the axial current of

Eq. (3.1) remains anomalous. In Sec. IIIA we will discuss this triple limit and the assump-

tions on which it depends in more detail, and use it to control the low-energy expansion.

We then proceed in Sec. III B to write down the leading-order lagrangian of the effective

theory. Much like in the case of the U(1)A symmetry, using only symmetry considerations

and the usual chiral power counting allows the leading-order lagrangian to depend on four

arbitrary potentials VI(τ − σ). Using a strategy similar to that followed in Refs. [18, 26],

we then match correlation functions obtained by differentiating with respect to the dilaton

source σ(x) between the microscopic and the effective theories, and use this to establish a

power-counting hierarchy for the power-series coefficients of these potentials.

The result is a leading-order lagrangian that depends only on a finite (and rather small)

number of low-energy parameters. In Sec. IIIC we show that dilatation invariance can be

maintained even after we set σ(x) = 0, at the price of promoting the power-series coefficients

of the VI(τ) potentials to (global) spurions. We also determine the transformation properties

of the renormalized chiral sources, which fixes the dependence of the leading-order lagrangian

on the mass anomalous dimension.

7 The actual argument involves a comparison of the large-Nc scaling of 〈J5µ(x)J5(y)〉 and of 〈 trFF̃ (x)J5(y)〉
where J5 = ψγ5ψ.
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A. Nature of the expansion

As explained in the introduction, we conjecture that the effective low-energy theory can

be constructed as a systematic expansion around a triple limit. One of these limits is just

the chiral limit, m→ 0. The other two limits, namely, the Veneziano large-N limit and the

limit nf ր n∗
f , are more subtle.

First, we need to define a reference scale against which to measure dimensionful quantities

in the effective theory. We will set the reference infrared scale using one of the decay

constants, the pion decay constant f̂π or the dilatonic-meson decay constant f̂τ , in the chiral

limit. The decay constants are defined by8

〈0|Ja
5µ(x)|πb〉 = ipµf̂π δ

ab eipx , (3.2)

〈0|Tµν(x)|τ〉 =
f̂τ
3
(−δµνp2 + pµpν) e

ipx , (3.3)

which implies (see Sec. IVC below)

〈0|Sµ(x)|τ〉 = ipµf̂τ e
ipx . (3.4)

Here |·〉 denotes a single-particle state of momentum p. These states can be labeled by

the effective fields of the low-energy theory: πa(x) is the pion field, which is related to the

non-linear field as

Σ = exp(2iπ/f̂π) = exp(2iπaT a/f̂π) , (3.5)

while τ(x) is a new effective field for the dilatonic meson. The indices a, b = 1, . . . , N2
f − 1

label the adjoint representation of SU(Nf ). Both the non-singlet axial currents Ja
5µ and the

energy-momentum tensor Tµν are renormalization-group invariant, and the same applies to

the decay constants f̂π and f̂τ .
9

The large-N scaling of the decay constants follows from considering the two-point func-

tions of Ja
5µ or Tµν , which gives

f̂π ∼
√

Nc , (3.6)

f̂τ ∼ Nc . (3.7)

8 To avoid confusion, we note that Eqs. (3.2) and (3.3) are used to define the decay constants for any m.

However, we will reserve the notation f̂π, f̂τ for the decay constants in the chiral limit.
9 By contrast, the U(1)A current is not renormalization-group invariant because of the mixing of ∂µJ5µ

with trFF̃ . This complicates the dependence of the effective theory on the renormalization scale of the

microscopic theory [26].
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Equation (3.6) is recognized as the familiar scaling law of the decay constant of any meson

made of fundamental-representation fermions.10 With these scaling laws in mind we may

thus set the dynamical infrared scale ΛIR to be

ΛIR ∼ 4πf̂π√
Nc

∼ 4πf̂τ
Nc

. (3.8)

Here we use that 4πf̂π is usually taken to be the ultraviolet cutoff of the chiral lagrangian,

it being the typical scale for the masses of non-Nambu–Goldstone mesons. The ∼ symbol in

Eq. (3.8) serves to indicate that either expression can be used as the definition of ΛIR. The

two options are equally good, because in the Veneziano limit we expect the dimensionless

ratio
√
Nc f̂π/f̂τ to smoothly approach a non-zero value. We recall that meson masses are

O(1) in the large-N counting, and hence, with the exception of pNGBs, we expect all meson

masses to scale like ΛIR.

Turning to the light-meson sector, the three small parameters of the low-energy expansion

will be

m/ΛIR , (3.9a)

1/N , (3.9b)

nf − n∗
f . (3.9c)

As already mentioned, while m/ΛIR and 1/N (equivalently, 1/Nc) can be taken arbitrarily

small independent of each other, the same is not true for nf − n∗
f , which cannot be para-

metrically smaller than 1/N . In the case where the expansion parameters are comparable in

size, we will again use δ as a generic name for any one of them. For example, the behavior

of the pion mass mπ is

m2
π/Λ

2
IR ∼ (m/ΛIR)

1 (1/N)0 (nf − n∗
f )

0 ∼ m/ΛIR ∼ δ . (3.10)

In addition to the expansion in the input parameters of Eq. (3.9), the effective theory

involves, as usual, a derivative expansion, with pi · pj/Λ2
IR ∼ δ.

We next reexamine the anomalous divergence of the dilatation current, which, in chiral

limit, reads

∂µSµ = −β̃ [F 2] , (3.11)

10 f̂π is independent of Nf because the flavor index in Eq. (3.2) is held fixed.
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where, in terms of the ’t Hooft coupling

α =
g2Nc

4π
, (3.12)

we have (compare Eq. (2.4))

β̃ =
µ

4α

∂α

∂µ
. (3.13)

Both α and β̃(α) are O(1) in large-N counting.

We will assume that the trace anomaly can be made arbitrarily small by approaching

the sill of the conformal window from below. More specifically, we will assume that, in the

chiral limit (compare Eq. (2.3c)),

β̃[F 2] ∼ (nf − n∗
f )

η , nf ր n∗
f , (3.14)

for some η > 0, in the sense that all matrix elements of the operator on the left-hand side

vanish like (nf − n∗
f)

η when probed on the infrared scale ΛIR. The main motivation for

conjecturing Eq. (3.14) is the ever slower running of the coupling as Nf is increased towards

the conformal window, evidence for which comes from numerous lattice studies (see Ref. [3]

and references therein).

Further heuristic support for Eq. (3.14) comes from modeling chiral symmetry breaking

by the gap equation. According to this analysis, chiral symmetry breaking in a walking

theory sets in when the coupling has reached a critical value g2c = 4π2/(3C2) [32–35]. For

the fundamental representation, C2 = (N2
c − 1)/(2Nc), and in the large-Nc limit the critical

value of the ’t Hooft coupling (3.12) is αc = 2π/3. In order to determine when the conformal

window is entered, αc is compared with the (putative) value of the IRFP, α∗ [36–38].
11 The

latter is inferred, for example, from the two-loop beta function, while ignoring the possible

onset of spontaneous symmetry breaking (see App. A). It follows that, if α∗ > αc, the IRFP

is not reached, and the theory exists in a chirally broken (and confining) phase; whereas if

α∗ < αc, the running comes to a halt as α(µ) ր α∗, and the infrared theory is conformal.

In the Veneziano limit, α∗ is a function of nf , and the conformal window is entered when

α∗(nf ) = αc. Therefore, when the boundary separating the broken and conformal “phases”

is reached from within the broken phase, chiral symmetry breaking occurs at a coupling

where the beta function tends to zero.

11 For a different approach to this problem, see Ref. [39].
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We stress that we have no way of rigorously establishing the correctness of Eq. (3.14).

This is the main weakness of our treatment.12 In addition, unlike the parameters m and

1/Nc, in which we expand around zero, we do not know the critical value n∗
f around which we

are to expand in nf . In practice, one would have to determine both η and n∗
f empirically. One

way to do that is by treating η and n∗
f as additional parameters of the low-energy effective

theory, which, together with the rest of the low-energy constants, are to be determined by

the usual procedure of comparing the correlation functions of the microscopic theory with

the predictions of the low-energy theory.

In order to avoid cumbersome notation, we will henceforth assume that η = 1 in

Eq. (3.14). Except for the trivial replacement of nf − n∗
f by (nf − n∗

f )
η, nothing else would

change in our analysis in case that the actual value of η is different.13

We conclude this subsection with several comments.

First, the reason why we consider only the fundamental representation is that, for any

other representation, the relative increments one can make in the beta function β̃(α) re-

main O(1) in the Veneziano limit, leaving us with no parameter to continuously control the

smallness of the beta function.

Second, the one-loop mass anomalous dimension is γm = 6g2C2/(16π
2). Since C2 =

(N2
c − 1)/(2Nc) for the fundamental representation, the mass anomalous dimension is O(1)

in large-N counting. Unlike the beta function, there is no reason that the mass anomalous

dimension will become parametrically small near the bottom of the conformal window.

Indeed, numerical simulations of, e.g., the Nf = 8 theory, suggest that it is large [8] (see

also Ref. [3]). A simplification that does take place is that, since the running comes to a

halt, γm(α(µ)) is hardly changing over many energy decades. This has implications for the

effective low-energy theory, which we will discuss in Sec. IIIC below.

Finally, we recall that unlike in the usual large-Nc limit, in the Veneziano limit the axial

anomaly does not vanish, because we now have g2Nf ∼ 1 in Eq. (3.1). For this reason, the

flavor-singlet pseudoscalar meson does not become light, and will not be considered in the

rest of this paper.

12 We would like to point out that the results of Ref. [40] are in disagreement with our main assumption (3.14).

However, the analysis of Ref. [40] involves a number of ingredients that do not constitute a systematic

approximation, and, therefore, we believe that it does not disprove our assumption.
13 For the two-loop beta function, as well as for a crude model estimate of Eq. (3.14), see App. A.
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B. Invariant potentials at tree level and the power counting

The fields of the effective low-energy theory include the non-linear field Σ(x) introduced

in Sec. II B, and the dilatonic meson field τ(x). The latter is inert under chiral transforma-

tions. Imposing for the time being only the usual chiral power counting, the leading-order

lagrangian consists of terms of order p2 ∼ m ∼ δ, and is given by14

L̃ = L̃π + L̃τ + L̃m + L̃d , (3.15)

where

L̃π =
f 2
π

4
Vπ(τ − σ) e2τ tr(∂µΣ

†∂µΣ) , (3.16)

L̃τ =
f 2
τ

2
Vτ (τ − σ) e2τ (∂µτ)

2 , (3.17)

L̃m = −f
2
πBπ

2
VM(τ − σ) eyτ tr

(

χ†Σ + Σ†χ
)

, (3.18)

L̃d = f 2
τBτ e

4τVd(τ − σ) . (3.19)

L̃π and L̃τ are the kinetic terms for pions and for the dilatonic meson, respectively. L̃m is a

generalized chiral mass term, whereas L̃d accounts for the self-interactions of the dilatonic

meson. Actually, L̃d is O(δ0), and not O(δ1), in apparent violation of the rules of the

effective theory. We will see later on how this is resolved. The relation of fπ and fτ to the

physical decay constants f̂π and f̂τ in the chiral limit will be discussed below. Bπ and Bτ are

additional low-energy constants of mass dimension one and two, respectively. As we will see

below (see Sec. IVB), the dependence of the tree-level masses on the B parameters implies

that they are O(1) in large-N counting.

The effective action S̃ =
∫

d4x L̃(x) is invariant under dilatations. The transformation

rules of the dynamical fields are

Σ(x) → Σ(λx) , (3.20a)

τ(x) → τ(λx) + log λ . (3.20b)

The transformation rule of σ(x) is given in Eq. (2.17d). Notice the similarity of the trans-

formation rules of the dynamical field τ(x) and the source field σ(x). The transformation

14 We work in euclidean space.
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rule of the chiral source χ(x) that follows from Eq. (3.18) is

χ(x) → λ4−yχ(λx) . (3.21)

The transformation rule of the bare chiral source, given in Eq. (2.17c), reflects its engineering

dimension. Compatibility of Eqs. (3.21) and (2.17c) would require y = 3. In fact, the

effective theory must be constructed using the renormalized chiral source, because it is

the differentiation with respect to this renormalized source that produces finite correlation

functions of the microscopic theory. The dilatation transformation rule of the renormalized

chiral source is different from that of the bare source. We will derive it in Sec. IIIC below.

Because the shifts of σ(x) and τ(x) cancel each other, the invariant potentials VI , I =

π, τ,M, d, undergo only a coordinates transformation

VI(τ(x)− σ(x)) → VI(τ(λx)− σ(λx)) . (3.22)

This transformation places no algebraic constraints on the coefficients of the power-series

expansion,

VI =
∞
∑

n=0

cI,n
n!

(τ − σ)n . (3.23)

The coefficients cI,n therefore amount to infinitely many, linearly independent low-energy

parameters.

In this subsection, we will establish a power-counting hierarchy

cI,n ∼ (nf − n∗
f)

n ∼ δn . (3.24)

This will allow us to set the potentials Vπ, Vτ and VM equal to one in the leading-order

lagrangian, because they multiply terms that are already O(δ); and to truncate Vd to a

linear function, as in Eq. (1.6).

When writing down the chiral lagrangian, it is customary to keep explicit the m depen-

dence. Similarly, the nf − n∗
f dependence can be made explicit by performing the further

expansion15

cI,n =

∞
∑

k=0

c̃I,nk(nf − n∗
f )

k . (3.25)

15 Recall that we are assuming η = 1 in Eq. (3.14), see Sec. III A.
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The new coefficients c̃I,nk are independent of all three expansion parameters m, 1/N and

nf − n∗
f . The power counting (3.24) can be equivalently stated as

c̃I,nk = 0 , k < n . (3.26)

Below, we will mostly refer to the cI,n coefficients, but we will keep in mind that each of

them is a function of nf − n∗
f .

The hierarchy (3.24) is analogous to the one established in Refs. [18, 26] for the coefficients

of the invariant potentials V (η − θ) discussed in Sec. II B, which occur in the low-energy

effective theory that accommodates the U(1)A symmetry. The main difference is that the

power-series coefficients of V (η − θ) are suppressed by powers of 1/Nc in the usual large-

Nc limit. By contrast, here the power-series coefficients of the VI(τ − σ) potentials are

suppressed by powers of nf − n∗
f , which is a new small parameter that is present in the

Veneziano limit but not in the usual large-Nc limit.

We will derive Eq. (3.24) by matching judiciously chosen correlation functions of the

low-energy theory to the corresponding correlation functions of the microscopic theory, in

the chiral limit. In order to understand the physical origin of Eq. (3.24), we begin by

considering correlations functions of the microscopic theory obtained by differentiating n

times with respect to the σ(x) source field. As usual, the role of the external sources is to

generate operator insertions, and thus in the microscopic theory we will assume that no two

differentiations are done at coinciding points. We thus have

ΓMIC
n (x1, . . . , xn) = (−1)n

∂

∂σ(x1)
· · · ∂

∂σ(xn)
W (3.27a)

= 〈Tan(x1) · · ·Tan(xn)〉m=0 (3.27b)

= β̃n
〈

F 2(x1) · · ·F 2(xn)
〉

. (3.27c)

HereW = logZ. It is understood that all source fields are set to zero after the differentiations

are done (since we work in the chiral limit, this includes setting S(x) = P(x) = 0, cf.

Eq. (2.11)). Allowing also for differentiations with respect to the scalar and pseudoscalar

sources SAB and PAB gives us access to

ΓMIC
nkℓ (x1, . . . , xn; y1, . . . , xk; z1, . . . , zℓ) = (3.28)

= (−1)n+k+ℓ ∂

∂σ(x1)
· · · ∂

∂σ(xn)

∂

∂S(y1)
· · · ∂

∂S(yk)
∂

∂P(z1)
· · · ∂

∂P(zℓ)
W

= β̃n
〈

F 2(x1) · · ·F 2(xn) ψψ(y1) · · ·ψψ(yk) ψiγ5ψ(z1) · · ·ψiγ5ψ(zℓ)
〉

,
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where we have suppressed the flavor indices. We see that, by Eq. (3.14),

ΓMIC
nkℓ = O(δn) . (3.29)

Here and in the rest of this subsection, O(δn) will always mean O((nf −n∗
f )

n). In Eq. (3.28),

all the operators are renormalized ones.16 Correspondingly, the chiral sources used to gen-

erate ΓMIC
nkℓ are renormalized, too.

Turning to the low-energy effective theory, in order to probe the potentials VI(τ − σ),

we will carry out multiple differentiations at the same spacetime point. This immediately

raises the issue of reconciling this procedure with the avoidance of the limit of coinciding

points in the correlation functions of the microscopic theory. There is in fact no conflict.

The point is that coinciding spacetime points do not have the same physical significance in

the microscopic and the effective theories. While the pNGBs are represented in the effective

theory as point particles, in reality they have a finite size, roughly of order 1/ΛIR. We

will thus choose to consider operator insertions in the microscopic theory at non-coinciding

points, but at distances much smaller than 1/ΛIR, such that they collapse to insertions

at coinciding points in the effective low-energy theory. In addition, asymptotic states are

obtained from operator insertions at large distances, in the same way in the microscopic

and the effective theories. This will allow us to enforce the power counting of Eq. (3.29) on

the effective theory’s correlation functions that we will need in order to probe the VI(τ −σ)

potentials.

Among the correlation functions obtained in the effective theory by differentiating multi-

ple times with respect to σ(x) at the same spacetime point, there is a special subset, in which

all the differentiations are applied to the same potential VI . This gives rise to a diagram

containing the n-th derivative of VI , which, when evaluated at σ = 0, is simply (compare

Eq. (3.23))
(

− ∂

∂σ

)n

VI

∣

∣

∣

∣

σ=0

=
∞
∑

k=0

cI,n+k

k!
τk = V

(n)
I (τ) . (3.30)

The natural way for the correlation functions of the effective theory to satisfy Eq. (3.14), is

that the power-series coefficients of VI satisfy

cI,k = O(δn) , k ≥ n , (3.31)

16 To avoid cumbersome notation, we have omitted the square brackets used in Sec. II to denote renormalized

operators.
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because this implies that V
(n)
I (τ) = O(δn) in its entirety. It is easy to see that condi-

tions (3.24), (3.26) and (3.31) are mathematically equivalent. As it turns out, it is convenient

to establish the power-counting hierarchy in the form of Eq. (3.31).

There are a few more technical points we need to address before turning to the actual

derivation. First, the zeroth-order term in the double expansion of each potential, c̃I,00, is

redundant, because each term in the lagrangian (3.15) is already multiplied by a low-energy

constant. We will use this freedom to set c̃M,00 = c̃π,00 = c̃τ,00 = 1. The role of c̃d,00, the

leading-order term in the expansion of Vd, is more subtle. The c̃d,00-dependent term is the

only part in the entire lagrangian which is O(1). All other terms start at O(δ), which is how

the leading-order lagrangian normally scales according to the low-energy power counting.

As we will show in Sec. IVB below, when we develop the diagrammatic expansion for each

theory, there is a redefinition of the τ field that allows us to set cd,0 = −cd,1/4. This is

equivalent to setting c̃00 = 0 and c̃01 = −c̃11/4, so that, after the redefinition, the entire

leading-order lagrangian is O(δ).

For the diagrammatic expansion, we split the dilatonic meson field as

τ(x) = v + τ̃(x)/(evfτ ) ≡ v + τ̃ (x)/f̂τ , (3.32)

where v = 〈τ〉 is the classical solution, and the quantum field τ̃(x) has a canonically nor-

malized kinetic term. Applying the τ field redefinition of Sec. IVB to Eq. (3.32) shifts the

classical solution to v = 0 in the chiral limit, and the dependence on the original value of v

gets absorbed into the decay constants,

f̂π = evfπ , (3.33a)

f̂τ = evfτ , (3.33b)

and into the two other low-energy constants,

B̂π = e(y−2)vBπ , (3.34a)

B̂τ = e2vBτ . (3.34b)

In these equations, v is the classical solution in the chiral limit before the field redefinition,

given by Eq. (4.6) below. After the τ field redefinition, which sets v = 0 in the chiral limit, it

can moreover be shown that the ground state is stable against the inclusion of higher-order
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terms in the classical potential.17

As for the non-linear Σ field, in this paper we assume that m > 0 (or, if the chiral limit

has been taken, that it was approached as m ց 0), hence its classical vacuum expectation

value is 〈Σ〉 = 1. The diagrammatic expansion is then generated as usual by expanding Σ

in terms of the pion field, Eq. (3.5).

We will prove the power-counting hierarchy (3.31) using the diagrammatic expansion

described above. The proof of Eq. (3.31) proceeds by induction. We assume that Eq. (3.31)

has been proved up to n− 1, so that cI,k = O(δk) for all k ≤ n− 1, and cI,k = O(δn−1) for

k ≥ n − 1. In the induction step we must therefore improve the bound to cI,k = O(δn) for

k ≥ n.

In the effective theory, the n differentiations with respect to the σ(x) source will all be

done at the same point. We will be interested in the special subset of diagrams mentioned

above, in which all n differentiations have been applied to a single VI , so that the diagram

involves a single vertex

V
(n)
I (τ(x)) . (3.35)

We claim that the sum of diagrams with a single such vertex must be O(δn) by itself. When

we apply the σ differentiations, we will also obtain diagrams with the factorizable form

V
(k1)
I1

(τ(x)) · · ·V (kℓ)
Iℓ

(τ(x)) , k1 + · · ·+ kℓ = n , (3.36)

where at least two ki’s are larger than zero, and therefore all ki < n. Now, the factorizable-

form diagrams may be obtained by first using ℓ non-coinciding points to obtain

V
(k1)
I1

(τ(x1)) · · ·V (kℓ)
Iℓ

(τ(xℓ)) , (3.37)

and then taking the limit where all the ℓ spacetime points are brought together. Since

ki < n, the induction hypothesis implies V
(ki)
Ii

(τ(xi)) = O(δki) for all i. The diagrams

with the point-split structure (3.37) are thus O(δn), and the same is true in the limit of

coinciding points. Therefore, the left-over part, which is the (sum of) diagrams with the

non-factorizable vertex (3.35), must be O(δn) by itself.

The rest of the argument is more technical, and requires a case-by-case study. We will

give here the proof of Eq. (3.31) for the power-series coefficients of Vd, which is the potential

17 In fact, for what we need here it would be enough to set c̃d,00 = 0, leaving c̃d,01 free; see Sec. VA.
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that is easiest to handle. The demonstration of Eq. (3.31) for the other three potentials VM ,

Vπ and Vτ makes use of the same ingredients, but is slightly more involved, and is relegated

to App. B. The reader who is not interested in these details may skip to the next subsection.

Let us carry out no additional differentiations except for the n derivatives with respect

to the σ(x) field, and isolate the diagrams with a non-factorizable vertex. After dividing by

f̂ 2
τ B̂τ we obtain the effective theory’s correlation function

ΓEFT
d,n = (f̂ 2

τ B̂τ )
−1 〈Ωd,n + Ωπ,n + Ωτ,n〉 , (3.38)

where

Ωd,n = f̂ 2
τ B̂τ V

(n)
d (τ) e4τ , (3.39)

Ωπ,n =
f̂ 2
π

4
V (n)
π (τ) e2τ tr(∂µΣ

†∂µΣ) , (3.40)

Ωτ,n =
f̂ 2
τ

2
V (n)
τ (τ) e2τ (∂µτ)

2 . (3.41)

The generalized mass term L̃m does not contribute, because we did not differentiate with

respect to the chiral source χ(x), but we did set χ(x) = m = 0. The division by f̂ 2
τ B̂τ

in Eq. (3.38) makes ΓEFT
d,n dimensionless, and, in addition, it removes the leading large-N

dependence, so that ΓEFT
d,n is O(1) in large-N counting.

Our first step is to establish that cd,n = O(δn). Considering the expansion

Ωd,n =
∞
∑

k=0

cd,n+k

k!
f̂ 2
τ B̂τ τ

ke4τ , (3.42)

we need to find a suitable limit where ΓEFT
d,n is dominated by the first term on the right-hand

side of Eq. (3.42). If we can do so, we will have

ΓEFT
d,n = cd,n +O(δn+1) , (3.43)

and the desired result will follow from the matching to the microscopic theory.

We will derive Eq. (3.43) by working in the parameter region

m/ΛIR ∼ 1/N ∼ pi · pj ∼ ǫn , (3.44a)

nf − n∗
f ∼ δ , (3.44b)
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where pi · pj denotes the product of any two external momenta, and where

ǫn ≪ δn . (3.44c)

We begin with the observation that 〈Ωπ,n〉 contains a pion loop, which, including the nor-

malization factor from Eq. (3.38), is

f̂ 2
π

〈

tr(∂µΣ
†∂µΣ)

〉

f̂ 2
τ B̂τ

∼ 〈 tr(∂µπ∂µπ)〉
f̂ 2
τ B̂τ

∼ N2m4
π

f̂ 2
τ B̂τ

∼ m4
π

Λ4
IR

∼ ǫ2n , (3.45)

where we have used that the number of pions scales like N2
f ∼ N2, the large-N scaling of

f̂τ and B̂τ , and Eq. (3.5). It follows that 〈Ωπ,n〉 can be neglected. We next consider 〈Ωτ,n〉.
Since we have shifted the classical vacuum to v = 0, we may substitute τ = τ̃ /f̂τ . The

contribution of 〈Ωτ,n〉 thus involves the dilatonic meson tadpole18

〈

f̂ 2
τ (∂µτ)

2
〉

f̂ 2
τ B̂τ

=
〈(∂µτ̃ )2〉
f̂ 2
τ B̂τ

∼ m4
τ

f̂ 2
τ B̂τ

∼ m4
τ

N2Λ4
IR

. (3.46)

As we will see in Sec. IVB below, m2
τ ∼ Λ2

IR|nf − n∗
f | in the chiral limit, and so, generically,

the suppression of dilatonic meson loop comes from the smallness of both |nf −n∗
f | and 1/N .

Here we invoke the parameter region (3.44), because we must maintain the freedom to vary

nf −n∗
f . Therefore, we cannot neglect 〈Ωτ,n〉 on the grounds of its mτ dependence. However,

Eq. (3.46) also involves a factor of 1/N2 ∼ ǫ2n, and this does justify the neglect of 〈Ωτ,n〉.
At this stage we are left with 〈Ωd,n〉. The last step is to observe that, besides cd,n, all

other contributions to 〈Ωd,n〉 involve some number of dilatonic meson tadpoles 〈τ 2〉, each
of which provides an additional suppression factor of 1/N2. This completes the proof that

cd,n = O(δn).

In the above argument, loop diagrams were always subleading. This is an example of a

general result, first derived by Weinberg in the context of the chiral lagrangian [16], that

the loop expansion of every correlation function in the effective theory obeys the standard

power counting. Thus, every loop diagram is always suppressed relative to the tree diagrams

that contribute to a given correlation function. Weinberg’s result was generalized to the case

where a dilatonic meson is present in Ref. [20]. While our setup is different from Ref. [20],

both in terms of the expansion parameters (3.9) and the particular parameter range (3.44),

18 Note that 〈τ̃ ∂µτ̃ 〉 = 0.
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the argument remains essentially the same. Henceforth, it will thus suffice to consider tree

diagrams only.

In order to extend Eq. (3.31) to cd,k for k > n, we will need ℓ = k − n external τ legs.

These external legs must be generated by differentiating with respect to one of the source

fields, since Eq. (3.28) gives the complete set of correlation functions of the microscopic

theory that can be matched to the effective theory. We will differentiate with respect to

(the flavor trace of) the scalar source S(y). Including a suitable normalization factor and a

trivial subtraction, we let

ΩS = − 1

f̂ 2
πB̂π

∂L̃
∂S (3.47a)

=
1

2
VM(τ) eyτ tr(Σ + Σ†) ,

Ω̃S = ΩS −Nf (3.47b)

=
yτ̃

f̂τ/Nf

− 2

f̂ 2
π

tr(π2) + · · · ,

where we have used Eq. (3.18) and c̃M,00 = 1. This shows that Ω̃S can be used as an

interpolating field for the dilatonic meson. As a generalization of Eq. (3.38), we will consider

Γ̃EFT
d,n,ℓ(p1, . . . , pℓ), the Fourier transform of

ΓEFT
d,n,ℓ = (f̂ 2

τ B̂τ )
−1
〈

(Ωd,n(x) + Ωπ,n(x) + Ωτ,n(x)) Ω̃S(y1) · · · Ω̃S(yℓ)
〉

. (3.48)

The demonstration that cd,k = O(δn) for k > n will proceed by an “inner” induction. Before

turning to the general case, let us examine the two simplest cases.

We start with ℓ = k − n = 1. The leading contribution to ΓEFT
d,n,1 is a tree diagram

with a single dilatonic meson line connecting Ωd,n(x) with Ω̃S(y1). Expanding V
(n)
d (τ) e4τ =

cd,n + τ(4cd,n + cd,n+1) + O(τ 2) we find that, after amputation, the contribution to Γ̃EFT
d,n,1 is

equal to 4cd,n + cd,n+1 up to an O(1) factor. Since we already know that cd,n = O(δn), the

conclusion is that we must have cd,n+1 = O(δn) as well.

Proceeding to ℓ = k − n = 2, now
〈

Ωd,n(x) Ω̃S(y1)Ω̃S(y2)
〉

receives contributions from

three topologically distinct tree diagrams, each containing two dilatonic meson lines. The

tree diagram we need is the one in which Ωd,n(x) is connected by a line to each of Ω̃S(y1)

and Ω̃S(y2). In addition, there two more tree-diagram topologies. In one case, the two

lines emanate from Ω̃S(y1), and connect it to Ωd,n(x) and to Ω̃S(y2). In the other case, the

roles of Ω̃S(y1) and Ω̃S(y2) are interchanged. At this point we use the external momenta

25



as probes. Each tree-diagram topology has a unique dependence on the external momenta,

and this allows us to isolate the tree diagram that we are after, the one in which the two

lines emanate from Ωd,n(x). After amputation, the result involves a linear combination of

cd,n, cd,n+1 and cd,n+2, and, since we already know that cd,n and cd,n+1 are O(δn), it follows

that the same is true for cd,n+2.

The structure of the induction step is now clear. Having established that cd,k = O(δn)

for n ≤ k ≤ n + ℓ − 1, we will in the next step consider Γ̃EFT
d,n,ℓ(p1, . . . , pℓ). By Weinberg’s

theorem (and its generalizations), tree diagrams make the leading contribution. It is easily

seen that Ωπ,n cannot contribute to any tree diagram, and can thus be neglected.19 The case

of Ωτ,n is different. For ℓ ≥ 2, there are tree diagrams that receive contributions from both

Ωd,n and Ωτ,n. However, due to the presence of two derivatives, in all cases the contribution

of Ωτ,n will be suppressed by a relative factor pi ·pj ∼ ǫn. We are left with the tree diagrams

constructed only from Ωd,n. Once again using the different momentum dependence we isolate

the tree diagram in which the ℓ lines all emanate from Ωd,n, and, finally, using the induction

hypothesis we conclude that cd,n+ℓ = O(δn).

For the generalization of Eq. (3.31) to the other leading-order potentials VM , Vπ and Vτ ,

as well as for a brief discussion of the potentials encountered at the next-to-leading order

and beyond, the reader is referred to App. B.

C. The leading-order lagrangian

Having established the power counting for the coefficients of the invariant potentials, we

are done with the σ(x) source field, and we set it equal to zero. The power counting (3.31)

allows us to replace VM , Vπ and Vτ by one in the leading-order lagrangian, and to truncate

Vd to a linear function, as in Eq. (1.6). The result is the following leading-order effective

lagrangian,

L = Lπ + Lτ + Lm + Ld , (3.49)

19 Note that Ω̃S produces at least two pions.
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where20

Lπ =
f 2
π

4
e2τ tr(∂µΣ

†∂µΣ) , (3.50)

Lτ =
f 2
τ

2
e2τ (∂µτ)

2 , (3.51)

Lm = −f
2
πBπ

2
eyτ tr

(

χ†Σ + Σ†χ
)

, (3.52)

Ld = f 2
τBτ e

4τ (c0 + c1τ) . (3.53)

In spite of the absence of the σ field, the effective action S =
∫

d4xL(x) is invariant under
a different scale transformation, where the dynamical effective fields transform in the same

way as before, and, in addition,

c0 → c0 − c1 log λ , (3.54a)

c1 → c1 , (3.54b)

where we have promoted the coefficients of Vd(τ) to global spurions. [As shown in App. C,

this invariance can be generalized to the case that we set σ(x) = 0 in the lagrangian (3.15)

while keeping the potentials VI(τ) completely arbitrary.]

There is one more issue to address. As already mentioned, the effective theory must be

constructed using the renormalized chiral source. We will now derive the dilatation, or scale,

transformation of the renormalized chiral source field χ. As we will see, this fixes the value

of y in Eq. (3.21) in terms of the mass anomalous dimension.

We start by reexamining the bare microscopic partition function in the presence of the σ

field. This partition function is in fact invariant under a family of scale transformations that

depend on a continuous parameter ζ . The transformation rules of the dynamical and source

bare fields, Eqs. (2.17a) though (2.17c), remain the same as before, whereas Eqs. (2.17d)

and (2.17e) are generalized to

σ(x) → σ(λx) + ζ log λ , (3.55a)

µ → λ(1−ζ)µ , (3.55b)

g̃0 → g̃0 . (3.55c)

20 In the rest of this paper we reserve the abbreviations cn and c̃nk for cd,n and c̃d,nk, respectively.
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The new, dimensionless, parameter g̃0 is defined in terms of the bare coupling g0 and the

renormalization scale µ, according to

g̃0 = µd/2−2g0 . (3.56)

The invariance of the microscopic partition function under this family of scale transforma-

tions follows from the fact that

µeσ(x) → λµeσ(λx) , (3.57)

independent of ζ . The transformation (2.17) is recovered for the special case ζ = 1. Once

we set σ(x) = 0, the only consistent choice in Eq. (3.55) is ζ = 0. The entire scale transfor-

mation (3.57) is then “carried” by the renormalization scale µ, which transforms according

to its engineering dimension, µ → λµ. This is the first ingredient we need.

Our ζ = 0 scale transformation has something in common with a renormalization group

transformation, because the renormalization scale µ changes under it in the same way. What

distinguishes this scale transformation from a renormalization-group transformation, is that,

in a renormalization-group transformation, the bare fields and parameters are kept invariant;

whereas under our scale transformation all bare fields and parameters transform according

to their engineering dimension.

In particular, the bare coupling g0 transforms non-trivially under our scale transforma-

tion, in accordance with the fact that it is dimensionful for d 6= 4. The dimensionless g̃0 is

invariant. Because Z(g)g = µd/2−2g0 = g̃0, it follows that the renormalized coupling g, too,

is held fixed. Postponing momentarily which value of the renormalized coupling we should

choose, the very fact that it is kept invariant allows us to obtain the transformation rule of

the renormalized fermion mass m and chiral source χ(x), which is

χ(x) → λ1+γmχ(λx) . (3.58)

We see that the scale transformation now involves both the engineering and the anomalous

dimension. The mass anomalous dimension is to be evaluated at the fixed value of the

coupling, γm = γm(g), and we thus arrive at the simple power in Eq. (3.58) above. Requiring

compatibility of this new transformation rule with Eq. (3.21) we conclude that

y = 3− γm . (3.59)

The final remaining question is then what value of γm, or, equivalently, g, we should

choose to fix y in the effective theory. By construction, the effective low-energy theory is
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an expansion in m and nf − n∗
f .

21 The starting point of the expansion is therefore nf = n∗
f

(and m = 0). Let αc
∗ be the location of the infrared fixed point, expressed in terms of the

’t Hooft coupling (3.12), as the conformal window is entered. Assuming that the beta and

gamma functions depend continuously on nf , at nf = n∗
f the right choice for the argument

of γm is α = αc
∗, and thus,

γm = γm(α
c
∗) ≡ γ∗m . (3.60)

The physical picture behind this choice is that, when nf tends to n∗
f from below, chiral

symmetry breaking will set in at a scale where, first, the beta function has become vanish-

ingly small, and second, the value of the renormalized coupling tends to αc
∗. Corrections to

Eq. (3.60) can be expanded in nf − n∗
f , and thus they are subsumed in the VI potentials

that fully account for the dependence of the low-energy theory on nf − n∗
f .

Numerical simulations find that the mass anomalous dimension is, within error, always

in the range (see Ref. [3] and references therein)

0 ≤ γm<∼ 1 , (3.61)

suggesting that the actual value of y should be somewhere in the range

2<∼ y ≤ 3 . (3.62)

For theoretical work supporting a value of γm near the upper bound in Eq. (3.61) for walking

theories, see Refs. [33–35, 41, 42].

IV. THE EFFECTIVE THEORY AT TREE LEVEL

In this section we study the classical vacuum and the tree-level spectrum. When writing

down the leading-order lagrangian (3.49) we have already set σ(x) = 0. The last preparatory

step is to set the chiral source to its “expectation value” χ(x) = m. We will assume that

either m > 0, or else the chiral limit has been taken as m ց 0, so that, in all cases, the

classical pion vacuum is Σ = 1 or, equivalently, 〈Σ〉 = Nf .

The vacuum of the dilatonic meson is determined by minimizing the classical potential

Vcl(τ) = f 2
τBτU(τ) , (4.1a)

21 For this discussion, the expansion in 1/N only plays the role of allowing nf−n∗

f to tend to zero continuously.

29



where

U(τ) = −f
2
πBπNfm

f 2
τBτ

eyτ + Vd(τ)e
4τ (4.1b)

= − m

M eyτ + Vd(τ)e
4τ ,

M ≡ f 2
τBτ

f 2
πBπNf

. (4.1c)

Here M has the dimensions of mass. The rescaled potential U(τ) is dimensionless, and is

O(1) in large-N counting. This follows from the scaling laws of the decay constants (see

Sec. IIIA) and the fact that Bπ and Bτ are themselves O(1) in large-N counting. The

latter property follows from the dependence of the pion and dilatonic meson masses on

these parameters (see Sec. IVB below), taking into account that meson masses are O(1) in

large-N counting. The pion mass is parametrically small in m, and dilatonic meson mass is

parametrically small in nf −n∗
f and m combined, while neither mass is parametrically small

in 1/N .22

The function Vd(τ) is linear. If we make use of Eq. (3.25) and the power-counting hier-

archy (3.26) to keep only the O(nf − n∗
f) term in its expansion, we get

Vd(τ) = c0 + c1τ = c̃00 + (nf − n∗
f)(c̃01 + c̃11τ) , (4.2)

where the low-energy constants c̃00, c̃01, and c̃11 are independent of all three expansion

parameters in Eq. (3.9).

This section is organized as follows. In Sec. IVA we study the classical ground state

approximating Vd by its leading constant term. We find that this truncation does not give

rise to a consistent starting point for the diagrammatic expansion. In Sec. IVB we study

the linear Vd of Eq. (4.2). We establish that a stable classical ground state exists, and derive

expressions for the masses of the pion and of the dilatonic meson. In Sec. IVC we study the

dilatation current and its anomalous divergence at the level of the leading-order effective

theory. In Sec. IVD we discuss the limit nf ր n∗
f , where the “phase boundary” between

chirally broken and infrared-conformal theories is approached from within the chirally broken

phase. Finally, in Sec. IVE we return to the results of Sec. IVB, and give a more hands-on

description of how these predictions can be tested within a given model.

22 As discussed in Sec. III A, the Veneziano large-N limit is needed in order to enable us to treat nf − n∗

f as

a continuous parameter that can be made arbitrarily small.
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A. Constant Vd

An unusual feature of the classical potential (4.1) is that it contains both an O(1) term,

and terms which are O(δ). The c̃00 term in Vd is O(1), while the terms linear in nf − n∗
f or

in m are O(δ) in the power counting of Sec. IIIA. If we consider the O(1) part all by itself,

the classical potential is U(τ) = c̃00 e
4τ . Boundedness from below then requires c̃00 > 0, for

which the classical vacuum corresponds to 〈τ〉 → −∞, or, equivalently, 〈eτ 〉 = 0.

In order to better understand this behavior, let us take into account also the mass term,

while still neglecting the linear term in Vd. In order to avoid unboundedness below we must

now also require 0 < y < 4 (compare Eq. (3.62)). The classical potential then has a unique

minimum 〈τ〉 = v given by

e(4−y)v =
ym

4c̃00M
. (4.3)

Now v is finite for m > 0, while in the chiral limit v → −∞ is recovered.

The “runaway” solution (4.3) is not a consistent starting point for the low-energy expan-

sion. In the case at hand, the physical decay constants are the rescaled decay constants in

Eq. (3.33), except that v is the solution of Eq. (4.3). Since ev ∝ m
1

4−y , we see that the phys-

ical decay constants vanish in the chiral limit, which is unacceptable: by the very definition

of n∗
f (Eq. (1.4)), every theory with Nf/Nc = nf < n∗

f exists in a chirally broken phase,

which means that in the chiral limit m → 0 (at fixed nf < n∗
f ) there are exactly massless

pions, with a finite decay constant. Likewise, we expect fτ to remain finite, as there is no

reason that the dilatonic meson would cease to exist in the chiral limit.

Equation (4.2) would naively suggest that the term linear in τ can be neglected in the

range |nf − n∗
f | ≪ m/ΛIR. But, as we have seen, the outcome is inconsistent. In the next

subsection, we turn our attention to the role of the linear term in Vd.

B. Linear Vd

In this subsection we show that the linear Vd of Eq. (4.2) gives rise to a well-behaved

classical solution. Since we will be considering a fixed theory, the nf dependence of c0 and

c1 does not come into play. We will revisit the role of this nf dependence in Sec. IVD below.

We begin by considering the classical potential for m = 0, where

U(τ) = e4τ (c0 + c1τ) . (4.4)
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This potential is bounded from below provided that

c1 > 0 . (4.5)

The saddle-point equation has a unique solution, the global minimum, given by

v = −1/4− c0/c1 . (4.6)

Although we are considering here a theory with fixed nf , the question arises whether some-

thing might still go wrong if the selected theory corresponds to a very small nf−n∗
f , because,

according to Eq. (4.6), |v| will diverge if we keep selecting theories with ever smaller nf −n∗
f .

We will now show that this is not the case.

Consider shifting the dilatonic meson field,

τ → τ +∆ . (4.7)

A glance at Eq. (4.2) reveals that this field redefinition induces a corresponding redefinition

of c0,

c0 → c0 + c1∆ . (4.8)

We can use this “gauge freedom” to set c0 to any value we like, and we will thus set

c0 = −c1/4 . (4.9)

This corresponds to shifting the τ field by ∆ = v, where v is given by Eq. (4.6), so that,

after the shift, the classical solution becomes

v = 0 . (4.10)

The remaining dependence of the tree-level lagrangian (3.49) on ∆ is absorbed into a redef-

inition of the decay constants fπ and fτ , and the low-energy constants Bπ and Bτ . Since ∆

is by construction equal to the original value of v in Eq. (4.6), the values of the redefined

f ’s and the B’s are those given in Eqs. (3.33) and (3.34). Unlike in Sec. IVA, here we

are working in the chiral limit, and the expansion around the chiral limit is therefore well

behaved.

It is easy to check that the solution v = 0 is stable. Indeed, if we add higher-order terms,

Vd generalizes to

Vd = c1(τ − 1/4) + τ 2f(τ) , (4.11)
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where we have used Eq. (4.9). According to Sec. III B, f(τ) = O((nf − n∗
f )

2), making it a

small correction for any given theory for which |nf − n∗
f | ≪ 1. First, one can easily check

that v = 0 remains a saddle point for any f(τ). Moreover, since |f(τ)| ≪ c1, it follows that

v = 0 always remains a minimum. The shifted classical solution v = 0 is therefore a good

starting point for the diagrammatic low-energy expansion.

We next consider the tree-level masses. In the chiral limit, the pion is massless. The

tree-level mass mτ of the dilatonic meson is obtained from the second derivative of U(τ)

evaluated at the saddle point,

m2
τ = 4c1B̂τ . (4.12)

In large-N counting, all meson masses are O(1). This implies that the low-energy constant

B̂τ is O(1) in large-N counting (a similar reasoning applies to B̂π). Equation (4.12) also

implies that mτ ∼ |nf − n∗
f |1/2 ∼ δ1/2, which resembles the familiar behavior of the pion

mass in ordinary chiral perturbation theory, mπ ∼ m1/2.

Proceeding to the case m > 0, we cannot solve for v in closed form any more. The

classical vacuum is now the solution of

ym

Mc1
= h(v) ≡ 4ve(4−y)v . (4.13)

We keep c0 = −c1/4 as in Eq. (4.9). M is now defined in terms of the rescaled low-energy

parameters of Eqs. (3.33) and (3.34). In order for the classical potential (4.1) to remain

bounded below for m > 0, we need 0 < y < 4. As follows from Eq. (3.62), the actual value

of y appears to be comfortably within this range. Since both c1 and m are generically O(δ),

the left-hand side of Eq. (4.13) is O(1), and so is the solution v. The function h(v) is positive

if and only if v is. Furthermore, for v > 0, h(v) is a monotonically increasing function. Since

we are assuming m > 0, it follows that v itself is a monotonically increasing function of m.

Taking into account that the kinetic terms now get rescaled by e2v, the tree-level dilatonic

meson mass is given by

m2
τ = 4c1B̂τe

2v(1 + (4− y)v) . (4.14)

It is easy to see that mτ increases monotonically with v, and thus with m. The tree-level

pion mass is given by

m2
π = 2B̂πme

(y−2)v =
8c1MB̂π

y
ve2v . (4.15)
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From the rightmost expression we learn that mπ, too, is monotonically increasing with v,

and thus with m.

If we consider the limit where m/(Mc1) ≪ 1, we can solve Eq. (4.13) to first order in

this ratio, obtaining

v =
ym

4Mc1
. (4.16)

The correction to the dilatonic meson mass is

m2
τ

m2
τ (m = 0)

= 1 + (6− y)v , (4.17)

whereas the pion mass is given by

m2
π = 2B̂πm . (4.18)

This is the familiar result from ordinary chiral perturbation theory. However, when m/M ∼
c1, the leading-order dependence of m2

π on the quark mass, given by Eq. (4.15), is more

complicated, and not linear.

C. Dilatation current in the leading-order effective theory

In this subsection we explore the basic properties of the dilatation current and its diver-

gence to leading order in the effective theory. The actual derivation of the dilatation current

is relegated to App. D. The result can be expressed as (see Eq. (D5))

Sµ = xνΘµν = xν(Tµν +Kµν/3) , (4.19)

where Tµν and Θµν are, respectively, the canonical and improved energy-momentum tensors

of the effective theory at the leading order.23

As expected, Sµ contains a term linear in the dilatonic meson field. Its origin is in the

improvement term

Kµν =
f 2
τ

2
(δµν✷− ∂µ∂ν)e

2τ (4.20)

= fτe
v(δµν✷− ∂µ∂ν)τ̃ + · · · .

where on the second line we have used Eq. (3.32). Plugging this into Eq. (4.19) gives

Sµ = fτe
v∂µτ̃ + · · · , (4.21)

23 Since the fields of the effective theory are Lorentz scalars, the existence of an improvement term is to be

expected [28].
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showing that the leading-order decay constant of the dilatonic meson is fτe
v. [Note that, ac-

cording to Eq. (D2a), the off-shell divergence ∂µSµ contains ∂µ(xνKµν/3) = (∂µxν)Kµν/3 =

Kµµ/3 = (f 2
τ /2)✷e

2τ , which is equivalent to Eq. (4.21).]

The anomalous conservation equation may be read off from Eqs. (D2) and (D3). Using

also Eqs. (3.59) and (3.60), it takes the form

∂µSµ = c1f
2
τBτe

4τ + (1 + γ∗m)
f 2
πBπm

2
eyτ tr(Σ + Σ†) . (4.22)

If we now introduce

ψψ(EFT) ≡ ∂L
∂S = −f

2
πBπ

2
eyτ tr(Σ + Σ†) , (4.23)

with L given by Eq. (3.49), we may rewrite Eq. (4.22) as

∂µSµ = c1f
2
τBτe

4τ − (1 + γ∗m)mψψ(EFT) . (4.24)

A comparison to the microscopic theory (Sec. IIA) leads to the identification

β̃F 2(EFT) = −c1f 2
τBτe

4τ . (4.25)

If we take the expectation value of Eq. (4.25), and demand consistency with the microscopic

theory, we obtain

β̃〈F 2〉 = −c1f 2
τBτe

4v . (4.26)

Since in the effective theory we were led to require that c1 > 0, and we have that β̃ < 0, it

follows that 〈F 2〉 > 0, for nf ∼<n∗
f . We recall that F 2 can mix with the identity operator.

Different prescriptions to subtract the identity part of 〈F 2〉 can vary, and, as a result, even

the sign of the subtracted 〈F 2〉 is not uniquely defined. Interestingly, the effective theory

appears to provide a natural framework to define the (subtracted) expectation value 〈F 2〉,
which, as we have seen, implies that it is positive.

Finally, another interesting consequence is that, in the chiral limit, we may use Eq. (4.12)

(as well as (3.33) and (3.34)) to rewrite Eq. (4.26) as

−4β̃〈F 2〉 = f̂ 2
τm

2
τ . (4.27)

This result closely resembles the GMOR relation24

−2m

Nf

〈

ψψ
〉

= f̂ 2
πm

2
π , (4.28)

24 Note that ψψ is summed over flavors.
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which is reproduced using Eqs. (4.18) and (4.23). The existence of a GMOR-like relation

for the dilatonic meson is not entirely obvious. The original GMOR relation is derived from

the partial conservation of the axial current by making use of the fact that the pion pole

is isolated from the 3-pion cut. By contrast, for any finite Nc and Nf , we expect that the

mass of the dilatonic meson will remain non-zero in the chiral limit. Therefore, for m = 0

the dilatonic meson is unstable, and can decay into two pions. The τ → ππ vertex comes

from expanding the pion kinetic term (3.50), and is given by ∼ f−1
τ τ tr(∂µπ∂µπ), showing

that f−1
τ plays the role of the coupling constant. The resulting decay rate satisfies

Γτ

mτ
∼
m2

τN
2
f

f̂ 2
τ

∼ m2
τ

Λ2
IR

∼ |nf − n∗
f | , (4.29)

where in the first equality we have used that the number of pions is ∼ N2
f . We see that,

thanks to the derivative interaction of the pions in the chiral limit, the ratio Γτ/mτ is

parametrically small, and so the dilatonic meson is a narrow resonance for nf close to n∗
f .

D. The limit nf ր n∗f

In the previous subsections we have studied the tree-level structure of a single theory

with specific values of Nc and Nf , and, thus, a fixed value of nf . In this subsection, we

explore the limit nf ր n∗
f , which necessarily involves the comparison of different theories.

Having in mind that we will now be varying nf requires us to revisit two elements of

the discussion of Sec. IVB. First, reinstating the nf dependence (and remembering that we

always consider nf < n∗
f) the bound (4.5) reads

c̃11 < 0 . (4.30)

Second, in Sec. IVB, the “gauge freedom” of shifting the τ field has allowed us to set its

expectation value to zero in the chiral limit. In order to facilitate the comparison of different

theories we may still shift the τ field, but the shift must now be uniform across these theories,

that is, independent of nf . Parametrically, this shift is O(1), so that it does not mix different

orders in the expansion in nf − n∗
f . Comparing Eqs. (4.2) and (4.8), we see that the effect

of an allowed shift is now

c̃00 → c̃00 , (4.31a)

c̃01 → c̃01 + c̃11∆ . (4.31b)
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It follows that the value of the low-energy constant c̃01 is arbitrary. We will henceforth

use the freedom to perform a uniform shift to set c̃01 = 0. By contrast, the leading-order

coefficient c̃00 is invariant under the shift, and thus, it can have physical consequences.

The role of c̃00 is best illustrated by considering a concrete example. Starting from the

rescalings in Eqs. (3.33) and (3.34), we consider the dimensionless ratio25

mB̂π

f̂ 2
π

=
mBπ

f 2
π

e−(1+γ∗

m)v , (4.32)

where we have used Eqs. (3.59) and (3.60) to trade y with the mass anomalous dimension

γ∗m at the sill of the conformal window, Eq. (3.60). The left-hand side of Eq. (4.32) can be

determined in terms of the pion mass close to the chiral limit and the (physical) pion decay

constant
mB̂π

f̂ 2
π

=
m2

π

2f̂ 2
π

, (4.33)

where we have used Eq. (4.18). By plugging Eq. (4.2) into Eq. (4.6), we reexpress the

classical solution as

v = −1

4
− c̃00
c̃11(nf − n∗

f )
, (4.34)

where we have used the new “gauge choice” c̃01 = 0. We see that the dimensionless ratio

m2
π/f̂

2
π depends (exponentially) on c̃00/c̃11. If we measure this ratio for sufficiently many

walking theories (and close enough to the chiral limit), we will be able to extract from it the

value of
c̃00
c̃11

=
Bτ c̃00
Bτ c̃11

. (4.35)

A linearly independent relation is obtained by measuring the mass of the dilatonic meson,

which, in the present context, becomes (compare Eq. (4.12))

m2
τ = 4c̃11(nf − n∗

f )Bτe
2v . (4.36)

Using both measurements for a series of theories in the limit of small nf − n∗
f and m, we

should thus be able to separately determined c̃00Bτ and c̃11Bτ .

A technical comment is that, since the leading-order lagrangian depends on BτVd, we only

have access to products such as cnBτ or c̃nkBτ . This behavior is familiar from the standard

25 Here we are, in effect, using the reference infrared scale ΛIR = 4πf̂πN
−1/2
c (compare Eq. (3.8)). The

ratio (4.32) allows us to track the nf dependence at fixed N . The N -dependence can easily be divided

out for the purpose of comparing theories with different N .
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chiral lagrangian, where only the product mBπ has an invariant meaning. In both cases, the

separate determination of the B parameter requires an additional extraneous prescription.

Returning to Eq. (4.34) we find in the limit nf ր n∗
f the asymptotic behavior

v →
{

−∞ , c̃00 > 0 ,

+∞ , c̃00 < 0 .
(4.37)

We conclude that f̂π(nf ), f̂τ (nf ) and B̂τ (nf) vanish in this limit when c̃00 > 0, or, alter-

natively, blow up when c̃00 < 0.26 Intuitively, the correct behavior is that all dimensionful

low-energy parameters will vanish as the conformal window is approached. This would im-

ply that the “phase boundary” between chirally broken and infrared-conformal theories is

smooth. We thus speculate that the correct sign is c̃00 > 0. However, this is merely a specu-

lation. The reason is that when we look at, e.g., the nf dependence of f̂π, we are comparing

the pion decay constants of different theories. Unless we have a common dimensionful ref-

erence scale, such a comparison is meaningless. Taking a low-energy parameter, such as fπ,

as the common reference scale would only work if we have a way to determine fπ itself, and

not just f̂π, from the microscopic theory. This requires insight into the microscopic theory

not provided by the low-energy effective theory.

In order to avoid confusion, we note that in Sec. IVA we have considered a fixed theory,

and the conclusion that the classical solution (4.3) is not a consistent starting point followed

from the requirement that the chiral limit of that particular theory must not be singular.

Once we take into account the linear term in Vd, the sign of c̃00 becomes unconstrained, and

we need instead the constraint (4.5), or, equivalently, (4.30).

The description in terms of the effective low-energy theory developed in this paper neces-

sarily breaks down inside the conformal window. The reason is that meson states no longer

exist in the chiral limit, where, instead, all correlation functions obey power laws with non-

trivial exponents. In view of Eq. (4.30), the product c1 = c̃11(nf − n∗
f) will be negative for

nf > n∗
f , and, as a result, the tree-level potential will become unbounded from below. It is

reassuring to see that, through this classical behavior, the low-energy theory “knows” that

it must cease to be valid as the conformal window is entered.

To conclude this section, we consider another dimensionless ratio, which, through the

GMOR relation, directly influences the pion mass. This is the value of the flavor-singlet

26 The same conclusion applies to B̂π(nf ) provided that γ∗m < 1.
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fermion condensate, expressed in units of the pion decay constant,

〈ψψ〉
f̂ 3
π

= −Bπ

fπ
e−γ∗

mv . (4.38)

If indeed c̃00 is positive (and since γ∗m is expected to be positive, too), we have that e−γ∗

mv > 1.

This result then predicts a condensate enhancement that depends on the mass anomalous

dimension, as well as, through Eq. (4.34), on the low-energy constants c̃00 and c̃11. While

condensate enhancement was predicted long ago within the gap-equation treatment [32–35,

39, 41], here we obtain it as a quantitative prediction within the framework of a systematic,

low-energy expansion, provided that c̃00 > 0.

E. Testing the effective theory

In this section we have studied several tree-level predictions of the effective theory, first

for a given model, and then as the limit nf ր n∗
f is approached. In practice, the ability to

test the effective theory by collecting data from many models is limited by its cost. Thus,

in this subsection we return to a specific model with fixed Nc and Nf , and discuss in some

more detail how the effective theory can be put to a test in this framework.

We will focus on the dependence of simple observables on the fermion mass m. Of course,

virtually any physical observable of the low-energy sector can be used to test the predictions

of the effective theory. The discussion below is only meant as an illustration, providing a

more hands-on view on the results already presented in Sec. IVB.

We first discuss the determination of the exponent y, or, equivalently, the mass anomalous

dimension γ∗m at the sill of the conformal window (Eqs. (3.59) and (3.60)). The results of

Sec. III, which are based on our main dynamical assumption (3.14), imply that for a given

model, the mass anomalous dimension at the dynamical infrared scale γm(ΛIR) can be

expanded as

γm(ΛIR) = γ∗m + cγ,1(nf − n∗
f ) + · · · . (4.39)

In comparison with Eq. (3.14), the main difference is that at the scale ΛIR, the trace anomaly

vanishes with nf − n∗
f , whereas the mass anomalous dimension stays finite. It then follows

that we may reexpress eyτ in Eq. (3.52) as

eyτ = e(3−γ∗

m)τ = e(3−γm(ΛIR))τ (1 + cγ,1(nf − n∗
f)τ + · · · ) . (4.40)
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We conclude that the discrepancy arising from using γm(ΛIR) of the model with fixed Nf and

Nc, instead of γ∗m, will be absorbed at the next-to-leading order by adjusting the coefficient

c̃M,11 occurring in the expansion of VM (see Eq. (3.18) and Sec. VA below).

With an estimate for y at hand, we may now use the numerical results for the pion mass

mπ, measured at several different values of the fermion mass m, and substitute them into

Eq. (4.15) in order to determine the functional form of v(m) together with the low-energy

constant B̂π. The latter may be found by considering the small-m behavior, because, by

construction, the shifted dilaton expectation value of Sec. IVB vanishes in the chiral limit.

At this point we may carry out two tests of the effective theory. First, the function h(v),

defined in Eq. (4.13), must depend linearly on m once we substitute v = v(m). Another test

is that the m-dependence of the dilatonic meson mass should agree with Eq. (4.14), which,

in turn, allows us to determine the product c1B̂τ .

A word of caution is that, since we are using the predictions of the leading-order la-

grangian, the results are only expected to provide a good description of the low-energy

sector when all the expansion parameters, m/ΛIR, 1/Nc and nf − n∗
f , are sufficiently small.

As we have explained, the effective theory is restricted to theories with fermions in the

fundamental representation because only in this case can we turn the ratio Nf/Nc into an

effectively continuous parameter by invoking the Veneziano limit. While this would neces-

sarily be of a speculative nature, let us give a thought to models with higher-representation

fermions (such as the SU(3)-sextet model studied in Refs. [11, 13]). Consider the euclidean

partition function defined by varying continuously the number of flavors Nf . While the

theory is non-local whenever Nf is not an integer, it is a well-defined statistical mechanics

system. That system might become infrared conformal at some (non-integer!) value of Nf ,

which we denote as N∗
f . In the fortuitous event that there exist an integer Nf such that,

first, Nf < N∗
f so that the Nf -flavor theory undergoes spontaneous chiral symmetry break-

ing, and, second, N∗
f −Nf ≪ 1, the low-energy sector of the Nf -flavor higher-representation

theory might admit an expansion in m/ΛIR and Nf −N∗
f .

Testing this scenario can be done along similar lines. For the actual effective field theory

framework (with fermions in the fundamental representation), the success of the low-energy

description at a given order depends on the smallness of the expansion parameters 1/Nc and

nf −n∗
f for the model under consideration; the fermion mass can always be dialed such that

m/ΛIR is small enough. Similar tests of the low-energy sector can be carried out in any
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model with higher-representation fermions and a light scalar meson, and the hope would be

that that model is well-described by an expansion in Nf −N∗
f .

V. EFFECTIVE FIELD THEORY AT ONE LOOP

In this section we study the effective theory at the next-to-leading order (NLO). In

Sec. VA we write down the NLO lagrangian. Then, as an example, we work out in Sec. VB

the one-loop effective potential from a dilatonic meson loop, and confirm that the NLO

lagrangian contains the necessary counterterms to renormalize it.

A. Next to leading order lagrangian

Like the standard chiral lagrangian, our low-energy expansion involves a derivative ex-

pansion, as well as an expansion in the fermion mass m, or, more generally, in the chiral

source χ. As we will shortly see, the systematic expansion in ∂µ and χ provides the main

organizing principle for the successively higher orders in the effective theory.

Our setup contains two additional small parameters: 1/N , and nf − n∗
f . The systematic

expansion in nf −n∗
f is realized in a very simple way: each operator that we encounter while

expanding in ∂µ and χ will be multiplied by its own invariant potential VI(τ − σ), which,

after setting σ = 0, reduces to VI(τ). The invariance property of these potentials under the

dilatation (3.20b), namely, the transformation rule VI(τ(x)) → VI(τ(λx)), is maintained by

promoting the power-series coefficients of the potentials to (global) spurions, whose trans-

formation properties are derived in App. C. At each order in the expansion defined by the

power counting of Sec. IIIA the potentials VI(τ) can be truncated consistent with that order,

and the effective theory thus contains a finite number of low-energy constants.

As for 1/N , the reason why we invoke the Veneziano limit is to justify the treatment of

nf −n∗
f as a continuous parameter. The only explicit N -dependence is that the Σ field takes

values in SU(Nf). In addition, the decay constants scale with N , as discussed in Sec. IIIA.

The parameter 1/N does not play any direct role in organizing the effective lagrangian.

Before we turn to the construction of the NLO lagrangian, let us reconsider the freedom

to shift the τ field and its effect on the LO lagrangian. In order to develop the low-energy

expansion of a given theory, in this section we will choose to shift the τ field by ∆ =
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−c̃00/(c̃11(nf −n∗
f )). This shift sets c̃00 = 0, thereby eliminating the only O(1) term present

in the LO lagrangian, and the entire LO lagrangian becomes O(δ). This new “gauge choice”

leaves c̃01 intact. Recall that, in Sec. IVD, we made use of an nf -independent shift to argue

that the value of c̃01 is unphysical. Nevertheless, here it is advantageous to keep it free,

because this manifestly maintains dilatation invariance of the O(nf − n∗
f) part of Vd (see

Eq. (4.2) and App. C).

The classical vacuum is now given by v = −1/4 − c̃01/c̃11, which is O(1), and hence

any factors of ev which arise from the expansion of the τ field, Eq. (3.32), are O(1) too.27

The classical solution will now be modified by higher-order terms of the kind studied in

Eq. (4.11). But the corresponding change in v will be O(nf − n∗
f ), so that the systematic

nature of the low-energy expansion is respected.

The NLO lagrangian consists of four kinds of operators. The first kind comes from picking

the O(δ2) terms from the LO lagrangian of Eq. (3.15) while setting σ = 0. This amounts to

picking the terms (nf−n∗
f )(c̃I,01+c̃I,11τ) from the expansions of VM , Vπ and Vτ , because these

potentials multiply operators that are O(δ) by themselves. The role of Vd is again special,

because L̃d is the only part of the effective theory which involves no small parameters other

than nf − n∗
f . The O(δ

2) terms coming from Vd give rise to the NLO operators

Qd
1 = c̃02 (nf − n∗

f)
2f 2

τBτ e
4τ , (5.1a)

Qd
2 = c̃12τ (nf − n∗

f )
2f 2

τBτ e
4τ , (5.1b)

Qd
3 = c̃22(τ

2/2)(nf − n∗
f )

2f 2
τBτ e

4τ . (5.1c)

The dilatation transformation properties of the low-energy constants c̃nk, given in App. C,

ensure that the spacetime integral of Qd
1 +Qd

2 +Qd
3 is invariant.

The remaining terms in the NLO lagrangian arise from the expansion in ∂µ and χ, which

we will refer to as the “chiral expansion.” Since these terms are already O(δ2) on account

of their dependence on derivatives and on the chiral source χ, it follows that the invariant

potentials multiplying all these terms may be set equal to 1. At the next-to-next to leading

order (NNLO), we will need the O((nf − n∗
f )

3) part of Vd, the O((nf − n∗
f )

2) parts of VM ,

Vπ and Vτ , and the O(nf − n∗
f ) parts of invariant potentials that multiply NLO operators

arising from the chiral expansion.

27 This reduces to the solution v = 0 of Eq. (4.10) in the special case that c̃01 = −c̃11/4.
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The first kind of chiral-expansion NLO operators comes in one-to-one correspondence

with the NLO operators of standard chiral perturbation theory [18]. Each NLO operator

Q̃i = Q̃i(Σ, χ, ∂µ) , (5.2)

appears in the lagrangian in the form

Qπ
i = e4τ Q̃i(Σ, e

(y−4)τχ, e−τ∂µ) . (5.3)

The NLO action constructed from the operators Qπ
i is dilatation invariant. A second set of

chiral-expansion NLO operators consists of operators that depend on the dilatonic meson

field only. There are three of them,28

Qτ
1 = [(∂µτ)

2]2 , (5.4a)

Qτ
2 = (✷τ)

2 , (5.4b)

Qτ
3 = ✷τ(∂µτ)

2 . (5.4c)

Finally, there are operators that depend on both Σ and derivatives of τ ,

Qmix
1 = ∂µτ∂ντ tr(∂µΣ

†∂νΣ) , (5.5a)

Qmix
2 = (∂µτ)

2 tr(∂νΣ
†∂νΣ) , (5.5b)

Qmix
3 = ✷τ tr(∂νΣ

†∂νΣ) , (5.5c)

Qmix
4 = e(y−2)τ (∂µτ)

2 tr
(

χ†Σ+ Σ†χ
)

, (5.5d)

Qmix
5 = e(y−2)τ

✷τ tr
(

χ†Σ+ Σ†χ
)

. (5.5e)

B. Effective potential at NLO

In this subsection we calculate, as an example, the one-loop effective potential coming

from a dilatonic meson field in the loop.29 As in the previous subsection, we use the τ shift

to set c̃00 = 0 while leaving c̃01 free. The easiest way to obtain the effective potential is

via the background field method. Instead of a constant classical vacuum v, we introduce a

background field u(x), assumed to be slowly varying, and replace Eq. (3.32) by

τ(x) = u(x) + τ̃(x)/fτ , (5.6)

28 We omit the low-energy constants that multiply each operator in Eqs. (5.4) and (5.5).
29 We did not calculate the contribution to the effective potential coming from a pion loop, for which the

power counting should work in the usual way.
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where, as before, τ̃ (x) is the quantum part.30 We will be applying an adiabatic approxima-

tion, where derivatives of the background field are neglected. The result of the calculation

is a functional of the background field u(x), in which we are eventually to replace u(x) by

the full field τ(x).

We start by expanding S to quadratic order in τ̃ ,

S(2) =
µd−4f 2

τ

2

∫

ddx
(

e2u(∂µτ̃)
2 + V ′′(u)τ̃ 2

)

, (5.7)

where now (compare Eq. (4.1))

V(u) = BτVd(u)e
4u − f 2

πBπ

2f 2
τ

eyu tr
(

χ†Σ+ Σ†χ
)

, (5.8)

and, integrating over τ̃ , we find

V1 =
1

2

∫

ddp

(2π)d
log
(

e2up2 + V ′′(u)
)

(5.9a)

= −1

2

∂

∂α

∫

ddp

(2π)d
(

e2up2 + V ′′(u)
)−α

∣

∣

∣

α=0
(5.9b)

= −1

2

Γ(−d
2
)

(4π)d/2
(

e−2uV ′′(u)
)

d
2 (5.9c)

= − 1

64π2

(

e−2uV ′′(u)
)2

×
(

2

4− d
− γ +

3

2
− log

(

e−2uV ′′(u)

4πµ2

)

+O(d− 4)

)

. (5.9d)

We confirmed this result by a diagrammatic calculation, see App. E. The effective potential

is thus given by Eq. (5.9d) with the replacement u(x) → τ(x).

The divergence of the effective potential is proportional to (e−2τV ′′(τ))2. It is straight-

forward to check that the counterterms needed to remove it are a linear combination of the

NLO operators of Sec. VA. As an example, if we set χ = 0 then the required counterterms

are the three NLO operators in Eq. (5.1). This calculation provides a non-trivial check of

the constraints that follow from the power counting and from the symmetries of the effective

theory.

VI. DISCUSSION

We begin this concluding section with a summary of the main technical ingredients of

our work. We have proposed a low-energy effective action that accommodates dilatation

30 Because the classical background is not constant, we normalize the quantum part only by the original fτ .
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symmetry into the framework of the chiral lagrangian. Previously, the chiral lagrangian

was extended to accommodate the anomalous U(1)A symmetry. What these two extensions

have in common is that the new symmetry, be it dilatations or U(1) axial transformations,

is abelian. In both cases, the dependence of the low-energy theory on the singlet dynamical

field associated with the abelian symmetry is virtually unconstrained at the algebraic level.

For the low-energy theory to have any predictive power, we must be able to establish a

power-counting hierarchy that will suppress interactions with increasingly large number of

singlet particles.

For the U(1)A symmetry, the needed hierarchy was established in usual large-Nc limit,

in which the axial anomaly vanishes [18, 26]. The low-energy expansion is then a double

expansion: in the fermion mass m, and in 1/Nc. In the case of dilatations, we are able to

propose a suitable starting point only for fermions in the fundamental representation. The

low-energy expansion involves a triple limit: the chiral limit m→ 0; the Veneziano large-N

limit in which the ratio nf = Nf/Nc effectively becomes a continuous parameter; and the

limit in which nf approaches the sill of the conformal window n∗
f from below.

The main hypothesis underlying our derivation is that, when we increase both Nc and

Nf such that nf tends to n∗
f from within the chirally broken phase, the trace of the energy-

momentum tensor in the chiral limit tends to zero when probed at the scale at which

spontaneous chiral symmetry breaking sets in. This hypothesis is compatible with the notion

of a smooth “conformal phase transition,” and with the existence of an infrared fixed-point

as the conformal window is entered. While the low-energy theory is not directly sensitive

to the fixed-point value of the coupling, it depend explicitly on the corresponding value of

mass anomalous dimension.

For nf ր n∗
f , conservation of the dilatation current in the chiral limit is in effect recovered.

However, instead of the dilatonic meson becoming a true Nambu-Goldstone boson, this

limit is at the edge of the region of validity of the effective theory. The effective theory

breaks down through a diverging vacuum expectation value v = 〈τ〉 at nf = n∗
f , leading

to unphysical values of the decay constants fπ and fτ . For nf > n∗
f , the classical potential

of the effective theory becomes unbounded from below. This singular behavior suggests

that pions cease to exist as the conformal window is entered, consistent with the absence of

chiral symmetry breaking inside the conformal window. It also suggests the absence of a true

Nambu-Goldstone boson for dilatation symmetry inside the conformal window. However,
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we emphasize that as the effective theory breaks down at the conformal sill, it does not tell

us anything about the physics on the other side of the sill.

An external dilaton source σ(x) which, in the microscopic theory, is coupled to the trace

anomaly, i.e., to the quantum part of the operatorial trace of the energy-momentum tensor,

communicates information about the operatorial trace to the effective theory. By matching

σ-dependent correlation functions between the microscopic and the effective theory we were

able to establish the desired power-counting hierarchy. Successive powers of τ − σ in the

expansion of the invariant potentials VI(τ − σ) are suppressed by equal powers of nf − n∗
f .

In comparison to the low-energy framework that includes the U(1)A symmetry, a simpli-

fication that occurs in our case is that all relevant currents are renormalization-group invari-

ant. This includes the energy-momentum tensor, the dilatation current, and the non-singlet

axial currents. A related choice we have made is that we opted to avoid the introduction

of external gauge fields of any kind. In particular, we derived the dilatation current in the

effective theory directly using the Noether procedure.

In the microscopic theory, we have avoided multiple operator insertions at coinciding

points. As a result, we did not probe any c-number trace anomalies. In flat space, these

c-number anomalies reduce to four-derivative terms. Whether the four-derivative terms of

the next-to-leading order lagrangian may be constrained via matching conditions similar to

those of Refs. [43, 44] we leave as an open question. Studying this question requires the

promotion of the global dilatation symmetry to local Weyl invariance, which involves the

introduction of the metric tensor [45], and perhaps also Weyl gauging [46].

The anomalous conservation law of the dilatation current in the effective theory suggests

that, up to a suitable proportionality constant, the field strength operator of the microscopic

theory, F 2, is represented in the low-energy theory by e4τ , where τ is the dilatonic meson

field. Now, the classical potential of the effective theory is e4τ (c0 + c1τ) in the chiral limit.

If we make use of the above identification, it takes the form F 2(c0 + (c1/4) logF
2). This

effective lagrangian was proposed long ago as a phenomenological lagrangian for Yang-Mills

theory [47, 48]. The difference is that, in our case, the classical potential arises in an effective

theory that provides a systematic low-energy expansion of gauge theories near (but below)

the bottom of the conformal window.

Among the notable predictions of the tree-level effective theory is the result that the

masses of both the dilatonic meson and the pion are monotonically increasing with the
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fermion mass m. In the region where mπ ∼ mτ , the dependence of the pion mass on m is

more complicated than the standard GMOR relation. We have also derived a GMOR-like

relation for the dilatonic meson in the chiral limit. The reason why such a relation exists,

in spite of the fact that the dilatonic meson can decay into two pions, is that the pions

have a derivative coupling in the chiral limit, and, as a result, the ratio of the dilatonic

meson’s decay rate to its mass tends to zero when nf tends to n∗
f . Finally, we obtained

a quantitative prediction for the enhancement of the fermion condensate,31 which, at the

leading order, depends on the mass anomalous dimension at the sill of the conformal window,

as well as on two other low-energy constants.

The GMOR-like relation for the dilatonic meson gives rise to a definition of the expec-

tation value 〈F 2〉 within the low-energy theory. The definition of this expectation value in

the microscopic theory is ambiguous, because of the power-divergent mixing of F 2 with the

identity operator; we leave the implications of a definition through the low-energy theory

as an open question. For related discussions in the context of a lattice definition of the

energy-momentum tensor, see, e.g., Refs. [49, 50]. The behavior of 〈F 2〉 also plays a role in

the finite-temperature phase transition, see for example Refs. [39, 51].

Our work was motivated by lattice studies of asymptotically free models whose spectrum

contains a light flavor-singlet scalar meson in certain parts of the bare-parameter phase

diagram. These models naturally provide a test bed for the effective field theory framework

we have developed. The framework must be put to a test because, unlike the standard

chiral lagrangian, we cannot derive the low-energy expansion from first principles; it is a

consequence of our main dynamical assumption, Eq. (3.14).

At the same time, the new low-energy framework provides a useful analytic tool. It is no-

toriously difficult to firmly establish by numerical studies whether a particular model with a

slowly running coupling is chirally broken or infrared conformal.32 In a theory with an IRFP,

the infrared physics satisfies hyperscaling relations. By contrast, the effective low-energy

theory developed here predicts a distinctively different dependence of the light spectrum on

31 See, however, the discussion of the sign of c̃00 in Sec. IVD.
32 As an example, a recent study using domain-wall fermions suggests that the SU(3) theory with Nf = 10

fundamental fermions is infrared conformal [52], whereas another recent study using staggered fermions

suggests that the Nf = 12 theory could be chirally broken [53]. The results of these two studies are in

conflict.
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the fermion mass m, already at leading order. Moreover, in an infrared-conformal theory,

the inverse linear size of the system is always a relevant operator, whereas in the effective

low-energy theory finite volume corrections occur only at the next-to-leading order. These

qualitative differences may help diagnose whether a specific model is infrared conformal or

chirally broken.

The low-energy framework would be best tested by exploring many theories with fermions

in the fundamental representation with varying numbers of colors and flavors. Since cost

considerations may make such an extensive study difficult, we have briefly commented on

tests that can be carried out within a given model with fixed values of Nc and Nf .

Finally, while the low-energy framework is not applicable to theories with higher-

representation fermions, we noted that in this case one may attempt a similar expansion,

in which, in place of the two small parameters 1/N and nf − n∗
f , there is a single small

parameter Nf − N∗
f . The meaning of N∗

f is that, by varying the number of flavors Nf

continuously, the resulting (in general non-local) statistical mechanics system is assumed to

become infrared conformal at some non-integer value Nf = N∗
f . The physical model where

Nf is the largest integer smaller than N∗
f is chirally broken, and might be amenable to an

an expansion in m/ΛIR and Nf −N∗
f if the latter happens to be numerically small.
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Appendix A: Two-loop beta function in the Veneziano limit

In terms of an ’t Hooft coupling with a slightly different normalization (compare

Eq. (3.12))

α̃ = g2Nc/(16π
2) , (A1)
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the two-loop beta function for Nf Dirac fermions in the fundamental representation takes

the form

β(α̃) ≡ ∂α̃

∂ logµ
= −b1α̃2 − b2α̃

3 , (A2a)

b1 = 11/3− 2nf/3 , (A2b)

b2 = 34/3− nf (13/3− 1/N2
c ) , (A2c)

where nf was defined in Eq. (1.1). In the Veneziano limit we may drop the last term on the

right-hand side of Eq. (A2c). In the two-loop approximation, an IRFP exists for nf values

in the following range

2.61 ≃ 34/13 < nf < 5.5 . (A3)

For nf > 5.5, asymptotic freedom is lost. The two-loop prediction for the value of the IRFP

is

α̃∗(nf ) = (11− 2nf)/(13nf − 34) . (A4)

Of course, Eq. (A4) is not reliable when nf is close to 34/13. Moreover, the two-loop

prediction is oblivious to the possible onset of spontaneous chiral symmetry breaking. As

discussed in Sec. IIIA, for walking theories we may combine the gap equation and the two-

loop beta function to postulate that chiral symmetry breaking sets in when the running

coupling reaches αc, provided that αc < α∗. The critical value of the rescaled coupling is

α̃c = αc/(4π) = 1/6. Substituting this value into Eq. (A2) provides a model estimate for

Eq. (3.14) (dividing out [F 2]), given by

β(α̃c) = β(1/6) =
25

648
(nf − 4) , (A5)

which corresponds to n∗
f = 4 and η = 1. In other words, the estimated range of the conformal

window in the Veneziano limit is n∗
f = 4 < nf < 5.5.

Appendix B: Details of the inductive proof

In this appendix we complete the proof of Eq. (3.31) by considering the remaining leading-

order potentials VM , Vπ and Vτ . We will also briefly discuss the potentials encountered at

the next-to-leading order and beyond.
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We start with VM . In order to probe this potential we add to the n differentiations with

respect to σ one more differentiation with respect to the scalar source S, all at the same

spacetime point. We obtain

ΓEFT
M,n = 〈ΩM,n(x) + ΩM,0(x) (Ωd,n(x) + Ωπ,n(x) + Ωτ,n(x))〉 , (B1)

where

ΩM,n =
1

2Nf
V

(n)
M (τ) eyτ tr(Σ + Σ†) . (B2)

Note that ΩM,0 = ΩS/Nf . The additional normalization factor of 1/Nf relative to Eq. (3.47)

is introduced in order that ΓEFT
M,n will be O(1) in large-N counting. The ΩM,n term in Eq. (B1)

is obtained by applying all σ-derivatives to VM . The other term is obtained when only the

S differentiation is applied to L̃m, while the σ-derivatives are applied to some other term in

the lagrangian.

For the parameter range (3.44) we may neglect all contributions of Ωπ,n and Ωτ,n relative

to the leading contribution of Ωd,n, for the same reasons as in Sec. III B. As for Ωd,n itself, at

this point we have already established that Vd satisfies the power-counting hierarchy (3.31).

Therefore, the contribution coming from ΩM,n must also be O(δn). It is easily seen that this

requires cM,n = O(δn). The proof that cM,k = O(δn) for k > n works in the same way as in

Sec. III B, by adding k − n external τ legs.

The next potential to consider is Vπ. Probing it requires an operator that can serve as an

interpolating field for a pion state, which may be obtained by differentiating with respect

to the pseudoscalar source P. Keeping the (suppressed) flavor indices open, and using the

same normalization factor as in Eq. (3.47), we have

ΩP = − 1

2f̂ 2
πB̂π

∂L̃
∂P (B3)

=
i

4
VM(τ) eyτ (Σ† − Σ)

= VM(τ) eyτ (π/f̂π + · · · ) .

The basic correlation function we now consider involves the n differentiations with respect

to σ(x), plus two differentiations with respect to P at spacetime points which are far apart.

We thus start by considering Γ̃EFT
π,n (q1, q2) which is the Fourier transform of

ΓEFT
π,n (x, z1, z2) =

〈(

Ωd,n(x) + Ωπ,n(x) + Ωτ,n(x)
)

ΩP(z1) ΩP(z2)
〉

. (B4)
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Once again we may ignore Ωd,n, for which we have already proved Eq. (3.31). The only way

to construct a tree diagram out of the remaining terms is to connect Ωπ,n by two pion lines

to ΩP(z1) and ΩP(z2) (with a spacetime derivative acting on each line, see Eq. (3.40)). Since

Weinberg’s theorem ensures that loop diagrams are subleading, we conclude that the leading

contribution to Γ̃EFT
π,n (q1, q2) is proportional to cπ,n, implying that cπ,n satisfies Eq. (3.31). As

usual, in order to probe cπ,k for k > n we add k−n additional τ legs generated by insertions

of Ω̃S .

Finally we consider Vτ . The first correlation function we consider is Γ̃EFT
d,n,2(p1, p2) (see

Eq. (3.48)). The contribution of Ωπ,n can be dropped since it will necessarily involve loops.

Based on its momentum dependence, we isolate the tree diagram in which Ωd,n + Ωτ,n is

connected by a τ line to each of the two insertions of Ω̃S . After amputation, the leading-order

result is proportional to

8B̂τcd,n + p1 · p2 cτ,n , (B5)

(where, in the case of Ωd,n, the two powers of τ are obtained by expanding e4τ to second

order). We may now use the momentum dependence once more to isolate the cτ,n term,

which must therefore satisfy Eq. (3.31). The generalization to cτ,k for k > n is similar.

Invariant potentials VI(τ − σ) occur not only at the leading order, but also at all higher

orders. Every higher-order term that arises from what we have referred to in Sec. VA as the

chiral expansion will be multiplied by its own invariant potential. The proof of Eq. (3.31)

generalizes to all these potentials, too.

A concrete example illustrates how this works. Consider once again Γ̃EFT
d,n,2(p1, p2), which

we have used in order to study the n-th order term in the potential Vτ occurring in the

leading-order lagrangian. We have isolated the relevant (amputated) tree diagram, and

calculated it up to second order in the external momenta, see Eq. (B5). If we extend the

calculation of this correlation function to O(p4), there will be two new kinds of contributions.

First, there will be one-loop diagrams involving the LO vertices, and thus the LO potentials.

An additional O(p4) contribution will come from the NLO operator Qτ
2 of Eq. (5.4b), which

serves as a counterterm. Since we already know that the LO potentials satisfy Eq. (3.31),

we can now isolate the contribution of Qτ
2, and thus, prove that the invariant potential by

which Qτ
2 is multiplied must satisfy Eq. (3.31) too. When we consider more external τ legs,

the other two NLO operators in Eq. (5.4) will in general contribute as well. But, the fact
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that these operators are linearly independent means that we must always be able to isolate

the contribution of each one of them, and thus, enforce the power-counting hierarchy on the

corresponding invariant potential.

Appendix C: Transformation properties of the potentials VI(τ)

Here we show that the invariance of a potential V (τ − σ) under the dilatation transfor-

mation of Eqs. (2.17d) and (3.20b) can be maintained when we set σ = 0. The invariance of

V (τ), or, more precisely, the transformation rule V (τ(x)) → V (τ(λx)), is achieved by pro-

moting the power-series coefficients to global spurions, whose transformation rules will be

derived below. Dropping the coordinates dependence, we start by rearranging the expansion

of V (τ − σ) in powers of τ ,

V =
∞
∑

n=0

cn
n!

(τ − σ)n (C1)

=
∞
∑

n=0

n
∑

k=0

cn
k!(n− k)!

τk(−σ)n−k

=

∞
∑

k=0

ĉk(σ)

k!
τk ,

where we have introduced

ĉk(σ) =

∞
∑

m=0

cm+k

m!
(−σ)m . (C2)

Note that cn = ĉn(0). Under the transformation σ → σ + ∆ (where ∆ = log λ) we have,

trivially, ĉn(σ) → ĉn(σ + ∆). The spurionic transformation of cn is derived by interpreting

it as ĉn(0),

cn = ĉn(0) →
∞
∑

m=0

cm+n

m!
(−∆)m . (C3)

The shift by ∆ = log λ is parametrically O(1), i.e., it does not mix different orders in the

expansion of the cn’s in powers of nf −n∗
f , see Eq. (3.25). Noting that the double-expansion

coefficients c̃nk vanish for k < n, we find that their spurionic transformation rule is

c̃nk →
k−n
∑

m=0

c̃m+n,k

m!
(−∆)m , k ≥ n , (C4)

which now involves only a finite number of terms on the right-hand side.
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Appendix D: Derivation of the leading-order dilatation current

In this appendix we derive the expression for the dilatation current to leading order in

the effective theory. For more generality, we start from Eq. (3.15), where we set σ(x) = 0

and χ(x) = m. The infinitesimal transformations are (compare Eqs. (2.17) and (3.20))

δτ = θ(xν∂ντ + 1) , (D1a)

δΣ = θxν∂νΣ . (D1b)

Promoting θ to a local parameter we find (allowing for integration by parts since we may

choose θ(x) to vanish at infinity)

δθL̃τ = −θ∂µ
[

xν

(

T τ
µν +

1

3
Kµν

)]

+ θ
f 2
τ

2
e2τ (∂µτ)

2V ′
τ , (D2a)

δθL̃π = −θ∂µ(xνT π
µν) + θ

f 2
π

4
e2τ tr[(∂µΣ

†)(∂µΣ)]V
′
π , (D2b)

δθL̃d = θf 2
τBτ [∂ν(xνe

4τVd) + e4τV ′
d ] , (D2c)

δθL̃m = −θf
2
πBπm

2

[

∂ν

(

xνe
yτVM tr(Σ + Σ†)

)

(D2d)

+eyτ ((y − 4)VM + V ′
M) tr(Σ + Σ†)

]

,

where

T τ
µν =

f 2
τ e

2τVτ
2

(

2(∂µτ)(∂ντ)− δµν(∂ρτ)
2
)

, (D3a)

T π
µν =

f 2
πe

2τVπ
4

tr[(∂µΣ
†)(∂νΣ) + (∂νΣ

†)(∂µΣ)− δµν(∂ρΣ
†)(∂ρΣ)] , (D3b)

Kµν = f 2
τ (δµν✷− ∂µ∂ν)Υ , (D3c)

and Υ(τ) is defined by
∂Υ

∂τ
= e2τVτ . (D4)

Note that Kµν is transversal by construction. From these results we read off the expression

for the dilatation current,

Sµ = xνΘµν , (D5)

Θµν = T τ
µν + T π

µν − δµν(L̃d + L̃m) +
1

3
Kµν (D6)

= Tµν +
1

3
Kµν ,

where Tµν and Θµν are the canonical and improved energy-momentum tensors, respectively.
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In order to obtain the leading-order expression for Sµ, we substitute in the above results

VM = Vπ = Vτ = 1, and use Eq. (4.2) for Vd. The solution of Eq. (D4) is then Υ = e2τ/2,

and the final expression for Kµν may be found in Eq. (4.20).

Appendix E: Resummation of one-loop diagrams

Here we calculate the one-loop effective potential by resumming diagrams. As in Sec. V

we set c̃00 = 0, but keep c̃01 free. The quantum field τ̃ is defined by Eq. (3.32). We

encounter two types of vertices. The first possibility is that the vertex comes from the

kinetic term (3.51), in which case both derivatives must act on the internal lines. The rest

of this vertex is given by

A = e2τ̃ /f̂τ − 1 . (E1)

The other type of vertex comes from expanding Ld or Lm, and, apart from the two internal

lines, it is given by

B = e−2v(V ′′(v + τ̃ /f̂τ )− V ′′(v)) , (E2)

where V was defined in Eq. (5.8). The one-loop diagram with n insertions of A and ℓ

insertions of B can be obtained as

Γn,ℓ =
1

2

(An

n!

∂n

∂λn

)(Bℓ

ℓ!

∂ℓ

∂(m2
τ )

ℓ

)

I0

∣

∣

∣

∣

∣

λ=1

, (E3)

where in d 6= 4 dimensions,

I0 = Γ(−d/2)
(

m2
τ

4πλ

)d/2

. (E4)

Summing over n and ℓ, and using m2
τ = e−2vV ′′(v), we find

V1 = −
∞
∑

n,ℓ=0

Γn,ℓ (E5)

= −1

2
exp

(

B ∂

∂(m2
τ )

)

exp

(

A ∂

∂λ

)

I0

∣

∣

∣

∣

∣

λ=1

= −Γ(−d/2)
2

(

e−2(v+τ̃ /f̂τ )V ′′(v + τ̃ /f̂τ )

4π

)d/2

= −Γ(−d/2)
2

(

e−2τV ′′(τ)

4π

)d/2

,
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in agreement with Eq. (5.9). The role of the first exponential on the second line is to replace

m2
τ in Eq. (E4) by B + m2

τ = e−2vV ′′(τ), while the role of the second is to replace λ by

e−2ve2τ . The factors of e2v then cancel out, leading to the final result which depends only

on the full τ(x) field. The (minimally subtracted) renormalized effective potential may be

obtained from Eq. (5.9d) by discarding the pole part, and substituting u(x) → τ(x).
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