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Abstract

We explore the reach of a 100 TeV proton collider to discover Kaluza-Klein gluons in a warped
extra dimension. These particles are templates for color adjoint vectors that couple domi-
nantly to the top quark. We examine their production rate at NLO in the six-flavor m-ACOT
scheme for a variety of reference models defining their coupling to quarks, largely inspired by
the RS model of a warped extra dimension. In agreement with previous calculations aimed
at lower energy machines, we find that the NLO corrections are typically negative, resulting
in a K-factor of around 0.7 (depending on the model) and with a residual scale dependence
on the order of ±20%, greater than the variation from the scale exhibited by the näıve LO
estimate.

1 Introduction

Massive color octet vector particles (generically known as colorons, G) are common ingredients
in models of physics beyond the Standard Model (SM). In particular, in models where some or
all of the SM quarks are composites, such states are ubiquitous as a consequence of the need for
underlying preon degrees of freedom which themselves carry color. These include topcolor models
where electroweak symmetry is broken by a top condensate [1], axigluon extensions of quantum
chromodynamics with chiral symmetry breaking [2,3], or technicolor models with colored composite
states analogous to the ρ meson [4]. The most popular incarnation of colorons are Kaluza-Klein
(KK) excitations of the gluon in models with an extra dimension. As motivation, we take the
particular case of the Randall–Sundrum (RS) model of a warped extra dimension [5] which is
related to strong dynamics via the AdS/CFT correspondence [6,7]. In many models, such particles
have preferential coupling to the top quark [8–12]. We explore the production of such states at a
future 100 TeV proton–proton collider [13] at next-to-leading order (NLO) in quantum chromo-
dynamics (QCD). At such energies, the top quark’s mass is small, leading to large logarithms
which can be resummed into an effective top parton distribution function (PDF) [14–17].

The original RS model localized all Standard Model fields on a brane so that only gravity
propagated in the bulk of the extra dimension. Subsequent versions of this model incorporated bulk
gauge fields to alleviate constraints from proton decay and flavor-changing neutral currents [18–20],
and later bulk fermions in a way that can explain the hierarchy in observed Yukawa couplings [8,
21]. The minimal realizations of these models were tightly constrained by electroweak precision
observables and large contributions to the Zbb̄ coupling [20, 22, 23]. At face value, these push
the Kaluza-Klein scale to O(10 TeV), beyond the reach of existing colliders, unless one invokes
additional structure such as a gauged custodial symmetry [9, 24–26] or large brane kinetic terms
[27–29] which allow for order TeV masses of the Kaluza-Klein (KK) excitations. Detailed reviews
of the RS model can be found in [30–33].

One may take the alternative viewpoint that the natural scale of RS models is O(10 TeV),
with a relatively modest fine-tuning between the electroweak and compositeness scales. From this
point of view, a more minimal model may be the realization preferred by Nature. In this case, a
future 100 TeV collider [34] that can access O(10 TeV) partonic energies represents the best hope
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to probe the physics which underlies the electroweak scale. KK resonances of the gluon are likely
to be the first signal of new physics as a result of their strong production cross sections.

In these modern RS models, the Standard Model fields propagate in five-dimensional anti-
de Sitter spacetime, where one dimension is compact and warped. The warped dimension is an
S1/Z2 orbifold with fixed points, or “branes,” on the infrared (IR) and ultraviolet (UV) boundaries.
The hierarchy of Yukawa couplings is suggested by the exponential profile of zero mode fermion
profiles that are peaked towards either the infrared or ultraviolet brane according to their bulk
mass parameters— corresponding to differing anomalous dimensions in the dual strongly coupled
theory. The solution of the gauge hierarchy problem requires the Higgs to be largely localized on the
infrared brane so that fermions which are peaked towards the infrared brane pick up large Yukawa
couplings, and those peaked towards the ultraviolet brane end up with small Yukawa couplings.
Further, the KK excitations of gauge bosons are redshifted by the warped background and are thus
peaked towards the infrared brane. As such, the KK gluon has the largest wave function overlap
and effective coupling to top quarks, since these are the colored Standard Model fermions whose
wave functions are most peaked on the IR brane. The structure of the KK gluon couplings, and
its coupling to the top quark in particular, thus provides a diagnostic of RS models [35].

In this work, we build on previous studies of KK gluons [36–38] which studied production
at leading-order (LO) [39–41] or NLO [42–44] at lower energies, where the top content of the
proton can be safely neglected. Our aim is to provide precise estimates for the production cross
section such that detailed collider studies [45, 46] of the signal and background can be used to
more accurately predict the reach of a 100 TeV pp machine to probe the interesting range of RS
parameter space.

2 Review of the Randall-Sundrum Framework

The five-dimensional spacetime has a non-factorizable metric:

ds2 =

(
R

z

)2 (
ηµνdx

µdxν − dz2
)
. (2.1)

The coordinate xµ describes the four-dimensional Minkowski spacetime, with the metric ηµν =
Diag(+,−,−,−). Coordinate z describes distances in the extra dimension, and is confined to
R < z < R′. Here, z = R ∼ 1/MPl corresponds to the UV brane, whereas the IR brane at
z = R′ ∼ 1/TeV is set by some unspecified radius stabilization mechanism.

For gauge fields, A, and fermions, Ψ, the action is given by:

S =

∫
d4x dz

√
g

[
−1

2
F a
MNF

MNa + iΨ̄ΓMeNMDNΨ + i
c

R
Ψ̄Ψ

]
. (2.2)

The field strength tensor is defined as F a
MN = ∂MA

a
N − ∂NA

a
M + g5f

abcAbMA
c
N , where g5 is the

coupling constant in the five-dimensional theory, and the vielbein is defined as eNM . Capital roman
letters M and N run over all five spacetime dimensions. The bulk fermion mass is parameterized
by a dimensionless constant c times the AdS curvature, k = 1/R. One may also add brane-localized
terms proportional to δ(z−R) or δ(z−R′) to the action [27,28] but we neglect them for simplicity
in this discussion.

In the expansion of FMNF
MN there are mixing terms between Aµ and A5. To remove this

mixing we choose a gauge in which ∂zA
µ = 0 and A5 = 0 at z = R and z = R′, and we add
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gauge-fixing terms to the effective four-dimensional Lagrangian. In the general Rξ gauge, the
action becomes [47]:

S5D =

∫
d4xdz

{(
R

z

)4

Ψ̄
[
g5γ

µAµ + ig5γ
5A5 + i

c

R

]
Ψ (2.3)

+
R

z

(
− 1

2ξ

)[
∂µAaµ − ξ

( z
R

)
∂z

(
R

z
Aa5

)]2

+
R

z
c̄a
[
−∂µDµ + ξ(

z

R
)∂z

R

z
∂z

]ab
cb
}
.

We work in the Feynman gauge, ξ = 1.

2.1 Kaluza-Klein decomposition

Vector bosons A five-dimensional bulk gauge field can be decomposed into orthogonal functions.

Aaµ(x, z) =
1√
R

∑

j=0

Aa(j)
µ (x)fj(z) (2.4)

Aa5(x, z) =
1√
R

∑

j=1

A
(j)
5 (x)

1

mj

∂zfj(z). (2.5)

The wave functions fj(z) can be expanded in terms of Bessel functions, and satisfy:
∫
dz

z
fi(z)fj(z) = δij ; ∂z

(
1

z
∂zfj

)
+
m2
j

z
fj = 0 ; ∂zfj(z)|z=R,R′ = 0. (2.6)

Theories with unbroken gauge bosons have flat zero modes, with ∂zf0(z) = 0,

f 0(z) ≡ f0 =

√
1

log(R′/R)
. (2.7)

For SU(3)c this zero-mode is identified with the Standard Model (QCD) gluon, and we refer to
higher modes as KK gluons.

Chiral fermions In four dimensional spacetime, the Standard Model fermions are left- or right-
chiral Weyl fermions. In five dimensions, the γ5 matrix is appropriated into γM = (γ0, . . . , γ3, γ5)
and the bulk quarks and leptons are four-component Dirac spinors. To recover the chiral Standard
Model, we impose boundary conditions to remove the wrong-chirality states for the fermion zero-
modes.

The Weyl components of the Dirac spinor Ψ =

(
χ
ψ̄

)
are expanded separately as:

χ(x, z) =
1

R

∑

j=0

hjL(z)χj(x), ψ̄(x, z) =
1

R

∑

j=0

hjR(z)ψ̄j(x), (2.8)

with the orthogonality relations:
∫
dz

R

(
R

z

)4

hiL(z)hjL(z) =

∫
dz

R

(
R

z

)4

hiR(z)hjR(z) = δij. (2.9)

For c < −1/2 the zero mode peaks towards the UV boundary; for c > −1/2, it peaks towards
the IR. An anarchic flavor model with O(1) Yukawa couplings in the 5D Lagrangian suggests [11]
ctR ≈ 0, cQ3L

≈ 0.4, and cf < −0.5 for all other quarks to reproduce the observed hierarchy in their
masses. In this way the RH top quark peaks strongly to the IR brane, and the LH Q3 doublet is
relatively flat.
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2.2 Interactions in four dimensions

Interactions between particular KK modes of the fermions and bosons can be derived from the
five-dimensional theory by integrating over z. From the 5D action, Eq. (2.3) we determine the
relevant Feynman rules for the effective 4D theory describing the (0) and (1) KK modes. Because
the gauge boson zero modes are flat and the functions f (n) are orthogonal, some couplings vanish.

QCD gluon couplings To relate g5 of the 5D theory to the 4D coupling gs, we extract the
three-gluon vertex for the gauge boson zero mode.

L3g =

∫
dz
R

z

(
−1

2
g5f

abcAbµA
c
ν(∂µA

a
ν − ∂νAaµ)

)[
f0√
R

]3

(2.10)

gs =
f0g5√
R
. (2.11)

With the definition of gs above, the Feynman rules for the three-point vertex with zero-mode
gluons matches QCD. Using the orthogonality of the fi and hiL,R basis functions, it can be shown
that the zero-mode gluon couples to fermions and other KK gluon modes with the same coupling
gs,

g5

∫
dz
R

z

[
1
√
R

3f0(z)fi(z)fj(z)

]
=

1√
R
f0g5

∫
dz

z
fi(z)fj(z) =

f0√
R
g5δij = gsδij; (2.12)

g5

∫
dz

(
R

z

)4 [
1√
R
f0(z)hiL,R(z)hjL,R(z)

]
= g5

f0√
R

∫
dz

(
R

z

)4

hiL,R(z)hjL,R(z) = gsδij, (2.13)

as demanded by gauge invariance.

KK gluon couplings We are primarily interested in the coupling of the KK gluon to the left-
and right-handed fermions. These stem from the terms in the action:

∫
d4x

[
gLχ̄

(0)σ̄µA(1)
µ χ(0) + gRψ

(0)σµA(1)
µ ψ̄(0)

]
, (2.14)

leading to couplings,

gL =
g5√
R

∫
dz

(
R

z

)4

(h0
L)2(z)f1(z), (2.15)

gR =
g5√
R

∫
dz

(
R

z

)4

(h0
R)2(z)f1(z). (2.16)

2.3 Feynman rules

In this subsection, we summarize the Feynman rules needed for our calculation. Figure 1 shows
the propagators in the ξ = 1 gauge. Typically the quark mass mq will be set to zero (except in
Section 5.3). The KK gluon mass is denoted by M .
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µ, a ⌫, b =
�i⌘µ⌫�ab

p2 � M2
a b =

i�ab

p2 � M2
a b =

i�ab

p2 � M2

µ, a ⌫, b =
�i⌘µ⌫�ab

p2
a b =

i�ab

p2 i j =
i(/p + mq)�ij

p2 � m2
q

.

Figure 1: Propagators, Feynman gauge. Top: KK gluon, KK ghost, and A
(1)
5 . Bottom: QCD

gluon, QCD ghost, and SM quark.
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In this subsection, we summarize the Feynman rules needed for our calculation. Figure 1 shows
the propagators in the ⇠ = 1 gauge. Typically the quark mass mq will be set to zero (except in
Section 5.3). The KK gluon mass is denoted by M .

The leading-order process is determined by the interaction of SM quarks with the KK gluon:
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i

= i�µT a(gLPL + gRPR) = i�µ(gV + gA�5)T
a. (2.17)

where T a indicates a generator of SU(3) in the fundamental representation. The virtual O(↵s)

corrections also involve the triple gluon (0)-(1)-(1) vertex, and interactions with the A
(1)
5 scalar

and Fadeev-Popov ghosts:

(2.18)

k

p
q

⇢, c

µ, a

⌫, b

= gsf
abc [⌘µ⌫(k � p)⇢ + ⌘⌫⇢(p � q)µ + ⌘⇢µ(q � k)⌫ ] .

p

q
µ, c

a

b

= �gsf
abc(p � q)µ

c

µ, a

⌫, b

= �iMgsf
abc⌘µ⌫

(2.19)

p
µ, c

a

b

= �gsf
abcpµ p

µ, c

a

b

= �gsf
abcpµ

5
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p

q
µ, c

a

b

= �gsf
abc(p � q)µ

c

µ, a

⌫, b

= �iMgsf
abc⌘µ⌫

(2.19)

p
µ, c

a

b

= �gsf
abcpµ p

µ, c

a

b

= �gsf
abcpµ

5

= −gsfabcpµ

where all momenta flow into the vertex and fabc are the structure constants. The pure QCD
interactions involving only zero modes are unchanged with respect to the Standard Model.

Other interactions It can be shown that the A5 couples to quarks with an interaction propor-
tional to the quark mass. In Section 3.2 we justify neglecting these corrections.

where all momenta flow into the vertex and fabc are the structure constants. The pure QCD
interactions involving only zero modes are unchanged with respect to the Standard Model.

Other interactions It can be shown that the A5 couples to quarks with an interaction propor-
tional to the quark mass. In Section 3.2 we justify neglecting these corrections.

=
mq

M
T a(gL � gR)�5 ! 0. (2.20)

The three-point interaction involving three KK gluons is proportional to:

g(111) ⌘
g5p
R

Z
dz

z

�
f (1)(z)f (1)(z)f (1)(z)

�

= g(111)f
abc [⌘µ⌫(k � p)⇢ + ⌘⌫⇢(p � q)µ + ⌘⇢µ(q � k)⌫ ] . (2.21)

This coupling is not necessarily small, but we do not include it in the present calculation. It was
calculated in [41] for typical values of R and R0 with the result g(111) ' 2.5gs.

3 KK Gluon Production

At a hadron collider, the leading order process for KK gluon production is through annihilation of
two initial state quarks of the same flavor, qq̄ ! G. The fact that the heavy quarks typically have
larger couplings than the lighter quarks is balanced by the fact that heavy quarks in the proton
are derived from collinear gluon splitting. At energies much higher than the quark mass, gluon
splitting is enhanced by large logarithms which are resummed into a heavy quark PDF. For a KK
gluon with M ' O(10 TeV), even the top quark can be treated as e↵ectively massless for most
purposes.

Since ↵s ⇠ 0.1 at TeV energies, higher order corrections to KK gluon production are generically
important. In Figure 2, we show representative diagrams for the LO and NLO contributions to
KK gluon production (as well as higher order diagrams in the shaded portion). At NLO there are
both virtual corrections to the LO process, as well as real corrections where an additional parton
is radiated into the final state. When the radiated particle is a light quark or gluon, the correction
is O(↵s) compared to the leading order diagram. When it is a heavy quark, the LO term already
implicitly contains a factor of ↵s log(µ2/m2

t ) from each gluon splitting kernel. Compared to the LO,
real corrections with a (qig) initial state are e↵ectively of order log�1(µ2/m2

t ), after subtracting the
appropriate counter-term in the ACOT [48] scheme to avoid double-counting the collinear regime.
We refer to processes with one initial gluon as “next-to-leading log” (NLL) and those with two
initial gluons as “next-to-next-to-leading log” (NNLL).

6

=
mq

M
T a(gL − gR)γ5 → 0. (2.18)
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interactions involving only zero modes are unchanged with respect to the Standard Model.

Other interactions It can be shown that the A5 couples to quarks with an interaction propor-
tional to the quark mass. In Section 3.2 we justify neglecting these corrections.

=
mq

M
T a(gL � gR)�5 ! 0. (2.20)

The three-point interaction involving three KK gluons is proportional to:

g(111) ⌘
g5p
R

Z
dz

z

�
f (1)(z)f (1)(z)f (1)(z)

�

= g(111)f
abc [⌘µ⌫(k � p)⇢ + ⌘⌫⇢(p � q)µ + ⌘⇢µ(q � k)⌫ ] . (2.21)

This coupling is not necessarily small, but we do not include it in the present calculation. It was
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both virtual corrections to the LO process, as well as real corrections where an additional parton
is radiated into the final state. When the radiated particle is a light quark or gluon, the correction
is O(↵s) compared to the leading order diagram. When it is a heavy quark, the LO term already
implicitly contains a factor of ↵s log(µ2/m2

t ) from each gluon splitting kernel. Compared to the LO,
real corrections with a (qig) initial state are e↵ectively of order log�1(µ2/m2
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appropriate counter-term in the ACOT [48] scheme to avoid double-counting the collinear regime.
We refer to processes with one initial gluon as “next-to-leading log” (NLL) and those with two
initial gluons as “next-to-next-to-leading log” (NNLL).
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= g(111)f
abc [ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ] . (2.19)

This coupling is not necessarily small, but we do not include it in the present calculation. It was
calculated in [41] for typical values of R and R′ with the result g(111) ' 2.5gs.

3 KK Gluon Production

At a hadron collider, the leading order process for KK gluon production is through annihilation of
two initial state quarks of the same flavor, qq̄ → G. The fact that the heavy quarks typically have
larger couplings than the lighter quarks is balanced by the fact that heavy quarks in the proton
are derived from collinear gluon splitting. At energies much higher than the quark mass, gluon
splitting is enhanced by large logarithms which are resummed into a heavy quark PDF. For a KK
gluon with M ' O(10 TeV), even the top quark can be treated as effectively massless for most
purposes.

Since αs ∼ 0.1 at TeV energies, higher order corrections to KK gluon production are generically
important. In Figure 2, we show representative diagrams for the LO and NLO contributions to
KK gluon production (as well as higher order diagrams in the shaded portion). At NLO there are
both virtual corrections to the LO process, as well as real corrections where an additional parton
is radiated into the final state. When the radiated particle is a light quark or gluon, the correction
is O(αs) compared to the leading order diagram. When it is a heavy quark, the LO term already
implicitly contains a factor of αs log(µ2/m2

t ) from each gluon splitting kernel. Compared to the LO,
real corrections with a (qig) initial state are effectively of order log−1(µ2/m2

t ), after subtracting the
appropriate counter-term in the ACOT [48] scheme to avoid double-counting the collinear regime.
We refer to processes with one initial gluon as “next-to-leading log” (NLL) and those with two
initial gluons as “next-to-next-to-leading log” (NNLL).

3.1 Leading Order Cross Section

In general, the KK gluon couples chirally to the quarks. In a typical RS model, this is primarily
important for the top and bottom quarks. The matrix element is given by:

LL NLL NNLL

LO

NLO
virtual

NLO
real

Figure 2: Perturbative expansion in ↵s and log(µ2/m2
t ). We include the NLO/LL and LO/NLL

diagrams in our calculation, and we neglect the shaded corrections above.

3.1 Leading Order Cross Section

In general, the KK gluon couples chirally to the quarks. In a typical RS model, this is primarily
important for the top and bottom quarks. The matrix element is given by:

= iML + iMR = iv̄2�
µ(gLPL + gRPR)T au1✏

?
3µ = iMLO. (3.1)

It is useful to define:

gL + gR

2
⌘ gV

gR � gL

2
⌘ gA. (3.2)

Note that for the light quarks, typically gA ⇡ 0. In the cross section, the average over initial states
includes 2 spins and Nc colors for each quark. It will be convenient to leave Nc = 3 and CF = 4/3
explicit in the calculation. The integration over phase space is trivial, leading leading to a LO
partonic cross section of

�LO =
⇡

s
|MLO|2 �(s � M2) = �0(1 � ✏)

�(1 � ⌧)

M2
, (3.3)

where we define ⌧ ⌘ M2/s, and:

�0 ⌘ (g2
V + g2

A)
⇡NcCF

N2
c

=
⇡CF

2Nc

(g2
L + g2

R). (3.4)

7

= iML + iMR = iv̄2γ
µ(gLPL + gRPR)T au1ε

?
3µ = iMLO. (3.1)

It is useful to define:

gL + gR
2

≡ gV
gR − gL

2
≡ gA. (3.2)

Note that for the light quarks, typically gA ≈ 0. In the cross section, the average over initial states
includes 2 spins and Nc colors for each quark. It will be convenient to leave Nc = 3 and CF = 4/3
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diagrams in our calculation, and we neglect the shaded corrections above.
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2
⌘ gA. (3.2)

Note that for the light quarks, typically gA ⇡ 0. In the cross section, the average over initial states
includes 2 spins and Nc colors for each quark. It will be convenient to leave Nc = 3 and CF = 4/3
explicit in the calculation. The integration over phase space is trivial, leading leading to a LO
partonic cross section of

�LO =
⇡

s
|MLO|2 �(s � M2) = �0(1 � ✏)

�(1 � ⌧)

M2
, (3.3)

where we define ⌧ ⌘ M2/s, and:

�0 ⌘ (g2
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A)
⇡NcCF

N2
c

=
⇡CF

2Nc

(g2
L + g2

R). (3.4)
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Figure 2: Perturbative expansion in αs and log(µ2/m2
t ). We include the NLO/LL and LO/NLL

diagrams in our calculation, and we neglect the shaded corrections above.

explicit in the calculation. The integration over phase space is trivial, leading leading to a LO
partonic cross section of

σLO =
π

s
|MLO|2 δ(s−M2) = σ0(1− ε) δ(1− τ)

M2
, (3.3)

where we define τ ≡ M2/s, and:

σ0 ≡ (g2
V + g2

A)
πNcCF
N2
c

=
πCF
2Nc

(g2
L + g2

R). (3.4)

3.2 Higher Order Corrections

In Section 4 we compute virtual corrections to the KK gluon production to order αs, g
2
L and

g2
R. We neglect the order g2

(111) corrections, which are typically subdominant and not enhanced

by large logarithms [44]. These contributions typically contain ultraviolet (UV) and infrared
(IR) divergences, which we regulate with dimensional regularization. We renormalize in the MS

subtraction scheme to remove the UV divergences.
In Section 5 we calculate the real corrections from 2→ 2 processes such as qiq̄i → Gg and qig →

qiG. These include IR and collinear divergences, which cancel between the virtual corrections, the
real emission contributions, and the PDF counter-terms. The divergences cancel independently for
each distinct initial state (qiq̄i, gqi, gq̄i), allowing us to consider the NLO and NLL perturbations
separately.

In the virtual corrections and some of the real corrections we omit the mass of the top quark,
as in the simplified ACOT scheme (s-ACOT) [49]. This is not necessarily appropriate for the NLL
cross section tg → tG, which includes diverging logarithms in the s → M2 limit. We follow the
modified ACOT scheme (m-ACOT) of [17], in which the top quark mass is retained in the tg → tG
cross section to regulate the collinear divergence. We show in Section 5.3 that although s-ACOT
and m-ACOT lead to different expressions for the NLL cross section, the effect on the total cross
section is not large.
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4 Virtual Corrections

At this order, the virtual corrections take the form of a one-loop diagram interfering with the
leading order graph, and share its 2→ 1 kinematics. In the process at hand, they can be divided
into self-energy corrections and corrections to the vertex.

The relevant part of the renormalized Lagrangian describing the KK gluon and fermion zero
modes can be written,

Lf+KK = −1

4
(∂µA

a
ν − ∂νAaµ)2 − M2

2
AaµA

aµ − δM2

2
AaµA

aµ − δ1
1

4
(∂µA

a
ν − ∂νAaµ)2 +

∑

j=L,R

[
Ψ̄ji/∂Ψj

+Ψ̄jγ
µ [gLPL + gRPR]T aΨjA

a
µ + δ

(j)
Q Ψ̄ji/∂Ψj + δjΨ̄jγ

µ [gLPL + gRPR]T aΨjA
a
µ

]
, (4.1)

where the counter-terms are related to the wave function renormalization constants in the usual
way,

δL,RQ = ZL,R
Q − 1 δ1 = Z1 − 1 δM2 = Z1M

2
0 −M2 (4.2)

δL,R = ZL,RZ
L,R
Q

√
Z1 − 1 = δZL,R

3 + δL,RQ +
1

2
δ1. (4.3)

As shown in detail below in Section 4.1, the counter-terms are determined in terms of the one loop
self-energy diagrams in the MS scheme.

In the MS scheme, the propagators do not generically have poles with unit residue on-shell.
As a result, there is a contribution from the self-energy diagrams through the LSZ reduction. We
denote the amount by which the residues differ from one by δRL,R

Q and δR1 (computed below),
respectively. At NLO, the amplitude for qq̄ → G can be written:

iM = i
√
R1

(
RL
QML +RR

QMR +Mvertex
NLO + ...

)
(4.4)

' i
(

1 + δRL
Q +

1

2
δR1

)
×ML + i

(
1 + δRR

Q +
1

2
δR1

)
×MR + iMvertex

NLO . (4.5)

After renormalizing the couplings this expression will be UV-finite, but will still contain residual
soft divergences that will cancel those from the 2→ 2 gluon emission process.

4.1 Self-energy Corrections

In this section, we compute the self-energy corrections to the quarks and to the KK gluon in
order to extract the order αs corrections to the residues δRL,R

Q and δR1 in the MS scheme. After
renormalization, these will be UV finite (but generically still IR-divergent).

4.1.1 Quark Self-energy

The quark self-energy receives corrections at O(αs) from the zero-mode gluon, and others propor-
tional to g2

L and g2
R from the KK gluon. The counter-terms δL,RQ cancel the UV divergences of the
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fermion wave function.

denote the amount by which the residues di↵er from one by �RL,R
Q and �R1 (computed below),

respectively. At NLO, the amplitude for qq̄ ! G can be written:

iM = i
p

R1

⇣
RL

QML + RR
QMR + Mvertex

NLO + ...
⌘

(4.4)

' i
⇣
1 + �RL

Q +
1

2
�R1

⌘
⇥ ML + i

⇣
1 + �RR

Q +
1

2
�R1

⌘
⇥ MR + iMvertex

NLO . (4.5)

After renormalizing the couplings this expression will be UV-finite, but will still contain residual
soft divergences that will cancel those from the 2 ! 2 gluon emission process.

4.1 Self-energy Corrections

In this section, we compute the self-energy corrections to the quarks and to the KK gluon in
order to extract the order ↵s corrections to the residues �RL,R

Q and �R1 in the MS scheme. After
renormalization, these will be UV finite (but generically still IR-divergent).

4.1.1 Quark Self-energy

The quark self-energy receives corrections at O(↵s) from the zero-mode gluon, and others propor-
tional to g2

L and g2
R from the KK gluon. The counter-terms �L,R

Q cancel the UV divergences of the
fermion wave function.

⌘ �i⌃A(/p) = igs�
µT a

ij

Z
ddk

(2⇡)d

�i

k2

i(/k + /p)

(k + p)2
igs�µT

a
jk (4.6)

⌘ �i⌃B(/p) =

Z
ddk

(2⇡)d
i�µ(gLPL + gRPR)T a

i(/k + /p)

(k + p)2

�i · i�µ

k2 � M2
(gLPL + gRPR)T a

(4.7)

This leads to the following UV divergences:

�i⌃UV
A =

i/p↵s

4⇡
CF

⇣1

✏̄

⌘
. (4.8)

�i⌃UV
B =

iCF

(4⇡)2

1

✏̄
(g2

LPL + g2
RPR). (4.9)

The MS counter-terms are thus:

�L
Q = �CF

✏̄


↵s

4⇡
+

g2
L

(4⇡)2

�
, �R

Q = �CF

✏̄


↵s

4⇡
+

g2
R

(4⇡)2

�
. (4.10)

The corrections to the residues �RL,R
Q are extracted from the derivative of the self-energy:

�i⌃A(/p) = g2
s(2 � 2✏)CF

Z 1

0

dx(1 � x)

Z
dd`

(2⇡)2

/p

(`2 ��A)2
, �A = p2(x2 � x) (4.11)

�i
d

d/p
⌃A(/p) = ig2

s(2 � 2✏)CF

Z 1

0

dx(1 � x)

Z
dd`

(2⇡)2

h 1

(`2 ��)2
� 4p2x(1 � x)

(`2 ��)3

i
(4.12)

d⌃A(/p = 0)

d/p
= 0. (4.13)
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≡ −iΣA(/p) = igsγ
µT aij

∫
ddk

(2π)d
−i
k2

i(/k + /p)

(k + p)2
igsγµT

a
jk (4.6)
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Q and �R1 (computed below),

respectively. At NLO, the amplitude for qq̄ ! G can be written:
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Q +
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⇥ MR + iMvertex

NLO . (4.5)

After renormalizing the couplings this expression will be UV-finite, but will still contain residual
soft divergences that will cancel those from the 2 ! 2 gluon emission process.

4.1 Self-energy Corrections

In this section, we compute the self-energy corrections to the quarks and to the KK gluon in
order to extract the order ↵s corrections to the residues �RL,R

Q and �R1 in the MS scheme. After
renormalization, these will be UV finite (but generically still IR-divergent).

4.1.1 Quark Self-energy

The quark self-energy receives corrections at O(↵s) from the zero-mode gluon, and others propor-
tional to g2

L and g2
R from the KK gluon. The counter-terms �L,R

Q cancel the UV divergences of the
fermion wave function.
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ij
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(k + p)2
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k2 � M2
(gLPL + gRPR)T a

(4.7)

This leads to the following UV divergences:

�i⌃UV
A =

i/p↵s

4⇡
CF

⇣1

✏̄

⌘
. (4.8)

�i⌃UV
B =

iCF

(4⇡)2

1

✏̄
(g2

LPL + g2
RPR). (4.9)

The MS counter-terms are thus:

�L
Q = �CF

✏̄


↵s

4⇡
+

g2
L

(4⇡)2

�
, �R

Q = �CF

✏̄


↵s

4⇡
+

g2
R

(4⇡)2

�
. (4.10)

The corrections to the residues �RL,R
Q are extracted from the derivative of the self-energy:

�i⌃A(/p) = g2
s(2 � 2✏)CF

Z 1

0

dx(1 � x)

Z
dd`

(2⇡)2

/p

(`2 ��A)2
, �A = p2(x2 � x) (4.11)

�i
d

d/p
⌃A(/p) = ig2

s(2 � 2✏)CF

Z 1

0

dx(1 � x)

Z
dd`

(2⇡)2

h 1

(`2 ��)2
� 4p2x(1 � x)

(`2 ��)3

i
(4.12)

d⌃A(/p = 0)

d/p
= 0. (4.13)
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≡ −iΣB(/p) =

∫
ddk

(2π)d
iγµ(gLPL + gRPR)T a

i(/k + /p)

(k + p)2

−i · iγµ
k2 −M2

(gLPL + gRPR)T a

(4.7)

This leads to the following UV divergences:

−iΣUV
A =

i/pαs

4π
CF

(1

ε̄

)
. (4.8)

−iΣUV
B =

iCF
(4π)2

1

ε̄
(g2
LPL + g2

RPR). (4.9)

The MS counter-terms are thus:

δLQ = −CF
ε̄

[
αs
4π

+
g2
L

(4π)2

]
, δRQ = −CF

ε̄

[
αs
4π

+
g2
R

(4π)2

]
. (4.10)

The corrections to the residues δRL,R
Q are extracted from the derivative of the self-energy:

−iΣA(/p) = g2
s(2− 2ε)CF

∫ 1

0

dx(1− x)

∫
dd`

(2π)2

/p

(`2 −∆A)2
, ∆A = p2(x2 − x) (4.11)

−i d
d/p

ΣA(/p) = ig2
s(2− 2ε)CF

∫ 1

0

dx(1− x)

∫
dd`

(2π)2

[ 1

(`2 −∆)2
− 4p2x(1− x)

(`2 −∆)3

]
(4.12)

dΣA(/p = 0)

d/p
= 0. (4.13)

In the on-shell limit, the loop integrals become scaleless: ∆A = −p2x(1 − x) → 0. As shown in
Appendix A.2, the IR and UV divergences precisely cancel each other. This is not the case with
the KK gluon loop, which is not IR divergent:

−idΣB

d/p
=

iCF
(4π)2

Γ(ε)(2− 2ε)

∫ 1

0

dx(1− x)1−ε
(

4πµ2

M2 − x2p2

)ε [
1 +

2εxp2

M2 − xp2

]
(PLg

2
L + PRg

2
R)

(4.14)

dΣB(/p = 0)

d/p
= −CF

PLg
2
L + PRg

2
R

(4π)2

[
1

ε̄
+ log

µ2

M2
− 1

2

]
. (4.15)

Finally, we add the contribution from the counter-terms,

d

d/p
ΣCT = −δLQPL − δRQPR. (4.16)

d

d/p
[ΣA + ΣB + ΣCT] = CF

PLg
2
L + PRg

2
R

(4π)2

[
−1

ε̄
− log

µ2

M2
+

1

2
+

1

ε̄

]
+
CF
ε̄

[αs
4π

]
. (4.17)
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Fermion residue: The residue of the full propagator of the renormalized fermion field is RL,R
Q ≡

1 + δRL,R
Q , with:

δRL,R
Q =

αs
4π

CF
ε̄

+
g2
L,R

(4π)2
CF

[
1

2
− log

µ2

M2

]
. (4.18)

Note that the correction to the residue still includes an IR divergence.

4.1.2 KK Gluon Self-energy

The O(αs) corrections include gluons, ghosts, and the A5 scalar. Corrections from quark loops are
O(g2

L + g2
R) rather than O(αs).

In the on-shell limit, the loop integrals become scaleless: �A = �p2x(1 � x) ! 0. As shown in
Appendix A.2, the IR and UV divergences precisely cancel each other. This is not the case with
the KK gluon loop, which is not IR divergent:

�i
d⌃B

d/p
=

iCF

(4⇡)2
�(✏)(2 � 2✏)

Z 1

0

dx(1 � x)1�✏

✓
4⇡µ2

M2 � x2p2

◆✏ 
1 +

2✏xp2

M2 � xp2

�
(PLg2

L + PRg2
R)

(4.14)

d⌃B(/p = 0)

d/p
= �CF

PLg2
L + PRg2

R

(4⇡)2


1

✏̄
+ log

µ2

M2
� 1

2

�
. (4.15)

Finally, we add the contribution from the counter-terms,

d

d/p
⌃CT = ��L

QPL � �R
QPR. (4.16)

d

d/p
[⌃A + ⌃B + ⌃CT] = CF

PLg2
L + PRg2

R

(4⇡)2


�1

✏̄
� log

µ2

M2
+

1

2
+

1

✏̄

�
+

CF

✏̄

h↵s

4⇡

i
. (4.17)

Fermion residue: The residue of the full propagator of the renormalized fermion field is RL,R
Q ⌘

1 + �RL,R
Q , with:

�RL,R
Q =

↵s

4⇡

CF

✏̄
+

g2
L,R

(4⇡)2
CF


1

2
� log

µ2

M2

�
. (4.18)

Note that the correction to the residue still includes an IR divergence.

4.1.2 KK Gluon Self-energy

The O(↵s) corrections include gluons, ghosts, and the A5 scalar. Corrections from quark loops are
O(g2

L + g2
R) rather than O(↵s).

= + + + + .

(4.19)

The contribution from the counter-terms takes the form:

= i�ab
⇣
⌘µ⌫(�1q

2 + �M2) � �1qµq⌫

⌘
. (4.20)

The functions ⇧(q2) and �(q2) denote the coe�cients of the two tensor forms that appear in the
two-point function:

⌘ i⇧µ⌫ = i
⇣
⇧(q2)⌘µ⌫ ��(q2)qµq⌫

⌘
. (4.21)
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.
(4.19)

The contribution from the counter-terms takes the form:

In the on-shell limit, the loop integrals become scaleless: �A = �p2x(1 � x) ! 0. As shown in
Appendix A.2, the IR and UV divergences precisely cancel each other. This is not the case with
the KK gluon loop, which is not IR divergent:

�i
d⌃B

d/p
=

iCF

(4⇡)2
�(✏)(2 � 2✏)

Z 1

0

dx(1 � x)1�✏

✓
4⇡µ2

M2 � x2p2

◆✏ 
1 +

2✏xp2

M2 � xp2

�
(PLg2

L + PRg2
R)

(4.14)

d⌃B(/p = 0)

d/p
= �CF

PLg2
L + PRg2

R

(4⇡)2


1

✏̄
+ log

µ2

M2
� 1

2

�
. (4.15)

Finally, we add the contribution from the counter-terms,

d

d/p
⌃CT = ��L

QPL � �R
QPR. (4.16)

d

d/p
[⌃A + ⌃B + ⌃CT] = CF

PLg2
L + PRg2

R

(4⇡)2


�1

✏̄
� log

µ2

M2
+

1

2
+

1

✏̄

�
+

CF

✏̄

h↵s

4⇡

i
. (4.17)

Fermion residue: The residue of the full propagator of the renormalized fermion field is RL,R
Q ⌘

1 + �RL,R
Q , with:

�RL,R
Q =

↵s

4⇡

CF

✏̄
+

g2
L,R

(4⇡)2
CF


1

2
� log

µ2

M2

�
. (4.18)

Note that the correction to the residue still includes an IR divergence.

4.1.2 KK Gluon Self-energy

The O(↵s) corrections include gluons, ghosts, and the A5 scalar. Corrections from quark loops are
O(g2

L + g2
R) rather than O(↵s).

= + + + + .

(4.19)

The contribution from the counter-terms takes the form:

= i�ab
⇣
⌘µ⌫(�1q

2 + �M2) � �1qµq⌫

⌘
. (4.20)

The functions ⇧(q2) and �(q2) denote the coe�cients of the two tensor forms that appear in the
two-point function:

⌘ i⇧µ⌫ = i
⇣
⇧(q2)⌘µ⌫ ��(q2)qµq⌫

⌘
. (4.21)
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= iδab
(
ηµν(δ1q

2 + δM2)− δ1qµqν

)
. (4.20)

The functions Π(q2) and ∆(q2) denote the coefficients of the two tensor forms that appear in the
two-point function:

In the on-shell limit, the loop integrals become scaleless: �A = �p2x(1 � x) ! 0. As shown in
Appendix A.2, the IR and UV divergences precisely cancel each other. This is not the case with
the KK gluon loop, which is not IR divergent:

�i
d⌃B

d/p
=

iCF

(4⇡)2
�(✏)(2 � 2✏)

Z 1

0

dx(1 � x)1�✏

✓
4⇡µ2

M2 � x2p2

◆✏ 
1 +

2✏xp2

M2 � xp2

�
(PLg2

L + PRg2
R)

(4.14)

d⌃B(/p = 0)

d/p
= �CF

PLg2
L + PRg2

R

(4⇡)2


1

✏̄
+ log

µ2

M2
� 1

2

�
. (4.15)

Finally, we add the contribution from the counter-terms,

d

d/p
⌃CT = ��L

QPL � �R
QPR. (4.16)

d

d/p
[⌃A + ⌃B + ⌃CT] = CF

PLg2
L + PRg2

R

(4⇡)2


�1

✏̄
� log

µ2

M2
+

1

2
+

1

✏̄

�
+

CF

✏̄

h↵s

4⇡

i
. (4.17)

Fermion residue: The residue of the full propagator of the renormalized fermion field is RL,R
Q ⌘

1 + �RL,R
Q , with:

�RL,R
Q =

↵s

4⇡

CF

✏̄
+

g2
L,R

(4⇡)2
CF


1

2
� log

µ2

M2

�
. (4.18)

Note that the correction to the residue still includes an IR divergence.

4.1.2 KK Gluon Self-energy

The O(↵s) corrections include gluons, ghosts, and the A5 scalar. Corrections from quark loops are
O(g2

L + g2
R) rather than O(↵s).

= + + + + .

(4.19)

The contribution from the counter-terms takes the form:

= i�ab
⇣
⌘µ⌫(�1q

2 + �M2) � �1qµq⌫

⌘
. (4.20)

The functions ⇧(q2) and �(q2) denote the coe�cients of the two tensor forms that appear in the
two-point function:

⌘ i⇧µ⌫ = i
⇣
⇧(q2)⌘µ⌫ ��(q2)qµq⌫

⌘
. (4.21)
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≡ iΠµν = i
(

Π(q2)ηµν −∆(q2)qµqν
)
. (4.21)

Resumming the two-point functions: Because of the longitudinal polarizations, resumming
the two-point corrections is slightly more complicated. In the Feynman gauge the propagator has
a simple form, allowing us to write:

iΠµα −iηαβ
q2 −M2 + iε

=
Πηµβ −∆qµqβ

q2 −M2 + iε
≡ T µβ . (4.22)

This is the tensor that appears for every additional two-point function added to the propagator.
“Squaring” this tensor produces:

T µα T αβ =
(
T 2
)µ
β

=
( 1

q2 −M2

)2[
Π2ηµβ −

(
2Π∆− q2∆2

)
qµqβ

]
. (4.23)

For massless (and therefore transverse) bosons, Π = q2∆, and the qµqβ term simplifies so that
everything is proportional to Π2. For a massive boson this is not generally true. However, this
potentially messy remainder only shows up in the qµqβ term and disappears when contracted with
the on-shell fermion bilinear v̄2γ

µu1:

f(q2)qµv̄2γ
µu1 = f(q2)v̄2/qu1 = f(q2)v̄2(mf −mf )u1 = 0. (4.24)

Thus, for our purpose it is sufficient to consider only the Π(q2)ηµν part of the two-point function.
In this case, the full propagator becomes:

−iηµν
q2 −M2

+
−iηµα
q2 −M2

T αν
q2 −M2

+ . . . =
−iηµν

q2 −M2 − Π(q2)
+ f(q2)qµqν . (4.25)

From here on, we drop the qµqν term.
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Two-point function: We label the various contributions to Π(q2) as A, B, C, and so on by
their order of appearance in (4.19). Based on the reasoning of the previous section, we can discard
any terms proportional to qµ or qν .

iΠAη
µνδab =

∫
ddk

(2π)d
gsf

acd
(
ηµα(q − k)β + ηαβ(2k + q)µ + ηβµ(−k − 2q)α

)−iηαA
k2

× −iηβB
(k + q)2 −M2

gsf
bdc
(
ηνA(q − k)B + ηAB(2k + q)ν + ηBν(−k − 2q)A

)

= +g2
sNcδ

ab

∫
ddk

(2π)d
ηµν(2k2 + 2k · q + 5q2) + 2kµkν(5− 4ε)

k2[(k + q)2 −M2]
. (4.26)

The two ghost diagrams contribute equivalent terms to Π:

iΠBη
µνδab = iΠCη

µνδab = (−1)

∫
ddk

(2π)d
gsf

adc(q + k)µgsf
bcdkν · i · i

k2[(q + k)2 −M2]
(4.27)

= −g2
sNcδ

ab

∫
ddk

(2π)d
kµkν

k2[(q + k)2 −M2]
. (4.28)

From the A5 diagram:

iΠDη
µνδab =

∫
ddk

(2π)d
(−igsMfadcηµα)(−iηαβ) · i · (−igsMf cbdηβν)

k2[(q + k)2 −M2]
(4.29)

iΠD = −g2
sM

2Nc

∫
ddk

(2π)d
1

k2[(q + k)2 −M2]
. (4.30)

Diagram E is the easiest to calculate, being scaleless and thus vanishing in dimensional regular-
ization:

iΠE = 0. (4.31)

We simplify kµkν using the symmetric loop momentum ` ≡ k − qx, discarding qµ and qν , and
replacing `µ`ν with ηµν . After this replacement, the total O(αs) two-point function for the KK
gluon is:

Π(q2) =
Ncg

2
sΓ(ε)

(4π)2

∫ 1

0

dx
(4πµ2

∆

)ε[8− 6ε

1− ε ∆ +
(

5− 2x+ 2x2
)
q2 −M2

]
, (4.32)

where in this expression:
∆ ≡ x(M2 − q2) + x2q2. (4.33)

Quark loop corrections add the following diagram to the KK gluon self-energy:

Diagram E is the easiest to calculate, being scaleless and thus vanishing in dimensional regular-
ization:

i⇧E = 0. (4.31)

We simplify kµk⌫ using the symmetric loop momentum ` ⌘ k � qx, discarding qµ and q⌫ , and
replacing `µ`⌫ with ⌘µ⌫ . After this replacement, the total O(↵s) two-point function for the KK
gluon is:

⇧(q2) =
Ncg

2
s�(✏)

(4⇡)2

Z 1

0

dx
⇣4⇡µ2

�

⌘✏h8 � 6✏

1 � ✏
� +

⇣
5 � 2x + 2x2

⌘
q2 � M2

i
, (4.32)

where in this expression:
� ⌘ x(M2 � q2) + x2q2. (4.33)

Quark loop corrections add the following diagram to the KK gluon self-energy:

=) (4.34)

This adds a UV-diverging, IR-finite piece to the two-point function. By simplifying the projector
matrices PL and PR, this self-energy amplitude is:

i⇧µ⌫
F �ab = (�1)

�ab

2

✓
g2

L + g2
R

2

◆Z 1

0

dx

Z
ddk

(2⇡)d

Tr[�µ/k�⌫(/k + /q)]

D2
, (4.35)

where D = k2 + 2xk · q + xq2 ⌘ `2 ��, with � = �x(1 � x)q2. After discarding the qµq⌫ terms,
we can write:

i⇧µ⌫
F = ⌘µ⌫

6X

i=1

(g2
L + g2

R)
i�(✏)

(4⇡)2

Z 1

0

dx

✓
4⇡µ2

�

◆✏

(�2q2)(x � x2). (4.36)

This sum over quark couplings can be expressed as a constant, defined as:

G2
T ⌘

6X

i=1

h
(g

(i)
L )2 + (g

(i)
R )2

i
. (4.37)

Renormalization: All together, the UV divergent part of the KK gluon self-energy is:

⇧UV =
Nc↵s

4⇡

1

✏̄

Z 1

0

dx
h
8x(M2 � p2) + 8x2p2 +

⇣
5 � 2x + 2x2

⌘
p2 � M2

i

+
G2

T

(4⇡)2
(�2q2)

1

✏̄

Z 1

0

dx(x � x2) (4.38)

⇧UV =
Nc↵s

4⇡

1

✏̄

h
3M2 +

10

3
p2
i

+
G2

T

(4⇡)2

1

✏̄

✓
�1

3
q2

◆
. (4.39)

As a result, the MS counter-terms �1 and �M2 are:

�1 =
Nc↵s

4⇡

10

3

1

✏̄
+

G2
T

(4⇡)2

1

3

1

✏̄
(4.40)

�M2 =
Nc↵s

4⇡

3M2

✏̄
. (4.41)

It can be shown that the pµp⌫ part of the two-point function has the same UV divergence, and
that the value of �1 above is su�cient to make the entire two-point function finite, as is required
by the form of (4.20).
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This adds a UV-diverging, IR-finite piece to the two-point function. By simplifying the projector
matrices PL and PR, this self-energy amplitude is:

iΠµν
F δ

ab = (−1)
δab

2

(
g2
L + g2

R

2

)∫ 1

0

dx

∫
ddk

(2π)d
Tr[γµ/kγν(/k + /q)]

D2
, (4.34)

11



where D = k2 + 2xk · q + xq2 ≡ `2 −∆, with ∆ = −x(1− x)q2. After discarding the qµqν terms,
we can write:

iΠµν
F = ηµν

6∑

i=1

(g2
L + g2

R)
iΓ(ε)

(4π)2

∫ 1

0

dx

(
4πµ2

∆

)ε
(−2q2)(x− x2). (4.35)

This sum over quark couplings can be expressed as a constant, defined as:

G2
T ≡

6∑

i=1

[
(g

(i)
L )2 + (g

(i)
R )2

]
. (4.36)

Renormalization: All together, the UV divergent part of the KK gluon self-energy is:

ΠUV =
Ncαs
4π

1

ε̄

∫ 1

0

dx
[
8x(M2 − p2) + 8x2p2 +

(
5− 2x+ 2x2

)
p2 −M2

]

+
G2
T

(4π)2
(−2q2)

1

ε̄

∫ 1

0

dx(x− x2) (4.37)

ΠUV =
Ncαs
4π

1

ε̄

[
3M2 +

10

3
p2
]

+
G2
T

(4π)2

1

ε̄

(
−1

3
q2

)
. (4.38)

As a result, the MS counter-terms δ1 and δM2 are:

δ1 =
Ncαs
4π

10

3

1

ε̄
+

G2
T

(4π)2

1

3

1

ε̄
(4.39)

δM2 =
Ncαs
4π

3M2

ε̄
. (4.40)

It can be shown that the pµpν part of the two-point function has the same UV divergence, and
that the value of δ1 above is sufficient to make the entire two-point function finite, as is required
by the form of (4.20).

Derivative of two-point function: The shift in the residue δR1 is given by the derivative of
the two-point function (including the counter-terms) evaluated on-shell,

δR1 =
d(Π0 + ΠCT)

dq2

∣∣∣∣
M2

=
Ncαs
4π

[4

3
log

µ2

M2
+

32

9
− 2

ε̄

]
+

G2
T

(4π)2

[
−2

9
− 1

3
log

µ2

−M2

]
. (4.41)

In this expression, the UV diverges cancel by construction leaving behind a purely soft divergence
and finite terms.

4.2 Vertex corrections

At NLO in αs, three triangle loop diagrams correct the three-point function. We also include the
(g2
L,R) correction from a virtual KK gluon. To simplify the Passarino-Veltman decomposition of the

triangle loop integrals, we use the Mathematica package Package X [50]. We calculate the scalar
C0 functions by hand in Appendix A.1. We follow the notation of [51] for the Passarino-Veltman
decomposition.
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Derivative of two-point function: The shift in the residue �R1 is given by the derivative of
the two-point function (including the counter-terms) evaluated on-shell,

�R1 =
d(⇧0 + ⇧CT)

dq2

����
M2

=
Nc↵s

4⇡

h4
3

log
µ2

M2
+

32

9
� 2

✏̄

i
+

G2
T

(4⇡)2


�2

9
� 1

3
log

µ2

�M2

�
. (4.42)

In this expression, the UV diverges cancel by construction leaving behind a purely soft divergence
and finite terms.

4.2 Vertex corrections

At NLO in ↵s, three triangle loop diagrams correct the three-point function. We also include the
(g2

L,R) correction from a virtual KK gluon. To simplify the Passarino-Veltman decomposition of the
triangle loop integrals, we use the Mathematica package Package X [50]. We calculate the scalar
C0 functions by hand in Appendix A.1. We follow the notation of [51] for the Passarino-Veltman
decomposition.

+ + + + (4.43)

We label these diagrams “A,” “B,” “C,” and “D.” Each of these may include UV and IR diver-
gences. We absorb the UV divergences by renormalizing the coupling of the KK gluon to fermions.
The IR divergences of the vertex corrections cancel those from the gluon emission process.

Diagram A

iMA =

Z
ddk

(2⇡)d
v̄2(igs�

↵T b)
i(/k + /q)

(k + q)2

�
i�µ
⇥
gV + gA�

5
⇤
T a
� i/k

k2
(igs�

�T b)u1
�i⌘↵�

(k + p1)2
✏?3µ(4.44)

= g2
s(�T bT aT b)

Z
ddk

(2⇡)d

v2N
µu1✏

?
3µ

k2(k + p1)2(k + q)2
, (4.45)

where q = p1 + p2 and Nµ is defined as:

Nµ = ��(/k + /q)�
µ [gV + gA�5] /k�� (4.46)

=
�
(2 � 2✏)(2/kkµ � k2�µ) + 4/kpµ

2 � 4p2 · k�µ � 4✏pµ
1/k + 4✏�µp1 · k

�
[gV + gA�5] . (4.47)

The loop integral can be evaluated using Passarino-Veltman (PV) scalar functions [52]. To separate
the UV from the IR divergence, notice that UV divergence requires powers of k2 (or higher). In
the unitary gauge we would have powers of k4 from the propagator, but in the Feynman gauge our
only UV divergence is from:

Z
ddk

(2⇡)d

��/k�µ/k��
D1 · D2 · D3

!
Z

ddk

(2⇡)d

(2)(2/kkµ � k2�µ)

D1 · D2 · D3

. (4.48)

This can be rearranged using the PV tensor function Cµ⌫ , which has a UV divergence of ⌘µ⌫

4✏
.

Z
ddk

(2⇡)d

(2 � 2✏)(2/kkµ � k2�µ)

D1 · D2 · D3

! i

(4⇡)2
2 · (2�↵

⌘↵µ

4✏
� �µ⌘↵�⌘

↵�

4✏
) = �µ�1

✏
+ finite. (4.49)
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We label these diagrams “A,” “B,” “C,” and “D.” Each of these may include UV and IR diver-
gences. We absorb the UV divergences by renormalizing the coupling of the KK gluon to fermions.
The IR divergences of the vertex corrections cancel those from the gluon emission process.

Diagram A

iMA =

∫
ddk

(2π)d
v̄2(igsγ

αT b)
i(/k + /q)

(k + q)2

(
iγµ
[
gV + gAγ

5
]
T a
) i/k
k2

(igsγ
βT b)u1

−iηαβ
(k + p1)2

ε?3µ(4.42)

= g2
s(−T bT aT b)

∫
ddk

(2π)d
v2N

µu1ε
?
3µ

k2(k + p1)2(k + q)2
, (4.43)

where q = p1 + p2 and Nµ is defined as:

Nµ = γβ(/k + /q)γ
µ [gV + gAγ5] /kγβ (4.44)

=
(
(2− 2ε)(2/kkµ − k2γµ) + 4/kpµ2 − 4p2 · kγµ − 4εpµ1/k + 4εγµp1 · k

)
[gV + gAγ5] . (4.45)

The loop integral can be evaluated using Passarino-Veltman (PV) scalar functions [52]. To separate
the UV from the IR divergence, notice that UV divergence requires powers of k2 (or higher). In
the unitary gauge we would have powers of k4 from the propagator, but in the Feynman gauge our
only UV divergence is from:

∫
ddk

(2π)d
γβ/kγµ/kγβ
D1 ·D2 ·D3

→
∫

ddk

(2π)d
(2)(2/kkµ − k2γµ)

D1 ·D2 ·D3

. (4.46)

This can be rearranged using the PV tensor function Cµν , which has a UV divergence of ηµν

4ε
.

∫
ddk

(2π)d
(2− 2ε)(2/kkµ − k2γµ)

D1 ·D2 ·D3

→ i

(4π)2
2 · (2γα

ηαµ

4ε
− γµηαβη

αβ

4ε
) = γµ

−1

ε
+ finite. (4.47)

Using T bT aT b = (CF −Nc/2)T a,

iMA =
iαs
4π

v̄2γ
µT a [gV + gAγ5]u1ε

?
3µ

(
Nc

2
− CF

)

×
[
2
( 1

ε̄2
+

log(−µ2/q2)

ε̄

)
+

3

ε̄
+ 3 log

−µ2

q2
+
(

log
−µ2

q2

)2

+ 8− π2

6

]
. (4.48)

All of the terms proportional to pµ1 or pµ2 also multiply /p1
or /p2

, which are proportional to the
quark masses and vanish.

It is useful to separate (4.48) into UV-finite (MIR) and UV-divergent (MUV ) parts:

iMIR
A = iMLO

αs
4π

(Nc

2
− CF

)[
2
( 1

ε̄2
+

log(−µ2/q2)

ε̄

)
+

4

ε̄
+ 3 log

−µ2

q2
+
(

log
−µ2

q2

)2

+ 8− π2

6

]

(4.49)

iMUV
A = iMLO

αs
4π

(Nc

2
− CF

){
− 1

ε̄

}
. (4.50)
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Diagram B

iMB =

∫
ddk

(2π)d
v̄2(igsγ

BT b)
i(/k + /p1

)

(k + p1)2

(
iγA [gV + gAγ5]T a

)
u1
−iηAα
k2 −M2

−iηBβ
(k + q)2

×gsfabc
[
ηαβ(−k − k − q)µ + ηβµ(k + q + q)α + ηµα(−q + k)β

]
ε?3µ (4.51)

= ig2
sT

cT bfabc
∫

ddk

(2π)d
v̄2N

µu1ε
?
3µ

(k2 −M2)(k + p1)2(k + q)2
(4.52)

where Nµ is:

Nµ = γβ(/kγα + 2p1α)
[
ηαβ(−2k − q)µ + ηβµ(k + 2q)α + ηµα(k − q)β

]
[gV + gAγ5] . (4.53)

After completing the loop integral, the amplitude is:

iMB = g2
s

iNc

2(4π)2
v̄2γ

µ [gV + gAγ5]T au1ε
?
3µ

[
− 1− 1

ε̄2
− log(µ2/M2)

ε̄
− 1

2

(
log

µ2

M2

)2

+
1

ε̄
+ log

µ2

M2

]
.

(4.54)
The UV divergence of this amplitude arises from:

2k2γµ + (4− 4ε)/kkµ → 2ηαβC
αβ + 4γαC

αβ (4.55)

→ i

(4π)2

8 + 4

4ε
γµ + finite. (4.56)

As before, we separate the UV divergence from the rest of the amplitude:

iMIR
B =

αs
4π

Nc

2
iMLO

[
− 1

ε̄2
− log(µ2/M2)

ε̄
− 2

ε̄
+ log

µ2

M2
− 1

2

(
log

µ2

M2

)2

− 1− π2

12

]
(4.57)

iMUV
B =

αs
4π

Nc

2
iMLO

{3

ε̄

}
. (4.58)

Diagram C In the Feynman gauge, the numerator structure can be made identical to that of
Diagram B by commuting the [gQ + gAγ5] twice to the right. The difference is the location of M2

in the denominator:

iMB = ig2
sT

cT bfabc
∫

ddk

(2π)d
v̄2N

µu1ε
?
3µ

(k2)(k + p1)2((k + q)2 −M2)
. (4.59)

If we perform the shift k → k − q and then an inversion in k, we can make the denominators
match. Applying this transformation to the numerator Nµ of Diagram B has the effect of switching
p1 ↔ p2. This would change the amplitude, if not for p2

1 = p2
2 = 0; the only nonzero invariant

p1 · p2 = q2/2 remains unchanged by the p1 ↔ p2 transformation.

iMC = iMB. (4.60)
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Diagram D This amplitude is very similar to the one in Diagram A, with small changes in the
numerator and with one massive propagator.

iMD =

∫
ddk

(2π)d
v̄2

[
iγα(PLgL + PRgR)T b

] i(−/k − /q)
(k + q)2

[iγµ(PLgL + PRgR)T a]
−i/k
k2

×
[
iγα(PLgL + PRgR)T b

] −i
(k + p1)2 −M2

u1ε
?
3µ (4.61)

=

(
Nc

2
− CF

)
i

(4π)2

[
−1

ε̄
− log

µ2

M2
+ 6 + 5iπ − 8π2

3
+ 8 Li2(2)

]
v̄2γ

µ(PLg
3
L + PRg

3
R)T au1ε

?
3µ.

(4.62)

In analogy with MLO, we define M′
KK as follows:

M′
KK = v̄2iγ

µ(PLg
3
L + PRg

3
R)T au1ε

?
3µ. (4.63)

The UV divergent and finite parts of MD are:

MIR
D =

(
Nc

2
− CF

)
iM′

KK

(4π)2

[
− log

µ2

M2
+ 6 + 5iπ − 8π2

3
+ 8 Li2(2)

]
(4.64)

MUV
D =

(
Nc

2
− CF

)
iM′

KK

(4π)2

[
−1

ε̄

]
. (4.65)

4.2.1 Gluon Mixing Amplitude

In addition to the self-energy and vertex corrections, there is a diagram in which the QCD vertex
is attached to a bubble of quarks which mixes the gluon and the KK gluon:

∑

q′




Diagram C In the Feynman gauge, the numerator structure can be made identical to that of
Diagram B by commuting the [gQ + gA�5] twice to the right. The di↵erence is the location of M2

in the denominator:

iMB = ig2
sT

cT bfabc

Z
ddk

(2⇡)d

v̄2N
µu1✏

?
3µ

(k2)(k + p1)2((k + q)2 � M2)
. (4.61)

If we perform the shift k ! k � q and then an inversion in k, we can make the denominators
match. Applying this transformation to the numerator Nµ of Diagram B has the e↵ect of switching
p1 $ p2. This would change the amplitude, if not for p2

1 = p2
2 = 0; the only nonzero invariant

p1 · p2 = q2/2 remains unchanged by the p1 $ p2 transformation.

iMC = iMB. (4.62)

Diagram D This amplitude is very similar to the one in Diagram A, with small changes in the
numerator and with one massive propagator.

iMD =

Z
ddk

(2⇡)d
v̄2

⇥
i�↵(PLgL + PRgR)T b

⇤ i(�/k � /q)

(k + q)2
[i�µ(PLgL + PRgR)T a]

�i/k

k2

⇥
⇥
i�↵(PLgL + PRgR)T b

⇤ �i

(k + p1)2 � M2
u1✏

?
3µ (4.63)

=

✓
Nc

2
� CF

◆
i

(4⇡)2


�1

✏̄
� log

µ2

M2
+ 6 + 5i⇡ � 8⇡2

3
+ 8 Li2(2)

�
v̄2�

µ(PLg3
L + PRg3

R)T au1✏
?
3µ.

(4.64)

In analogy with MLO, we define M0
KK as follows:

M0
KK = v̄2i�

µ(PLg3
L + PRg3

R)T au1✏
?
3µ. (4.65)

The UV divergent and finite parts of MD are:

MIR
D =

✓
Nc

2
� CF

◆
iM0

KK

(4⇡)2


� log

µ2

M2
+ 6 + 5i⇡ � 8⇡2

3
+ 8 Li2(2)

�
(4.66)

MUV
D =

✓
Nc

2
� CF

◆
iM0

KK

(4⇡)2


�1

✏̄

�
. (4.67)

4.2.1 Gluon Mixing Amplitude

In addition to the self-energy and vertex corrections, there is a diagram in which the QCD vertex
is attached to a bubble of quarks which mixes the gluon and the KK gluon:

X

q0

0
B@ q0

1
CA (4.68)

where the sum over q0 includes all flavors of quark in the loop. While it appears to be a mixed
self-energy, it vanishes when the gluon is on-shell, and formally contributes to the renormalization

15


 .

where the sum over q′ includes all flavors of quark in the loop. While it appears to be a mixed
self-energy, it vanishes when the gluon is on-shell, and formally contributes to the renormalization
of the coupling of the SM quarks to the KK gluon. Unlike the leading-order amplitude, which was

proportional to
[
g

(q)
V + g

(q)
A γ5

]
, this amplitude is proportional to a sum over q′ = d, u, s, c, b, t:

iMM(qq̄ → G) ∼ g2
s

∑

q′

[
g

(q′)
V + g

(q′)
A γ5

]
. (4.66)

The gluon mixing two-point function Παβ
M (q2) is IR finite but UV divergent, and is contracted with

a QCD vertex,

iMM =
(
v̄2igsµ

εγβT au1

) −iηβα
q2

iΠαµ
M (q2)δabε?b3µ. (4.67)

We may drop any terms proportional to the gluon momentum in Παµ
M proportional to qµ, because

qµε?3µ = 0.

iΠαµ
M δab =

∫
ddk

(2π)d
(−1)Tr

[
igsµ

εT aγα · i/k · iγµ[gV + gAγ5]T b · i(/k + /q)
]

k2(k + q)2
(4.68)

iΠαµ
M = −gsgV

2

∫ 1

0

dx

∫
dd`

(2π)d

[
1

`2 −∆

]2

Nαµ, (4.69)
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where ∆ = −q2x(1− x) and

Nαµ = 4

[
2
`2

d
− `2 + q2(x− x2)

]
ηαµ + qαqµ(. . .) . (4.70)

The gA term is proportional to 4iεαµρσq
ρqσ = 0. After discarding the qαqµ part of the two point

function and summing over loop quark flavors, the remainder is:

iΠMη
αµ = ηαµ

∑

(q′)

gs(2g
(q′)
V )

iΓ(ε)

(4π)2

∫ 1

0

dx

(
4πµ

∆

)ε
(−2q2)(x− x2) (4.71)

µεΠM = gs
∑

(q′)

(
g

(q′)
L + g

(q′)
R

) Γ(ε)

(4π)2

(
4πµ2

−q2

)ε
(−2q2)

Γ(2− ε)Γ(2− ε)
Γ(4− 2ε)

. (4.72)

We define G′Q and iM′
QCD as follows:

G′Q ≡
∑

(q′)

(
g

(q′)
L + g

(q′)
R

)
iM′

QCD ≡ v̄2iγ
µG′QT

au1ε
?
3µ. (4.73)

Now the amplitude iMD may be written in a compact form:

iMM = gsµ
ε
iM′

QCD

G′Q

ΠM(q2)

q2
=
(
iM′

QCD

) αs
4π

[−1

3

(
1

ε̄
+ log

µ2

−q2

)
− 5

9

]
, (4.74)

which we split into finite and UV-divergent parts:

iMfinite
M =

(
iM′

QCD

) αs
4π

[
−1

3
log

µ2

−q2
− 5

9

]
, (4.75)

iMUV
M =

(
iM′

QCD

) αs
4π

(
−1

3

1

ε̄

)
. (4.76)

4.2.2 Coupling Renormalization

The counter-terms for the couplings of the quarks to the KK gluon take the form:

4.2.2 Coupling Renormalization

The counter-terms for the couplings of the quarks to the KK gluon take the form:

q

q̄

= i�µ
h
�
(q)
L g

(q)
L PL + �

(q)
R g

(q)
R PR

i
Ta. (4.80)

The values of �L and �R are determined in the MS scheme by the UV-divergent terms:

iMUV = iMCT + iMUV
A + iMUV

B + iMUV
C + iMUV

D + iMUV
M = 0 (4.81)

The scalings Zq
L and Zq

R are chosen so that the amplitude is UV-finite.

h
�
(q)
L g

(q)
L PL + �

(q)
R g

(q)
R PR

i
=

�↵s

4⇡

1

✏̄

⇣
g

(q)
L PL + g

(q)
R PR

⌘
CF +

5Nc

2

�
+ (PL + PR)

✓
�G0

Q

3

◆�

(4.82)

such that

�
(q)
L =

↵s

4⇡

1

✏̄

"
�CF � 5Nc

2
+

1

3

G0
Q

g
(q)
L

#
+

g
(q)2
L

(4⇡)2

1

✏̄

✓
Nc

2
� CF

◆
. (4.83)

�
(q)
R =

↵s

4⇡

1

✏̄

"
�CF � 5Nc

2
+

1

3

G0
Q

g
(q)
R

#
+

g
(q)2
R

(4⇡)2

1

✏̄

✓
Nc

2
� CF

◆
. (4.84)

We use Z1 and Z2 from the gluon and quark two-point functions to find the Zq
L and Zq

R that
correspond to these counter-terms.

�q
L,R = Zq

L,RZQ

p
Z1 � 1 = �Zq

L,R + �Q +
1

2
�1 (4.85)

�Zq
L,R =

↵s

4⇡

1

✏̄

⇣
� CF � 5Nc

2
+

G0
Q

3g
(q)
L,R

+ CF � 1

2

10Nc

3

⌘
+

g
(q)2
L,R

(4⇡)2

1

✏̄

✓
CF +

Nc

2
� CF

◆
(4.86)

Z
(q)
L,R = 1 +

↵s

4⇡

1

✏̄

⇣
� 25

6
Nc +

G0
Q

3g
(q)
L,R

⌘
+

g
(q)2
L,R

(4⇡)2

1

✏̄

✓
Nc

2

◆
. (4.87)

As expected from the Ward identity, the divergences proportional to CF cancel between counter-
terms.

4.3 Virtual Correction to the Cross Section

We now have all of the ingredients necessary to assemble the virtual correction to the cross section.
For the terms in �virt not proportional to �0 we define �KK and �QCD as follows:

�KK =
⇡CF

2Nc

(g4
L + g4

R)(1 � ✏), �
(q)
QCD = G0

Q

⇡CF

2Nc

⇣
g

(q)
L + g

(q)
R

⌘
. (4.88)

17

= iγµ
[
δ

(q)
L g

(q)
L PL + δ

(q)
R g

(q)
R PR

]
Ta. (4.77)

The values of δL and δR are determined in the MS scheme by the UV-divergent terms:

iMUV = iMCT + iMUV
A + iMUV

B + iMUV
C + iMUV

D + iMUV
M = 0 . (4.78)

The scalings Zq
L and Zq

R are chosen so that the amplitude is UV-finite:

[
δ

(q)
L g

(q)
L PL + δ

(q)
R g

(q)
R PR

]
=
−αs
4π

1

ε̄

[(
g

(q)
L PL + g

(q)
R PR

)[
CF +

5Nc

2

]
+ (PL + PR)

(
−G

′
Q

3

)]
,

(4.79)
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such that

δ
(q)
L =

αs
4π

1

ε̄

[
−CF −

5Nc

2
+

1

3

G′Q

g
(q)
L

]
+

g
(q)2
L

(4π)2

1

ε̄

(
Nc

2
− CF

)
, (4.80)

δ
(q)
R =

αs
4π

1

ε̄

[
−CF −

5Nc

2
+

1

3

G′Q

g
(q)
R

]
+

g
(q)2
R

(4π)2

1

ε̄

(
Nc

2
− CF

)
. (4.81)

We use Z1 and Z2 from the gluon and quark two-point functions to find the Zq
L and Zq

R that
correspond to these counter-terms.

δqL,R = Zq
L,RZQ

√
Z1 − 1 = δZq

L,R + δQ +
1

2
δ1 (4.82)

δZq
L,R =

αs
4π

1

ε̄

(
− CF −

5Nc

2
+

G′Q

3g
(q)
L,R

+ CF −
1

2

10Nc

3

)
+

g
(q)2
L,R

(4π)2

1

ε̄

(
CF +

Nc

2
− CF

)
(4.83)

Z
(q)
L,R = 1 +

αs
4π

1

ε̄

(
− 25

6
Nc +

G′Q

3g
(q)
L,R

)
+

g
(q)2
L,R

(4π)2

1

ε̄

(
Nc

2

)
. (4.84)

As expected from the Ward identity, the divergences proportional to CF cancel between counter-
terms.

4.3 Virtual Correction to the Cross Section

We now have all of the ingredients necessary to assemble the virtual correction to the cross section.
For the terms in σvirt not proportional to σ0 we define σKK and σQCD as follows:

σKK =
πCF
2Nc

(g4
L + g4

R)(1− ε), σ
(q)
QCD = G′Q

πCF
2Nc

(
g

(q)
L + g

(q)
R

)
. (4.85)

Assembling the various pieces into Eq. (4.5) leads to the final result,

σ
(q)
virt = δ(s−M2)

(
αsσ

(q)
0

4π

[
CF

{
− 4

ε̄2
− 4 log(µ2/M2)

ε̄
− 2

ε
− 10 +

7

3
π2 − 2 log

µ2

M2
− 2
(

log
µ2

M2

)2}

+Nc

{
− 2

ε̄
+

104

9
− 4

3
π2 +

19

3
log

µ2

M2

}]
+
αsσ

(q)
QCD

4π

[
−2

3
log

µ2

M2
− 10

9

]
(4.86)

+
σ

(q)
KK

(4π)2

[
CF

(
16π2

3
− 11− 16 Re[Li2(2)]

)
+Nc

(
− log

µ2

M2
+ 6− 8π2

3
+ 8 Re[Li2(2)]

)])
,
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which we separate into an IR divergent piece and finite remainder, to make it easier to cancel with
the real correction:

σsoft
virt =

αs
4π
σ

(q)
0 δ(s−M2)

[
CF

{
− 4

ε̄2
− 4 log(µ2/M2)

ε̄
− 2

ε

}
−Nc

2

ε̄

]
(4.87)

σfinite
virt = δ(s−M2)

(
αsσ

(q)
0

4π

[
CF

{
− 10 +

7

3
π2 − 2 log

µ2

M2
− 2
(

log
µ2

M2

)2}
(4.88)

+Nc

{
+

140

9
− 4

3
π2 +

19

3
log

µ2

M2

}]
+

σ
(q)
KK

(4π)2

[
CF

(
16π2

3
− 11− 16 Re[Li2(2)]

)

+Nc

(
− log

µ2

M2
+ 6− 8π2

3
+ 8 Re[Li2(2)]

)]
+
αsσ

(q)
QCD

4π

[
−2

3
log

µ2

M2
− 10

9

])
.

5 Real Corrections

In this section we compute the O(αs) corrections from the radiative processes qq̄ → gG, qg → qG,
and q̄g → q̄G (the latter two are NLL for an initial state top quark). These contributions contain
collinear divergences which have been absorbed into the definition of the PDFs and are removed
by MS counter-terms, and the qq̄ → gG process additionally contains soft divergences which cancel
with those in the virtual corrections.

We describe the 2 → 2 scattering kinematics with Mandelstam variables s ≡ (p1 + p2)2 =
(p3 + p4)2, t ≡ (p3 − p1)2 = (p4 − p2)2, u ≡ (p4 − p1)2 = (p3 − p2)2, only two of which are
independent because s+t+u = M2. The IR and collinear divergences are regulated by integrating
over d-dimensional phase space:

σ =
1

2s

∫
dd−1p3

(2π)d−12p0
3

dd−1p4

(2π)d−12p0
4

(2π)dδd(p1 + p2 − p3 − p4) |M|2 . (5.1)

For gluons and massless quarks,

1

2s
Π

(d)
2 =

1

2s

∫
dd−1p3

(2π)d−12p0
3

dd−1p4

(2π)d−12p0
4

(2π)dδd(p1 + p2 − p3 − p4) (5.2)

=
s−M2

32π2s2

( 4πs

(s−M2)2

)ε Γ(1− ε)
Γ(1− 2ε)

∫
dΘ, (5.3)

where we define
∫
dΘ: ∫

dΘ =

∫ π

0

dθ(sin θ)1−2ε

∫ π

0

dφ(sinφ)−2ε. (5.4)

The cross section is

σ =
s−M2

32π2s2

(4π

s

)ε[ 1

1− τ
]2ε Γ(1− ε)

Γ(1− 2ε)

∫
dΘ |M|2 . (5.5)

The necessary integrals are evaluated in Ref. [53] and tabulated in terms of t = (M2−s)(1+cos θ)/2
and u = (M2 − s)(1− cos θ)/2 in Appendix A.3.

5.1 qq̄ → gG

The radiative process qq̄ → gG contain both soft and collinear singularities, which are regulated
by the d dimensional phase space as in Eq. (5.5).
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Amplitude We assign p1 to the incoming quark, p2 to the incoming anti-quark, (p3, µ) to the
KK gluon and (p4, ν) to the massless gluon. There are three Feynman diagrams,

where we define
R

d⇥: Z
d⇥ =

Z ⇡

0

d✓(sin ✓)1�2✏

Z ⇡

0

d�(sin�)�2✏. (5.4)

The cross section is:

� =
s � M2

32⇡2s2

⇣4⇡

s

⌘✏h 1

1 � ⌧

i2✏ �(1 � ✏)

�(1 � 2✏)

Z
d⇥ |M|2 , (5.5)

The necessary integrals are evaluated in Ref. [53] and tabulated (in terms of t = (M2�s)(1+cos ✓)/2
and u = (M2 � s)(1 � cos ✓)/2) in Appendix A.3.

5.1 qq̄ ! gG

The radiative process qq̄ ! gG contain both soft and collinear singularities, which are regulated
by the d dimensional phase space as in Eq. (5.5).

Amplitude We assign p1 to the incoming quark, p2 to the incoming anti-quark, (p3, µ) to the
KK gluon and (p4, ⌫) to the massless gluon. There are three Feynman diagrams,

+ + (5.6)

whose amplitudes we label as MS, MT , and MU , respectively. They are:

iMS =
gsT

cfabc

s � M2
v̄2

⇣
⌘µ⌫(/p4

� /p3
) � 2�⌫pµ

4 + 2�µp⌫3

⌘
[gV + gA�5]u1✏

b?
4⌫✏

a?
3µ. (5.7)

iMT = v̄2igsT
b
jk�

⌫
i(/p1

� /p3
)

t
iT a

ki�
µ[gV + gA�5]u1✏

b?
4⌫✏

a?
3µ (5.8)

iMU = v̄2iT
a
jk�

µ[gV + gA�5]
i(/p1

� /p4
)

u
igsT

b
ki�

⌫u1✏
b?
4⌫✏

a?
3µ. (5.9)

We have used the fact that p4 · ✏4 = 0 to simplify MS and retain only physical polarizations.
Squaring the net amplitude and summing/averaging over spins and colors, the cross section is
evaluated via Eq. (5.5) using angular integrals found in Appendix A.3. The resulting cross section
contains soft (including soft and collinear) and collinear divergences.

Soft divergences The soft divergences arise from factors of (1�⌧)�1 in the matrix elements, and
are regulated by the factor of (1� ⌧)2✏ in Eq. (5.5). It is convenient to define a “plus distribution”
with the fractional power of (1�⌧)2✏ from the phase space integral. The integral over the incoming
parton momentum fractions (see Section 6) thus contains:

Z 1

⌧0

d⌧
⇣ 1

1 � ⌧

⌘1+2✏

=

Z 1

⌧0

d⌧

⇢⇣ 1

1 � ⌧

⌘1+2✏

� �(1 � ⌧)

Z 1

⌧0

dz

(1 � z)1+2✏
� �(1 � ⌧)

2✏

�
(5.10)

=

Z 1

⌧0

d⌧

⇢h 1

(1 � ⌧)1+2✏

i
+
� 1

2✏
�(1 � ⌧)

�
, (5.11)
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,

whose amplitudes we label as MS, MT , and MU , respectively. They are:

iMS =
gsT

cfabc

s−M2
v̄2

(
ηµν(/p4

− /p3
)− 2γνpµ4 + 2γµpν3

)
[gV + gAγ5]u1ε

b?
4νε

a?
3µ. (5.6)

iMT = v̄2igsT
b
jkγ

ν
i(/p1
− /p3

)

t
iT akiγ

µ[gV + gAγ5]u1ε
b?
4νε

a?
3µ (5.7)

iMU = v̄2iT
a
jkγ

µ[gV + gAγ5]
i(/p1
− /p4

)

u
igsT

b
kiγ

νu1ε
b?
4νε

a?
3µ. (5.8)

We have used the fact that p4 · ε4 = 0 to simplify MS and retain only physical polarizations.
Squaring the net amplitude and summing/averaging over spins and colors, the cross section is
evaluated via Eq. (5.5) using angular integrals found in Appendix A.3. The resulting cross section
contains soft (including soft and collinear) and collinear divergences.

Soft divergences The soft divergences arise from factors of (1−τ)−1 in the matrix elements, and
are regulated by the factor of (1− τ)2ε in Eq. (5.5). It is convenient to define a “plus distribution”
with the fractional power of (1−τ)2ε from the phase space integral. The integral over the incoming
parton momentum fractions (see Section 6) thus contains:

∫ 1

τ0

dτ
( 1

1− τ
)1+2ε

=

∫ 1

τ0

dτ

{( 1

1− τ
)1+2ε

− δ(1− τ)

∫ 1

τ0

dz

(1− z)1+2ε
− δ(1− τ)

2ε

}
(5.9)

=

∫ 1

τ0

dτ

{[ 1

(1− τ)1+2ε

]
+
− 1

2ε
δ(1− τ)

}
, (5.10)

in terms of the plus distribution defined as:

∫ 1

τ0

dτ f(τ)
[ 1

1− τ
]

+
≡
∫ 1

τ0

dτ
f(τ)− f(1)

1− τ . (5.11)

The soft divergences are thus exposed:

[ 1

1− τ
]1+2ε

= − 1

2ε
δ(1− τ) +

[ 1

(1− τ)

]
+
− 2ε

[ log(1− τ)

(1− τ)

]
+
. (5.12)

In the process qq̄ → gG, the IR divergent terms are:

σsoft
real = αs(g

2
V + g2

A)
δ(1− τ)

N2
cM

2

(
N2
cCF
2

1

ε̄
+ C2

FNc

{ 1

ε̄2
+

log(µ2/s)

ε̄
+

1

2

1

ε̄

})
. (5.13)

where the 1/ε̄2 terms represent the overlapping soft and collinear singularities.
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Collinear divergences and PDF Counter-term In MS the correction to the hard scattering
matrix element for the qq̄ initial state is given by:

H
(1)
qq̄ = σvirt

qq̄ + σreal
qq̄ −

αs
π

[
φ(1)
q→q ⊗ σLO + φ

(1)
q̄→q̄ ⊗ σLO

]
(5.14)

≡ σvirt
qq̄ + σreal

qq̄ + σCTqq̄ . (5.15)

The splitting functions q → q and q̄ → q̄ are given by:

φq→q = φq̄→q̄ = − 1

2ε̄
CF

[1 + z2

1− z
]

+
(5.16)

where z is the fraction of momentum of the parent carried by the daughter. σCTqq̄ is the leading
order cross section convolved with the splitting function,

σCTqq̄ =
αs
π

CF
ε̄

∫ 1

0

dz
( 1 + z2

[1− z]+
+

3

2
δ(1− z)

)
× σ0(1− ε)δ(sz −M2) (5.17)

=
αs(g

2
L + g2

R)NcC
2
F

2N2
c s

1− ε
ε̄

[ 1 + τ 2

[1− τ ]+
+

3

2
δ(1− τ)

]
. (5.18)

The counter-term contains both collinear and soft divergences. The soft divergence multiplies
δ(1− τ), allowing it to be easily combined with the soft/virtual corrections.

Hard Contribution Combining the matrix elements for qq̄ → gG and the PDF counter-term
results in an expression which is finite for τ 6= 1. We verify that the remaining terms proportional
to δ(1 − τ) cancel the IR divergences in the virtual corrections, Eq. (4.88). What remains is the
finite contribution to the hard scattering cross section,

σfinite
real g =

αs
4π

σ0

M2

{
δ(1− τ)

{
Nc

(
− 2 + 2 log

µ2

s

)
+ CF

(
− 6− π2 − 4 log

µ2

s
+ 2
[

log
µ2

s

]2)}

+
[ 1

1− τ
]

+

{
Nc

(2

3
τ 3 − 10

3
τ 2 − 10

3
τ + 2

)
+ CF

(
− 4τ 3 + 6τ 2 − 2− 8τ 2 log

µ2

s

)}

+
[ log(1− τ)

1− τ
]

+
8CF

(
τ + τ 3

)
+Nc

(
2τ 2 − 2

)

+CF

(
2 + 2τ − 4τ 2 + (4τ 2 − 4τ) log

µ2

s

)}
. (5.19)

5.2 qg → qG (Light Quarks)

In computing the hard scattering cross section for qg → qG, we denote by p1 and (p2, ν) the
incoming quark and gluon respectively; (p3, µ) and p4 correspond to the KK gluon and the outgoing
quark. We focus the discussion on qg → qG since the cross section for q̄g → q̄G is the same as for
qg → qG. There are three Feynman diagrams we denote by s-channel, t-channel, and u-channel,

5.2 qg ! qG (Light Quarks)

In computing the hard scattering cross section for qg ! qG, we denote by p1 and (p2, ⌫) the
incoming quark and gluon respectively; (p3, µ) and p4 correspond to the KK gluon and the outgoing
quark. We focus the discussion on qg ! qG since the cross section for q̄g ! q̄G is the same as for
qg ! qG. There are three Feynman diagrams we denote by s-channel, t-channel, and u-channel,

+ + (5.21)

The three amplitudes simplify to,

MS = gsµ
✏Csū4Nµ⌫

s u1✏
?
3µ✏2⌫ (5.22)

MT = gsµ
✏Ctū4Nµ⌫

t u1✏
?
3µ✏2⌫ (5.23)

MU = gsµ
✏Cuū4Nµ⌫

u u1✏
?
3µ✏2⌫ (5.24)

where we have used the Ward identity to simplify MU , and,

Cs = �T aT b

s
Nµ⌫

s = �µ(/p1
+ /p2

)�⌫ [gV + gA�5] (5.25)

Ct = �T bT a

t
Nµ⌫

t = �⌫(/p1
� /p3

)�µ[gV + gA�5] (5.26)

Cu =
iT cfabc

u � M2
Nµ⌫

u =
h
⌘µ⌫(/p2

+ /p3
) � 2pµ

2�
⌫ � 2p⌫3�

µ
i
(gV + gA�5). (5.27)

The amplitude is squared and summed/averaged over spins and colors. The necessary angular
integrals to determine the cross section are tabulated in Appendix A.3. The result contains no
soft singularities, but does include collinear ones.

Collinear Divergences and Counter-term The hard scattering matrix element is given by,

Hgq = �real
gq � ↵s

⇡
�

(1)
g!q̄ ⌦ �LO (5.28)

The subtracted term on the right side of the equation is the counter-term:

�CT
gq (⌧) =

(g2
V + g2

A)↵sC
2
F

2(N2
c � 1)M2

⇣1

✏̄
� 1
⌘
(2⌧ 3 � 2⌧ 2 + ⌧). (5.29)

Hard Contribution Combining the counter-term with the real emission diagrams leads to a
result which is finite:

�finite
real q =

↵s

4⇡

�0

2CF M2


CF

⇢
⌧ + 6⌧ 2 � 7⌧ 3 + (�2⌧ + 4⌧ 2 � 4⌧ 3)

✓
log

sµ2

(s � M2)2

◆�

+Nc

⇢
4 + 4⌧ + 2⌧ 2 � 4⌧ 3 + (4⌧ 2 + 4⌧) log ⌧

��
. (5.30)

The expression for �finite
real q̄ is identical.
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The three amplitudes simplify to

MS = gsµ
εCsū4Nµν

s u1ε
?
3µε2ν (5.20)

MT = gsµ
εCtū4Nµν

t u1ε
?
3µε2ν (5.21)

MU = gsµ
εCuū4Nµν

u u1ε
?
3µε2ν , (5.22)

where we have used the Ward identity to simplify MU , and where

Cs = −T
aT b

s
Nµν
s = γµ(/p1

+ /p2
)γν [gV + gAγ5] (5.23)

Ct = −T
bT a

t
Nµν
t = γν(/p1

− /p3
)γµ[gV + gAγ5] (5.24)

Cu =
iT cfabc

u−M2
Nµν
u =

[
ηµν(/p2

+ /p3
)− 2pµ2γ

ν − 2pν3γ
µ
]

(gV + gAγ5). (5.25)

The amplitude is squared and summed/averaged over spins and colors. The necessary angular
integrals to determine the cross section are tabulated in Appendix A.3. The result contains no
soft singularities, but does include collinear ones.

Collinear Divergences and Counter-term The hard scattering matrix element is given by,

Hgq = σreal
gq −

αs
π
φ

(1)
g→q̄ ⊗ σLO (5.26)

The subtracted term on the right side of the equation is the counter-term:

σCTgq (τ) =
(g2
V + g2

A)αsC
2
F

2(N2
c − 1)M2

(1

ε̄
− 1
)

(2τ 3 − 2τ 2 + τ). (5.27)

Hard Contribution Combining the counter-term with the real emission diagrams leads to a
result which is finite:

σfinite
real q =

αs
4π

σ0

2CFM2

[
CF

{
τ + 6τ 2 − 7τ 3 + (−2τ + 4τ 2 − 4τ 3)

(
log

sµ2

(s−M2)2

)}

+Nc

{
4 + 4τ + 2τ 2 − 4τ 3 + (4τ 2 + 4τ) log τ

}]
. (5.28)

The expression for σfinite
real q̄ is identical.

5.3 tg → tG

Following the m-ACOT prescription, we retain the heavy quark mass in computing the processes
where a top quark fuses with one or more initial state gluons. As a result, there is no need to
dimensionally continue the phase space integral, as the collinear singularities are regulated by the
presence of the top mass. The computation proceeds similarly to the light quark case of Section 5.2
in terms of s, t, and u-channel Feynman diagrams, with amplitudes:

MS = gsµ
εCsū4Nµν

s u1ε
?
3µε2ν , MT = gsµ

εCtū4Nµν
t u1ε

?
3µε2ν , MU = gsµ

εCuū4Nµν
u u1ε

?
3µε2ν . (5.29)
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In this section,

Cs = − T aT b

s−m2
t

Nµν
s = γµ(/p1

+ /p2
+mt)γ

ν [gV + gAγ5] (5.30)

Ct = − T bT a

t−m2
t

Nµν
t = γν(/p1

− /p3
+mt)γ

µ[gV + gAγ5] (5.31)

Cu =
iT cfabc

u−M2
Nµν
u =

[
ηµν(/p2

+ /p3
)− 2pµ2γ

ν − 2pν3γ
µ
]

(gV + gAγ5). (5.32)

In evaluating the cross section, we drop the small corrections of order mt/M or mt/s. The collinear
behavior manifests as large logs of the form log s/m2

t or log(1−M2/s+m2
t/s).

Counter-term As in the massless case, the collinear logs have been absorbed into the top PDF
and are subtracted from the hard matrix cross section by the counter-term:

σCTgt (s) = −αs(g
2
V + g2

A)NcC
2
F

2Nc(N2
c − 1)M2

log
µ2

m2
t

(
2τ 3 − 2τ 2 + τ

)
. (5.33)

Combining the counter-term with the cross section for tg → tG, we find that the collinear logs all
cancel, leaving behind a finite contribution,

σfinite
real t =

αs
4π

σ0

2M2CF

(
CF

{
− 1 + 4τ − 3τ 3 +

[
−2τ + 4τ 2 − 4τ 3

](
log

sµ2

(s−M2 +m2
t )

2

)}

+Nc

{
4τ 3 − 7τ 2 + 8τ − 5 + (4τ 2 + 4τ) log τ + (4τ 2 − 4τ 3) log

(
s−M2 +m2

t

s−M2 −m2
t

)})
.

(5.34)

Once again the expression for σfinite
real t̄ is identical.

Comparison to Light Quarks In the massless case, O(ε) terms which multiply 1/ε poles
contribute to the finite cross section, but are absent in the top quark contribution. As a result
we observe that although the coefficients of the logarithms match the expression in (5.28), the
simple polynomials in τ do not. While these artifacts of the m-ACOT scheme markedly change
the quark emission cross section, the effect on the inclusive cross section is small: the real quark
contributions are themselves a small correction to the leading-logarithm cross section.

6 NLO KK Gluon Cross Section

We assemble the real and virtual corrections into the full NLO+NLL cross section at O(αs) and
O(g2

L + g2
R) and examine the theoretical predictions for KK gluon production as a function of its

mass at a 100 TeV proton-proton collider. The rate for pp → G + X at NLO is computed by
convolving the hard scattering matrix elements with the appropriate PDFs,

σ(pp→ G+X) =
∑

q

∫ 1

0

dx1dx2

(
fq(x2, Q

2)fq̄(x1, Q
2)σqq̄ + fq(x1, Q

2)fg(x2, Q
2)σqg

+ fq̄(x1, Q
2)fg(x2, Q

2)σq̄g +
{
x1 ↔ x2

})
. (6.1)
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The integral over the momentum fractions x1 and x2 is more conveniently transformed into one
over τ and y:

x1 ≡
√
τ0

τ
ey, x2 ≡

√
τ0

τ
e−y, where τ0 ≡

M2

S
, τ =

M2

x1x2S
=

τ0

x1x2

, (6.2)

where S is the pp center of mass energy and with
∫ 1

0

dx1dx2 →
∫ τ0

1

dτ

∫ y0

−y0
dy
τ0

τ 2
. (6.3)

The limits on the y integral are:

y0(τ) =
1

2
log

τ0

τ
. (6.4)

The hard scattering cross section σq̄q is given by:

σq̄q = σLO + σfinite
real + σfinite

virt . (6.5)

which are found in Equations (3.3), (4.89), and (5.19), respectively. For the five light flavors of
quark (q = u, d, s, c, b), the expressions for σqg and σq̄g are given by Eq. (5.28).

The m-ACOT scheme dictates that we retain the top quark mass in the process tg → tG, which
changes the limits of integration on τ of Equation (6.3) such that its maximum occurs when the
final state top and KK gluon are produced with no additional momentum, shifting it away from 1
to:

τmax =
M2

smin

=
M2

(M +mt)2
. (6.6)

The cross sections σtg and σt̄g are both given by Equation (5.34).

6.1 Sample RS Models

We consider four illustrative sets of couplings based on popular RS models:

1. “Anarchic”: Based on an RS model with flavor-anarchic Higgs Yukawa couplings, which
suggests particular bulk masses for the various quarks, predicting that their couplings gL and
gR (for quarks {u, d, s, c, b, t}) are:

gL
gR

= gs ×
{

(−0.2, − 0.2, − 0.2, − 0.2, + 1.0, + 1.0)
(−0.2, − 0.2, − 0.2, − 0.2, − 0.2, + 4.0)

. (6.7)

2. “Positive Anarchic”: Small changes to the quark couplings can change the relative im-
portance of the NLO corrections. We demonstrate this by modifying the g

(q)
L,R couplings of

the anarchic model such that they are positive:

gL
gR

= gs ×
{

(0.2, 0.2, 0.2, 0.2, 1.0, 1.0)
(0.2, 0.2, 0.2, 0.2, 0.2, 4.0)

. (6.8)

3. “Symmetric”: If one ignores the possibility for a geographic realization of quark flavor,
one can engineer equal vector-like couplings for all quarks:

gL = gR = 0.5× gs. (6.9)

4. “Top-philic”: If the only composite state is the right-handed top quark [11], there is typ-
ically a ρ-like state with large coupling to it, and very suppressed couplings to the light
quarks:

gtR ' 2π; all other couplings ' zero. (6.10)
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Figure 3: Inclusive production cross section at NLO/NLL as a function of KK gluon mass M , with
the coupling constants from the example models discussed in the text.

6.2 NLO Production Cross Section

For our four benchmark coupling sets, we evaluate the NLO production cross section at a
√
S =

100 TeV pp collider. We perform integrals numerically using the VEGAS package, together with
the 6-flavor PDFs generated by NNPDF 3.0 [54]. At

√
S = 100 TeV and x ∼ 0.1, the uncertainty

of the PDF luminosities can exceed 10% [55].
In Figure 3, we show results for the cross section with the NLO and NLL corrections included.

Cross sections fall from around ∼ 1 nb for masses around 5 TeV to around ∼ 100 fb for masses
around 20 TeV, and depend strongly on the model determining the couplings. Despite the poten-
tially strong coupling to the top quark, the small top quark PDF at

√
S = 100 TeV causes the

light quarks to dominate the cross section in many models. To demonstrate the relative impor-
tance of the NLO corrections, in Figure 4 we plot for each coupling choice the K-factor, defined
as σNLO/σLO. For both plots we have set the factorization scale µF , and the renormalization scale
µR, to the KK gluon mass M . We observe that the K-factor is typically below one, and is as low
as ∼ 0.7 for the positive anarchic model.

In Figure 5 we examine the dependence on the scale µ = µF = µR of the LO and NLO cross
sections for production of a 10 TeV KK gluon in our various coupling scenarios. We observe that
the NLO scale dependence is somewhat stronger than the LO scale dependence, indicating that
LO scale variation would likely underestimate the uncertainty from higher order contributions, and
that it would be useful to consider NNLO corrections in the future. If one uses the “rule of thumb”
variation between M/2 to 2M to estimate the scale uncertainty, it yields an estimate of around
−30% to +17% for the anarchic model, and smaller uncertainties for our other benchmark coupling
choices. Also evident in the figure is the fact that the anarchic and positive-anarchic models (whose
couplings differ only by a sign) have the same LO cross sections, but are distinguished at NLO
where interference results in sensitivity to the relative signs of the couplings.
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Figure 4: K-factors as a function of mass, for the representative models discussed in the text. The
σNLO shown above includes the NLL and NLO contributions to the cross section.

7 Conclusion

A 100 TeV proton collider with a few fb−1 integrated luminosity is able to produce KK gluons with
O(10 TeV) masses. Such particles occur commonly in theories of strong dynamics, such as the
duals to the 5D weakly-coupled RS models. KK gluons are perhaps the most effective diagnostics
of such models, with relatively large coupling to quarks. In many such constructions, the coupling
to the top quark is particularly strong. Understanding the results of experimental searches requires
precise theoretical predictions for their production rates. In this work, we have computed higher
order corrections to their production in a six-flavor scheme which treats the top quark as a parton.

In agreement with earlier studies [43,44], we find that the NLO corrections are typically negative
for the canonical scale choice µF = µR = M , leading to K-factors of order 0.7, depending on
the pattern of coupling to the quarks. The NLO/NLL calculations exhibit somewhat more scale
dependence (of order 20%) compared to the LO approximation, and are thus important to estimate
this theoretical systematic uncertainty.

A detailed experimental study considering high mass resonances decaying to a pair of top
quarks at 100 TeV [46] assumes 10 ab−1 of integrated luminosity. They find that σ× BR of about
4 fb can probed by such a machine, leading to the conclusion that KK gluons of masses up to
about 20 TeV can be discovered. Our higher order corrections suggest a more accurate estimate
would be more like 18.5 TeV. While this is less, it nonetheless argues that such a machine offers
an unparalleled opportunity to probe strongly coupled theories.

Acknowledgments

TMPT is grateful for conversations with S. Chivukula and especially A. Farzinnia concerning their
work in Ref. [44]. This research was supported in part by NSF grant PHY-1316792 and by the
University of California, Irvine through a Chancellor’s Fellowship.

25



S = 100 TeV

ΜR = ΜF

0.2 0.5 1.0 2.0 5.0

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0

Factorization scale ΜF @in units of MKKD

C
ro

ss
se

ct
io

n
@pb

D
Cross section at LO and NLO for 10 TeV KK gluon

Symm. ΣLO

Symm. ΣNLO

Anarc. ΣLO

Anarc. ΣNLO

AnH+L ΣLO

AnH+L ΣNLO

Top ΣLO

Top ΣNLO

Figure 5: Scale-dependence of the LO and NLO/NLL cross section for 10 TeV KK gluon production.

A Integrals

A.1 Passarino-Veltman Decomposition

We follow the Passarino-Veltman reduction as described in [51]. In the loop diagrams of Section 4.2,
we need only the three C0 functions defined below:

C0[p2
1, p

2
2, q

2; 0, 0, 0] = µ2ε

∫
ddk

(2π)d
1

k2(k + p)2(k + q)2
(A.1)

C0[p2
1, p

2
2, q

2; 0, 0,M2] = µ2ε

∫
ddk

(2π)d
1

k2(k + p)2 [(k + q)2 −M2]
(A.2)

C0[p2
1, p

2
2, q

2; 0,M2, 0] = µ2ε

∫
ddk

(2π)d
1

k2 [(k + p)2 −M2] (k + q)2
. (A.3)

From now on we suppress the momenta inputs to C0[. . .]. Note that p2
1 = p2

2 = 0, and q2 = M2 for
all diagrams in Section 4.2.

The first function, C0[0, 0, 0], corresponds to “Diagram A,” where only massless particles run
in the loop. This function is given in Appendix E of [51]:

C0[0, 0, 0] =
i

(4π)2

1

M2

([
1

ε̄2
− π2

12

]
+

1

ε̄
log
−µ2

M2
+

1

2
log2 −µ2

M2

)
. (A.4)

Many authors, including [51], include this factor of −π2/12 in their definition of 1/ε2. This choice
has no effect on how the total cross section is written, because all factors of 1/ε2 cancel each other.
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Derivation of C0[0, 0,M2] Diagrams B and C both use C0[0, 0, q2; 0, 0,M2].

C0[0, 0,M2] = µ2ε

∫
ddk

(2π)d
1

k2(k + p)2 [(k + q)2 −M2]
(A.5)

C0[0, 0,M2] = µ2ε

∫ 1

0

dxdydzδ(1− x− y − z)

∫
ddk

(2π)d
2!

D3
; (A.6)

D ≡ xk2 + y(k + p)2 + z(k + q)2 − zM2 (A.7)

= k2 + 2k · (yp+ zq) + yp2 + z(q2 −M2)

≡ `2 − (yp+ qz)2. (A.8)

We define ` = k+ yp+ zq and use the on-shell conditions to simplify p2 and q2. We define ∆ such
that:

∆ ≡ M2(yz + z2). (A.9)

C0[0, 0,M2] = µ2ε

∫ 1

0

dz

∫ 1−z

0

dy

∫
dd`

(2π)d
2

(`2 −∆)3
(A.10)

= µ2ε −i
(4π)2

(
4π

M2

)ε
Γ(1 + ε)

∫ 1

0

dz

∫ 1−z

0

dy

[
1

yz + z2

]1+ε
1

M2
(A.11)

=
−i

M216π2

(
4πµ2

M2

)ε
Γ(1 + ε)

∫ 1

0

dz

(
1

z

)1+ε [
1−ε − z−ε
−ε

]
(A.12)

=
i

16π2

Γ(1 + ε)

M2ε

(
4πµ2

M2

)ε [
Γ(−ε)Γ(1)

Γ(1− ε) −
Γ(−2ε)Γ(1)

Γ(1− 2ε)

]
(A.13)

C0[0, 0,M2] =
i

(4π)2

( −1

2M2

)[
1

ε̄2
+

log(µ2/M2)

ε̄
+

1

2
log2 µ2

M2
+
π2

12

]
. (A.14)

Derivation of C0[0,M2, 0] The loop integral of Diagram D is distinct from the others, and is
not IR divergent.

C0[0,M2, 0] = µ2ε

∫
ddk

(2π)d
1

k2 [(k + p)2 −M2] (k + q)2
(A.15)

C0[0,M2, 0] = µ2ε

∫ 1

0

dxdydzδ(1− x− y − z)

∫
ddk

(2π)d
2!

D3
; (A.16)

D ≡ xk2 + y(k + p)2 − yM2 + z(k + q)2 (A.17)

= k2 + 2k · (yp+ zq) + y(p2 −M2) + zq2 (A.18)

= `2 −
[
(yp+ zq)2 + yM2 − zq2

]
= `2 −∆, (A.19)

∆ = M2(yz + y − z + z2) + iε, (A.20)

with `µ = kµ+ypµ+zqµ. The iε term is useful for keeping track of branch cuts in the polylogarithms
that appear in the integral. This integral not UV divergent, and the IR divergences cancel. While
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ε may be used to regulate the IR divergences, this is not necessary.

C0[0,M2, 0] =
−i

(4π)2

(
4πµ2

M2

)ε
Γ(1 + ε)

∫ 1

0

dz

∫ 1−z

0

dy
1

M2

[
1

y(1 + z)− z + z2 − iε

]1+ε

(A.21)

=
−i

(4π)2

(
4πµ2

M2

)ε
Γ(1 + ε)

M2
· I (A.22)

I =

∫ 1

0

dz

∫ 1−z

−z(1−z)

dy′

1 + z

(
1

y′ − iε

)1+ε

=

∫ 1

0

dz

1 + z
Iy(z), (A.23)

Iy =

∫ 1−z

+z(1−z)
dy′
(

1

y′ − iε

)1+ε

+

∫ z(1−z)

−z(1−z)
dy′
(

1

y′ − iε

)1+ε

(A.24)

= log

(
1− z
z(1− z)

)
+ iπ +O(ε) +O(ε). (A.25)

I =

∫ 1

0

dz

1 + z

[
log

(
1

z

)
+ iπ

]
= −

∫ 1

0

dz
[log(−z)]?

1 + z
= −

∫ 2

1

dz′
[log(1− z′)]?

z′

(A.26)

Integrating this last term requires the use of polylogarithms, Lin(x), and their recursive relation-
ship:

d

dx
Lin(x) =

1

x
Lin−1(x) Li1(x) = − log(1− x). (A.27)

Replacing Li2(1) with its analytic expression produces the following expression for C0[0,M2, 0].

C0[0,M2, 0] =
i

(4π)2

1

M2

[
π2

6
− Li2(2)

]?
. (A.28)

The real parts of the three scalar functions calculated above match the results from Package X 1.0.4 [50].

A.2 Scaleless Loop Integral

One may show explicitly that the scaleless loop integral is zero by adding and subtracting a term
with a nonzero mass. This splits the expression into a term that is strictly IR-divergent and a
term that is strictly UV-divergent.

∫
dd`

(2π)2

1

(l2)2
=

∫
dd`

(2π)2

[ 1

(l2)2
− 1

(`2 −M2)2
+

1

(`2 −M2)2

]
; (A.29)

[ 1

(`2)2
− 1

(`2 −M2)2

]
=

`4 − 2`2M2 +M4 − `4

`2(`2 −M2)
(A.30)

=

∫ 1

0

dy
y(1− y)Γ(4)(M4 − 2`2M2)

(`2 − yM2)4
. (A.31)

The Euler beta function simplifies the integral in y.
∫

dd`

(2π)2

∫ 1

0

dy
y(1− y)Γ(4)(M4 − 2`2M2)

(`2 − yM2)4

=
Γ(4)i

(4π)d/2Γ(4)

∫ 1

0

dy(1− y)y
[M4Γ(2 + ε)

(yM2)2+ε
+

2M2Γ(1 + ε)(2− ε)
(yM2)1+ε

]
(A.32)

=
iΓ(1 + ε)

(4π2)

( 4π

M2

)ε[(1 + ε)Γ(−ε)Γ(2)

Γ(2− ε) +
(4− 2ε)Γ(1− ε)Γ(2)

Γ(3− ε)
]
; (A.33)
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The scaleless integral is identically zero in the ε→ 0 limit:

∫
dd`

(2π)2

1

(`2)2
=

i

(4π)2

( 4π

M2

)ε[Γ(1 + ε)(1 + ε)Γ(−ε)
Γ(2− ε) +

(4− 2ε)Γ(1 + ε)Γ(1− ε)
Γ(3− ε) + Γ(ε)

]

=
i

(4π)2

( 4π

M2

)ε[(
− 1

ε
+ γE − 2

)
+ (2) +

(1

ε
− γE

)]
(A.34)

∫
dd`

(2π)2

1

(`2)2
= 0. (A.35)

A.3 Tables of Phase Space Integrals

We use the tabulated integrals of [53] to integrate over the angular coordinates. In the first case
the KK gluon is produced with a massless gluon or quark; in the second case, with a top quark of
mass mt.

∫
dΘ 1 = 2π

∫
dΘ

1

t
=

2π

(s−M2)

1

ε∫
dΘ t = π(M2 − s)

∫
dΘ

1

u
=

2π

(s−M2)

1

ε∫
dΘ u = π(M2 − s)

∫
dΘ (u−M2) = −π(M2 + s)

∫
dΘ t2 =

2π

3
(s−M2)2

∫
dΘ

1

(u−M2)2
=

2π

s ·M2

∫
dΘ u2 =

2π

3
(s−M2)2

∫
dΘ

1

(u−M2)
=

2π

(s−M2)
log(M2/s)

∫
dΘ

1

tu
=

−4π

(s−M2)2

1

ε

∫
dΘ

1

t(u−M2)
=

−2π

s(s−M2)

(1

ε
+ log(M2/s)

)

Table 1: Table of integrals for massless quark or gluon emission.

In the massive quark case, the following constants appear in the loop integrals shown in Table 2:

a = −(s−m2
t )(s+m2

t −M2)

2s
(A.36)

b =
s−m2

t

2s

√
(s−m2

t −M2)
2 − 4m2

tM
2 = −β4a (A.37)

A = −(s−m2
t )(s−m2

t +M2)

2s
(A.38)

B = −s−m
2
t

2s

√
(s−m2

t −M2)
2 − 4m2

tM
2 = −b (A.39)

√
X =

(s−m2
t )

2

2s

√
(s−M2 −m2

t )
2 − 4M2m2

t = (s−m2
t )b. (A.40)
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∫
dΘ 1 = 2π

∫
dΘ

1

t−m2
t

1

u−M2
=

π√
X

log

[
aA− bB +

√
X

aA− bB −
√
X

]

∫
dΘ (t−m2

t ) = 2πa

∫
dΘ (u−M2) = 2πA

∫
dΘ

1

t−m2
t

=
π

b
log

a+ b

a− b

∫
dΘ

1

u−M2
=
π

B
log

A+B

A−B
∫
dΘ

(
1

t−m2
t

)2

=
2π

a2 − b2

∫
dΘ

(
1

u−M2

)2

=
2π

A2 −B2

Table 2: Table of angular integrals for massive quark emission.
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