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R. Subedi,12 V. Sulkosky,9, 10 W. A. Tobias,12 W. Troth,22 D. Wang,12 Y. Wang,28 B. Wojtsekhowski,10 X. Yan,33

H. Yao,1, 7 Y. Ye,33 Z. Ye,13 L. Yuan,13 X. Zhan,9 Y. Zhang,34 Y.-W. Zhang,34, 17 B. Zhao,7 and X. Zheng12

(Jefferson Lab Hall A Collaboration)
1Temple University, Philadelphia, PA 19122

2University of Massachusetts, Amherst, MA 01003
3Carnegie Mellon University, Pittsburgh, PA 15213

4Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, WA 98195
5University of Kentucky, Lexington, KY 40506

6Argonne National Lab, Argonne, IL 60439
7College of William and Mary, Williamsburg, VA 23187

8Duquesne University, Pittsburgh, PA 15282
9Massachusetts Institute of Technology, Cambridge, MA 02139

10Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
11Old Dominion University, Norfolk, VA 23529

12University of Virginia, Charlottesville, VA 22904
13Hampton University, Hampton, VA 23187

14Seoul National University, Seoul, South Korea
15INFN, Sezione di Roma, I-00161 Rome, Italy

16Istituto Superiore di Sanità, I-00161 Rome, Italy
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26Jožef Stefan Institute, Ljubljana, Slovenia
27Seoul National University, Seoul 151-742, South Korea

28University of Illinois at Urbana-Champaign, Urbana, IL 61801
29Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125

30Syracuse University, Syracuse, NY 13244
31Yerevan Physics Institute, Yerevan 375036, Armenia
32University of Ljubljana, SI-1000 Ljubljana, Slovenia

33University of Science and Technology of China, Hefei 230026, People’s Republic of China
34Lanzhou University, Lanzhou 730000, Gansu, People’s Republic of China

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where
a precision measurement of the twist-3 matrix element d2 of the neutron (dn2 ) was conducted. The
quantity dn2 represents the average color Lorentz force a struck quark experiences in a deep inelastic
electron scattering event off a neutron due to its interaction with the hadronizing remnants. This
color force was determined from a linear combination of the third moments of the 3He spin structure
functions, g1 and g2, after nuclear corrections had been applied to these moments. The structure
functions were obtained from a measurement of the unpolarized cross section and of double-spin
asymmetries in the scattering of a longitudinally polarized electron beam from a transversely and
a longitudinally polarized 3He target. The measurement kinematics included two average Q2 bins
of 3.2GeV2 and 4.3GeV2, and Bjorken-x 0.25 ≤ x ≤ 0.90 covering the deep inelastic and resonance
regions. We have found that dn2 is small and negative for

〈

Q2
〉

= 3.2GeV2, and even smaller



2

for
〈

Q2
〉

= 4.3GeV2, consistent with the results of a lattice QCD calculation. The twist-4 matrix
element fn

2 was extracted by combining our measured dn2 with the world data on the first moment in
x of gn1 , Γ

n
1 . We found fn

2 to be roughly an order of magnitude larger than dn2 . Utilizing the extracted
dn2 and fn

2 data, we separated the Lorentz color force into its electric and magnetic components, F y,n

E

and F y,n

B , and found them to be equal and opposite in magnitude, in agreement with the predictions
from an instanton model but not with those from QCD sum rules. Furthermore, using the measured
double-spin asymmetries, we have extracted the virtual photon-nucleon asymmetry on the neutron
An

1 , the structure function ratio gn1 /F
n
1 , and the quark ratios (∆u+∆ū)/(u+ū) and (∆d+∆d̄)/(d+d̄).

These results were found to be consistent with DIS world data and with the prediction of the
constituent quark model but at odds with the perturbative quantum chromodynamics predictions
at large x.

PACS numbers: 12.38.Aw, 12.38.Qk, 13.88.+e, 14.20.Dh

I. INTRODUCTION

A. Overview of nucleon structure

Experiments utilizing the scattering of leptons from
nucleons have been instrumental in uncovering the com-
plex structure of subatomic matter over the past half
century. In the mid-1950s, elastic scattering of electrons
from hydrogen revealed that the proton is not a point-
like particle but has internal structure [1]; in the 1970s,
deep-inelastic scattering (DIS) of electrons from hydro-
gen showed that point-like particles, labeled “partons,”
are the underlying constituents of the proton [2]. These
partons were later identified as quarks and gluons in the
modern theory of strong interactions, quantum chromo-
dynamics (QCD) [3].
Since the late 1970s, scattering of polarized lepton

beams from polarized nucleons and polarized light nu-
clear targets (deuterium and 3He) has given us the op-
portunity to probe the spin structure of the nucleon en-
coded in the g1 and g2 spin-structure functions. In par-
ticular, worldwide DIS studies focusing on g1 as a func-
tion of both Bjorken-x and Q2 allowed the determination
of the fraction of the proton spin that is carried by the
quarks [4, 5] and by the gluons [6, 7]. Here, x is inter-
preted as the fractional momentum of the parent nucleon
carried by the struck quark in the infinite momentum
frame, and Q2 ≡ −q2 is the four-momentum transferred
to the target squared.
Early theoretical work [8] has shown that the g1(x,Q

2)
and g2(x,Q

2) spin-structure functions contain informa-
tion on quark-gluon correlations. These dynamical effects
are accessible through the Q2-variations of these func-
tions beyond those of the calculable perturbative QCD
(pQCD) radiative corrections [9]. In fact, they appear
in an expansion of both the measured g1 spin-structure
function and its moments in x in powers of 1/Q2, but
only at higher order. In contrast, in the measured g2
spin-structure function, quark-gluon interactions are ac-

∗ flay@umass.edu
† Deceased
‡ meziani@temple.edu

cessible at leading order in a similar expansion and thus
suffer no 1/Q2 suppression. This makes measurements
of g2 particularly sensitive and important for studying
multi-parton correlations in the nucleon.
Studies of the moments in x of spin-structure functions

have resulted in fundamental tests of QCD like that of
the Bjorken sum rule [10]; here, not only do they of-
fer an opportunity to test our understanding of pQCD
beyond the simple partonic picture, but they also allow
for measured observables to be tested against ab initio

calculations of lattice QCD. While there is a wealth of
data available for g1, fewer data exist for g2—especially
in the valence region. This region provides the dominant
contribution to higher moments. These moments are of
interest because the contribution arising from the lower-
x region of integration, where the structure functions are
unknown, is small. Thus these higher moments offer ro-
bust experimental results relevant for a comparison with
lattice QCD, for example. Finally, it is worth noting that
high-precision data of the g1 nucleon structure function
in the valence region of deep inelastic scattering—namely
x ≥ 0.6—are still sparse, and every new data set with
good precision offers a real possibility to test nucleon
models in a domain sensitive to those models’ parame-
ters.

B. The g2 structure function and quark-gluon

correlations

While the polarized structure function g2 has no clear
interpretation in the quark-parton model [11], it is known
to contain quark-gluon correlations, and can be decom-
posed as:

g2
(

x,Q2
)

= gWW
2

(

x,Q2
)

+ ḡ2
(

x,Q2
)

, (1)

where ḡ2 is the component of g2 that contains the quark-
gluon correlations [8], given by [12]:

ḡ2
(

x,Q2
)

=

∫ 1

x

∂

∂y

[mq

M
hT
(

x,Q2
)

+ ξ
(

y,Q2
)

] dy

y
.(2)

Here, hT denotes the transversity distribution in the nu-
cleon [13], ξ the quark-gluon correlation function, mq the
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quark mass of flavor q and M the nucleon mass. The
quantity gWW

2 in Eq. 1 is the Wandzura-Wilczek term,
which is fully determined from the knowledge of the g1
structure function [14]:

gWW
2

(

x,Q2
)

= −g1
(

x,Q2
)

+

∫ 1

x

g1
(

y,Q2
)

y
dy. (3)

Under the operator product expansion (OPE) [15], one
can access the effects of quark-gluon correlations via the
third moment of a linear combination of g1 and g2:

d2
(

Q2
)

= 3

∫ 1

0

x2ḡ2
(

x,Q2
)

dx

=

∫ 1

0

x2
[

2g1
(

x,Q2
)

+ 3g2
(

x,Q2
)]

dx. (4)

Because of the x2-weighting, d2 is particularly sensitive
to the large-x behavior of ḡ2. The quantity d2 is related
to a specific twist-3 (τ = 3) matrix element consisting of
local operators of quark and gluon fields [13, 16, 17]:

2MP+P+Sxd2 = g〈P, S|ψ̄(0)γ+G+y(0)ψ(0)|P, S〉,(5)

where P denotes the nucleon momentum, S its spin,
ψ the quark field, and g the QCD coupling constant.
The + superscript indicates the equation is expressed
in light-cone coordinates. In analogy to the electromag-
netic Lorentz force F y that acts on a charged particle,
the gluon field G+y = (Bx − Ey) /

√
2 = F y, where Bx

and Ey are the transverse components of the color mag-
netic and color electric field, respectively; the z direction
is defined by the three-momentum transfer of the virtual
photon [17].
There are two interpretations of d2 in the literature.

The first connects d2 with color electromagnetic fields
induced in a transversely polarized nucleon probed by a
virtual photon. These induced color fields (appearing in
Eq. 5) are represented as color polarizabilities χ [13]:

χE
~S =

1

2M2
〈P, S|ψ†g~a× ~Eψ|P, S〉 (6)

χB
~S =

1

2M2
〈P, S|ψ†g ~Bψ|P, S〉, (7)

where ~a denotes the velocity of the struck quark. Then,
d2 can be expressed as:

d2 =
1

4
(χE + 2χB) . (8)

A second, more recent interpretation shows that the
matrix element connected to d2 represents an average
color Lorentz force F y acting on the struck quark due to
the remnant di-quark system at the instant it is struck
by the virtual photon (cf. Eq. 5):

F y(0) ≡ 〈P, S|ψ̄(0)γ+G+y(0)ψ(0)|P, S〉 (9)

= −M2d2, (10)

where the last equality is true only in the rest frame of
the nucleon [17].
Combining measurements of d2 with the twist-4 matrix

element f2 allows the extraction of the color electric and
magnetic forces F y

E and F y
B [17]:

d2 = − 1

M2
(F y

E + F y
B) (11)

f2 = − 2

M2
(2F y

E − F y
B) . (12)

The quantity f2 is sensitive to quark-gluon correlations,
since it is expressed as a matrix element similar to d2,
containing a mixed quark-gluon field operator [8, 18–20].
The f2 matrix element cannot be measured directly, but
can be extracted from g1 data by utilizing a twist expan-
sion of Γ1, the first moment of g1:

Γ1 ≡
∫ 1

0

g1dx

= µ2 +
M2

9Q2
(a2 + 4d2 + 4f2) +

µ6

Q4

+ O
(

1

Q6

)

+ . . . . (13)

For simplicity the Q2-dependence of the structure func-
tions, matrix elements and µn terms has been omitted in
Eq. 13. The quantity a2 =

∫

x2g1dx is the third moment
of g1, a twist-2 matrix element that has connections to
target mass corrections. The term µ6 is a higher-twist
(τ > 4) term. The quantity µ2 is the twist-2 contribu-
tion, given as:

µ2

(

Q2
)

= Cns

(

Q2
)

(

− 1

12
gA +

1

36
a8

)

+ Cs

(

Q2
) 1

9
∆Σ,

(14)
where Cns and Cs denote the non-singlet and singlet Wil-
son coefficients [21], gA the flavor-triplet axial charge,
a8 the octet axial charge and ∆Σ ≡ ∆Σ

(

Q2 = ∞
)

, the
renormalization group invariant definition of the singlet
axial current. This definition of ∆Σ is used to factorize
all of the Q2 dependence into the Wilson coefficients, as
was done in Refs. [20, 22]. The f2 matrix element can
be extracted from Eq. 13 by first subtracting µ2 from Γ1

and then fitting the result as a function of 1/Q2.
In practice, in order to access the spin-structure func-

tions g1 and g2, we measure experimental asymmetries:

A‖ ≡ σ↓⇑ − σ↑⇑

σ↓⇑ + σ↑⇑
(15)
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=
4α2

MQ2

(1− y)(2− y)

2y2σ0
×

(1− y) sin θ

1 + (1− y) [cos θ + tan (θ/2) sin θ]
×

{

y
1 + (1 − y) cos θ

(1− y) sin θ
g1 − 2 tan (θ/2) g2

}

and

A⊥ ≡ σ↓⇒ − σ↑⇒

σ↓⇒ + σ↑⇒
(16)

=
4α2

MQ2

(1− y)(2− y)

2y2σ0
×

(1− y) sin θ

1 + (1− y) [cos θ + tan (θ/2) sin θ]
×

{yg1 + 2g2} .

The quantity σsS denotes the polarized cross section for
electron spin s and target spin S. The ↑ (↓) indicates
the electron spin parallel (antiparallel) to its momentum,
and ⇑ (⇓) indicates the target spin parallel (antiparallel)
to the electron beam momentum. The ⇐ (⇒) indicates
the target spin perpendicular to the beam momentum,
pointing away from (towards) the side of the beamline
on which the scattered electron is detected. The quan-
tity y = (E−E′)/E is the fractional energy transferred to
the target, with E being the electron beam energy and
E′ the scattered electron energy, with E and E′ mea-
sured in the laboratory frame. The quantity α denotes
the electromagnetic coupling constant and θ the electron
scattering angle. The quantity σ0 is the unpolarized elec-
tron scattering cross section. The dependence of g1, g2
and σ0 on x and Q2 has been suppressed for simplicity.
The two spin structure functions g1 and g2 can be ex-

pressed in terms of the experimental observables A‖, A⊥

and σ0 by combining and inverting Eqs. 16 and 17. Then
the expression for d2 in Eq. 4 can be re-written in terms
of those experimental observables:

d2 =

∫ 1

0

dx
MQ2

4α2

x2y2

(1− y) (2− y)
σ0 × (17)

[

(

3
1 + (1− y) cos θ

(1− y) sin θ
+

4

y
tan (θ/2)

)

A⊥

+

(

4

y
− 3

)

A‖

]

.

The prior world data for dn2 as a function of Q2 [23] are
presented in Fig. 1. The top panel shows measured data
and model calculations without the elastic contribution,
while the bottom panel shows the same data and models
with the elastic contribution included. Resonance mea-
surements from JLab E94-010 [24] and RSS [25], along
with resonance plus DIS data from E01-012 [26], are
shown at Q2 . 3GeV2. At large Q2 towards 5GeV2 are
DIS measurements from SLAC E155x [27] and the com-
bined data from JLab E99-117 and SLAC E155x [28]. In

the latter data set, dn2 was evaluated by combining the
gn2 data from JLab E99-117 with the g2 data of SLAC
E155x, and ḡ2 was assumed to be Q2-independent and
to follow ḡ2 ∝ (1−x)m with m = 2 or 3 for x & 0.78 [27],
for which there were no data from either experiment [28].

The solid curve in Fig. 1 is from a MAID [29] cal-
culation, which uses phenomenelogical fits to electro-
and photoproduction data for the nucleon, extending
from the single-pion production threshold to the reso-
nance/DIS boundary at W = 2GeV. The major reso-
nances are modeled using Breit-Wigner functions to con-
struct the production channels. The bottom panel dis-
plays the results of additional model calculations from a
QCD sum rule approach [30, 31], which in general uses
dispersion relations, combined with the OPE, to inter-
polate between the perturbative and non-perturbative
regimes of QCD. The two calculations presented at Q2 ≈
1GeV2 use a three-quark field with [30] (offset lower in
Q2 in Fig. 1) and without [31] a gluon field. A chiral soli-
ton model [32] is shown, where the nucleon is described
as a non-linear dynamical system consisting of “mesonic
lumps” [32] governed by a U(1)×SU(2)L ×SU(2)R chi-
ral symmetry. Another model displayed is a bag model,
in which the quarks are confined to a nucleon “bag.”
Here, the confinement mechanism of QCD is simulated
using quark-gluon and gluon-gluon interactions [33]. The
model also includes generalized spin-dependent effects
via an explicit symmetry-breaking parameter [34]. A lat-
tice QCD calculation [35] is also presented, which solves
the dynamical QCD equations non-perturbatively on a
discretized lattice. The model calculations that include
the elastic contribution are shown in the lower panel only.
We added the elastic contribution to the MAID model in
the lower panel. Our measurement focused on the mod-
erately large-Q2 region of 3 < Q2 < 5GeV2, where the
elastic contribution is seen to be small (lower panel of
Fig. 1) and where a theoretical interpretation in terms of
twist-3 contributions is cleaner.

While bag [33, 36, 37] and soliton [32] model calcula-
tions of d2 for the neutron yield numerical values con-
sistent with those of lattice QCD [35], prior experimen-
tal data differ by roughly two standard deviations in
the large Q2-range. This is illustrated by the data for
Q2 ≈ 5GeV2 in Fig. 1. This situation called for a ded-
icated experiment for the neutron, JLab E06-014. For
the proton d2, the measurements and models are in bet-
ter agreement [27, 30–33, 35, 38]. These data sets will
be further extended by a recent measurement [39] whose
precision results are expected in the near future. Un-
der the assumption of isospin symmetry, combining the
neutron and proton data would then allow a flavor de-
composition to determine the average color force felt by
the up and down quarks in the proton. Measurements of
d2 access similar forces as those that cause quark confine-
ment. Consequently, such measurements are important
for understanding the dynamics of the constituents of the
nucleon.

Our measurements of the unpolarized cross section σ0
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FIG. 1. (Color online) The world dn2 data as a function of
Q2. Upper panel: Data and models without the elastic con-
tribution. Bottom panel: Data and models with the elastic
contribution included. The experimental resonance data from
JLab E94-010 [24] and RSS [25], along with resonance plus
DIS data from E01-012 [26] are shown at Q2 . 3GeV2, while
at larger Q2 DIS data from SLAC E155x [27] and combined
data from JLab E99-117 and SLAC E155x [28] are shown.
The solid curve is from a MAID [29] calculation, which is dom-
inated by the resonance contribution. Model calculations for
Q2 ≈ 1GeV2 from a QCD sum rule approach from Ref. [30]
(offset lower in Q2) and Ref. [31] are shown. A chiral soliton
model [32] and a bag model [33] are also given. Additionally,
a lattice QCD [35] calculation is shown. The model calcula-
tions that include the elastic contribution are shown in the
lower panel only. We added the elastic contribution to the
MAID model in the lower panel. The elastic contribution to
dn2 is given in the lower panel by the dashed curve, evaluated
using the Cornwall-Norton (CN) moments (see Appendix B)
where the Riordan [40] and Kelly [41] parameterizations are
used for Gn

E and Gn
M , respectively.

and the double-spin asymmetries A‖ and A⊥ allow the
extraction of d2, and in turn, f2. Combining our re-
sults for these higher-twist matrix elements, we obtain
the color electric and magnetic forces F y

E and F y
B . Uti-

lizing our data on g1, we also evaluate the twist-2 matrix
element a2 and test it against lattice QCD calculations.

C. A1 and flavor decomposition

The measurement of the double-spin asymmetries A‖

and A⊥ required for the extraction of d2 also gives ac-
cess to the virtual photon-nucleon asymmetry A1 and the
polarized to unpolarized structure-function ratio g1/F1:

A1 =
1

D(1 + ηξ)
A‖ −

η

d(1 + ηξ)
A⊥ (18)

g1
F1

=
1

d′

(

A‖ + tan
θ

2
A⊥

)

, (19)

where F1(x,Q
2) denotes the unpolarized structure func-

tion andD the virtual photon depolarization factor. This

quantity, along with η, d, ξ and d′ are defined as:

D =
E − ǫE′

E(1 + ǫR)
(20)

η =
ǫ
√

Q2

E − ǫE′
(21)

d = D

√

2ǫ

1 + ǫ
(22)

ξ = η
1 + ǫ

2ǫ
(23)

d′ =
(1− ǫ)(2 − y)

y(1 + ǫR)
, (24)

where R ≡ σL/σT , the ratio of longitudinally to trans-
versely polarized photoabsorption cross sections [42]. and
ǫ denotes the ratio of the longitudinal to transverse po-
larization of the virtual photon:

ǫ =

[

1 + 2
(

1 + γ2
)

tan2
θ

2

]−1

, (25)

with γ2 = (2Mx)
2
/Q2.

The A1 asymmetry is particularly sensitive to the way
that the quark spins combine to give the nucleon spin.
Therefore, A1 is a good discriminator for various model
calculations that aim to describe the spin structure of the
nucleon. Figure 2 shows the previous world data using
3He targets from SLAC E142 [43] and E154 [44], HER-
MES [45], and JLab E99-117 [28, 46] compared to various
models. The SLAC E143 [47] data, which used NH3 and
ND3 targets, has been omitted from the plot due to their
large uncertainties. It is seen that the relativistic con-
stituent quark model (RCQM) [48] describes the trend of
the data reasonably well. The pQCD parameterization
with hadron helicity conservation (HHC) [49] (dashed)—
assuming quark orbital angular momentum to be zero—
does not describe the data adequately. However, the
pQCD parameterization allowing for quark orbital an-
gular momentum to be non-zero [50] (dash-dotted) is in
good agreement with the data, suggesting the impor-
tance of quark orbital angular momentum in the spin
structure of the nucleon. The statistical quark model
(solid) [51], which interprets the constituent partons as
fermions (quarks) and bosons (gluons), adequately de-
scribes the trend of the world data after fitting its param-
eters to a subset of the available data. A modified NJL
model from Cloët et al. (dash triple-dotted) [52] is shown
to fit the data accurately in the large-x region. This NJL-
type model imposes constraints for confinement such that
unphysical thresholds for nucleon decay into quarks are
excluded. Nucleon states are obtained by solving the
Faddeev equation using a quark-diquark approximation,
including scalar and axial-vector diquark states. Rel-
atively recent predictions come from Dyson-Schwinger
Equation (DSE) treatments by Roberts et al. [53], which
reveal non-pointlike diquark correlations in the nucleon
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due to dynamical chiral symmetry breaking. In these
calculations Roberts et al. employ two different types of
dressed-quark propagators for the Faddeev equation: one
where the mass term is momentum-independent, and the
other where the mass term carries a momentum depen-
dence. This yields two different sets of results, referred
to as contact and realistic, respectively. The predictions
for the two approaches are shown at x = 1 (Fig. 2).
We note the contrast between the DSE predictions and
those from pQCD and constituent quark models, where
the latter two predict An

1 → 1 as x → 1. The measure-
ment presented here provides more contiguous coverage
over the region of 0.27 < x < 0.60 compared to the JLab
E99-117 measurement [28, 46].

x
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FIG. 2. (Color online) World data for An
1 from SLAC

E142 [43] and E154 [44], HERMES [45], and JLab E99-
117 [28, 46], compared to various models, including a pQCD-
inspired global analysis (dashed) [49], a statistical quark
model from Bourrely et al. (solid) [51], a pQCD parameteri-
zation including OAM from Avakian et al. (dash-dotted) [50]
and a CQM model from Isgur (gray band) [48]. Also plot-
ted is an NJL-type model from Cloët et al. (dash triple-
dotted) [52]. Predictions from Dyson-Schwinger Equation
(DSE) treatments by Roberts et al. [53] are shown at x = 1.

Even more than A1, the polarized-to-unpolarized
quark parton distribution function (PDF) ratios for the
up quark (u), given by (∆u+∆ū) /(u+ ū) and the down
quark (d), given by

(

∆d+∆d̄
)

/(d+ d̄), allow a high level
of discrimination between theoretical models that de-
scribe the quark-spin contribution to nucleon spin. Such
ratios may be extracted from measurements of g1/F1 at
leading order in Q2 according to:

∆u +∆ū

u+ ū
=

4

15

gp1
F p
1

(

4 +Rdu
)

(26)

− 1

15

gn1
Fn
1

(

1 + 4Rdu
)

∆d+∆d̄

d+ d̄
=

4

15

gn1
Fn
1

(

4 +
1

Rdu

)

(27)

− 1

15

gp1
F p
1

(

1 + 4
1

Rdu

)

,

where Rdu ≡ (d+ d̄)/(u+ ū). Earlier experimental data
for (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄) are shown
in Fig. 3, where the data in the upper (lower) part of
the figure represent the up (down) quark ratio. The data
shown are from HERMES [54] and COMPASS [55], both
semi-inclusive DIS measurements, and JLab experiments
E99-117 [28] and CLAS EG1b [56], both of which are in-
clusive DIS measurements. The semi-inclusive DIS data
from HERMES and COMPASS are constructed from
their published polarized PDF data, where we used the
same unpolarized PDF parameterizations as were applied
in the original analyses: CTEQ5L [57] for the HER-
MES data, and MRST2006 [58] for the COMPASS data.
The uncertainties are thus slightly larger than could be
achieved from the raw data. The dashed curve repre-
sents a next-to-leading order (NLO) QCD global analy-
sis that includes target mass corrections and higher-twist
effects [59], and the dashed-dotted curve represents a
pQCD calculation that includes orbital angular momen-
tum effects [50]. The solid curve shows the statistical
quark model [51], and the dash triple-dotted curve is a
modified NJL model [52]. At x = 1, DSE calculations [53]
are indicated by open stars (crosses) for the up (down)
quark ratios. Clearly, both pQCD models predict that
∆q/q → 1 at large x, which implies that the positive
helicity state of the quark (quark spin aligned with the
nucleon spin) must dominate as x → 1. The data for
(∆u + ∆ū)/(u + ū) are consistent with this prediction;
however, we note that the current (∆d + ∆d̄)/(d + d̄)
data show no sign of turning positive as we approach the
large x region. The Avakian et al. calculation fits the
down quark data better, but still has a zero-crossing at
x ∼ 0.75. The data in Fig. 3 imply that in general, the
up quark spins tend to be parallel to the nucleon spin,
whereas the down quark spins are antiparallel to the nu-
cleon spin. The trend of the down quark data, supported
by the model of Avakian et al., suggests that quark or-
bital angular momentum might play an important role in
the spin of the nucleon. The experiment presented here
aims to provide more complete kinematic coverage for the
down quark, especially in the large-x region approaching
x ∼ 0.6, where the predictions of the pQCD models start
to contrast with those of the constituent quark models
and the DSE calculations.

D. Outline of the paper

The body of this paper is structured as follows: in Sec-
tion II we discuss the experimental setup and the perfor-
mance of the polarized electron beam and of the particle
detectors for JLab E06-014; in Section III, we discuss the
polarized 3He target; in Section IV, the data analysis to
obtain the cross sections and asymmetries is presented.
The nuclear corrections required to extract the neutron
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FIG. 3. (Color online) The world data for the up and down
quark polarized-to-unpolarized PDF ratios. The data shown
are from HERMES [54], a semi-inclusive DIS measurement,
and JLab E99-117 [28], and CLAS EG1b [56], both of which
are DIS measurements. Theoretical curves are from an NLO
QCD analysis from Leader et al. [59] (dashed) and pQCD-
inspired fit from Avakian et al. [50] (dash-dotted). The solid
curve shows a statistical quark model from Bourrely et al. [51]
and the dash triple-dotted curve shows a modified NJL model
calculation from Cloët et al. [52]. The open stars (crosses) at
x = 1 indicate the DSE calculations from Roberts et al. [53]
for up (down) quarks.

results for d2, a2, A1 and g1/F1 are also discussed. In
Section V the results of the experiment are presented. In
particular, 3He results for the unpolarized cross section,
double-spin asymmetries, g1, g2, A1 and g1/F1 are given
in Section VA. In Section VB the results for the neutron
d2 and a2 are presented. Following this, the analysis nec-
essary to obtain the twist-4 matrix element f2, leading
to the extraction of the color forces F y

E and F y
B on the

neutron, is discussed in Section VB3. The quantities A1

and g1/F1 on the neutron are presented in Sections VB4
and VB5, respectively. The flavor separation analysis
to obtain (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄)
is discussed and the results are presented in Section VC.
Concluding remarks are given in Section VI. Appendix A
gives an overview of the DIS kinematics, structure func-
tions and cross sections, while Appendix B discusses the
details of the operator product expansion. Fits to unpo-
larized nitrogen cross sections and positron cross sections
measured in this experiment, used in correcting the mea-
sured e−3He cross section, are presented in Appendix C.
Also presented in that appendix are fits to world proton
data on g1/F1 and A1, needed for the nuclear corrections.
Details for the world Γn

1 data and fitting the higher-twist
component of Γn

1 are given in Appendix D. The system-
atic uncertainties for all results presented in this paper
are tabulated in Appendix E.

II. THE EXPERIMENT

The E06-014 experiment ran in Hall A of Thomas Jef-
ferson National Accelerator Facility (Jefferson Lab or
JLab) for six weeks in five run periods from February
to March of 2009, consisting of a commissioning run
using 1.2GeV electrons, a 5.89GeV run using polar-
ized electrons, a 4.74GeV run using unpolarized elec-
trons, and finally runs using polarized electrons at en-
ergies of 5.89GeV and 4.74GeV. The data at 4.74GeV
and 5.89GeV were the production data sets, which cov-
ered the resonance and deep inelastic valence quark re-
gions, in a kinematic region of 0.25 ≤ x ≤ 0.9 and
2 GeV2 ≤ Q2 ≤ 6 GeV2, shown in Fig. 4.

FIG. 4. (Color online) The E06-014 kinematic coverage in Q2

and x. The lower band represents the E = 4.74GeV data
set and the upper band the E = 5.89GeV one. The black
dashed line shows W = 2GeV. The regions to the left and
right of this line correspond to DIS and resonance kinematics,
respectively.

Polarized electrons were scattered from a polarized 3He
target, which acts as an effective polarized neutron tar-
get [60]. The scattered electrons were detected indepen-
dently in the Left High-Resolution Spectrometer (LHRS)
and in the BigBite Spectrometer, that were oriented at
a scattering angle of θ = 45◦ to the left and right of
the beamline, respectively. The unpolarized cross section
σ0 was extracted from the LHRS data and the double-
spin asymmetries A‖ and A⊥ were obtained from the
BigBite data. The matrix element d2 was computed us-
ing Eq. 17, and the virtual photon asymmetry A1 and
structure function ratio g1/F1 were extracted according
to Eqs. 18 and 19, respectively.
The measurement with the BigBite spectrometer con-

sisted of twenty evenly spaced, continuous bins in x with
a bin width of 0.05 for each beam energy; of these,
seven were discarded because of insufficient statistics.
The statistics in all bins for a given beam energy were
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recorded simultaneously. The LHRS data were acquired
in nine unevenly spaced bins in the scattered electron
momentum p for the E = 4.74GeV run and eleven un-
evenly spaced bins for the E = 5.89GeV run, covering a
range of 0.6 ≤ p ≤ 1.7GeV as listed in Tables I and II.
The statistics in the LHRS were recorded sequentially.
For the d2 extraction, the measured cross sections were
interpolated and extrapolated to match the binning of
the BigBite data.

TABLE I. Kinematic bins for the LHRS for the 4.74 GeV run.
The LHRS momentum setting is labeled as p0.

p0 (GeV) x Q2
(

GeV2
)

0.60 0.215 1.66
0.80 0.301 2.22
1.12 0.458 3.10
1.19 0.496 3.30
1.26 0.536 3.49
1.34 0.584 3.71
1.42 0.634 3.93
1.51 0.693 4.18
1.60 0.755 4.43

TABLE II. Kinematic bins for the LHRS for the 5.89 GeV
run. The LHRS momentum setting is labeled as p0.

p0 (GeV) x Q2
(

GeV2
)

0.60 0.209 2.07
0.70 0.248 2.42
0.90 0.332 3.11
1.13 0.437 3.90
1.20 0.471 4.14
1.27 0.506 4.38
1.34 0.542 4.62
1.42 0.584 4.90
1.51 0.634 5.21
1.60 0.686 5.52
1.70 0.746 5.87

The experimental run plan optimized its statistics on
the d2 integral (Eq. 17) in order to minimize the error
on d2, not on the structure functions g1 and g2. After

the extraction of d
3He
2 , nuclear corrections were applied

(Sec. IVD) to obtain dn2 .

A. The polarized electron beam

The high-energy longitudinally polarized electron
beam is provided by the Continuous Electron Beam Ac-
celerator Facility (CEBAF) at JLab [61]. Polarized elec-
trons are produced by shining circularly polarized laser
light on a strained superlattice GaAs photo-cathode.
This produces electrons with a polarization of up to
∼ 85% at currents up to ∼ 200µA. High-energy electrons
are achieved by two superconducting radio-frequency

(RF) linear accelerators connected by two magnetic re-
circulating arcs. The beam may be circulated around the
racetrack accelerator up to a maximum of five times to
achieve an energy of ∼ 6GeV [61].

B. Beam helicity

To control certain systematic errors associated with
the electron beam polarization during the experiment,
the helicity of the electrons was flipped every 33ms. This
time frame was referred to as a helicity window, and suc-
cessive windows were separated by master pulse signals.
Each window had a definite helicity state in which the
electron spin was either parallel (+) or anti-parallel (−)
to the beam direction. Helicity windows were organized
into quartets, taking the form + −−+ or −++−. The
helicity state of the first window of the quartet was de-
cided by a pseudo-random number generator, and in turn
defined the helicity state for the remaining windows. A
signal indicating the helicity of each window was sent to
the data acquisition (DAQ) systems.
At the electron source an insertable half-wave plate

(IHWP) can be placed in the path of the laser illuminat-
ing the strained GaAs source to reverse the helicity of the
extracted polarized electrons relative to the helicity sig-
nal. This was done for about half of the statistics to min-
imize possible systematic effects due to the helicity bit.
The asymmetry in the amount of charge delivered with
the two helicity states was found to be negligible [62];
this was accomplished using a feedback loop and a spe-
cialized data acquisition system developed by a previous
JLab experiment [63].
To determine the actual sign of the electrons’ helic-

ity state for each window type, a measurement of the
quasi-elastic 3He asymmetry was made and compared to
a theoretical calculation [64]. For more details, see Sec-
tion IVC.

C. Hall A overview

The layout of the Hall A hardware for this experiment
is shown in Fig. 5. Along the beamline are beam diagnos-
tic tools, like the beam current monitors (BCMs), beam
position monitors (BPMs), and the Møller and Comp-
ton polarimeters. A polarized 3He target was utilized as
an effective polarized neutron target. Scattered electrons
were measured independently in the LHRS and the Big-
Bite spectrometers, each equipped with a gas Čerenkov
detector and electromagnetic calorimeters for particle
identification (PID) purposes. In the LHRS quadrupole
and dipole magnets are used to focus charged particles
into the detector stack, while a single dipole magnet
bends charged particles into the BigBite detector stack.
In each spectrometer wire drift chambers are used to re-
construct particle tracks. Each of these elements will be
described in the following sections.
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FIG. 5. (Color online) Overhead view of the experimen-
tal setup for E06-014. The longitudinally polarized electron
beam enters from the left and scatters from the longitudi-
nally or transversely polarized 3He target, which is discussed
in Section III. The Møller and Compton polarimeters provide
beam polarization measurements, presented in Section IID 2.
The LHRS and BigBite spectrometers are positioned at 45◦

with respect to the beamline and detect scattered electrons.

D. The Hall A beamline

The beamline in Hall A contains a number of impor-
tant diagnostic components: BCMs, BPMs and the po-
larimetry apparatus. We first discuss the BCMs and
BPMs in Section IID 1, followed by the beam polariza-
tion measurements in Section IID 2. The measurement
of the beam energy is presented in Section IID 3.

1. Beam charge and position monitoring

The experiment ran at beam currents of ∼15µA. Fluc-
tuations about the required value and beam trips, due to
difficulties in the accelerator or in the other two exper-
imental halls, make it important to monitor the beam
current. To this purpose two BCMs, which are reso-
nant RF cavities, are utilized. These cavities, stainless-
steel cylinders with a Q-factor of ∼ 3000, were tuned
to the fundamental beam frequency of 1.497GHz. The
two BCMs were located 25m upstream of the target,
where one cavity was denoted as upstream and the other
as downstream, based on their relative positions along
the beamline. Each produced a voltage signal that was
proportional to the measured current. Three copies of
the signal were recorded, each amplified by a different
gain factor (1, 3 or 10), resulting in six signals altogether
(three for each cavity) [65]. Each copy of the signal was
amplified by its assigned gain and then sent to a voltage-
to-frequency converter. These signals were calibrated us-
ing a Faraday cup [64]. Each signal was read out by
scalers in the LHRS and BigBite spectrometers.
For accurate vertex reconstruction and proper momen-

tum calculation for each detected electron, the position of

the electron beam in the plane transverse to the nominal
beam direction at the target was needed. The measure-
ment of the beam position was accomplished through the
use of two BPMs. They each consisted of four antenna
arrays placed ∼ 7.5m and ∼ 1.3m upstream of the tar-
get. Pairs of wires were positioned at ±45◦ relative to
the horizontal and vertical directions in the hall. The
signal induced in the wires by the beam was inversely
proportional to the distance from the beam to the wires,
and was recorded by analog-to-digital converters (ADCs).
The differences between the signals in pairs of wires in a
given plane yields a positional resolution of 100µm [66].
Combining the measurements of the two BPMs yields the
trajectory of the beam; extrapolating these data gives the
position at the target. The BPMs were calibrated using
wire scanners called harps. A single harp was located
immediately downstream of each BPM. Harp measure-
ments allow the relative position measurements from the
BPMs to be tied to the Hall A coordinate system. They
interfered with the beam, so dedicated runs called “bull’s
eye” scans were needed. A “bull’s eye” scan consisted of
five measurements with (x, y) data points in the plane
perpendicular to the beam momentum with the beam
positioned at different locations. Four of these points de-
scribed the corners of a 4mm by 4mm square, and the
fifth data point measured the square’s center [64].
In order to avoid damage to the glass target cell due

to beam heating, the beam was rastered (scanned) at
high speeds (17–24kHz) across a large rectangular cross
section

(

≈ 4× 6 mm2
)

at the target. This rectangular
distribution was achieved by two dipole magnets (one for
vertical, one for horizontal) located 23m upstream of the
target [65].

2. Beam polarization measurement

The polarization of the electron beam was measured
using two different polarimeters, a Møller and a Compton
polarimeter. Møller polarimetry utilizes scattering the
polarized electron beam from polarized atomic electrons
in a magnetized iron foil. The scattering rate is propor-
tional to the beam and foil polarizations [65, 67, 68]. Such
a measurement required the insertion of a magnetized
foil into the beam path which inhibited normal data-
taking. A total of seven Møller measurements were made
during the course of the experiment. This method has
sub-percent statistical accuracy, but a sizable systematic
uncertainty mainly due to uncertainty in the target foil
polarization. The total relative systematic uncertainty
on the Møller measurement during this experiment was
∼ 2%.
The Compton polarimeter utilized ~e-~γ scattering to de-

termine the polarization of the electron beam as the in-
teraction is sensitive to the relative polarizations of the
electrons and photons [69, 70]. The newly commissioned
polarimeter consisted of a magnetic chicane which de-
flected the electron beam towards a photon source and
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deflected unscattered electrons back towards the original
beam path. At the center of the chicane was the pho-
ton source, a 700mW laser at a wavelength of 1064nm.
The laser output was 400–500W with a resonant Fabry-
Pérot cavity [71]. The laser polarization for the left- and
right-circular polarization states was 99% ± 0.02% dur-
ing the experiment [64]. There was also an electromag-
netic calorimeter, a Gd2SiO5 (GSO) crystal doped with
cerium, for detecting scattered photons [72]. The elec-
tron detector was not used in this experiment.

The electron polarization was extracted from an asym-
metry in the rate of scattering circularly polarized pho-
tons from the longitudinally polarized electrons, between
two unique spin configurations: electron and photon
spins parallel and antiparallel. The energy-weighted, in-
tegrated asymmetry was measured in a new integrating
DAQ and then combined with the polarimeter’s theoret-
ically calculated analyzing power to determine the elec-
tron beam polarization [72, 73]. Since Compton po-
larimetry is a non-invasive measurement, polarization
measurements could be performed in parallel with data-
taking.

Combining the results of the Møller and Compton mea-
surements for the three production run periods with po-
larized beam resulted in a beam polarization of 74%±1%
(E = 5.89GeV), 79%±1% (E = 5.89GeV) and 63%±1%
(E = 4.74GeV) [64].

3. Beam energy measurement

The beam energy was monitored throughout the exper-
iment using the so-called Tiefenback method [74], which
combined BPMmeasurements and the estimated integral
of the magnetic field produced by the Hall A arc magnets.
This method was calibrated against an invasive “Arc En-
ergy” measurement. This measurement used the results
of a detailed field mapping of all nine arc dipoles (includ-
ing the reference one) after following a controlled exci-
tation. In the actual Arc Energy measurement, all nine
dipoles were excited following the same curve and the
field was measured in the ninth dipole. The actual deflec-
tion of the beam was then measured and the beam energy
was computed from the deviation from the nominal bend
angle of 34.3◦. The uncertainty on such a measurement
was δE/E ≈ 2 × 10−4 [75]. Arc measurements were not
performed during this experiment but were done for the
immediately preceding experiment, E06-010 [76]. Their
arc measurement was used as a reference for the Tiefen-
back measurements. The arc measurement conducted
during E06-010 for ∼ 6GeV beam energies yielded a
value of 5889.4 ± 0.5stat ± 1syst MeV, while the Tiefen-
back measurement yielded 5891.3± 2.5syst MeV [76]. In
our data analysis we used the Tiefenback measurements
without correcting for the difference relative to the arc
measurement, which was ≪ 1%.

E. The spectrometers

1. The Left High-Resolution Spectrometer

The Hall A high-resolution spectrometers were de-
signed for in-depth studies of the structure of nuclei and
nucleons. The LHRS has high resolution in both the mo-
mentum and angle reconstruction of the scattered par-
ticles, in addition to the capability of running at high
luminosity.
At the entrance of the LHRS there are two supercon-

ducting quadrupoles, for focusing the charged particles,
followed by a superconducting dipole magnet that bends
the charged particles upwards through a nominal 45◦

bending angle. After this, the particles pass through a
third quadrupole before entering the detector stack. The
LHRS has an angular acceptance of 6msr, for a hori-
zontal (vertical) angular resolution of 0.5mrad (1mrad).
The momentum acceptance is 10% with a momentum
resolution of 10−4. The designed maximum central mo-
mentum is 4GeV [65].
For E06-014 the LHRS detector stack was composed

of a number of sub-packages, located in the shield hut
at the end of the magnet configuration. The detector
sub-packages included vertical drift chambers (VDCs),
which provided tracking information for scattered parti-
cles, and the S1 and S2m scintillating planes served as
the main trigger. Finally, the gas Čerenkov and the pion
rejector yielded particle identification (PID) capabilities.
The layout of the spectrometer is shown in Fig. 6.

FIG. 6. (Color online) The layout of the Left High-Resolution
Spectrometer in Hall A of Jefferson Lab during E06-014.
Drawing not to scale.

The VDCs allowed precise reconstruction of particle
trajectories. Each chamber had two wire planes contain-
ing 368 sense wires, spaced 4.24mm apart [65]; the wires
were oriented orthogonally with respect to one another.
The two wire planes lay in the horizontal plane of the
laboratory, thus oriented at 45◦ with respect to the cen-
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tral (scattered) particle trajectory. Gold-plated Mylar
high-voltage planes were placed above and below each
wire plane at an operating voltage of -4 kV, thus setting
up an electric field between the high-voltage planes. This
defined a “sense region” for each wire plane. The cham-
bers were filled with a mixture of 62% argon and 38%
ethane by weight. Traversing particles ionized the gas
mixture; the ionization electrons drifted along the field
lines to the closest sense wires, triggering a “hit” signal
in the wires. A central track passing through at an angle
of 45◦ fired five sense wires on average, resulting in a po-
sitional resolution of ∼ 100µm and an angular resolution
of ∼ 0.5mrad [65].

The gas Čerenkov had ten spherical mirrors, each
with a focal length of 80 cm, stacked in two columns of
five. Each mirror was viewed by a photomultiplier tube
(PMT), placed 45 cm from the mirror. The chamber was
filled with CO2 gas at STP with an index of refraction
of 1.00043 [77]. This yielded a momentum threshold for
triggering the gas Čerenkov of ∼ 17MeV for electrons
and ∼ 4.8GeV for pions.

Incident particles were also identified using their en-
ergy deposits in the lead glass shower calorimeter, called
a pion rejector. It was composed of two layers of thirty-
four lead-glass blocks, the first 14.5 cm × 14.5 cm ×
30 cm, the second 14.5 cm × 14.5 cm × 35 cm made
of the material SF-5, which has a radiation length of
2.55 cm [78]. The blocks were stacked so that the long
dimensions of the blocks were transverse with respect
to the direction of the scattered particle from the tar-
get. The gaps between the blocks in the first layer were
compensated for by a slight offset in the second layer of
blocks.

Since electrons and heavier particles like pions have
different energy deposition distributions in electromag-
netic calorimeters, we can distinguish between the two
particle distributions, where electrons tend to leave most
(if not all) of their energy in the calorimeter, while pi-
ons act like minimum ionizing particles (MIPs), leaving
only a small amount of energy in the calorimeter. The
energy loss of a MIP can be approximated by 1.5MeV
per g/cm2 traversed [79]. With the density of SF-5 be-
ing ∼ 4 g/cm3 [77], pions deposited ∼ 175MeV in the
calorimeter (both layers of the pion rejector taken to-
gether). As a result there are two distinct peaks in the
energy distribution with good separation in the calorime-
ter: one due to pions and the other due to electrons. This
allows the selection of electrons in the analysis while re-
jecting pions.

Figure 7 shows a typical signal distribution in the gas
Čerenkov. Electron (pion) candidates are indicated by
the distributions centered at ∼ 6.5 photo-electrons (. 2
photo-electron) in Fig. 7, that are obtained by placing
cuts on the pion rejector signals. While scattered elec-
trons yielded an ADC signal corresponding to the main
photo-electron peak in the gas Čerenkov, pions may also
influence the ADC spectrum. This occurs because pions
could have ionized the atoms of the gaseous medium in

the Čerenkov, producing electrons with enough energy
to trigger the detector. Such electrons are called δ-rays,
or knock-on electrons. The distribution of these electrons
has a peak at the one-photo-electron peak (leftmost peak
in Fig. 7) with a long tail underneath the multiple (main)
photo-electron peak. These knock-on electrons can ef-
fectively be removed in the analysis because on average
they deposited less energy in the pion rejector. To iden-
tify electrons the ratio E/p of the energy deposited in
the pion rejector and the reconstructed momentum was
required to be greater than 0.54, as illustrated in Fig. 8
(Section IIG). Additionally, events that deposited less
than 200MeV in the first layer of the pion rejector were
removed from the analysis, as they were likely to be pions
or knock-on electrons.

FIG. 7. (Color online) A typical signal distribution in the
LHRS gas Čerenkov (black curve). Electron (pion) candidates
were selected by placing cuts on the energy deposited in the
pion rejector, described by E/p > 0.54 (E/p < 0.54) and for
the energy deposited in the first layer of the pion rejector to
be greater than (less than) 200MeV. Electrons are indicated
by the distribution centered at ∼ 6.5 photo-electrons, while
pion candidates have their distribution peaked at ∼ 1 photo-
electron.

There were two planes of plastic scintillating material,
labeled S1 and S2m. S1 was composed of six horizontal
scintillating paddles with 36 cm × 29.3 cm × 0.5 cm ac-
tive area. Each paddle was viewed by a 5.1 cm-diameter
photomultiplier tube (PMT) on each end. The paddles
overlapped by 10mm, oriented at a small angle with
the S1 plane. The S2m plane consisted of sixteen non-
overlapping paddles with dimensions of 43.2 cm × 14 cm
× 5.1 cm. The timing resolution of the PMTs used for
each plane was ∼ 50 ps [80].
When a paddle absorbed ionizing radiation, it emitted

light which traveled down the length of the paddle and is
collected by the PMTs attached at each end. The timing
information encoded in the PMTs’ TDCs is utilized in
the formation of the LHRS main trigger, discussed in
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FIG. 8. (Color online) A typical signal distribution in the
LHRS pion rejector layers, where the particle’s total deposited
energy divided by its reconstructed momentum is plotted.
Electron (pion) candidates are shown by the distributions
on the right (left), as selected by placing a cut on the gas
Čerenkov signal to be greater than (less than) two photo-
electrons.

Section II F.

2. The BigBite Spectrometer

The BigBite spectrometer is a large-acceptance spec-
trometer, able to detect particles over a wide range in
scattering angle and momentum. BigBite consists of one
large dipole magnet, capable of producing a maximum
magnetic field of ∼ 1.2T. The magnet entrance was lo-
cated 1.5m from the target center, resulting in an angu-
lar acceptance of about 64msr. Charged particles with
momenta of ∼ 0.5GeV entering the magnet near its op-
tical axis are then deflected roughly 25◦ for a total tra-
jectory of 64 cm when the field is 0.92T [81]. The mo-
mentum range covered by the spectrometer at full field
had a lower bound of roughly 0.6GeV. In its standard
configuration, the magnet bent negatively charged par-
ticles upwards into the detector stack, while positively
charged particles were deflected downwards. The large
acceptance of the spectrometer allowed the detection of
both negatively and positively charged particles. The de-
tector stack for E06-014 included multi-wire drift cham-
bers for particle tracking, a newly installed gas Čerenkov,
a scintillator plane and an electromagnetic calorimeter,
composed of a pre-shower and shower calorimeter. The
gas Čerenkov, scintillator plane and the pre-shower and
shower calorimeters were used for PID purposes. The
schematic layout of BigBite is shown in Fig. 9.
The Multi-Wire Drift Chambers (MWDCs) were uti-

lized for particle tracking, in much the same way as de-
scribed for the VDC planes in the LHRS. There were
three chambers, each filled with a 50–50 mixture of argon
and ethane gas. Each chamber had three pairs of wire
planes, giving a total of eighteen planes in all. Each of

FIG. 9. (Color online) The layout of the BigBite Spectrometer
in Hall A of Jefferson Lab. Drawing not to scale. The central
ray drawn here is a for a path similar to what a 1.7GeV
electron would take through the magnet. Figure modified
from [80].

the eighteen planes was perpendicular to the detector’s
central ray (Fig. 9), bounded by cathode planes 6mm
apart from one another. Halfway between the cathode
planes was a plane of wires, composed of alternating field
and sense wires. The field wires and the cathode planes
were held at the same constant high voltage, producing
a nearly symmetric potential in the region close to the
sense wires. Each pair of wire planes had a different ori-
entation so as to optimize track reconstruction in three
dimensions. The two so-called X-planes (X, X’) ran hor-
izontally (in detector coordinates), while the U and V
planes were oriented at +30◦ and −30◦ with respect to
the X-planes, respectively. The wires in each plane were
1 cm apart and the primed planes (X’, U’, V’) were off-
set from their unprimed counterparts by 0.5 cm. This
allowed the tracking algorithm to determine if the track
passed above or below a given wire in the X plane based
upon which wire registered a hit in the X’ plane, for ex-
ample. This alignment resulted in a positional resolution
of less than 300µm [62].

The gas Čerenkov, which was constructed by Tem-
ple University specifically for this experiment [82], in-
cluded twenty spherical mirrors, each with a focal length
of 58 cm, stacked in two columns of ten. The chamber
was filled with the gas C4F8O, which has an average
index of refraction of 1.00135 [62]. Čerenkov light in-
cident on each mirror was reflected onto a correspond-
ing secondary flat mirror. This mirror then directed the
Čerenkov light onto the face of a corresponding PMT. To
boost the amount of light collected, each PMT was fitted
with a cone similar to a Winston cone [83]. This extended
the effective diameter of each PMT collection area from
five inches to eight inches. The PMTs were recessed 5 ”
within their shielding in order to reduce the effects of the
BigBite magnetic field. The resulting gap between the
PMT face and the edge of the shielding was filled with a
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cylindrical lining of Anomet UVS reflective material, so
as to direct light incident upon this region onto the PMT
face. Figure 10 shows a typical signal distribution in the
gas Čerenkov. Electron (pion) events are indicated by
the right (left) distributions. Electron events for a given
PMT were identified by selecting those events that had
a hit in their corresponding TDC with a projected track
from the target that fell within the PMT’s geometrical
acceptance.

FIG. 10. (Color online) Signal distributions in the BigBite
gas Čerenkov. Electron (pion) events are shown by the right
(left) distributions.

The calorimeter was composed of two layers of lead-
glass blocks. The first layer was the pre-shower, com-
posed of the material TF-5, which has a radiation length
of 2.74 cm. The pre-shower was located 85 cm from the
first drift chamber plane. It contained 54 blocks of di-
mensions 35 cm × 8.5 cm × 8.5 cm. They were organized
in two columns of 27 rows. The long dimension of each
block was oriented transverse with respect to scattered
particles coming from the target. The shower layer was
composed of the material TF-2, which has a radiation
length of 3.67 cm and was located 15 cm behind the pre-
shower and 1m from the first drift chamber. It had 189
blocks of the same dimensions as the blocks in the pre-
shower, but they were organized in seven columns and
27 rows. The long dimension of the block was oriented
along the scattered particle path, ensuring the capture
of a large amount of the electromagnetic shower of the
particle [84].
The plane located between the pre-shower and the

shower consisted of a scintillator plane composed of 13
paddles of plastic scintillator, each of which had a PMT
at each end with a timing resolution of 0.3 ns. Each
paddle had the dimensions 17 cm × 64 cm × 4 cm. The
first dimension was transverse with respect to the scat-
tered particles, while the short dimension was along the
scattered particle path. This resulted in an active area
of 221 cm × 64 cm. This plane provided an additional
source of pion rejection to complement the gas Čerenkov
and the shower calorimeter, as the charged pions left a

significant signal in the low end of the ADC spectrum via
knock-on electrons [62].

F. Data acquisition and data processing

In this experiment, the CEBAF Online Data Acquisi-
tion (CODA) [85] system was used to process the various
trigger signals and data coming from the LHRS and Big-
Bite spectrometers, beamline and target equipment. The
LHRS and the BigBite detector systems were run inde-
pendently with a total of 5TB of data recorded.
Eight triggers were configured for E06-014, summa-

rized in Table III. The T8 trigger was used for trou-
bleshooting purposes only. It was a 1024Hz clock, in-
jected into the data stream to ensure that the electronics
were working correctly. The T5 trigger was the coinci-
dence (coin.) trigger between the LHRS and BigBite,
used for optics calibration purposes.

TABLE III. Triggers used during E06-014.

Trigger Spectrometer(s) Description
T1 BigBite Low shower threshold
T2 BigBite Coin. of T6 and T7
T3 LHRS Coin. of S1 and S2m
T4 LHRS Coin. of either S1 or S2m and Čerenkov
T5 LHRS, BigBite Coin. of T1 and T3
T6 BigBite High shower threshold
T7 BigBite Gas Čerenkov
T8 LHRS, BigBite 1024 Hz Clock

The generation of the main LHRS trigger (T3) required
a hit in both scintillating planes S1 and S2m, where a
hit in a single plane corresponded to a signal in the two
PMTs affixed to a paddle (left and right sides) in a plane.
Thus, a T3 trigger corresponded to a pulse detected in
four PMTs, two in the S1 plane and two in the S2m
plane. The timing of this trigger was set by the leading
edge of the TDC signal recorded in the PMT attached to
the right side of the S2m scintillator paddles [66]. The
second LHRS trigger was the T4 trigger. The only differ-
ence between the T3 and T4 triggers was that a T4 was
generated when there was a coincidence between either
S1 or S2m and the gas Čerenkov detector, without gen-
erating a T3 trigger. The T4 trigger was used to study
the efficiency of the T3 trigger, as these events were po-
tentially good events since they generated a signal in the
gas Čerenkov. It was found that the efficiency of the T3
trigger was 99.95% over the course of the experiment [86].
The BigBite spectrometer had four dedicated triggers,

T1, T2, T6, and T7. The T1 and T6 triggers involved
taking the hardware (voltage) sum of the calorimeter
blocks belonging to the cluster with the largest signal,
where a cluster for the pre-shower and shower calorime-
ters was defined as two adjacent rows of calorimeter
blocks. There are 26 clusters each for the pre-shower
and shower calorimeters. The sum of the pre-shower and
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shower signals was then formed and sent to a discrim-
inator. If this signal was greater than ∼ 300–400MeV
(∼ 500–600MeV), then the T1 (T6) trigger was formed.
The T7 trigger was formed in a manner similar to the T1
and T6 triggers, but using the Čerenkov detector instead
of the pre-shower or shower calorimeter. The Čerenkov
signals from two adjacent rows of mirrors (four mirrors in
total) were summed, resulting in nine overlapping mirror
clusters. If this sum was larger than the set threshold
value (> 1–1.5 photo-electrons), then the T7 trigger was
formed. The main trigger for the BigBite spectrome-
ter, T2, imposed a geometric constraint on the incident
particle track by requiring a coincidence between the ge-
ometrically overlapping regions in the gas Čerenkov and
the calorimeter. An example of an event that generated
a T2 trigger is illustrated in Fig. 11: a particle that trig-
gered cluster C1 in the gas Čerenkov would also have to
trigger at least one of the clusters A–D in the calorime-
ter. Similar coincidences were imposed for the eight other
groupings that could form a T2 trigger.
The raw data were processed by the Hall A Ana-

lyzer [87], which is based on ROOT [88]. Specific C++
classes have been written to interpret the data recorded
by the various detectors and their sub-detectors. For in-
stance, there are classes that convert the ADC signals
registered in a calorimeter block into the corresponding
amount of energy deposited. There are also classes that
handle the computation of a particle’s path (or track)
through the LHRS (and BigBite) up to its focal plane
and its reconstructed vertex position back at the target.
The optics for BigBite required special attention, as dis-
cussed in [62, 64, 80].

G. Particle identification

The LHRS and the BigBite spectrometers each utilized
a gas Čerenkov detector and a double-layered lead-glass
shower calorimeter for PID purposes. In this experiment,
PID corresponds to distinguishing electrons from pions,
that constituted the primary background.
The PID performance of each detector was character-

ized by the efficiencies of the conditions (or cuts) placed
on the corresponding observable. Before PID cut effi-
ciencies were evaluated, the sample distribution of events
to be studied was selected using data quality criteria
(such as removing beam trips) and conditions to remove
events that may have originated in the target’s glass end-
caps [62, 86]. The electron cut efficiency εe is defined as
the ratio of the number of events that pass a given cut to
the size of the electron event sample defined by another
detector. For the gas Čerenkov, the electron sample was
chosen by using the calorimeter, and vice-versa. To char-
acterize how well a given detector can reject pions, the
rejection factor fπ,rej is evaluated. It is defined as the
ratio of the size of the selected pion sample to the num-
ber of events misidentified as electrons for a given cut.
The PID cuts were chosen such that the pion rejection
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FIG. 11. (Color online) The geometrical overlap for the main
trigger for the BigBite spectrometer. The Čerenkov mirrors
are represented by the leftmost column, where the cluster
groupings are labeled by Ci, with i = 1, . . . , 9. The pre-shower
blocks are shown as the middle column of colored blocks, while
the shower blocks are the long blocks in the rightmost column.
The calorimeter cluster groupings are labeled with the letters
A–Z. The dashed lines indicate typical electron paths at the
extremes of the acceptance of the BigBite spectrometer.

was maximized while the highest electron efficiency was
maintained.

In the momentum acceptance range of the experiment,
0.6GeV ≤ p ≤ 1.7GeV, the electron cut efficiency for
the LHRS gas Čerenkov was found to be εcere ≈ 96% for
a cut of greater than two photoelectrons in the ADC.
For the LHRS pion rejector, εpre ≈ 99% for E/p > 0.54.
These efficiencies are critical for the LHRS data since
they contribute directly in the determination of the un-
polarized cross section (Section IVB). The pion rejection
factor was found to be ∼ 660 for both the gas Čerenkov
and pion rejector, resulting in a combined rejection of
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fπ,rej ≈ 4× 105 [86]. As a result, the pion contamination
in the final electron sample was negligible.
PID studies were also conducted for the data recorded

by BigBite. Here, the pion rejection factor was deter-
mined to be better than 2×104 when combining the pion
rejection capabilities of the gas Čerenkov [89], pre-shower
and shower calorimeters, and the scintillator plane [62].
Unlike the cross section analysis using the LHRS data,
the electron cut efficiencies do not play a role in the asym-
metry extraction that is performed using the BigBite
data; the efficiencies cancel in the asymmetry defintion
(Section IVC).

III. POLARIZED 3HE TARGET

Since the lifetime of the neutron is less than 15 min-
utes [90] outside the nucleus, a free-neutron target is not
practical. 3He, a spin-1/2 nucleus consisting of two pro-
tons and a neutron, is a candidate for a polarized neu-
tron target. Deuterium, a spin-1 nucleus consisting of a
proton and a neutron, is another option. Both nucleons
in deuterium have their spins aligned with the nuclear
spin. However, large corrections due to the proton re-
sult in large uncertainties when using a deuterium target.
When 3He is polarized, there are three principal states
in play: ∼ 90% of the time the nucleus is in the sym-
metric S state; ∼ 1.5% of the time the nucleus is in the
S′ state, and ∼ 8% of the time the nucleus is in the D
state, see Fig. 12. In the S state, the spins of the protons
are antiparallel to one another, resulting in the neutron
carrying the majority of the 3He polarization [60]. As a
result, a polarized 3He target can be used as an effective
polarized neutron target.

FIG. 12. 3He ground states. The dominant state is the S
state, where ∼ 90% of the polarization is carried by the neu-
tron. In this state, the protons pair to s = 0.

In this experiment, polarized 3He
(

3 ~He
)

was used to

study the electromagnetic structure and the spin struc-
ture of the neutron. Two major methods exist to polarize
3He nuclei. The first one uses the metastable-exchange
optical pumping technique [91], while the second method
utilizes both spin-exchange [92] and optical pumping [93],
dubbed hybrid spin-exchange optical pumping.

39K atoms were optically pumped using 795-nm cir-
cularly polarized laser light, inducing the D1 transition
in 85Rb: 52S1/2 (m = −1/2) → 52P1/2 (m = +1/2),

in accordance with the selection rule of ∆L = +1. The
excited 85Rb electrons decay from the p orbital to the s
orbital with equal probabilities for the m = ±1/2 sub-
states, but the excitation only occurs for the m = −1/2
initial state of the s orbital; this results in the selective
population of the m = 1/2 state of the s orbital. Second,
the polarization of the 85Rb atoms was transferred to the
39K atoms via spin-exchange binary collisions [92]. In the
third and final step, the polarization of the 85Rb and 39K
atomic electrons was transferred to the 3He nuclei via the
hyperfine interaction, where the nuclear spin of 3He takes
part in the process [94]. The use of 39K greatly decreases
the spin-relaxation rate for collisions involving 3He, re-
sulting in an increase in the spin-exchange efficiency of
the polarization process [95].

As the atomic electrons decayed to the ground state,
photons were emitted. These photons were typically
unpolarized, and therefore reduced the efficiency of the
pumping process. To minimize this effect for the alkali
atoms, a small amount of N2 buffer gas was added to the
cell. The excitation energy of the alkali atoms was passed
to the rotational and vibrational modes of the buffer gas
via collisions, reducing the emission of photons [92].

A. Setup

The target apparatus was composed of a number of
different elements: the target cells, target oven, target
ladder system, Helmholtz coils for the holding magnetic
field, RF coils and polarizing lasers. The layout of the
target system is shown in Fig. 13. The outer circle
and large straight lines intersecting at right angles in-
scribed in the large circle represent Helmholtz coils. The
smaller vertical straight lines and circle overlapping with
the Helmholtz coils signify the RF coils. Pickup coils
mounted near the target cell are also shown.

FIG. 13. (Color online) The target setup. The Helmholtz
coils for the holding magnetic field and coils for the RF field
are shown. The pickup coils near the target cell are used for
NMR measurements. Figure reproduced from [65].
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Two pairs of Helmholtz coils, capable of producing
magnetic fields in two orthogonal directions, were uti-
lized in E06-014: longitudinal (along the direction of the
beam), and transverse in-plane (perpendicular and hor-
izontal to the beam). The field reached a magnitude of
25G, requiring ∼ 7A of current in each coil. The RF
coils and pickup coils are important for the measurement
of the target polarization, as presented in Sections IIID
and III E.

B. Target cells

The production target cell, named Samantha, is shown
schematically in Fig. 14. The upper chamber, called the
pumping chamber, contained 3He, alkali metals (85Rb
and 39K at equal densities) and N2, with number den-
sities of 1020 cm−3, 1014 cm−3 and 1018 cm−3, respec-
tively [96]. This chamber was heated to ∼ 265◦C in order
to keep the Rb and K in a gaseous state. The polarization
process took place in this chamber. The polarized 3He
gas (with the N2 mixture) flowed through a thin transfer
tube to the target chamber, thanks to the temperature
gradient between the pumping chamber and the target
cell that was kept at room temperature. This cham-
ber was 40 cm long and contained ∼ 8 atm of 3He and
∼ 0.13 atm of N2 during the experiment. The tempera-
ture of the cell was monitored via resistive temperature
devices (RTDs), which were placed equidistant from one
another along the length of the target chamber, along
with two more placed on the pumping chamber; one at
the top and the other at the base. The production cell
was made out of aluminoscilicate glass (GE-180), which
was filled and characterized at the University of Virgina
and the College of William and Mary [66]. This char-
acterization consisted of measuring the polarization, gas
density, glass thickness of the cell and rate of polariza-
tion.

FIG. 14. The production target cell used in our experiment.
The top spherical chamber is the pumping chamber where the
polarization of 3He takes place. The long cylindrical chamber
is the target cell, through which the electron beam passes
longitudinally. The thin tube connecting these two chambers
is the transfer tube, which allows polarized 3He to drift down
into the target chamber. Drawing not to scale.

An additional reference cell was used [97], which could
be filled with H2, N2 or 3He. This allowed the determi-
nation of the dilution factors that contribute to the cross
sections and asymmetries. RTDs were also mounted on
the reference cell to monitor its temperature, in a similar
configuration as was done for the target cell. A multi-
carbon foil (“optics”) target—as well as the reference cell
filled with hydrogen gas—was used for the calibration of
the optics for the two spectrometers. All of these tar-
gets were mounted on a target ladder, which could be
moved vertically up and down to select the target needed.
In addition to these targets, a “no target” position was
available, corresponding to a hole in the target ladder.
It was used during Møller polarimeter measurements, so
that the target assembly would not be damaged in the
process.

C. Laser system

Our experiment utilized an upgraded laser system that
had been installed for the immediately preceding exper-
iment, E06-010 [76]. These new COMET lasers had a
linewidth of 0.2 nm, a factor of ten less than that of
their predecessors (FAP lasers [98–100]). This dramat-
ically improved the optical pumping efficiency, since a
narrower linewidth results in proportionately more pho-
tons exciting the desired atomic transitions in 85Rb, so
that a higher polarization of 3He atoms could be attained
in a shorter timeframe [96].
The laser setup is shown in Fig. 15. It consisted of

three COMET lasers, each with a power of 25W and a
wavelength of 795 nm, used to optically pump the 85Rb
in the pumping chamber. The lasers were installed in a
separate laser building behind the counting house on the
accelerator site at JLab. The fiber coming out of each
COMET control unit was connected to a 75-m-long fiber
that ran from the laser building to the hall. Then the
fiber was connected to a 5-to-1 combiner. The output
of the combiner was sent to a beamsplitter, yielding two
linearly polarized components. One component passed
twice through a quarter-wave plate, after which both had
the same linear polarization. Sending each component
through another quarter wave plate converted the lin-
ear polarization into circular polarization. The resulting
beams were then combined into one, with a spot size of
7.5 cm in diameter, the size of the pumping chamber [96].
There were three optics lines corresponding to the lon-
gitudinal, transverse and vertical polarization directions.
The polarizing optics were set up in an antiparallel pump-
ing configuration such that the target spin was always
oriented opposite to the magnetic holding field [62].

D. EPR measurements

The target polarization was measured in an absolute
sense through an electron paramagnetic resonance (EPR)
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FIG. 15. (Color online) The laser system used to polarize
85Rb atoms. The symbols labeled L1 and L2 are lenses, while
symbols labeled as M and ML are mirrors. Light reflected
from ML2 is incident upon another mirror (not shown) which
is attached to the oven. Quarter wave plates are indicated
by Q1, Q2 and Q3. The beam-splitting polarization cube
(BSPC) is represented by the rectangle with a slash through
it. The initial unpolarized laser light is split by the BSPC
into S- and P-wave components, where the P-wave component
has linear polarization and passes through the beam splitter.
The S-wave component is converted into a P-wave by Q1.
The motorized quarter-wave plates Q2 and Q3 convert P-
wave light into circularly polarized light, labeled C. Figure
reproduced from [62].

measurement, that utilized Zeeman splitting of the elec-
tron energy levels when an atom was placed in an exter-
nal magnetic field. This phenomenon occurred for the
85Rb and 39K atoms, which were present in the pump-
ing chamber. The ground states of the alkali metals split
into 2F + 1 energy levels, where F is the total angular
momentum quantum number. Specifically, for 85Rb, the
F = 3 ground state split into seven sublevels correspond-
ing to mF = −3,. . . , 3. For 39K, the F = 2 ground
state split into five energy levels, given by mF = −2,. . . ,
2. The splitting corresponded to a frequency that is pro-
portional to the holding field. This frequency was shifted
due to the small effective magnetic field created by the
spin-exchange mechanism of 85Rb–39K and 39K–3He, in
addition to the polarization of the 3He nuclei.

When the EPR transition was excited, an alkali metal
(either Rb or K as chosen by the excitation frequency)
lost its polarization. When one of the metals was depo-
larized, so was the other due to the fast spin-exchange
mechanism. Upon re-polarization of the Rb atoms, there
was an increase in the photons emitted corresponding
to the P1/2 → S1/2 (D1) transition (795nm). However,
due to thermal mixing between the P1/2 and P3/2 energy
states and occasional collisional mixing with N2 in the
cell, the P3/2 → S1/2 (D2) transition (780 nm) was pos-
sible. While the amount of D1 and D2 flourescence was
roughly the same [96], the D1 light was suppressed due to
a large background component corresponding to the po-
larizing laser light. Therefore, a filter was attached to a

photodiode to identify the D2 light. During the measure-
ment, the RF was modulated with a 100Hz sine wave,
and the D2 transition was synchronized to this modu-
lating signal and measured by a lock-in amplifier. The
signal from the lock-in output was proportional to the
derivative of the EPR fluorescence curve as a function
of the RF; the EPR resonance occured when the deriva-
tive was equal to zero [96, 101]. EPR measurements were
performed every few days.
To determine the polarization in the target chamber, a

model [102–105] was used to describe the diffusion of the
3He polarization from the pumping chamber to the target
chamber. The relative systematic error of the measure-
ment was ∼ 4%, dominated by the uncertainties on the
dimensionless constant κ0 [106] and the number density
of the gas in the pumping chamber [62].

E. NMR measurements

Another method we used for measuring the polariza-
tion of the 3He nuclei was measuring the 3He nuclear
magnetic resonance signal. The magnetic moments of
3He nuclei aligned along the direction of an external mag-
netic holding field had their direction reversed by apply-
ing an RF field in the perpendicular direction. Sweeping
the frequency of the RF field through the resonance of
the 3He nucleus flipped the spins of the nuclei. This
spin flip changed the field flux through the pick-up coils
(Fig. 13), inducing an electromotive force. The signals
from the coils were pre-amplified and combined, and sent
to a lock-in amplifier. The magnitude of the final signal
was proportional to the 3He polarization.
The RF is swept according to the Adiabatic Fast Pas-

sage (AFP) technique [107], in which the sweep through
the resonant frequency is done faster than the spin-
relaxation time, but slowly enough so that the nuclear
spins can follow the sweep of the RF field. This mini-
mizes the effect of these NMR measurements on the tar-
get polarization.
An NMR measurement is a relative measurement, so it

needs to be compared against a known reference. A mea-
surement of NMR on water is typically used, for which
the polarization can be calculated exactly from statis-
tical mechanics [108]. However, in E06-014, water-cell
measurements were available only for the longitudinal
target polarization configuration, as conversion factors
needed to account for the different positions of the water
and 3He cells could not be measured for the transverse
configuration [62]. Because of this, the NMR measure-
ments were calibrated against EPR measurements (Sec-
tion IIID) that were done close in time relative to the
NMR measurements. The NMR water measurements
in the longitudinal configuration were used as a cross-
check against the EPR measurements, and were found
to be consistent to the 1% level. NMR measurements
were performed every four hours on the production 3He
target. The systematic error on the NMR measurement
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was ∼ 3.9% (relative), dominated by the uncertainties on
the EPR calibration and on the computed magnetic flux
through the pickup coils [62].

F. Target performance

The target polarization over the course of the exper-
iment, extracted from NMR measurements, is shown in
Fig. 16. In the data analysis (Section IVC), the tar-
get polarization data was utilized on a run-by-run basis.
On average, the target polarization achieved was 50.5%
with a relative uncertainty of 7.2% (3.6% absolute). The
dominant contribution to the uncertainty was from the
calibration of the NMR measurements against the EPR
measurements (3.9% relative) and the loss of polarization
due to the diffusion of polarized 3He from the pumping
chamber to the target chamber (6% relative).
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FIG. 16. The 3He target polarization as a function of BigBite
run number.

IV. DATA ANALYSIS

A. Analysis procedure

The analysis procedure is outlined in Fig. 17, which
shows that the raw data were first replayed, followed by
the calibration and data quality checks. Data calibra-
tions included gain-matching ADC readings within the
gas Čerenkov and shower calorimeters to have the same
responses for a given type of signal. Calibrations also
involved optimizing the software packages that describes
the optics of the two spectrometers. Multi-foil carbon
targets, a sieve slit collimator and elastic 1H(e, e′)p data
at an incident energy of E = 1.23GeV were used to cali-
brate the optics software package for the LHRS [76] and
for the BigBite spectrometer. The momentum resolution
achieved for the BigBite spectrometer was ∼ 1% [62].
Data quality checks implied checking the calibration re-
sults and removing beam trips from the data. Faulty

runs (e.g., those having poor beam quality, detector live-
times . 80%, run times less than a few minutes, etc.)
were also identified and discarded from the analysis.
Following calibration and data quality checks, the elec-

tron sample was cleaned up by removing events that did
not generate a good trigger or had poor track recon-
struction. Cuts were also made to remove pion tracks
and events originating in the target window. In the Big-
Bite data set, geometrical cuts had to be implemented
to remove events that rescattered from the BigBite mag-
net pole pieces. After all cuts had been applied to the
data, the raw physics observables consisting of cross sec-
tions and asymmetries were then extracted. Corrections
were applied to account for the nitrogen target con-
tamination and background due to pair-produced elec-
trons, neither of which could be removed by cuts. Af-
ter these corrections were applied, we obtained the ex-
perimental cross sections (Section IVB) and the experi-
mental asymmetries (Section IVC). Applying radiative
corrections yielded the final quantities for each of those,
from which the spin structure functions g1 and g2 on
3He were extracted as described in Appendix A6. The
3He results for the unpolarized cross sections, double-spin
asymmetries and spin structure functions g1 and g2 are

presented in Section VA. The Lorentz color force d
3He
2

was obtained from Eq. 17, after which nuclear corrections
(Section IVD) were applied to obtain dn2 (Section VB1).

From the g
3He
1 data the a2 matrix element on 3He (given

as the third moment of g1) was extracted. Nuclear correc-
tions, similar to those used for d2, were applied to obtain
an2 (Section VB2). From a twist expansion of world data
for Γn

1 , the twist-4 matrix element fn
2 was obtained us-

ing our dn2 data as input (while the value of an2 was taken
from an average over the available model calculations, see

Section VB3). Additionally, A
3He
1 and g

3He
1 /F

3He
1 were

extracted with the aid of Eqs. 18 and 19. Nuclear cor-
rections were then applied to the 3He results to obtain
the neutron quantities (Sections VB4 and VB5). Using
the gn1 /F

n
1 data obtained, we then extracted the flavor-

separated ratios (∆u+∆ū)/(u+ū) and (∆d+∆d̄)/(d+d̄)
(Section VC).

B. Cross sections

1. Extraction of raw cross sections from data

The unpolarized differential cross section was calcu-
lated from the data for a given run as follows:

d3σraw
dΩdE′

=
tpsNcut

(Q/e)ntLT ε

1

∆E′∆Ω∆Z
, (28)

where tps denotes the prescale value for the T3 trig-
ger [109], Ncut the number of electrons that pass all
cuts, Q/e the number of beam electrons delivered to the
target, n the target number density in amagats [110],
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FIG. 17. The data analysis procedure.

tLT the live-time [111], and ε the product of all detec-
tor (cut) efficiencies. The quantity ∆E′ = δp/p0 · p0,
where δp/p0 = (p−p0)/p0 is the scattered momentum of
the electron p relative to the LHRS momentum setting
p0. Electrons were selected according to the criterion
|δp/p0| < 3.5%, which was based on the agreement of the
Monte Carlo simulation of the spectrometer (see below)
with the data [86]. The quantity ∆Z denotes the effec-
tive target length seen by the spectrometer, measured in
meters. The cut on the effective target length was cho-
sen such that the target windows and edge effects due to
scattering from the magnets in the LHRS are removed.
The term ∆Ω denotes the solid-angle acceptance, mea-
sured in steradians; it is defined as the product of the
in-plane scattering angle ∆θ and out-of-plane scattering
angle ∆φ. The cut chosen for ∆θ (∆φ) was ±40mrad
(±20mrad), which amounts to a solid angle of 3.2msr.
The cuts on δp/p0, ∆Z, ∆θ and ∆φ were informed by
looking at a Monte Carlo simulation of the LHRS.

The effective acceptance was determined with the
Single-Arm Monte Carlo (SAMC) simulation [112]. To
determine how the geometrical acceptance of the LHRS
deviates from the ideal rectangular acceptance, SAMC
began by generating events originating from the tar-
get that were uniformly distributed over the kinemati-
cal phase space. Each event was then transported to the
focal plane using an optical model of the LHRS [113].
As the particle encountered each magnet aperture in
the LHRS, a check was performed to see if it success-
fully passed through the known apertures. If the sim-

ulated particle successfully made it through all geo-
metrical apertures, it was then reconstructed back to
the target using the optics matrix optimized during
the experiment. The ratio r of the number of recon-
structed events to the number of generated events was
used to determine the effective acceptance, written as
r = ∆E′∆Ω∆Z/∆E′

MC∆ΩMC∆ZMC. The subscript MC
refers to the initially generated kinematic phase space in
the simulation, chosen to be larger than the apertures of
the LHRS, so as to avoid edge effects.
The cross sections extracted for each run of a given

momentum bin were then averaged, weighted by their
statistical errors:

〈σ〉 =

n
∑

i=0

σi
1

δσ2
i

n
∑

i=0

1
δσ2

i

, (29)

where δσi is the statistical error on the cross section for
the ith run.

2. Background corrections

The raw 3He cross section measured in the LHRS, σraw,
contains contributions from electrons that were not scat-
tered from 3He, but were produced in processes corre-
sponding to electron-positron (pair) production (arising
from π0 mesons decaying predominantly to photons), or
scattering from nitrogen nuclei.
To remove the pair-production contributions from

σraw, several runs were taken with the LHRS in positive
polarity mode (i.e., detecting positrons) to measure the

positron cross section, σe+ . The nitrogen electron cross

section σe−

N2
was measured by filling the additional refer-

ence target cell (Section III B) with nitrogen gas and ex-
posing it to the beam. Pair production also occurs when
scattering from nitrogen nuclei, so a nitrogen positron

cross section, σe+

N2
, was also measured with the LHRS in

positive polarity mode. The positron cross section on

nitrogen σe+

N2
was subtracted from σe−

N2
to avoid double-

counting the pair-produced events in the measurement

that were already accounted for in σe+ . In principle,
one has to consider pion background contributions; how-
ever, given the high pion suppression in the LHRS (Sec-
tion IIG), this component was found to be negligible.

Combining the measurements for σraw, σ
e+ , σe−

N2
, σe+

N2
,

yielded the experimental 3He cross section, σexp:

σexp = σraw − σe+ − σdil
N2

(30)

σdil
N2

=
nN2

nN2
+ n3He

(

σe−

N2
− σe+

N2

)

, (31)

where nN2
is the number density of nitrogen in the pro-

duction cell and n3He is the number density of 3He in the
production cell.
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When the nitrogen reference cell was in the beam, the
number density for the cell was extracted using the mea-
sured temperature and pressure of the cell. This number
density was used when extracting a nitrogen cross sec-
tion (Eq. 28). A systematic uncertainty of 2.2% was esti-
mated by computing the number densities while varying
the temperature and pressure by up to 2◦ C and 2 psig,
respectively [62]. In the 3He production cell, the num-
ber density of nitrogen nN2

was taken to be 0.113 amg
(Eq. 31). This value was recorded as the target was ini-
tially filled, and is accurate to 3% from a pressure curve
analysis.

Due to time constraints and hardware problems en-
countered during the experiment, there were not enough
data to map out the background contributions to the
raw cross section for all kinematic bins. To resolve this
issue, empirical fits to the positron and nitrogen data
(see Appendix C1) were used to subtract those contri-
butions. Figures 18 and 19 show the raw electron cross
section, the positron and nitrogen cross sections (scaled
by the ratio of the nitrogen number density to that of
3He in the production target cell), and the background-
subtracted electron cross section, σexp. The error bars
on the data points represent the statistical uncertainties.
The largest correction was due to the positrons, at∼ 53%
in the lowest x bin, and fell to a few percent for x & 0.5.
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FIG. 18. (Color online) Cross sections as a function of
Bjorken-x at E = 4.74GeV. The squares show the raw elec-
tron cross section, and the circles (and fit) show the positron
cross section measured on the 3He target. The cross data (and
fit) represent the diluted nitrogen cross section measured on
the N2 target, and the up-triangle data (and fit) show the
diluted nitrogen cross section measured in positive polarity
mode on the N2 target. The down-triangle data points are
the final background-subtracted data, σexp. The error bars
on the data points represent the statistical uncertainties.
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FIG. 19. (Color online) Cross sections as a function of
Bjorken-x at E = 5.89GeV. The description of the various
data sets is the same as in Fig. 18.

3. Radiative corrections

A first correction that must be done before carrying
out the radiative corrections is to subtract the elastic
and quasi-elastic radiative tails, since they are long and
affect all states of higher invariant mass W [114]. For
these kinematics, the elastic tail was small and affects
the lowest bins in scattered electron energy E′ at the .
1% level only. The elastic tail was computed following the
exact formalism given by Mo and Tsai [114], and using
elastic 3He form factors from Amroun [115]. The 3He
quasi-elastic tail, however, was much larger, at ∼ 25–30%
in the lowest x bin. The quasi-elastic radiative tail was
computed by utilizing an appropriate model of the 3He
quasi-elastic cross section [116] and applying radiative
effects [117]. The tail was then subtracted from the data.
The model was checked against existing quasi-elastic 3He
data [118–120] covering a broad range of kinematics.
After the elastic and quasi-elastic tails had been sub-

tracted from the data, radiative corrections were applied
according to [114, 121], where the internal corrections
were calculated using the equivalent radiator method and
the external corrections were performed using the energy
peaking approximation. In the experiment, we took pro-
duction data for only two beam energies of 4.74 GeV and
5.89 GeV. However, we needed enough data to properly
calculate the integrals involved in the radiative correction
procedure. Therefore, we used the F1F209 cross section
parameterization [122] to fill in the rest of the phase space
for each data set. The radiative corrections were as large
as ∼ 50% in the lowest measured x bin, and fell off to a
few percent at the large x bins.
The resulting final 3He cross sections for E = 4.74GeV

and 5.89GeV are presented in Fig. 20. The data are tab-
ulated in Tables IV and V. The uncertainty on the final
cross section arising from the radiative corrections was
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determined by varying the contributions to the radia-
tive correction calculations, including the radiation thick-
nesses in the incident and scattered electron path, and
considering different models for the elastic and quasi-
elastic tail calculations. Of these, the quasi-elastic tail
gave the biggest uncertainty, ∼ 5–6% for the lowest x
bin, falling to ∼ 1% for all other bins. A full break-
down of the uncertainties on the final results is given in
Tables XXIII and XXIV in Appendix E 1.
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FIG. 20. The final 3He unpolarized cross sections as a func-
tion of Bjorken-x. The left (right) panel shows E = 4.74GeV
(5.89GeV) data. The error bars show the statistical uncer-
tainty, while the bands represent the systematic uncertainty.

C. Asymmetries

1. Extraction of raw asymmetries from data

The raw double-spin asymmetries were extracted from
the data recorded in the BigBite detectors according to:

Araw
‖ =

N↓⇑ −N↑⇑

N↓⇑ +N↑⇑
(32)

Araw
⊥ =

1

〈cosφ〉
N↓⇒ −N↑⇒

N↓⇒ +N↑⇒
, (33)

where N denotes the number of electron counts after ap-
plying data quality and PID cuts for a particular beam
and target spin configuration, ↓ (↑) corresponds to the
electron’s spin polarized antiparallel (parallel) to its mo-
mentum, ⇑ indicates that the target was polarized paral-
lel to the electron momentum, and ⇒ indicates that the
target was polarized transverse to the electron momen-
tum.
In E06-014, there were three target-spin configura-

tions, either parallel (‖, referred to here as longitudinal)
or transverse (⊥, in two orientations: ⇐, 90◦ and ⇒,
270◦) to the electron beam momentum. The quantity φ
is the angle between the electron scattering plane (de-

fined by incident and scattered electron momenta ~k and

~k′) and the polarization plane (defined by ~k and the tar-

get polarization ~S). The transverse data were normal-
ized by 〈cosφ〉, since this term is not necessarily equal to
unity. This correction was found to be very small. There
is no 〈φ〉 correction for parallel asymmetry data since the
electron spin is aligned along the target spin direction.
For the spin asymmetry analysis, one needs to cor-

rectly classify the data according to the relation between
the digital helicity signal and the physical helicity of the
electrons in the beam. Møller polarimetry measurements
(Secton IID 2) were performed after each beam config-
uration change, to check the consistency of the electron
helicity assignment in Hall A [64]. To confirm the rela-
tionship between the digital helicity signal and the physi-
cal helicity of the electrons in the beam, measurements of
the 3He longitudinal quasi-elastic asymmetry were con-
ducted at E = 1.23GeV and θ = 45◦. The sign of the
extracted raw quasi-elastic asymmetry was verified to be
consistent with our understanding of the relationship be-
tween the digital helicity signal and the physical electron
helicity.
Since there were two transverse target spin configu-

rations, care must be taken when combining the results
for the 90◦ and 270◦ since they will have opposite signs
relative to one another. To determine which target con-
figuration should carry which sign, one can consider the
dot product of the scattered electron momentum vec-

tor ~k′ and the target spin vector ~S. With the target
polarized transverse to the incident electron momentum
~k, the target spin only enters the cross section through

the dot product of ~k′ and ~S [123]. Their dot product is
~k′ · ~S = E′ sin θ cosφ, where θ is the electron scattering
angle. For the transverse spin configurations, φ is nearly
0. The positive sense of the target spin is then the di-
rection that points to the side of the beamline where the
scattering electron is detected (consistent with JLab E99-
117 [28]). In this experiment, the asymmetry measure-
ment was done using BigBite; therefore, when the target
spin was pointing towards BigBite (270◦), the asymme-
try carried a positive sign. If the target spin was pointing
towards the LHRS (90◦), it carried a negative sign. Using
this convention, the results for 270◦ and 90◦ were aver-
aged together using their statistical errors as a weight.

2. Experimental asymmetries

The raw asymmetry definitions shown in Eqs. 32
and 33 do not account for dilution effects due to the
presence of nitrogen in the target or the imperfect beam
and target polarizations. Therefore, the raw asymmetries
must be corrected to yield the experimental asymmetries:

Aexp
‖,⊥ =

1

DN2
PbPt

Araw
‖,⊥, (34)

where Pb and Pt denote the beam and target polariza-
tions, respectively (Sections IID 2 and III F) andDN2

the
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nitrogen dilution factor. Experimental asymmetries for
one target-spin configuration were averaged in the same
way as shown in Eq. 29, where the ith cross section σi is
replaced by the ith experimental asymmetry Aexp

i .
The nitrogen dilution factor was determined by com-

paring the rates from the nitrogen reference cell against
those from the 3He production cell:

DN2
= 1− ΣN2

(N2)

Σtotal(3He)

tps(N2)

tps(3He)

Q(3He)

Q(N2)

tLT (
3He)

tLT (N2)

nN2
(3He)

nN2
(N2)

,

(35)
where ΣN2

and Σtotal denote the total number of counts
that pass data quality and PID cuts detected during the
N2 and 3He production target runs, while nN2

(N2) and
nN2

(3He) denote the nitrogen number densities present in
the two targets. Because the nitrogen and 3He produc-
tion runs have different characteristics (e.g., scattering
rates, running time, etc.), the measured electron counts
must be normalized by the total charge, given by Q(N2)
and Q(3He), deposited on the two targets, the trigger
prescale factors for the nitrogen and 3He runs, given as
tps(N2) and tps(

3He); and finally, the live-times for the
nitrogen and 3He runs, given as tLT (N2) and tLT (

3He).
The nitrogen dilution factor was extracted on a run-

by-run basis and the results were averaged, weighted by
their statistical uncertainties for a given run configu-
ration. The resulting dilution factor was applied bin-
by-bin in x, and was found to be roughly constant at
DN2

≈ 0.920± 0.003 [62].

3. Background corrections

As described in Section IVB, the main sources of
background contamination were charged pions and pair-
produced electrons. To quantify the charged pion con-
tamination in the electron sample, the pion peak in
the pre-shower energy spectrum was fitted with a Gaus-
sian function convoluted with a Landau function, and
the electron peak with a Gaussian function, as shown
in Fig. 21. The ratio of the pion counts to the elec-
tron counts was then evaluated from the integrals of the
two fits above a threshold of 200 MeV [62]. This ratio
was evaluated for the π− (Nπ−/Ne−) and π

+ (Nπ+/Ne+)
mesons. The π+ ratio was evaluated after reversing the
polarity of BigBite so that particles with similar trajecto-
ries could be compared. The Nπ−/Ne− ratio was largest
in the lowest x bin of 0.277, at ∼ 2.7%, and dropped
quickly to below 1% by x = 0.425. The Nπ+/Ne+ ra-
tio was larger and consistently ∼ 6% across the whole
x range. A systematic uncertainty of 2.5% was assigned
to the Nπ/Ne ratios, the value determined in the imme-
diately preceding experiment, E06-010 [76], in which a
similar fitting procedure was used and checked indepen-
dently through a coincidence trigger between the elec-
trons in BigBite and pions in the LHRS. In E06-010,
it was found that these two methods were consistent to

around 2–3% [66].
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FIG. 21. A signal distribution in the BigBite pre-shower,
where the particle’s total deposited energy is plotted for the
< x >= 0.425 bin. Electrons (pions) are shown by the peak
on the right (left). The curves fitted to the data are used in
the analysis to determine the amount of pion contamination
in the electron sample, see the text.

A spin asymmetry in the charged-pion production will
affect the measured electron asymmetries. To study this,
asymmetries in the pion sample were determined after
applying corrections for the nitrogen dilution and the
beam and target polarizations, yielding the π− and π+

experimental asymmetries. The results are shown in
Figs. 22 and 23 for E = 5.89GeV. After scaling these
measured pion asymmetries with the Nπ/Ne ratios, it
was found that the π− (π+) asymmetry contribution was
less than 5% (3%) of the statistical uncertainty in the
asymmetries and therefore could be neglected.
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FIG. 22. The π− experimental asymmetry on 3He for E =
5.89GeV. The left (right) panel shows the data for the target
polarized longitudinal (transverse) to the electron beam mo-
mentum. The error bars indicate the statistical uncertainty.
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FIG. 23. The π+ experimental asymmetry on 3He for E =
5.89GeV. The left (right) panel shows the data for the target
polarized longitudinal (transverse) to the electron beam mo-
mentum. The error bars indicate the statistical uncertainty.

To quantify the contamination due to pair-produced
electrons, the ratio of positrons to electrons, Ne+/Ne−

needed to be determined. Due to time constraints this
ratio could only be measured directly at 4.74GeV. To
determine this ratio for the 5.89GeV run a parametriza-
tion was made of the 4.74GeV BigBite and LHRS runs,
the 5.89GeV LHRS run together with data at 5.7GeV
and θ = 41.1◦ from JLab CLAS EG1b [124]. These data,
multiplied by (1/E2)(Ne+/Ne−), were then fit to an em-
pirical function f(kT ) = exp(a+ b · kT ) with kT = k sin θ
being the transverse momentum. The data and the fit are
shown in Fig. 24. The error on the fit was propagated to
be 5–6% across the x-range of the measurements. The
lowest x bin, x = 0.23, was then excluded from further
analysis after the Ne+/Ne− ratio was found to be in ex-
cess of 80%. At the first bin included in the analysis,
x = 0.277, that ratio was ∼ 50% and fell to less than 10%
by x = 0.473. Beyond x = 0.5 the ratio had dropped to
below 3% [62].

Just as with the pion contamination, pair-produced
electrons can affect or dilute the measured electron asym-
metry. Ideally, the asymmetry should be measured by
reversing the polarity of BigBite so that the positrons
are detected with the same acceptance as the electrons.
However, due to the same time constraints as mentioned
previously, this could only be completed for one target-
spin orientation (270◦) at 4.74GeV. Because of this, the
positron asymmetries were measured bent down in Big-
Bite. The asymmetries measured in this configuration
were observed to be in good agreement with those when
the positrons were deflected upwards; however, the accep-
tance, and hence the rate, was ∼ 60% lower. Therefore,
for each beam energy and each target-spin configura-
tion a weighted average was computed over all measured
asymmetries. The results are shown in Figs 25 and 26.
The measured electron asymmetries for each beam en-

kT

FIG. 24. (Color online) The Ne+/Ne− data from this ex-
periment measured in the LHRS and BigBite and CLAS
EG1b [124] plotted as (1/E2)(Ne+/Ne− ) versus the trans-
verse momentum kT . Our fit function is shown by the solid
curve, with its error given by the band surrounding it. See
text for additional details.

ergy and target spin-configuration were then corrected
by the corresponding weighted average positron asym-
metry scaled by the Ne+/Ne− ratio.
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FIG. 25. The positron experimental asymmetry for E =
4.74GeV. The left (right) panel shows the data for the target
polarized longitudinal (transverse) to the electron beam mo-
mentum. The error bars indicate the statistical uncertainty.
The weighted average is indicated by the solid line, and its
uncertainty is indicated by the surrounding dashed lines. The
numerical value of the weighted average with its uncertainty
is also shown.

The effects of the charged-pion and pair-produced elec-
tron asymmetries were corrected for through:

Ae− =
Aexp

e− − f1A
exp
π− − f3A

exp
e+ + f2f3A

exp
π+

1− f1 − f3 + f2f3
, (36)
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FIG. 26. The positron experimental asymmetry for E =
5.89GeV. The desciption of the data and fitted line with its
uncertainty is the same as Fig. 25.

where f1 = Nπ−/Ne− ; f2 = Nπ+/Ne+ ; f3 = Ne+/Ne− ;
Aexp

π± are the π± experimental asymmetries, and Aexp
e+ is

the positron experimental asymmetry. Since the correc-
tions for the pion experimental asymmetries were found
to be negligible, Eq. 36 can be simplified to:

Ae− ≈ Aexp
e− − f3A

exp
e+

1− f1 − f3 + f2f3
≡ Acor. (37)

At this point, the bins for which x > 0.90 were removed
from the analysis, so as to exclude the quasi-elastic and
∆ resonance contributions.

4. False asymmetries

When measuring a scattering asymmetry, care must be
taken to ensure that the asymmetry was due to electron
spin-dependent scattering and not to helicity-correlated
changes in the electron beam, known as false asymme-

tries. One potential false asymmetry arises from a differ-
ence in the electron beam intensity between the two he-
licity states, resulting in an asymmetry in the deposited
charge on the target. During the experiment, the beam
charge asymmetry was limited to ∼ 100ppm through
the use of a feedback loop controlled by a specialized
DAQ [125] and was verified by measuring the charge
asymmetry using the Compton polarimeter [64]. Com-
pared to the size of the electron asymmetry measure-
ments, Acor, the charge asymmetry was negligible.
Helicity-dependent DAQ changes can also generate

false asymmetries, which can be observed through the
measurement of the detector’s live-time. A helicity-
dependent rate change could lead to one helicity state
having a larger live-time than the other, resulting in an
asymmetry. BigBite detector live-times were recorded for

each helicity gate for each run of the experiment. The
helicity-dependent live-time asymmetry was extracted
from the data and was found to be < 100 ppm for the
entire data set, which was negligible [62].
In addition to charge- and DAQ-induced false asymme-

tries, the analysis could also introduce a false asymmetry.
For example, if the data rates were high enough, it may
be more difficult to reconstruct good tracks related to
the higher-rate helicity state as compared to the lower-
rate one, resulting in an asymmetry [126]. However, the
E06-014 data set was dominated by single-track events
(∼ 96%), and thus the rates were not high enough for
such an asymmetry to have a significant impact on the
measured electron asymmetries.
Potential sources of false asymmetries are limited by

the 30Hz helicity flipping rate of the electron beam. Ad-
ditionally, any false asymmetry that does not change sign
with respect to the IHWP state (Section IVC1), such as
those due to electronic cross-talk [127], would be can-
celed when combining data from the two IHWP states.
In summary, no significant false asymmetries were ob-
served.

5. Radiative corrections

Radiative corrections on the asymmetries were applied
utilizing a similar approach as on the cross sections in
Section IVB3. We carried out the corrections on polar-
ized cross section differences, ∆σ, related to asymmetries
by:

Ar
‖,⊥ =

∆σr
‖,⊥

2σr
0

, (38)

where Ar
‖ (Ar

⊥) indicates the longitudinal (perpendicu-

lar) asymmetry which includes radiative effects. The un-
polarized cross section is σr

0 , where the r indicates that
radiative effects have been applied. We used the F1F209
parameterization [122] for the unpolarized cross section.
The input used to fill out the integration phase space fell
into three different kinematic regions: the DIS region,
the quasi-elastic region, and the ∆ resonance region. For
the DIS region the DSSV [128] PDF parametrization was
used, for the quasi-elastic region Bosted’s nucleon form
factors [129], smeared by a quasi-elastic scaling func-
tion [130] was used and for the ∆ region the MAID
model [29] was used. The ∆σ obtained after putting
these models together for the three regions described the
JLab E94-010 data [131] reasonably well [86].
In the radiative correction procedure, the quasi-elastic

tail was not subtracted first, but rather included in the
integration. The elastic tail was found to be negligible
and was not subtracted. To minimize statistical fluctu-
ations in the radiative corrections, the corrections were
performed on a model of our data set. After obtaining
the final ∆σ, the corresponding asymmetry was obtained
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by inverting Eq. 38 (but using the Born σ0 from F1F209)
to find A with the size of the radiative correction given
by:

∆A = Ab −Ar. (39)

The quantity Ab denotes the Born asymmetry and Ar

the radiated asymmetry. Here, Ar is the model input
to the radiative corrections program. This ∆A was ap-
plied to our extracted asymmetries, Acor

‖,⊥ (see Eq. 37), as

an additive correction. The size of the radiative correc-
tion was found to be at most of the order of 45% (10−3

absolute) of the uncorrected asymmetry. The radiative
corrections in the DIS region were checked against results
obtained using the formalism of Akushevich et al. [132].
The results of both methods agreed to the 10−4 level in
the asymmetry.
The asymmetries on 3He before and after radiative

corrections for the 4.74 and 5.89GeV runs are shown in
Figs. 27 and 28 and tabulated in Tables VI and VII in
Section V. The systematic uncertainties for the radiative
corrected data, were obtained by varying all input to rea-
sonable levels. The inputs varied included the electron
cuts, the nitrogen dilution factor, beam and target polar-
izations, pion and pair-production contamination levels
and the radiative corrections. The latter were observed to
change less than 5% when using various input models and
when the radiation thicknesses before and after scatter-
ing were varied by up to ±10%. Tables in Appendix E 2
list the various contributions to the systematic errors.
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FIG. 27. (Color online) The parallel and perpendicular asym-
metries on 3He for E = 4.74GeV before (square) and after
(circle) radiative corrections. The error bands indicate the
systematic uncertainty for the final asymmetries.

D. From 3He to the neutron

Free nucleons behave differently from those bound in
nuclei, primarily due to spin depolarization, Fermi mo-
tion, nuclear binding, and nuclear shadowing and anti-
shadowing effects. Additionally, the characteristics of
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FIG. 28. (Color online) The parallel and perpendicular asym-
metries on 3He for E = 5.89GeV before (square) and after
(circle) radiative corrections. The error bands indicate the
systematic error for the final asymmetries.

bound nucleons can be altered by the presence of non-
nucleonic degrees of freedom and how far off-shell the
nucleons are.
We utilized the work of Bissey et. al. [133], which

provides a description of the g1 spin structure function
on 3He over the range 10−4 ≤ x ≤ 0.8. It models the 3He
wavefunction incorporating the S, S′ and D states, and
includes a pre-existing ∆ (1232) component:

g
3He
1 (x) = Png

n
1 (x) + 2Ppg

p
1(x)− 0.014 [gp1(x) − 4gn1 (x)]

+ a(x)gn1 (x) + b(x)gp1(x), (40)

where Pp and Pn are the effective polarizations of the pro-
ton and neutron in 3He [60], respectively. The third term
arises from the ∆(1232) component in the 3He wave func-
tion [133]. The functions a(x) and b(x) describe nuclear
shadowing and anti-shadowing effects. In the present ex-
periment, the x-coverage does not drop below x ∼ 0.2
so that shadowing and anti-shadowing effects can be ne-
glected. Therefore, Eq. 40 becomes:

g
3He
1 (x) ≈ Png

n
1 (x) + 2Ppg

p
1(x) − 0.014 [gp1(x)− 4gn1 (x)] .

(41)
The same formula applies for g2 data, with g2 replacing
g1 in Eq. 41.

The nuclear corrections to our data for d
3He
2 were ap-

plied to the integral (not bin-by-bin to the d2 integrand),
which resulted in two average Q2-bins for each of the
beam energies 4.74 and 5.89GeV. Thus, the correction
followed the formalism defined in Eq. 41:

dn2 =
1

P̃n

(

d
3He
2 − P̃pd

p
2

)

, (42)

for a given bin in Q2, where the quantity P̃p = 2Pp −
0.014 and P̃n = Pn + 0.056. For the proton an effective
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polarization Pp = −0.028+0.009
−0.004 was used, and for the

neutron Pn = 0.86+0.036
−0.020 [28]. The matrix element dp2

was evaluated by considering various global analyses [49,
128, 134–136] to construct gp1 . The Wandzura-Wilczek
relation [14, 137, 138] was used to obtain gp2 , which is
valid if the higher-twist effects are assumed to be small;
this is a reasonable assumption based on the results of
SLAC E155 [139]. Using the average of the results for gp1
and gp2 , the d

p
2 integral was evaluated over the same x-

range of our experiment at
〈

Q2
〉

= 3.21 and 4.32GeV2,
and the result was inserted into Eq. 42.
To obtain the nuclear corrections needed to extract

gn1 /F
n
1 , we first divided Eq. 41 by F

3He
1 and then rewrote

F
3He
1 in terms of F

3He
2 following:

F1

(

x,Q2
)

=
F2

(

x,Q2
) (

1 + γ2
)

2x [1 +R (x,Q2)]
, (43)

where R is taken to be target-independent [133], which
is a reasonable assumption for Q2 > 1.5GeV2 and x >
0.15 [140]. Solving for gn1 /F

n
1 yielded:

gn1
Fn
1

=
1

P̃n

F
3He
2

Fn
2

(

g
3He
1

F
3He
1

− P̃p
F p
2

F
3He
2

gp1
F p
1

)

. (44)

Using Eq. 44, we extracted gn1 /F
n
1 from our 3He data.

For the unpolarized F
3He
2 structure function, we utilized

the F1F209 parameterization [122], which incorporates
Fermi motion and EMC effects, and for F p

2 and Fn
2 , the

unpolarized PDF model CJ12 [141] to world data was
used. A fit to world gp1/F

p
1 data [45, 47, 56, 139, 142]

was performed and used. The fit used a second-order
polynomial in x with three free parameters and assumed
Q2-independence. Any Q2-dependence would cancel in
the ratio of g1/F1 to leading order and next-to-leading
order [123]. For more details, see Appendix C 2.
For the nuclear corrections to obtain An

1 , we used the
expression for A1 in terms of the structure functions g1,
g2 and F1 (Appendix A4). Solving for An

1 gave (cf.
Eq. 44):

An
1 =

1

P̃n

F
3He
2

Fn
2

(

A
3He
1 − P̃p

F p
2

F
3He
2

Ap
1

)

. (45)

The same models used in the g1/F1 analysis for F2

on 3He, the proton and the neutron were used in the
A1 analysis. Similar to the g1/F1 analysis, a Q2-
independent, second-order polynomial in x was fit to
world Ap

1 data [47, 56, 139, 143–147] and used in the
analysis. For more details, see Appendix C 3.
Other neutron extraction methods have been studied

in Ref. [148], where the full convolution formalism was
used at finite Q2, including the nucleon off-shell and ∆
contributions. Such calculations are consistent with our
extraction of dn2 and An

1 following Eqs. 42 and 45, respec-
tively.

V. RESULTS

A. 3He results

Results for the unpolarized e-3He scattering cross sec-
tion (Section IVB) for E = 4.74 and 5.89GeV are given
in Tables IV and V. All of the contributions to the sys-
tematic uncertainty in the cross section are given in Ta-
bles XXIII and XXIV. The biggest contribution to the
systematic uncertainty was the background subtraction,
at a relative uncertainty of ∼ 9% in the lowest bin in x.
Our extracted cross section values are in good agreement
with the F1F209 parameterization [122].

TABLE IV. The final 3He unpolarized cross sections for
4.74GeV data. The uncertainties listed are statistical and
systematic, respectively.

〈x〉
〈

Q2
〉

(GeV2) d3σ

dΩdE′ (nb/GeV/sr)
0.214 1.659 6.191 ± 0.365 ± 0.561
0.299 2.209 5.374 ± 0.178 ± 0.281
0.456 3.094 2.544 ± 0.048 ± 0.121
0.494 3.285 2.223 ± 0.034 ± 0.103
0.533 3.472 1.762 ± 0.026 ± 0.084
0.579 3.694 1.353 ± 0.027 ± 0.065
0.629 3.909 1.021 ± 0.018 ± 0.050
0.686 4.149 0.718 ± 0.012 ± 0.035
0.745 4.387 0.536 ± 0.012 ± 0.028

TABLE V. The final 3He unpolarized cross sections for
5.89GeV data. The uncertainties listed are statistical and
systematic, respectively.

〈x〉
〈

Q2
〉

(GeV2) d3σ

dΩdE′ (nb/GeV/sr)
0.208 2.064 4.069 ± 0.440 ± 0.492
0.247 2.409 4.322 ± 0.116 ± 0.310
0.330 3.095 2.488 ± 0.099 ± 0.130
0.434 3.882 1.596 ± 0.038 ± 0.079
0.468 4.124 1.234 ± 0.030 ± 0.063
0.503 4.360 1.067 ± 0.020 ± 0.052
0.539 4.603 0.846 ± 0.016 ± 0.042
0.580 4.873 0.679 ± 0.012 ± 0.033
0.629 5.173 0.472 ± 0.010 ± 0.022
0.679 5.478 0.331 ± 0.007 ± 0.016
0.738 5.811 0.250 ± 0.006 ± 0.013

The ~e-3 ~He electron asymmetries A
3He
‖ and A

3He
⊥ (Sec-

tion IVC), the virtual photon asymmetry A
3He
1 , and the

structure function ratio g
3He
1 /F

3He
1 (Eqs. 18 and 19) for

the 4.74GeV and 5.89GeV data are given in Tables VI

and VII. The polarized structure functions g
3He
1 and g

3He
2

(Eqs. B3 and B4) are given in Tables VIII and IX. All
of the contributions to the systematic uncertainties are
given in Appendix E, with the dominant one being the
selection of the electron sample.

The asymmetry A
3He
1 is plotted in Fig. 29, compared to
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the world DIS data from SLAC E142 [43], HERMES [149]
and JLab E99-117 [28, 46]. Also plotted are resonance
data from JLab E01-012 [150]. We find that our results
reproduce the trend of existing data.

The spin-structure functions g
3He
1 and g

3He
2 are pre-

sented in Figs. 30 and 31, in which the world DIS data
from JLab E99-117 [28, 46] and SLAC E142 [43] are also
shown. Resonance data from JLab E01-012 [150] are also
presented. The gray band represents an envelope encom-
passing a number of global analyses [59, 128, 134–136].

Our data reproduce the trend seen in existing g
3He
1 data.

For g
3He
2 , our data have improved on the uncertainty by

about a factor of 2 relative to the JLab E99-117 data set.
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FIG. 29. (Color online) Our measured result for A
3He
1 for

4.74GeV (filled squares) and 5.89GeV (filled circles) data.
The error bars on our data points represent the statistical
uncertainty. The bands at the bottom of the plot indicate
the systematic uncertainty for each data set, where the upper
(lower) band corresponds to the 4.74 GeV (5.89GeV) data set.
The DIS data set corresponds to data for which x < 0.519
(x < 0.623) for E = 4.74GeV (5.89GeV); the data at larger
x values correspond to the resonance region. Also plotted are
world DIS data from SLAC E142 [43], HERMES [149] and
JLab E99-117 [28, 46], and resonance data from JLab E01-
012 [150].

B. Neutron results

1. The matrix element dn2

Results for the dn2 matrix element (Eq. 17 and Sec-
tion IVD), first published in Ref. [153], are shown in
Fig. 34 and tabulated in Table X. The matrix ele-
ment was extracted using the Cornwall-Norton (CN) mo-
ments [154]. Since our measurement did not cover the full
x range, a low-x (x < 0.25) and a high-x (x > 0.90) con-
tribution needed to be evaluated from other sources. For
the low-x region, a third-order polynomial fit to the world

x
0 0.2 0.4 0.6 0.8 1

H
e

3 1g2 x

-0.01

-0.005

0

0.005

0.01

0.015

This Work (E = 4.7 GeV)

This Work (E = 5.9 GeV)

Global Analyses
E142

)2/c2 = 3.0 GeV2E01-012 (Resonance, Q
E99-117
E97-103

FIG. 30. (Color online) Our results for g1 on 3He for 4.74GeV
(filled squares) and 5.89 GeV (filled circles) data. The er-
ror bars on our data points represent the statistical uncer-
tainty. The bands at the bottom of the plot indicate the
systematic uncertainty for each data set, where the upper
(lower) band corresponds to the 4.74GeV (5.89GeV) data
set. The DIS data set corresponds to data for which x < 0.519
(x < 0.623) for E = 4.74GeV (5.89GeV); the data at larger x
values correspond to the resonance data. Our data are com-
pared to world DIS data from JLab E99-117 [28, 46], SLAC
E142 [43], and resonance data from JLab E01-012 [150] and
JLab E97-103 [151, 152]. The gray band represents an en-
velope of various global analyses [59, 128, 134–136] for g1 at
Q2 = 4.43GeV2, which was the average Q2 of our data set.

data on x2gn1 [43, 44, 47, 152] and x2gn2 [27, 139, 152]
was used to evaluate dn2 . This contribution is relatively
small, considering the x2-weighting. The large-x contri-
bution comes from the elastic peak, which was modeled
using the Riordan [40] and Kelly [41] parameterizations.
The contribution from the range 0.90 < x < 0.99 was
considered to be negligible when taking into account the
size of our g1 and g2 data at x ∼ 0.90. Nuclear cor-
rections were applied to our 3He data as described in
Section IVD. Adding the low-x and high-x (elastic) con-
tributions to our measured result gave the full dn2 inte-
gral. Target mass corrections (TMCs) were checked by
extracting dn2 using the Nachtmann moments [155]; the
difference between the CN and Nachtmann approaches
was found to be small relative to the statistical uncer-
tainties. An overview of the systematic uncertainties is
given in Table XXXIII. The largest contribution to the
systematic uncertainty comes from the unmeasured low-
x region.

Our unpolarized cross section and double-spin asym-
metry data were obtained at various Q2 values; since
the dn2 integral is typically carried out at constant Q2,
we considered what the effect of evolving ḡn2 (the twist-
3 part of gn2 ) would have on the dn2 value. To do this,
we utilized the ḡn2 model from Ref. [156] along with the
Q2 evolution description for gn2 from Ref. [157], which
uses flavor-nonsinglet evolution equations and utilizes
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TABLE VI. Asymmetry results for A
3He
‖ , A

3He
⊥ , A

3He
1 and g

3He
1 /F

3He
1 for the 4.74GeV data. The first uncertainty is statistical,

while the second is systematic.

〈x〉
〈

Q2
〉

(GeV2) A
3He
‖ A

3He
⊥ A

3He
1 g

3He
1 /F

3He
1

0.277 2.038 −0.008 ± 0.015 ± 0.007 −0.002 ± 0.008 ± 0.003 −0.008± 0.017 ± 0.004 −0.009 ± 0.016 ± 0.004
0.325 2.347 −0.009 ± 0.009 ± 0.003 −0.001 ± 0.005 ± 0.002 −0.010± 0.010 ± 0.001 −0.010 ± 0.009 ± 0.001
0.374 2.639 0.005 ± 0.007 ± 0.002 −0.011 ± 0.004 ± 0.002 0.008 ± 0.008 ± 0.001 0.001 ± 0.007 ± 0.001
0.424 2.915 −0.025 ± 0.007 ± 0.005 −0.003 ± 0.004 ± 0.002 −0.027± 0.008 ± 0.003 −0.026 ± 0.007 ± 0.002
0.473 3.176 −0.021 ± 0.008 ± 0.003 −0.005 ± 0.004 ± 0.001 −0.022± 0.009 ± 0.002 −0.023 ± 0.008 ± 0.002
0.523 3.425 0.002 ± 0.009 ± 0.002 −0.006 ± 0.005 ± 0.001 0.004 ± 0.010 ± 0.001 0.000 ± 0.009 ± 0.001
0.574 3.662 0.005 ± 0.010 ± 0.004 −0.008 ± 0.005 ± 0.002 0.008 ± 0.012 ± 0.002 0.002 ± 0.011 ± 0.002
0.623 3.886 0.029 ± 0.013 ± 0.003 0.005 ± 0.007 ± 0.002 0.031 ± 0.015 ± 0.002 0.031 ± 0.013 ± 0.002
0.673 4.099 0.025 ± 0.015 ± 0.005 −0.004 ± 0.009 ± 0.003 0.030 ± 0.018 ± 0.003 0.023 ± 0.016 ± 0.002
0.723 4.307 0.031 ± 0.019 ± 0.007 −0.014 ± 0.009 ± 0.002 0.041 ± 0.022 ± 0.004 0.026 ± 0.020 ± 0.003
0.773 4.504 −0.012 ± 0.024 ± 0.013 −0.025 ± 0.012 ± 0.005 −0.005± 0.028 ± 0.008 −0.023 ± 0.025 ± 0.007
0.823 4.694 −0.033 ± 0.030 ± 0.012 0.005 ± 0.016 ± 0.006 −0.041± 0.037 ± 0.007 −0.032 ± 0.032 ± 0.006
0.874 4.876 −0.014 ± 0.039 ± 0.017 −0.049 ± 0.020 ± 0.006 0.004 ± 0.048 ± 0.010 −0.035 ± 0.041 ± 0.009

TABLE VII. Asymmetry results for A
3He
‖ , A

3He
⊥ , A

3He
1 and g

3He
1 /F

3He
1 for the 5.89 GeV data. The first uncertainty is statistical,

while the second is systematic.

〈x〉
〈

Q2
〉

(GeV2) A
3He
‖ A

3He
⊥ A

3He
1 g

3He
1 /F

3He
1

0.277 2.626 0.019 ± 0.027 ± 0.010 0.010 ± 0.008 ± 0.003 0.020 ± 0.029 ± 0.006 0.024 ± 0.028 ± 0.006
0.325 3.032 −0.017 ± 0.012 ± 0.003 0.004 ± 0.004 ± 0.001 −0.019± 0.013 ± 0.002 −0.016 ± 0.012 ± 0.002
0.374 3.421 −0.006 ± 0.009 ± 0.002 −0.001 ± 0.003 ± 0.001 −0.006± 0.010 ± 0.001 −0.006 ± 0.009 ± 0.001
0.424 3.802 −0.020 ± 0.009 ± 0.003 −0.004 ± 0.003 ± 0.001 −0.021± 0.010 ± 0.002 −0.022 ± 0.009 ± 0.002
0.474 4.169 −0.021 ± 0.010 ± 0.006 0.000 ± 0.003 ± 0.001 −0.022± 0.011 ± 0.003 −0.021 ± 0.010 ± 0.003
0.524 4.514 0.002 ± 0.012 ± 0.002 0.000 ± 0.004 ± 0.001 0.002 ± 0.013 ± 0.001 0.002 ± 0.012 ± 0.001
0.573 4.848 0.003 ± 0.015 ± 0.003 0.003 ± 0.004 ± 0.001 0.003 ± 0.016 ± 0.002 0.004 ± 0.015 ± 0.002
0.624 5.176 0.005 ± 0.018 ± 0.005 −0.004 ± 0.005 ± 0.001 0.006 ± 0.020 ± 0.003 0.003 ± 0.018 ± 0.003
0.674 5.486 −0.003 ± 0.022 ± 0.005 −0.002 ± 0.007 ± 0.002 −0.003± 0.024 ± 0.003 −0.004 ± 0.022 ± 0.002
0.723 5.777 0.003 ± 0.027 ± 0.005 −0.004 ± 0.008 ± 0.003 0.004 ± 0.031 ± 0.003 0.001 ± 0.028 ± 0.003
0.773 6.059 0.006 ± 0.035 ± 0.008 0.005 ± 0.010 ± 0.002 0.005 ± 0.039 ± 0.004 0.008 ± 0.035 ± 0.004
0.823 6.325 0.028 ± 0.047 ± 0.014 −0.044 ± 0.014 ± 0.004 0.045 ± 0.053 ± 0.008 0.009 ± 0.047 ± 0.013
0.873 6.585 0.015 ± 0.062 ± 0.017 −0.008 ± 0.019 ± 0.007 0.020 ± 0.072 ± 0.009 0.011 ± 0.064 ± 0.009

large-Nc and large-x (x & 0.1) approximations. The
Q2-evolution calculations were performed using QCD-
Num [158] in the variable-flavor number scheme (VFNS)
and with αs

(

Q2 =M2
Z

)

= 0.1185 [159]. For each of our
measured x bins at a given beam energy, the model was
evolved from its initial value at Q2 = 1GeV2 to the mea-
sured Q2-value

(

Q2
m

)

for that particular x-bin and also

to the
〈

Q2
〉

value for the given beam energy, see Figs. 32
and 33. We then evaluated:

∆dn2 = |dn2
(〈

Q2
〉)

− dn2
(

Q2
m

)

| (46)

where
〈

Q2
〉

= 3.21GeV2 (4.32GeV2) for E = 4.74GeV
(5.89GeV). The dn2 integral was evaluated according
to Eq. 4 for our measured 〈x〉 bins corresponding to
0.277 ≤ x ≤ 0.874 (0.277 ≤ x ≤ 0.873) for E = 4.74GeV
(5.89GeV). We found ∆dn2 = 0.00008 (0.00007) for the
E = 4.74GeV (5.89GeV), which is a factor of 6 (5)
smaller than the systematic uncertainty on our measured
dn2 for E = 4.74GeV (5.89GeV). The difference between
the constantQ2 evaluation of dn2 compared to the varying

Q2 approach was taken as an estimate of the systematic
uncertainty due to not performing the Q2 evolution on
our data.

Our result at
〈

Q2
〉

= 3.21GeV2 is small and negative,

while the result at
〈

Q2
〉

= 4.32GeV2 is consistent with
zero (Table X). The trend of our measurements appears
to be in agreement with the lattice QCD calculation [35]
at Q2 = 5GeV2. Our dn2 extraction is also consistent
with bag [33, 36, 37] and chiral soliton [32] models, as
shown in Fig. 34.

The Jefferson Lab Angular Momentum (JAM) collab-
oration has published new results from their global QCD
analysis [160]. Their work utilizes an iterative Monte
Carlo technique that aims to reduce the influence of un-
physical fitting parameters and lower the impact of pa-
rameter initial values on the results. JAM has included
our data in their global analysis by fitting directly our

DIS data for A
3He
‖ and A

3He
⊥ . Extracting a pure twist-3

dn2 without higher-twist contributions from resonances at
the same Q2 values as our results, they find a sizable ef-
fect on their (extrapolated) prediction at Q2 = 1GeV2,
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FIG. 31. (Color online) Our results for g2 on 3He for the
4.74GeV (filled squares) and 5.89GeV (filled circles) data.
The error bars on our data points represent the statistical
uncertainty. The bands at the bottom of the plot indicate
the systematic uncertainty for each data set, where the upper
(lower) band corresponds to the 4.74 GeV (5.89GeV) data set.
The DIS data set corresponds to data for which x < 0.519
(x < 0.623) for E = 4.74GeV (5.89GeV); the data at larger
x values correspond to the resonance data. Our data are
compared to world data from JLab E99-117 [28, 46], JLab
E01-012 [150] (resonance data) and JLab E97-103 [151, 152]
(resonance data). The gray band represents an envelope of
various global analyses [59, 128, 134–136] used to construct
gWW
2 .

TABLE VIII. The g1 and g2 spin-structure functions mea-
sured on 3He at an incident electron energy of 4.74GeV. The
first uncertainty is statistical, while the second is systematic.

〈x〉 g
3He
1 g

3He
2

0.277 −0.009 ± 0.016 ± 0.009 −0.006± 0.034 ± 0.009
0.325 −0.009 ± 0.008 ± 0.002 −0.001± 0.014 ± 0.006
0.374 0.001 ± 0.005 ± 0.002 −0.026± 0.009 ± 0.005
0.424 −0.014 ± 0.004 ± 0.003 0.001 ± 0.006 ± 0.002
0.473 −0.010 ± 0.003 ± 0.002 −0.002± 0.004 ± 0.001
0.523 0.000 ± 0.003 ± 0.000 −0.005± 0.004 ± 0.001
0.574 0.000 ± 0.003 ± 0.001 −0.005± 0.003 ± 0.001
0.623 0.005 ± 0.002 ± 0.001 0.000 ± 0.002 ± 0.001
0.673 0.003 ± 0.002 ± 0.001 −0.002± 0.002 ± 0.001
0.723 0.002 ± 0.002 ± 0.001 −0.003± 0.002 ± 0.001
0.773 −0.001 ± 0.002 ± 0.001 −0.002± 0.001 ± 0.001
0.823 −0.001 ± 0.001 ± 0.001 0.001 ± 0.001 ± 0.000
0.874 −0.001 ± 0.001 ± 0.001 −0.002± 0.001 ± 0.001

reducing it from 0.005± 0.005 to −0.001± 0.001. They
also found their dn2 value to be consistent with lattice
calculations [35] when extrapolating to Q2 = 5GeV2.

TABLE IX. The g1 and g2 spin-structure functions measured
on 3He at an incident electron energy of 5.89 GeV. The first
uncertainty is statistical, while the second is systematic.

〈x〉 g
3He
1 g

3He
2

0.277 0.026 ± 0.029 ± 0.012 0.046 ± 0.047 ± 0.019
0.325 −0.013 ± 0.010 ± 0.003 0.022 ± 0.015 ± 0.006
0.374 −0.004 ± 0.006 ± 0.002 0.000 ± 0.008 ± 0.002
0.424 −0.011 ± 0.005 ± 0.002 −0.002 ± 0.006 ± 0.002
0.474 −0.008 ± 0.004 ± 0.002 0.003 ± 0.004 ± 0.002
0.524 0.000 ± 0.003 ± 0.001 0.000 ± 0.003 ± 0.001
0.573 0.001 ± 0.003 ± 0.001 0.001 ± 0.003 ± 0.001
0.624 0.000 ± 0.002 ± 0.001 −0.002 ± 0.002 ± 0.000
0.674 0.000 ± 0.002 ± 0.000 0.000 ± 0.002 ± 0.000
0.723 0.000 ± 0.002 ± 0.000 −0.001 ± 0.002 ± 0.000
0.773 0.000 ± 0.002 ± 0.000 0.000 ± 0.001 ± 0.000
0.823 0.000 ± 0.002 ± 0.000 −0.003 ± 0.001 ± 0.001
0.873 0.000 ± 0.002 ± 0.000 0.000 ± 0.001 ± 0.000
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FIG. 32. (Color online) The dn2 integrand for 4.74GeV kine-
matics. For each measured 〈x〉 bin, the model [156] was
evolved [157, 158] to the measured (average) Q2 value in-
dicated by the circles (squares). For more details, see the
text.

2. The matrix element an
2

Following a similar procedure to that discussed for d2,
we can extract the a2 matrix element from our g1 data
according to the third CN moment of g1:

a2
(

Q2
)

=

∫ 1

0

x2g1
(

x,Q2
)

dx. (47)

TABLE X. The dn2 results with statistical and systematic un-
certainties. The last uncertainty represents that due to ne-
glecting the Q2-evolution of the dn2 integrand.
〈

Q2
〉 (

GeV2
)

dn2
(

×10−5
)

3.21 −421.0 ± 79.0± 82.0 ± 8.0
4.32 −35.0 ± 83.0 ± 69.0± 7.0
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FIG. 33. (Color online) The dn2 integrand for 5.89GeV kine-
matics. For each measured 〈x〉 bin, the model [156] was
evolved [157, 158] to the measured (average) Q2 value in-
dicated by the circles (squares). For more details, see the
text.
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FIG. 34. (Color online) Our measured dn2 data as a function
of Q2 compared to the world data from SLAC E155x [27],
JLab E99-117 and SLAC E155x [28], JLab RSS [25] and JLab
E01-012 [26]. Also shown are various theoretical calculations,
including a QCD sum rule approach [30, 31], a chiral soli-
ton model [32] and a bag model [33]. Additionally, a lattice
QCD [35] calculation is shown. The elastic contribution to
dn2 is given by the dashed curve, evaluated using the CN mo-
ments. Figure reproduced from Ref. [153].

The low-x, high-x and measured regions were treated in
the same way as was done for the d2 analysis, using the
same model inputs. Our g1 data were not evolved to
a constant Q2, as our investigation into the Q2 evolu-
tion of our g1 data revealed that the Q2 dependence was
negligible [62]. Our results for an2 are shown in Fig. 35,
where the inner error bars are the statistical uncertain-
ties and the outer error bars represent the in-quadrature
sum of statistical and systematic uncertainties. The cir-
cle (square) data points exclude (include) the unmea-
sured low-x region. Both data points extracted are pos-
itive, and the elastic contribution is sizable. The SLAC
E143 [47] data are also plotted, where their uncertainty
is the in-quadrature sum of the statistical and system-

atic contributions. The up-triangles represent the av-
erage over global analyses [59, 128, 134–136]. The lat-
tice calculation shown is from Göckeler et al. [35], where
the error bar is statistical with a 15% systematic uncer-
tainty added in quadrature. The systematic uncertainty
arises from their extrapolation of their result to the chiral
limit [35]. Our results are tabulated in Table XI, broken
down into the low-x, measured and high-x regions. The
last column shows the full extraction. The systematic

uncertainties on an2 are dominated by that in a
3He
2 and

that due to the parameterization of ap2. The uncertainties
for an2 are summarized in Appendix E 5.
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FIG. 35. (Color online) Our extracted an
2 measurement com-

pared to SLAC E143 [47] and a lattice QCD calculation [35],
both of which are at Q2 = 5GeV2. The lattice calculation is
offset in Q2 for clarity. The up-triangles represent the average
over global analyses [59, 128, 134–136], which are offset in Q2

for clarity. Our measurements shown as the circles (squares)
exclude (include) the unmeasured low-x region. The inner er-
ror bar on our data is the statistical error and the outer error
bar is the in-quadrature sum of the statistical and systematic
uncertainties. The results excluding the low-x contribution
are offset in Q2 for clarity. The elastic contribution is com-
puted by using the Riordan [40] and Kelly [41] parameteriza-
tions for Gn

E and Gn
M , respectively.

3. Color force extraction

In order to decompose the Lorentz color force into its
electric and magnetic components, one needs to first ex-
tract the twist-4 matrix element, fn

2 . This is accom-
plished by considering our measured dn2 value along with
the an2 matrix element.
The an2 matrix element was evaluated for various global

analyses [59, 128, 134–136] over the range 0.02 < x <
0.90, and the average of the results at each

〈

Q2
〉

-bin is
taken as the value of an2 . These results are consistent with
our extracted values (Fig. 35). The elastic contribution
was added to the integral in a similar fashion as was done
for dn2 .
With dn2 and an2 in hand, the twist-4 matrix element fn

2

was evaluated following the analysis presented in [22, 38].
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TABLE XI. The extracted an
2 over the full x-range, decomposed into the low-x, measured and high-x components. The column

labeled “full” is the sum of all three regions. The uncertainties are only listed for the full extraction, where the first quantity
is the statistical uncertainty and the second is the systematic uncertainty. All uncertainties are absolute.

〈

Q2
〉 (

GeV2
)

Low-x
(

×10−4
)

Measured
(

×10−4
)

High-x
(

×10−4
)

Full
(

×10−4
)

3.21 −3.056 5.078 6.530 8.552 ± 1.761 ± 6.125
4.32 −3.056 5.499 2.601 5.044 ± 2.270 ± 6.042

Results for Γn
1 (Eq. 13) from HERMES [161], SMC [147],

JLab RSS [25] and E94-010 [131], and the SLAC exper-
iments E142 [43], E143 [47] and E154 [162] were used in
the updated extraction analysis. The data sets chosen for
this analysis were from those experiments that published
gn1 data at constant Q2. Since Γn

1 is an integral over all
x (0 ≤ x ≤ 1), the unmeasured low-x and high-x regions
need to be accounted for in a consistent fashion. The
method we implemented for all data sets is that shown
in Ref. [22], with the exception of the HERMES and JLab
data, which had already used such an extrapolation. The
extrapolation calls for fitting the gn1 data to an appropri-
ate function over the appropriate x-range. For the low-x
region, the fit function was a constant f(x) = A, with A
being a free parameter. The fit was performed over the
range xmin < x < x′, where x′ is the lowest measured x
bin for a given experiment. The lower bound xmin is de-
fined by W =

√
1000GeV. The uncertainty in this low-x

extrapolation was estimated by taking the difference be-
tween our fit of f(x) = A with that of a simple Regge pa-
rameterization where f(x) = Ax−1/2 [163, 164]. For the
high-x region, the fit function was f(x) = A(1−x)3, with
A being a free parameter, over the range x′ < x < xmax.
The quantity x′ is the highest x bin for which there were
data available and xmax is defined by the pion produc-
tion threshold, W = 1.12GeV. The fit functions for the
low- and high-x regions were chosen based on the trend
of the data in the last three or two bins in each case,
respectively.

The elastic contribution to Γn
1 was evaluated using the

Riordan [40] and Kelly [41] parameterizations, and was
added to all of the world data. The uncertainty on the
elastic contribution was estimated as the difference be-
tween using the Riordan (Kelly) parameterization for Gn

E

(Gn
M ) compared to using Galster [165] (dipole) for Gn

E
(Gn

M ). The resulting Γn
1 data from this analysis are pre-

sented in Appendix D.

In order to extract the higher-twist contribution, the
twist-2 contribution must first be removed. Using the
OPE [15], Γn

1 was expanded as an inverse power series
in Q2, revealing the higher-twist components, that was
accessed by subtracting the leading twist (twist-2) con-
tribution. The twist-2 contribution µn

2 was calculated
using Eq. 14, where αs was parameterized according
to [166] and normalized to αs

(

1 GeV2
)

= 0.45± 0.05 for
ΛQCD = 315MeV. We used Nf = 3 and Nloop = 3 [38],
gA = 1.2723± 0.0023 [159], and a8 = 0.587± 0.016 [159].
Note that the values for gA and a8 have been updated

relative to those used in Ref. [153]. At large Q2, the
higher-twist contributions should be small due to the
Q−2 suppression; therefore, Γn

1

(

Q2
)

= µ2

(

Q2
)

. Because
of this, the axial charge ∆Σ was extracted (Eq. 14) us-
ing the highest Q2-measurements from SLAC E154 [162]
(Q2 = 5 GeV2), SMC [147] (Q2 = 10 GeV2), and
HERMES [161] (Q2 = 6.5 GeV2). Statistically aver-
aging the results of these experiments yielded Q2 =
5.77GeV2 and Γn

1 = −0.03851 ± 0.00535, resulting in
∆Σ = 0.375 ± 0.052. This calculation is in excellent
agreement with [167] and is consistent with Ref. [128],
but at odds with Ref. [168]. In the latter case, we sus-
pect this disagreement may be due in part to differing
approaches in the low-x extrapolation of the world data
in the various global analyses; additionally, Ref. [168] is
dominated by proton data (and does not include JLab
neutron data [26, 28, 46, 131]), which may be biasing the
extraction of ∆Σ, though it is clear that there is a need
for more neutron data in general.

As described in Appendix D, a fit to Γn
1 − µ2 as a

function of Q2 allows the extraction of fn
2 after inserting

the average an2 (see beginning of Section VB3) and dn2
from the present experiment. The extracted fn

2 values
are given in Table XII. This result differs from that in
Ref. [153] because we have improved our analysis, where
we have updated the values for gA and a8 used in the
evaluation of the twist-2 term µ2. We also now include
uncertainties on the low-x and elastic terms in the Γn

1

analysis mentioned above; additionally, our uncertainty
on fn

2 has changed as we now consider the full error ma-
trix of our fit function, accounting for correlations be-
tween the fit parameters A and B. Our results reported
here are larger than those in Ref. [153] by about 23%
(25%) for E = 4.74GeV (5.89GeV), and the systematic
uncertainty has been reduced by a factor of 1.5.

Our result for fn
2 is compared to that from an instan-

ton model [169, 170] and QCD sum rule calculations from
E. Stein et al. [30, 171] and Balitsky et al. [31], shown
in Fig. 36. We find good agreement with the instanton
model and reasonable agreement with the QCD sum rule
result from Balitsky et al. Currently, there are no lattice
QCD calculations of fn

2 , and it would be interesting to
see what a lattice approach would yield. One can com-
pare our result to that of Meziani et al. [22], who found
fn
2 = 0.034 ± 0.043 normalized to Q2 = 1GeV2 using
a similar data set in their extraction of Γn

1 . The main
difference between these analyses was that they fit world
neutron data to obtain an2 and used the results of SLAC
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TABLE XII. Extracted fn
2 results. The uncertainties given

are the statistical and systematic uncertainties, respectively.
〈

Q2
〉 (

GeV2
)

fn
2

(

×10−3
)

3.21 53.45 ± 0.79 ± 25.55
4.32 49.68 ± 0.83 ± 25.99

E155x [27] for dn2 , both at Q2 = 5GeV2. In contrast,
this work used the measured dn2 , and the an2 matrix ele-
ment was obtained at the necessary Q2 from an average
over the global analyses [59, 128, 134–136]. The statisti-
cal uncertainty on our extracted fn

2 arises from dn2 , while
the systematic uncertainty contains contributions from
the fit to extract fn

2 , and from the an2 and dn2 systematic
uncertainties, but is dominated by the first.
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FIG. 36. (Color online) Our extracted result for fn
2 as com-

pared to that from an instanton model [169, 170] and QCD
sum rules [30, 31, 171]. The result from the analysis of
Meziani et al. [22] is also shown. For the present data, the in-
ner error bars represent the statistical uncertainties (smaller
than the markers), while the outer error bars represent the
statistical and systematic uncertainties added in quadrature.

With the matrix elements dn2 and fn
2 evaluated, the

Lorentz color force was decomposed into its electric and
magnetic components via [17]:

F y,n
E = −M

2
n

6
(2dn2 + fn

2 ) (48)

F y,n
B = −M

2
n

6
(4dn2 − fn

2 ) , (49)

The results for the electric (F y,n
E ) and magnetic (F y,n

B )
color forces averaged over the volume of the neutron are
shown in Table XIII and in Fig. 37, where we compare to
an instanton model [169, 170] and QCD sum rules from
Stein et al. [30, 171] and Balitsky et al. [31]. In the figure,
filled markers represent F y,n

E , while open markers indi-
cate F y,n

B . We find that the electric and magnetic color
forces are approximately equal and opposite. The elec-
tric color force component F y,n

E is in agreement with the

TABLE XIII. Extracted magnetic and electric Lorentz color
force components. The uncertainties given are the statistical
and systematic uncertainty, respectively.
〈

Q2
〉 (

GeV2
)

F y,n

E (MeV/fm) F y,n

B (MeV/fm)
3.21 −33.53 ± 1.32± 19.07 52.35 ± 2.43 ± 19.18
4.32 −36.48 ± 1.38± 19.38 38.04 ± 2.55 ± 19.46

instanton model, while the magnetic component F y,n
B is

consistent with the instanton model and QCD sum rules.
However, those calculations were performed at Q2 = 0.4
and 1GeV2, respectively. Note that the values for F y,n

E
and F y,n

B reported here differ from those presented in
Ref. [153] because we have re-evaluated the color forces
using the updated fn

2 values given in Table XII. The
central values for F y,n

E at E = 4.74GeV (E = 5.89GeV)
have increased in magnitude by 28% (25%), while for
F y,n
B the central values have increased in magnitude by

16% (24%). The systematic uncertainties for both F y,n
E

and F y,n
B have been reduced by a factor of 1.5.
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FIG. 37. (Color online) Our extracted result for F y,n

E (filled
markers) and F y,n

B (open markers) as compared to an instan-
ton model [169, 170] and QCD sum rules [30, 31, 171]. For
our data points, the inner error bars represent the statistical
uncertainties (smaller than the markers), while the outer er-
ror bars represent the statistical and systematic uncertainties
added in quadrature.

4. The virtual photon-nucleon asymmetry An
1

The asymmetry An
1 (Section IVD) was extracted for

our DIS data at the two beam energies for
〈

Q2
〉

=

2.59GeV2 (E = 4.74GeV) and
〈

Q2
〉

= 3.67GeV2 (E =
5.89GeV); the results are given in Tables XIV and XV.
These results were averaged using the statistical uncer-
tainty as the weight, while the systematic uncertainties
were averaged using equal weights. The averaged results,
first published in [172], are given in Table XVI and plot-
ted in Fig. 38. The systematic uncertainties are outlined
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in tables given in Appendix E 6. The biggest contribu-
tion to the uncertainty is from the effective proton polar-
ization. Our result is consistent with the trend seen in
current DIS data from SLAC E142 [43] and E154 [162],
HERMES [45] and JLab E99-117 [28, 46]. Although this
experiment was optimized for the measurement of dn2 , we
obtained a data set with uncertainties that are compet-
itive with the previous JLab data from E99-117. Our
extraction provides a proof-of-principle measurement in
an open-geometry detector (BigBite) yielding data with
competitive uncertainties compared to the majority of
the world data in the mid-x range, and showing a zero-
crossing at x ≈ 0.5. Our data tend to follow the trend
of the pQCD-based parameterization that includes or-
bital angular momentum [50], possibly indicating the
importance of orbital angular momentum in the spin
of the nucleon. Our result also shows good agreement
with the NJL-type model from Cloët et al. [52]. Dyson-
Schwinger Equation treatment predictions [53] are pre-
sented at x = 1 (Fig. 38).
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FIG. 38. (Color online) Our measured An
1 results compared

to world data [28, 43–46] and a pQCD-inspired global anal-
ysis (dashed) [49], a statistical quark model (solid) [51], a
relativistic CQM model (gray band) [48] and a pQCD-based
parameterization including orbital angular momentum (dash-
dotted) [50]. An NJL-type model (dash triple-dotted) is also
shown [52]. Dyson-Schwinger Equation treatment predic-
tions [53] are presented at x = 1. The band at the bottom of
the plot indicates the systematic uncertainty for the present
data.

5. The structure function ratio gn1 /F
n
1

Similar to the An
1 analysis (Section VB4), the gn1 /F

n
1

ratio was extracted for our DIS data at each beam en-
ergy for

〈

Q2
〉

= 2.59GeV2 (E = 4.74GeV) and
〈

Q2
〉

=

3.67GeV2 (E = 5.89GeV). These data are given in Ta-
bles XIV and XV. The results were averaged using the
statistical uncertainty as the weight, and systematic un-

TABLE XIV. Results for An
1 and gn1 /F

n
1 for E = 4.74GeV.

The uncertainties given are the statistical and systematic un-
certainties, respectively.

〈x〉 An
1 gn1 /F

n
1

0.277 0.012 ± 0.071 ± 0.008 0.007 ± 0.068 ± 0.010
0.325 0.011 ± 0.043 ± 0.009 0.008 ± 0.041 ± 0.008
0.374 0.102 ± 0.037 ± 0.014 0.065 ± 0.034 ± 0.011
0.424 −0.064 ± 0.040 ± 0.014 −0.066 ± 0.038 ± 0.013
0.473 −0.044 ± 0.051 ± 0.015 −0.058 ± 0.047 ± 0.014

TABLE XV. Results for An
1 and gn1 /F

n
1 for E = 5.89GeV.

The uncertainties given are the statistical and systematic un-
certainties, respectively.

〈x〉 An
1 gn1 /F

n
1

0.277 0.127 ± 0.116 ± 0.035 0.143 ± 0.112 ± 0.014
0.325 −0.031 ± 0.058 ± 0.009 −0.019 ± 0.056 ± 0.009
0.374 0.035 ± 0.049 ± 0.010 0.031 ± 0.046 ± 0.009
0.424 −0.039 ± 0.053 ± 0.013 −0.049 ± 0.050 ± 0.012
0.474 −0.044 ± 0.066 ± 0.017 −0.044 ± 0.062 ± 0.015
0.524 0.109 ± 0.088 ± 0.019 0.098 ± 0.082 ± 0.017
0.573 0.135 ± 0.126 ± 0.023 0.132 ± 0.116 ± 0.021

certainties were averaged using equal weights. The av-
eraged results, first published in [172], are given in Ta-
ble XVI and plotted in Fig. 39. The systematic uncer-
tainties are given in tables presented in Appendix E 6.
The biggest contribution to the uncertainty is from the
effective proton polarization and from Ap

1. Our results
are comparable to the JLab E99-117 data [28, 46] in reach
and precision, and are consistent with the trend seen in
the DIS data from SLAC E143 [43] and E155 [173] as
shown in Fig. 39.

C. Flavor decomposition via the quark-parton

model

Under the quark-parton model [174], if one assumes
that the strange quark distributions s(x), s̄(x), ∆s(x)
and ∆s̄(x) are negligible for x > 0.3, and neglecting
any Q2-dependence in the ratio of structure functions,

TABLE XVI. Results for An
1 and gn1 /F

n
1 averaged over our

E = 4.74 and 5.89GeV results for
〈

Q2
〉

= 3.08GeV2. The
uncertainties given are the statistical and systematic uncer-
tainties, respectively.

〈x〉 An
1 gn1 /F

n
1

0.277 0.043 ± 0.060 ± 0.022 0.044 ± 0.058 ± 0.012
0.325 −0.004 ± 0.035 ± 0.009 −0.002 ± 0.033 ± 0.009
0.374 0.078 ± 0.029 ± 0.012 0.053 ± 0.028 ± 0.010
0.424 −0.055 ± 0.032 ± 0.014 −0.060 ± 0.030 ± 0.012
0.474 −0.044 ± 0.040 ± 0.016 −0.053 ± 0.037 ± 0.015
0.548 0.118 ± 0.072 ± 0.021 0.110 ± 0.067 ± 0.019
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FIG. 39. (Color online) Our measured gn1 /F
n
1 results, com-

pared to world data [28, 43, 46, 162] and an NLO QCD global
analysis [59] (dashed) and pQCD-inspired fit [50] (dash-
dotted), and a statistical quark model [134] (solid). The band
at the bottom of the plot indicates the systematic uncertainty
for our data set.

the polarized-to-unpolarized quark ratios were extracted
through Eqs. 27 and 28. We utilized the Rdu ratio
from the CJ12 [141] model. Using our fit to the gp1/F

p
1

world data sets, we obtained at leading order the quan-
tities (∆u+∆ū) / (u+ ū) and

(

∆d+∆d̄
)

/
(

d+ d̄
)

for

E = 4.74GeV (5.89GeV) where
〈

Q2
〉

= 2.59GeV2

(3.67GeV2). The results are tabulated in Tables XVII
and XVIII. Averaging the two data sets, we obtained the
values given in Table XIX at

〈

Q2
〉

= 3.08GeV2. These
averaged results, first published in [172], are compared
to various world data [28, 54–56] and theoretical calcu-
lations [50, 51, 53, 59] in Fig. 40. The uncertainty due
to neglecting the strange contribution was determined by
computing Eqs. 27 and 28 with the strange component
included [86]:

∆u+∆ū

u+ ū
=

(

∆u+∆ū

u+ ū

)

s,s̄=0

+
s+ s̄

u

[

4

15

gp1
F p
1

− 1

15

gn1
Fn
1

− 1

5

∆s+∆s̄

s+ s̄

]

(50)

∆d+∆d̄

d+ d̄
=

(

∆u+∆ū

u+ ū

)

s,s̄=0

+
s+ s̄

d

[

4

15

gn1
Fn
1

− 1

15

gn1
Fn
1

− 1

5

∆s+∆s̄

s+ s̄

]

,(51)

where the terms (. . .)s,s̄=0 are defined in Eqs. 27 and 28.
The second term in Eqs. 50 and 51 is the strange contri-
bution, which was evaluated using various parameteriza-
tions [59, 128, 134, 135, 141] and taking the maximum
difference between calculations using all possible model
combinations as the uncertainty. It was found to be siz-
able in the lowest x-bins for the down-quark results, but

was small for x ≥ 0.424. For the up-quark results, the
strange uncertainty was small. The uncertainty due to
neglecting the strange contribution is included in our re-
ported uncertainties.

The extracted up-and down-quark ratios agree with
the general trend of the world data within our uncertain-
ties. Our analysis supports the notion that the down-
quark ratio stays negative into the large x region, with
no clear indication that it turns positive towards x ≃ 0.6,
as predicted by the Avakian et al. calculation [50].

The largest contribution to our systematic uncertain-
ties on the up-quark ratio is from our fit to the gp1/F

p
1

data, while for the down-quark ratio, the largest contri-
butions are due to the gp1/F

p
1 fit and the d/u ratio. An

overview of the systematic uncertainties is given in Ap-
pendix E 7.

TABLE XVII. Results for (∆u + ∆ū)/(u + ū) and (∆d +
∆d̄)/(d+ d̄) at E = 4.74GeV. The uncertainties given are the
statistical and systematic uncertainties, respectively.

〈x〉 (∆u+∆ū)/(u+ ū) (∆d+∆d̄)/(d+ d̄)
0.277 0.437 ± 0.013 ± 0.031 −0.219 ± 0.110 ± 0.028
0.325 0.482 ± 0.008 ± 0.036 −0.267 ± 0.069 ± 0.032
0.374 0.513 ± 0.006 ± 0.043 −0.218 ± 0.060 ± 0.038
0.424 0.570 ± 0.006 ± 0.050 −0.508 ± 0.068 ± 0.051
0.473 0.596 ± 0.007 ± 0.063 −0.566 ± 0.088 ± 0.069

TABLE XVIII. Results for (∆u + ∆ū)/(u + ū) and (∆d +
∆d̄)/(d+ d̄) at E = 5.89GeV. The uncertainties given are the
statistical and systematic uncertainties, respectively.

〈x〉 (∆u+∆ū)/(u+ ū) (∆d+∆d̄)/(d+ d̄)
0.277 0.410 ± 0.022 ± 0.032 0.001 ± 0.182 ± 0.027
0.325 0.487 ± 0.010 ± 0.037 −0.314 ± 0.094 ± 0.033
0.374 0.518 ± 0.008 ± 0.045 −0.281 ± 0.081 ± 0.040
0.424 0.567 ± 0.008 ± 0.051 −0.482 ± 0.090 ± 0.051
0.474 0.593 ± 0.009 ± 0.063 −0.547 ± 0.116 ± 0.071
0.524 0.594 ± 0.012 ± 0.070 −0.352 ± 0.165 ± 0.083
0.573 0.606 ± 0.015 ± 0.085 −0.365 ± 0.250 ± 0.111

TABLE XIX. Results for (∆u + ∆ū)/(u + ū) and (∆d +
∆d̄)/(d+ d̄) averaged over the two beam energies, for

〈

Q2
〉

=

3.08GeV2. The uncertainties given are the statistical and
systematic uncertainties, respectively.

〈x〉 (∆u+∆ū)/(u+ ū) (∆d+∆d̄)/(d+ d̄)
0.277 0.430 ± 0.011 ± 0.031 −0.160 ± 0.094 ± 0.028
0.325 0.484 ± 0.006 ± 0.037 −0.283 ± 0.055 ± 0.032
0.374 0.515 ± 0.005 ± 0.044 −0.241 ± 0.048 ± 0.039
0.424 0.569 ± 0.005 ± 0.051 −0.499 ± 0.054 ± 0.051
0.474 0.595 ± 0.006 ± 0.063 −0.559 ± 0.070 ± 0.070
0.548 0.598 ± 0.009 ± 0.077 −0.356 ± 0.138 ± 0.097
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FIG. 40. (Color online) Our combined E = 4.74 and 5.89GeV
data for the up and down quark ratios. Our results are com-
pared to existing data [28, 54–56], where the error bars on
all data sets are the in-quadrature sum of the statistical and
systematic uncertainties. Also presented is a statistical quark
model (solid) [51], an NLO QCD global analysis from Leader
et al. (dashed) [59], and a pQCD analysis including orbital
angular momentum from Avakian et al. (dash-dotted) [50].
An NJL-type model from Cloët et al. (dash triple-dotted) [52]
is also shown. DSE predictions [53] are shown at x = 1.

VI. CONCLUSIONS

Scattering a longitudinally-polarized electron beam of
energies of E = 4.74GeV and 5.89GeV from a polar-
ized 3He target in two orientations, longitudinal and
transverse (with respect to the electron beam momen-
tum), we measured the unpolarized electron-scattering
cross section with the LHRS and the electron double-spin
asymmetries with the BigBite spectrometer, with both
spectrometers set at 45◦ with respect to the beamline.
Combining the unpolarized cross sections and double-
spin asymmetries allowed the extraction of the twist-3
matrix element dn2 . This quantity was extracted at two
〈

Q2
〉

values of 3.21GeV2 and 4.32GeV2. The result at

the lower
〈

Q2
〉

value is small and negative, while that

for the higher
〈

Q2
〉

value is consistent with zero. The
data indicate a trend towards the Lattice QCD [35] cal-
culation at Q2 = 5GeV2. The extracted dn2 values are
also consistent with predictions of chiral soliton [32] and
bag [33, 36, 37] models. The size of the present dn2 results
predicts the twist-3 contribution is small.
Utilizing our measured dn2 twist-3 matrix element com-

bined with global analyses for an2 and world data on Γn
1 ,

we have extracted the twist-4 matrix element fn
2 . This

matrix element is observed to be larger than dn2 in mag-
nitude, resulting in approximately equal and opposite
Lorentz color magnetic and electric forces in the neu-
tron. The results for fn

2 are consistent with instanton

model calculations [169, 170] and a QCD sum rule cal-
culation [30]. The extracted values for F y,n

E and F y,n
B

are in agreement with the instanton model calculations
of [169, 170], while the value for F y,n

B is additionally in ac-
cordance with QCD sum-rule calculations from [30, 31].
We look forward to Lattice QCD calculations of the fn

2

matrix element, not yet available at this time due to their
difficulty, before the new wave of planned experiments in
the 12GeV upgrade era of Jefferson Lab to measure d2
and f2 with more precision.
Following a similar analysis procedure to the one used

for dn2 , we extracted the an2 matrix element using our g
3He
1

data. Our a2 results are positive for both
〈

Q2
〉

= 3.21

and 4.32GeV2, with an improved precision compared to
the currently published data and lattice calculations.
The extracted virtual photon asymmetry An

1 is consis-
tent with the current world data, especially JLab E99-
117 [28, 46], and shows good agreement with pQCD cal-
culations that incorporate quark orbital angular momen-
tum [50]. This suggests that orbital angular momentum
may play an important role in the spin of the nucleon.
The measured structure function ratio of gn1 /F

n
1 shows

a similar trend to JLab E99-117 [28, 46], adding higher
precision data to the world data set.
Fitting the world g1/F1 data on the proton allowed the

extraction of (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄)
when using the CJ12 [141] model for d/u. The extracted
up-quark ratio is consistent with existing measurements
and models, and its uncertainty is dominated by our fit to
the world gp1/F

p
1 data. The down-quark ratio is observed

to remain negative into the large-x region, with no clear
indication of a change to positive values in the range
of x ≃ 0.75 as predicted in Ref. [50]. The down-quark
ratio is very sensitive to the d/u ratio, as is evident in
the systematic errors. Better precision on d/u from the
projected experiment [175] at Jefferson Lab in the 12GeV
upgrade era will help to constrain the (∆d+∆d̄)/(d+ d̄)
ratio.
A future experiment [176] proposed at Jefferson Lab

calls for an even higher precision measurement of dn2 at
four central Q2-bins in a range from 2GeV2 to 7GeV2.
While our data provide a good understanding of dn2 at
Q2 = 3.21 and 4.32GeV2, those data will provide a
direct comparison to the Lattice QCD calculation at
Q2 = 5GeV2. There are also two dedicated An

1 experi-
ments approved to run at Jefferson Lab [177, 178] that
aim to extend DIS An

1 measurements to larger x (∼ 0.77)
in addition to studying the Q2-evolution of the asymme-
try. These measurements are important for broadening
our insight in the large-x spin structure of the nucleon,
as suggested by the results presented in this paper.
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Appendix A: Deep inelastic electron scattering

formalism

1. Structure functions and cross sections

In electron scattering, the electrons are accelerated to
high energies and scatter from a nuclear or nucleon tar-
get. In practice, the target is typically fixed. The elec-
tron interacts with the target by exchanging a virtual
photon with the target object, transferring its energy
and momentum to the target. An advantage of lepton
scattering is that the interaction at the leptonic vertex is
solely described by quantum electrodynamics, which sim-
plifies the mathematics. The electromagnetic nature of
the interaction also results in the process being a “clean”
probe into the structure of the nucleon, where the QCD
physics is contained entirely in the description of the nu-
cleon and is not convoluted with the leptonic probe.
To describe the process more quantitatively, consider

Fig. 41. The incident and scattered electrons have the

four-momenta k = (E,~k) and k′ = (E′, ~k′), respectively.
The target has a four-momentum of p = (ET , ~p). The
virtual photon exchanged between the incident electron
and the target has the four-momentum q = (ν, ~q). If
the incident electron has enough energy, the target can
break up into a number of distinct hadrons; otherwise,
the target will remain intact. In the latter case, the re-
coiling target object would have a four-momentum p′ in
the final hadronic state. Electron scattering data are
presented and discussed in terms of a number of Lorentz-
invariant variables, namely ν, y, Q2, W and x. Since the
four-momentum at each vertex is conserved, we begin by
defining q in terms of the incoming and outgoing electron
four-momenta:

q = k − k′ = (E − E′, ~k − ~k′) = (ν, ~q), (A1)

where ν can be defined in an invariant form:

ν ≡ p · q/M, (A2)

with M being the mass of the nucleon. In the target rest
frame, p = (M,~0), so Eq. A2 reduces to ν = E − E′,
and is known as the electron energy loss. The fractional
energy loss, y, can be defined in an invariant form:

y ≡ p · q
q · k , (A3)

FIG. 41. (Color online) A cartoon describing inclusive po-
larized electron-nucleon scattering. The large arrows indicate
possible spin orientations of the incident electron and nucleon.
The quantities s and S indicate the spin four-vectors of the
electron and nucleon, respectively. The other kinematic vari-
ables are described in the text.

which simplifies to the non-invariant form y = (E −
E′)/E.
The four-momentum transfer squared, q2, always eval-

uates to less than or equal to zero. For convenience, we
define a positive quantity Q2:

Q2 ≡ −q2 = 4EE′ sin2 (θ/2) , (A4)

where θ is the scattering angle of the electron in the lab-
oratory frame and we have neglected the electron mass.
Shifting our focus to the hadronic side of Fig. 41, there

are two possibilities for the final state: there is one object
(i.e., the target remains intact) or several, determined by
the energy with which the target is probed. Further-
more, the measured interaction may be described by two
general terms: exclusive or inclusive scattering. In the
case of exclusive scattering, the scattered electron and

all final-state hadrons are detected; there is also the case
of detecting an electron and at least one particle in the
final state, which is called semi-inclusive. For inclusive
scattering, only the scattered electron is detected in the
final state.
Inclusive scattering can be represented as eN → eX ,

where e is the electron, N is the target nucleon and X is
the final (unmeasured) hadronic state. In the context of
an unmeasured final hadronic state (which could consist
of any of the multitude of particle states for a given com-
bination of ν and Q2 values), we can define the invariant
mass of the system, W :

W 2 ≡ (q + p)
2
=M2 + 2Mν −Q2. (A5)

Finally, we come to the variable x. It is defined in
terms of the other invariants ν and Q2 as:

x ≡ Q2

2p · q =
Q2

2Mν
. (A6)
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The simplest interpretation of x comes in the infinite
momentum frame, where the nucleon is traveling with a
large momentum along ~q. In this frame, the active quark
in the interaction (struck by the virtual photon) carries
the momentum fraction x of the nucleon momentum in
the leading-order DIS process [179].
The DIS region is characterized by W > 2GeV, where

ν and Q2 become large enough so that the quarks can
be resolved inside the nucleon. In this case, the electron
is scattering from an asymptotically free quark (or anti-
quark) in the nucleon.
Consider scattering unpolarized electrons from point-

like, unpolarized spin-1/2 particles that are infinitely
heavy with a charge of +1. In this case, energy con-
servation dictates E′ = E and the cross section is given
by:

(

dσ

dΩ

)

Mott

=
α2 cos2 (θ/2)

4E2 sin4 (θ/2)
, (A7)

with θ being the scattering angle of the electron. This
quantity is known as the Mott cross section. However,
since the nucleon is a composite object and is not in-
finitely massive, the cross section is more complicated
than that seen in Eq. A7, and is given by:

d2σunpol.

dΩdE′
=

(

dσ

dΩ

)

Mott

[

1

ν
F2

(

x,Q2
)

+
2 tan2 (θ/2)

M
F1

(

x,Q2
)

]

, (A8)

where F1 and F2 are the unpolarized structure functions,
and are related to one another through Eq. 43.
For experiments that use targets that are not nucleons

(A 6= 1), there are two conventions for expressing the
quantities F1 and F2. The first is per nucleon, written
as F1/A and F2/A. The second is per nucleus, where the
structure functions are reported without dividing by A.
The latter representation is used in this paper.
When both the incident electron beam and target are

polarized, one can access the spin structure functions g1
and g2. A full discussion may be found in Ref. [123].
The polarized cross section difference for when the target
spin (double arrows) and electron spin (single arrows) are
polarized along the direction of the electron momentum
is given as:

d2σ↓,⇑

dΩdE′
− d2σ↑,⇑

dΩdE′
=

4α2

Q2

E′

νE

[

(E + E′ cos θ) g1
(

x,Q2
)

− 2Mxg2
(

x,Q2
) ]

. (A9)

When the target spin is perpendicular to the electron
spin, the cross section difference is written as:

d2σ↓,⇒

dΩdE′
− d2σ↑,⇒

dΩdE′
=

4α2

Q2

E′2

νE
sin θ

[

g1
(

x,Q2
)

+
2ME

ν
g2
(

x,Q2
) ]

. (A10)

2. Bjorken scaling, the quark-parton model and

scaling violation

When probing an object of finite size, the measurement
will depend upon the spatial resolution of the probe; in
the case of electron scattering, this is Q2, the negative of
the momentum transferred to the target squared. If we
increase Q2 so that we can resolve the internal structure
of the nucleon, the quarks will become visible. At this
point, inelastic electron-nucleon scattering may be seen
as elastic scattering from a single quark, while the other
quarks remain undisturbed. Considering that quarks are
pointlike particles, increasing the resolution Q2 will no
longer affect the interaction.
In the limit where Q2 → ∞ and ν → ∞, with x =

Q2/(2Mν) fixed (the Bjorken limit), the phenomenon
where experimental observables lose their Q2-dependence
is known as Bjorken scaling [180]. As a result, the struc-
ture functions depend upon a single variable x. Further-
more, the F2 structure function can be related to the F1

structure function by the Callan-Gross relation [181]:

F2(x) = 2xF1(x). (A11)

To connect the quark behavior to the structure func-
tions, we turn to the quark-parton model (QPM). In
this model, deep inelastic scattering of electrons from
nucleons is described as the incoherent scattering of elec-
trons from free partons (quarks and anti-quarks) inside
the nucleon [174], via the exchange of a virtual photon.
Therefore, the nucleon structure functions F1 and g1 can
be written in terms of the parton distribution functions
(PDFs) [174, 179]:

F1 (x) =
1

2

∑

i

e2i qi (x) (A12)

g1 (x) =
1

2

∑

i

e2i∆qi (x) , (A13)

with q = q↑(x) + q↓(x) and ∆q = q↑(x) − q↓(x), where
↑ (↓) indicates quark spin parallel (antiparallel) to the
parent nucleon spin.
The scaling behavior of the structure functions is only

exact in the limit of infinite Q2 and ν. At finite values
of Q2 and ν, it is only an approximation. In reality, the
quarks participating in the interaction with the electron
may radiate gluons before or after scattering. Such pro-
cesses result in an infinite cross section, and can only be
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treated properly when all other processes of the same or-
der are considered. These gluonic radiative corrections
result in the cross section acquiring a logarithmic Q2

dependence, which can be computed exactly in pQCD
under the formalism of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [9]. As a
result, the Q2-dependence manifests itself in the struc-
ture functions.
As a result of the scaling violation, we re-cast the PDFs

and the structure functions in terms of both x and Q2. In
particular, the definition of the PDF is now q↑(↓)(x,Q2):
this is the probability of finding a quark q with its spin
parallel (antiparallel) to its parent nucleon with momen-

tum fraction x when viewed at an energy scale Q =
√

Q2.
The physical interpretation tied to scaling violation is

that structure functions at lowQ2 are dominated by three
valence quarks “dressed” by sea quarks (manifesting as
q-q̄ pairs) and gluons. As Q2 is increased, the resolving
power increases, allowing for sensitivity to the “bare”
quarks and gluons which make up the nucleon.

3. The resonance region

Due to the kinematics of our experiment, about half
of our data set corresponds to the DIS regime, while the
other corresponds to the resonance region. With this in
mind, we give a brief description of the resonance region.
When ν and Q2 have values such that 1.2 < W <

2GeV, we explore the substructure of the nucleon. In
this energy range, the quarks that make up the nucleon
collectively absorb the energy of the virtual photon, lead-
ing to unstable excited states of the nucleon called nu-

cleon resonances. The most prominent resonance occurs
at W = 1.232GeV, and is known as the ∆ resonance.
Higher resonances are also possible at W > 1.4GeV, but
are difficult to discern from one another, as their peaks
and tails tend to overlap.

4. The virtual photon-nucleon asymmetry A1

Let us consider a scattering interaction in which the
nucleon is longitudinally polarized, while the virtual pho-
ton is circularly polarized with a helicity of ±1. As a re-
sult, two possible helicity-dependent cross sections for a
given nucleon polarization arise, denoted σ3/2 and σ1/2.
The subscripts denote the projection of the total spin of
the virtual photon-nucleon system along the direction of
the virtual photon momentum [47, 98]. When the virtual
photon spin is parallel (antiparallel) to the nucleon spin,
they add to 3/2 (1/2). From these two cross sections, the
A1 asymmetry is formed as:

A1 ≡ σ1/2 − σ3/2

σ1/2 + σ3/2
. (A14)

In terms of the structure functions, A1 may be written
as [123]:

A1

(

x,Q2
)

=
g1
(

x,Q2
)

− γ2g2
(

x,Q2
)

F1 (x,Q2)
. (A15)

At large Q2, A1 ≈ g1/F1. This can be seen by observing
that γ2 → 0 as Q2 gets increasingly large. A concep-
tual argument on the quark level is as follows: if the
spin of the virtual photon is antiparallel to that of the
quark, then the virtual photon can be absorbed and the
quark spin is flipped; however, if the spins are parallel,
then the absorption of the virtual photon is forbidden,
since the total projection of the spins along ~q is 3/2
and the quark is a spin-1/2 particle. The mathemati-
cal form of the approximation can be illustrated using
this physical interpretation: for the case where the spins
of the nucleon and virtual photon are parallel (σ3/2),
then the quark that can absorb the virtual photon has
its spin antiparallel to the nucleon spin. This translates

to: σ3/2 ∼∑
i

e2i q
↓
i (x). A similar argument may be made

for the σ1/2 case where only quarks with spins parallel to
the parent nucleon can absorb virtual photons. Thus, we

have: σ1/2 ∼
∑

i

e2i q
↑
i (x). Rewriting A1 in terms of these

approximations, we obtain:

A1 ∼

∑

i

e2i

[

q↑i (x)− q↓i (x)
]

∑

i

e2i

[

q↑i (x) + q↓i (x)
] =

∑

i

e2i∆qi(x)

∑

i

e2i qi(x)
=
g1(x)

F1(x)
,

(A16)
where the last term arises from the quark-parton model
description of the F1 and g1 structure functions (Eqs. A12
and A13).
The A1 asymmetry is a ratio of structure functions

(≈ g1/F1), and as a result there is very little Q2 depen-
dence. This is because g1 and F1 follow the same Q2

evolution described by the DGLAP equations [9] which
tends to cancel in the ratio, leading to A1 being roughly
Q2-independent.

5. Electron asymmetries

The virtual photon-nucleon asymmetry A1 is defined
in terms of a ratio of the difference in virtual photon
cross sections to their sum. Due to the difficulty asso-
ciated with aligning the virtual photon spin along the
direction of the nucleon spin, another approach is uti-
lized to measure A1 that consists of aligning the incident
electron spin relative to the direction of the nucleon spin.
The extraction of the electron asymmetries allows the
determination of A1. After some algebra, the electron
asymmetries (Section IB) may be written as [154]:

A‖ = D (A1 + ηA2) (A17)
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A⊥ = d (A2 − ηA1) . (A18)

The asymmetry A2 is defined as A2 ≡
2σLT /

(

σ1/2 + σ3/2
)

, where σLT is the cross section
describing the interference between virtual photons
with longitudinal and transverse polarizations. In the
QPM, there is no clear interpretation for σLT , and in
turn A2, as there is for σ1/2, σ3/2 and A1 [182]. From
Eqs. A17 and A18, one can write A1 and A2 in terms
of the double-spin asymmetries A‖ and A⊥. Similar
equations may be obtained for g1/F1 and g2/F1 [154].
The equations for A1 and g1/F1 are shown in Section IC.

6. Spin structure functions

The spin structure functions g1 and g2 may be obtained
from the measured unpolarized cross section σ0 and the
double-spin asymmetries A‖ and A⊥ through:

g1 =
MQ2

4α2

2y

(1− y) (2− y)
σ0

[

A‖ (A19)

+ tan (θ/2)A⊥

]

g2 =
MQ2

4α2

y2

(1− y) (2− y)
σ0 × (A20)

[

−A‖ +
1 + (1− y) cos θ

(1− y) sin θ
A⊥

]

.

Appendix B: Quark-gluon correlations

1. The operator product expansion and twist

The operator product expansion (OPE) allows the sep-
aration of the perturbative and non-perturbative compo-
nents in structure functions at finite Q2. This concept is
illustrated in the product of two local quark (or gluon)
operators Oa(d)Ob separated by a distance d in the limit
of d→ 0:

lim
d→0

Oa(d)Ob(0) =
∑

k

cabk(d)Ok(0), (B1)

where the coefficient functions cabk are the Wilson
coefficients and contain the perturbative part, which
can be computed using perturbation theory since non-
perturbative effects occur at distances much larger than
d [11]. The non-perturbative components manifest in
Ok(0), and contribute to the cross section on the order
of x−n(Q/M)D−2−n. The exponents n and D are the
spin and (mass) dimension of the operator, respectively.

The quantity Q =
√

Q2. The twist τ of the operator is
defined by:

τ ≡ D − n. (B2)

At large Q2, τ = 2 terms dominate in the OPE; at low
Q2, higher-twist (τ > 2) operators become important.

2. Cornwall-Norton moments and Nachtmann

moments

Using the OPE, an infinite set of sum rules may be de-
rived under a twist expansion of the spin structure func-
tions g1 and g2 [123]. Such expansions of g1 and g2 are
known as the Cornwall-Norton (CN) moments [154]:

∫ 1

0

xn−1g1
(

x,Q2
)

dx =
1

2
an−1, n = 1, 3, 5, . . . (B3)

∫ 1

0

xn−1g2
(

x,Q2
)

dx =
n− 1

2n
(dn−1 − an−1) , (B4)

n = 3, 5, 7, . . . ,

where n indicates the nth moment. In Eqs B3 and B4,
only twist-2 and twist-3 contributions are considered.
The quantities an−1 and dn−1 represent the twist-2 and
twist-3 matrix elements, respectively [183]. The expan-
sions are only over odd integers, which is a result of the
symmetry of the structure functions under charge conju-
gation [184].
The twist-3 matrix elements dn−1 may be accessed by

combining Eqs. B3 and B4. One obtains [154]:

∫ 1

0

xn−1

[

g1
(

x,Q2
)

+
n

n− 1
g2
(

x,Q2
)

]

dx =
dn−1

2
, n ≥ 3.

(B5)
Choosing n = 3 yields the equation for d2 (cf. Eq. 4).
The study of higher twist in structure functions has

traditionally been done through the formalism of the CN
moments; however, the exact relation of the CN mo-
ments to the dynamical higher-twist contributions has
come into question in recent analyses [154, 185]. It is ar-
gued that the CN moments are only valid when the terms
connected to the finite mass of the nucleon are neglected.
Such terms are known as target mass corrections. These
corrections are related to twist-2 operators, and are of
order O(M2/Q2). Analogous to the CN moments, the
Nachtmann moments M1 and M2 can be used to sepa-
rate the higher-twist contribution from the target mass
corrections [155, 186]. They are defined as [25, 154, 187]:

Mn
1

(

Q2
)

≡ 1

2
an−1 =

1

2
ãnE

n
1 (B6)

=

∫ 1

0

ξn+1

x2

[

x

ξ
− n2

(n+ 2)2
M2xξ

Q2
g1
(

x,Q2
)

− 4n

n+ 2

M2x2

Q2
g2
(

x,Q2
)

]

dx,

n = 1, 3, . . .
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Mn
2

(

Q2
)

≡ 1

2
dn−1 =

1

2
d̃nE

n
2 (B7)

=

∫ 1

0

ξn+1

x2

[

x

ξ
g1
(

x,Q2
)

+

(

n

n− 1

x2

ξ2
− n

n+ 1

M2x2

Q2

)

g2
(

x,Q2
)

]

dx,

n = 3, 5, . . . .

We have performed the analysis to extract dn2 accord-
ing to the CN moments, and checked that result against
what was obtained from using the Nachtmann moments.
The difference in results between the two approaches was
found to be negligible, on the order of 10−5 in absolute
value.

Appendix C: Fits to data

1. Cross section fits

As discussed in Section IVB, due to time constraints
not all cross section measurements for studying pair pro-
duction on 3He and N2 were carried out. To resolve the
absence of those data, the data that were collected were
fit to a function of the form:

f (Ep) =
1

E2
p

e(a0+a1Ep), (C1)

where the scattered electron energy Ep is in GeV. This

was done for σe+ , σe−

N2
and σe+

N . The fits were performed
in ROOT [88], and the extracted parameters and their
uncertainties were obtained from the Minuit minimiza-
tion package [188]. The fits were done separately for the
data sets corresponding to each beam energy. The sys-
tematic uncertainties on the fits was obtained by vary-
ing the parameters within their errors and observing the
change on the fit (see Figs 18 and 19). The parameters to-
gether with their uncertainties are listed in Table XX for
the nitrogen cross section when scattered electrons were

detected, σe−

N2
(LHRS set to negative polarity mode), and

in Table XXI when positrons were detected, σe+

N2
(LHRS

in positive polarity mode). Table XXII gives the fit pa-
rameters and their uncertainties for the unpolarized 3He

cross section where positrons were detected, σe+ (LHRS
in positive polarity mode).

TABLE XX. Fit parameters for the nitrogen cross sec-

tion (negative polarity), σe−

N2
, for E = 4.74GeV and E =

5.89GeV.

Par. E = 4.74GeV E = 5.89GeV
a0 1.465E+01± 4.919E-02 1.480E+01± 5.647E-02
a1 −1.825E-03± 4.770E-05 −2.123E-03± 5.607E-05

TABLE XXI. Fit parameters for the nitrogen cross section

(positive polarity), σe+

N2
, for E = 4.74GeV and E = 5.89GeV.

Par. E = 4.74GeV E = 5.89GeV
a0 1.559E+01± 1.604E-01 1.614E+01± 2.120E-01
a1 −4.699E-03± 2.255E-04 −5.232E-03± 3.126E-04

TABLE XXII. Fit parameters for the positron cross section

on 3He, σe+ , for E = 4.74GeV and E = 5.89GeV.

Par. E = 4.74GeV E = 5.89GeV
a0 1.887E+01± 7.998E-02 1.896E+01± 6.899E-02
a1 −5.620E-03± 1.194E-04 −5.421E-03± 9.286E-05

2. gp1/F
p
1 fit

To carry out the analysis to obtain gn1 /F
n
1 from our

g
3He
1 /F

3He
1 data, a parameterization of the gp1/F

p
1 data

was needed. We fit the world data to a three-parameter,
Q2-independent function given by:

f(x) = p0 + p1x+ p2x
2. (C2)

The assumption of Q2-independence is reasonable as the
Q2-evolution in g1 and F1 partially cancels in the ratio
to leading order and next-to-leading order in Q2 [123].
Additionally, the world data (which are at differing Q2)
show roughly the same behavior. The world data con-
sidered were from HERMES [45], SLAC E143 [47] and
E155 [139], along with CLAS EG1b [56] and CLAS EG1-
DVCS [142]. First, all of these data were rebinned in x,
in new bins formed based on a statistical-error-weighted
average; the systematic errors of all data contributing to
a new bin were averaged with equal weights to yield its
systematic error. The fit result, with χ2/ndf = 0.91, is
shown in Fig. 42 The fit parameters were found to be:

p0 = 0.035± 0.008

p1 = 1.478± 0.077 (C3)

p2 = −1.010± 0.138.

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from
the Minuit minimization package [188]. The band indi-
cates the uncertainty on the fit which was taken as the
spread in the gp1/F

p
1 data, serving as a conservative esti-

mate.

3. Ap
1 fit

To obtain An
1 from our A

3He
1 data, we followed a similar

procedure to the g1/F1 analysis. The data used in the fit
include measurements from SMC [147], HERMES [143],
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FIG. 42. (Color online) Our fit to world gp1/F
p
1 data. The

error bars on the data are the in-quadrature sums of their
statistical and systematic uncertainties. The band indicates
the error on the fit.

EMC [144, 145], SLAC E143 [47] and E155 [139], COM-
PASS [146] and CLAS EG1b [56]. The fit is shown in
Fig. 43, where we obtained χ2/ndf = 1.11. The fit pa-
rameters were found to be:

p0 = 0.044± 0.007

p1 = 1.423± 0.078 (C4)

p2 = −0.552± 0.158.

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from
the Minuit minimization package [188]. The band in
Fig. 43 gives the fit uncertainty, computed in the same
fashion as was done for the gp1/F

p
1 fit.

Appendix D: World Γn
1 Data

The world Γn
1 data from SLAC E142 [43], E143 [47]

and E154 [162], SMC [147], HERMES [161], and JLab
RSS [25] and E94-010 [131] used in our fn

2 analysis are
shown in Fig. 44. The twist-2 contribution, µn

2 , given
by the solid curve; its uncertainty is indicated by the
band. The elastic contribution is also shown, given as
the dashed curve. For more details, see Section VB3.
Subtracting µn

2 from Γn
1 yields the higher-twist contri-

bution, ∆Γn
1 ≡ Γn

1 − µn
2 , shown in Fig. 45. Fitting these

data to the function

f

(

1

Q2

)

=
A

Q2
+

B

Q4
(D1)

where A =
(

M2
n/9
)

(an2 + 4dn2 + 4fn
2 ) and B = µ6, a

higher-twist (τ > 4) term, are free parameters. Using
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FIG. 43. (Color online) Our fit to world Ap
1 data. The error

bars on the data are the in-quadrature sums of their statis-
tical and systematic uncertainties. The band indicates the
uncertainty on the fit.

)2 (GeV2Q
1 10

n 1Γ

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

)2 (GeV2Q
1 10

n 1Γ

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
HERMES SMC
SLAC E142 SLAC E143
SLAC E154 JLab RSS 
JLab E94-010 Elastic Contribution
Twist-2 Contribution

FIG. 44. (Color online) Γn
1 for the world data from SLAC

E142 [43], E143 [47] and E154 [162], SMC [147], HER-
MES [161], and JLab RSS [25] and E94-010 [131]. The un-
certainties on the world data are the in-quadrature sum of
statistical and systematic uncertainties. The elastic contribu-
tion is given by the dashed curve, and has been added to the
data. The twist-2 contribution is indicated by the solid curve
and its uncertainty is given by the band, which is dominated
by the uncertainty in αs.

the result for the fit parameter A, we extract fn
2 after

inserting the average an2 from global analyses and our
measured dn2 (see Section VB3) into Eq. D1. The values
of the fit parameters A and B were found to be:

A = 1.936E-2

B = −1.675E-2, (D2)

with the error matrix:



42

ε =

(

2.240E-4 −1.653E-4
−1.653E-4 1.351E-4

)

. (D3)

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from
the Minuit minimization package [188]. This fit allowed
the extraction of fn

2 as described in Section VB3.
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FIG. 45. (Color online) ∆Γn
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1 − µn
2 for the world data

shown in Fig. 44. The uncertainties on the world data are the
in-quadrature sum of statistical and systematic uncertainties.
Our fit is indicated by the solid curve and its uncertainty is
given by the yellow band.

Appendix E: Systematic Uncertainty Tables

This section contains tables of showing the contribut-
ing factors to the systematic uncertainties for the fi-
nal unpolarized cross sections and double-spin asym-

metries, dn2 , g
3He
1 , g

3He
2 , A

3He
1 , An

1 , g
3He
1 /F

3He
1 , gn1 /F

n
1

and the flavor-separated ratios (∆u + ∆ū)/(u + ū) and
(∆d+∆d̄)/(d+ d̄).

1. Final unpolarized cross section systematic

uncertainties

The breakdown of the systematic uncertainty on the
unpolarized cross sections is given in Tables XXIII
and XXIV. The column “Cuts” indicates uncertain-
ties due to event cuts, which includes the gas Čerenkov,
E/p, and target cuts to remove the target windows;
“Background” corresponds to uncertainties related to the
positron and nitrogen background subtractions; “Misc.”
refers to the uncertainties incurred from the beam charge
calibration, and the density of nitrogen and 3He in the
target cell; “RC” is the uncertainty due to the radia-
tive corrections, as explained in Section IVB3. The final

column (“Total”) gives the in-quadrature sum of all un-
certainties in the row.

TABLE XXIII. Systematic uncertainty breakdown for the un-
polarized 3He cross section at E = 4.74GeV. All uncertainties
are in nb/GeV/sr. See Appendix E 1 for a discussion of the
various contributions to the systematic uncertainty.

< x > Cuts Background Misc. RC Total
0.214 1.700E-01 3.800E-01 2.440E-01 2.870E-01 5.610E-01
0.299 1.390E-01 1.170E-01 2.120E-01 2.400E-02 2.810E-01
0.456 6.400E-02 1.700E-02 1.000E-01 5.000E-03 1.210E-01
0.494 5.300E-02 1.200E-02 8.800E-02 1.000E-03 1.030E-01
0.533 4.700E-02 8.000E-03 7.000E-02 0.000E+00 8.400E-02
0.579 3.600E-02 6.000E-03 5.300E-02 2.000E-03 6.500E-02
0.629 2.800E-02 4.000E-03 4.000E-02 4.000E-03 5.000E-02
0.686 2.000E-02 3.000E-03 2.800E-02 5.000E-03 3.500E-02
0.745 1.500E-02 3.000E-03 2.100E-02 9.000E-03 2.800E-02

TABLE XXIV. Systematic uncertainty breakdown for the un-
polarized 3He cross section at E = 5.89GeV. All uncertainties
are in nb/GeV/sr. See Appendix E 1 for a discussion of the
various contributions to the systematic uncertainty.

< x > Cuts Background Misc. RC Total
0.208 1.060E-01 3.710E-01 1.610E-01 2.600E-01 4.920E-01
0.247 1.120E-01 2.280E-01 1.710E-01 4.700E-02 3.100E-01
0.330 5.600E-02 6.100E-02 9.800E-02 1.700E-02 1.300E-01
0.434 4.400E-02 1.700E-02 6.300E-02 4.000E-03 7.900E-02
0.468 3.800E-02 1.100E-02 4.900E-02 4.000E-03 6.300E-02
0.503 2.900E-02 8.000E-03 4.200E-02 1.000E-03 5.200E-02
0.539 2.600E-02 6.000E-03 3.300E-02 0.000E+00 4.200E-02
0.580 1.800E-02 4.000E-03 2.700E-02 1.000E-03 3.300E-02
0.629 1.100E-02 3.000E-03 1.900E-02 2.000E-03 2.200E-02
0.679 9.000E-03 2.000E-03 1.300E-02 2.000E-03 1.600E-02
0.738 7.000E-03 2.000E-03 1.000E-02 4.000E-03 1.300E-02

2. Final asymmetry systematic uncertainties

Tables XXV, XXVIII, XXVII and XXVIII list the sys-
tematic uncertainties assigned to the double-spin physics
asymmetries A‖ and A⊥ on 3He. The systematic uncer-
tainty depends on the electron beam polarization Pb, the
target polarization Pb, the nitrogen dilution factor DN2

,
and contaminations in the BigBite analysis due to π−

(f1), π
+ (f2), and e

+ (f3). Also there are contributions
from the electron selection cuts (“Cuts”) and the radia-
tive corrections (“RC”). The final column (“Total”) is
the in-quadrature sum of the uncertainties in each row.
Columns for all quantities except for the PID cuts have
been omitted since they were very small for the lowest
x-bins, and were negligible otherwise.
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TABLE XXV. Systematic uncertainties assigned to A
3He
‖ at

an incident beam energy of 4.74 GeV. See Appendix E 2 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 7.000E-03 7.000E-03
0.325 2.000E-03 3.000E-03
0.374 2.000E-03 2.000E-03
0.424 4.000E-03 5.000E-03
0.473 3.000E-03 3.000E-03
0.523 2.000E-03 2.000E-03
0.574 4.000E-03 4.000E-03
0.623 2.000E-03 3.000E-03
0.673 4.000E-03 5.000E-03
0.723 6.000E-03 6.000E-03
0.773 1.300E-02 1.300E-02
0.823 1.100E-02 1.100E-02
0.874 1.700E-02 1.700E-02

TABLE XXVI. Systematic uncertainties assigned to A
3He
⊥ at

an incident beam energy of 4.74GeV See Appendix E 2 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 2.000E-03 2.000E-03
0.325 2.000E-03 2.000E-03
0.374 2.000E-03 2.000E-03
0.424 2.000E-03 2.000E-03
0.473 1.000E-03 1.000E-03
0.523 1.000E-03 1.000E-03
0.574 2.000E-03 2.000E-03
0.623 2.000E-03 2.000E-03
0.673 3.000E-03 3.000E-03
0.723 2.000E-03 2.000E-03
0.773 4.000E-03 5.000E-03
0.823 6.000E-03 6.000E-03
0.874 4.000E-03 6.000E-03

3. Polarized spin structure function systematic

uncertainties

Tables XXIX, XXXI, XXX and XXXII list the system-
atic uncertainties assigned to the polarized spin-structure
functions. A number of factors contribute to the sys-
tematic uncertainty, including kinematics (“Kin.”) and
all of the systematic uncertainties found to contribute
to the final asymmetries, namely Pb, Pt, f1, f2 f3, PID
cuts (“Cuts”) and radiative corrections (“RC”). Other
contributions include the systematic uncertainty on the
unpolarized cross section (σ0), in addition to the uncer-
tainties associated with the interpolation or extrapola-
tion of the data where necessary. The value for each
these uncertainties was determined by varying each of
these contributions within reasonable limits and taking

the corresponding change in the observable (either g
3He
1

or g
3He
2 ) as the uncertainty. The last column (“Total”) is

TABLE XXVII. Systematic uncertainties assigned to A
3He
‖ at

an incident beam energy of 5.89GeV See Appendix E 2 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 9.000E-03 1.000E-02
0.325 3.000E-03 3.000E-03
0.374 2.000E-03 2.000E-03
0.424 2.000E-03 3.000E-03
0.474 6.000E-03 6.000E-03
0.524 2.000E-03 2.000E-03
0.573 3.000E-03 3.000E-03
0.624 5.000E-03 5.000E-03
0.674 5.000E-03 5.000E-03
0.723 5.000E-03 5.000E-03
0.773 8.000E-03 8.000E-03
0.823 1.400E-02 1.400E-02
0.873 1.700E-02 1.700E-02

TABLE XXVIII. Systematic uncertainties assigned to A
3He
⊥

at an incident beam energy of 5.89GeV See Appendix E 2
for a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 2.000E-03 3.000E-03
0.325 1.000E-03 1.000E-03
0.374 0.000E+00 0.000E+00
0.424 1.000E-03 1.000E-03
0.474 1.000E-03 1.000E-03
0.524 1.000E-03 1.000E-03
0.573 1.000E-03 1.000E-03
0.624 1.000E-03 1.000E-03
0.674 2.000E-03 2.000E-03
0.723 3.000E-03 3.000E-03
0.773 2.000E-03 2.000E-03
0.823 3.000E-03 4.000E-03
0.873 7.000E-03 7.000E-03

the in-quadrature sum of the uncertainties in each row.
All uncertainties are absolute. Columns for all quantities
except for the PID cuts have been omitted since they
were very small for the lowest x-bins, and were negligible
otherwise.

4. dn2 systematic uncertainties

A breakdown of the dn2 systematic uncertainties is
given in Table XXXIII, for each of the measured mean
Q2 points. This table includes the effects of all the uncer-
tainties found in the preceding tables (i.e. Pp, Pt, etc.),
referred to as experimental systematics (“Exp.”), in addi-
tion to radiative corrections, dp2, the proton and neutron

polarizations (P̃p and P̃n), and the unmeasured low x
contributions. The value for each these uncertainties was
determined by varying each of these contributions within
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TABLE XXIX. Systematic uncertainties assigned to g
3He
1 at

an incident beam energy of 4.74GeV See Appendix E 3 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 8.000E-03 9.000E-03
0.325 2.000E-03 2.000E-03
0.374 2.000E-03 2.000E-03
0.424 3.000E-03 3.000E-03
0.473 1.000E-03 2.000E-03
0.523 0.000E+00 0.000E+00
0.574 1.000E-03 1.000E-03
0.623 0.000E+00 1.000E-03
0.673 1.000E-03 1.000E-03
0.723 0.000E+00 1.000E-03
0.773 1.000E-03 1.000E-03
0.823 1.000E-03 1.000E-03
0.874 0.000E+00 1.000E-03

TABLE XXX. Systematic uncertainties assigned to g
3He
2 at

an incident beam energy of 4.74GeV See Appendix E 3 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 9.000E-03 9.000E-03
0.325 6.000E-03 6.000E-03
0.374 4.000E-03 5.000E-03
0.424 2.000E-03 2.000E-03
0.473 0.000E+00 1.000E-03
0.523 1.000E-03 1.000E-03
0.574 1.000E-03 1.000E-03
0.623 1.000E-03 1.000E-03
0.673 1.000E-03 1.000E-03
0.723 0.000E+00 1.000E-03
0.773 0.000E+00 1.000E-03
0.823 0.000E+00 0.000E+00
0.874 0.000E+00 1.000E-03

reasonable limits and taking the corresponding change in
dn2 as the uncertainty. The two sources of uncertainty
that dominate the dn2 systematic uncertainty are those
from the experimental and low-x contributions. How-
ever, the final dn2 measurement’s statistical uncertainty
is larger than its systematic uncertainty.

5. a2 systematic uncertainties

The systematic uncertainties for the measured a
3He
2 are

given in Table XXXIV, where the column labeled g
3He
1

corresponds to the uncertainty due to our g
3He
1 data, and

the column labeled x is the uncertainty due to x in the
integration. The value of these uncertainties was deter-
mined by varying each of these contributions within rea-
sonable limits and taking the change in the an2 as the
uncertainty. The in-quadrature sum of the two contribu-

TABLE XXXI. Systematic uncertainties assigned to g
3He
1 at

an incident beam energy of 5.89GeV See Appendix E 3 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 1.000E-02 1.200E-02
0.325 2.000E-03 3.000E-03
0.374 2.000E-03 2.000E-03
0.424 1.000E-03 2.000E-03
0.474 2.000E-03 2.000E-03
0.524 1.000E-03 1.000E-03
0.573 1.000E-03 1.000E-03
0.624 1.000E-03 1.000E-03
0.674 0.000E+00 0.000E+00
0.723 0.000E+00 0.000E+00
0.773 0.000E+00 0.000E+00
0.823 0.000E+00 0.000E+00
0.873 0.000E+00 0.000E+00

TABLE XXXII. Systematic uncertainties assigned to g
3He
2 at

an incident beam energy of 5.89GeV See Appendix E 3 for
a discussion of the various contributions to the systematic
uncertainty.

< x > Cuts Total
0.277 1.400E-02 1.900E-02
0.325 5.000E-03 6.000E-03
0.374 1.000E-03 2.000E-03
0.424 2.000E-03 2.000E-03
0.474 2.000E-03 2.000E-03
0.524 1.000E-03 1.000E-03
0.573 1.000E-03 1.000E-03
0.624 0.000E+00 0.000E+00
0.674 0.000E+00 0.000E+00
0.723 0.000E+00 0.000E+00
0.773 0.000E+00 0.000E+00
0.823 0.000E+00 1.000E-03
0.873 0.000E+00 0.000E+00

tions is given as the column labeled “Total.” The sys-
tematic uncertainties for the an2 extraction for the full
x-range are presented in Table XXXV. The columns la-
beled low-x (high-x) correspond to the uncertainties due
to the low-x (high-x) regions. The uncertainty due to
the effective proton (neutron) polarization is given by

the column labeled P̃p (P̃n). The uncertainties due to ap2
and our measured a

3He
2 are also given.

6. A1 and g1/F1 systematic uncertainties

This section discusses the breakdown of the systematic

uncertainties on A
3He
1 and An

1 . The main factors that
contribute to the uncertainties on the 3He data are the
physics asymmetries A‖ and A⊥, and the kinematic fac-
tors D, η, ξ and d (see Section IC). Each physics asym-
metry was varied within its uncertainty, and the change
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TABLE XXXIII. Systematic uncertainties assigned to different regions of dn2 . “Res” indicates the contribution from the
resonance region; in particular, from data with W < 2GeV. “DIS” represents the contribution due to data for W > 2GeV. See
Appendix E 4 for a discussion of the various contributions to the systematic uncertainty.

Region
〈

Q2
〉 (

GeV2
)

Exp. RC dp2 P̃p, P̃n (high error) P̃p, P̃n (low error) Low x Total
DIS+Res 3.21 4.700E-04 2.000E-05 4.000E-05 6.000E-05 1.000E-04 5.800E-04 7.500E-04
DIS+Res 4.32 3.700E-04 2.000E-05 4.000E-05 2.000E-05 4.000E-05 5.800E-04 6.900E-04

DIS 2.59 3.600E-04 1.000E-05 5.000E-05 3.000E-05 5.000E-05 — 3.700E-04
DIS 3.67 2.900E-04 2.000E-05 4.000E-05 2.000E-05 2.000E-05 — 2.900E-04
Res 4.71 2.200E-04 0.000E+00 4.000E-05 3.000E-05 5.000E-05 — 2.300E-04
Res 5.99 1.100E-04 0.000E+00 2.000E-05 1.000E-05 3.000E-05 — 1.200E-04

TABLE XXXIV. The systematic uncertainties contributing

to the a
3He
2 result in the measured x-range. See Appendix E 5

for a discussion of the various contributions to the systematic
uncertainty.

〈

Q2
〉 (

GeV2
)

g
3He
1 x Total

3.21 3.428E-05 8.803E-06 3.539E-05
4.32 3.281E-05 6.681E-06 3.348E-05

in A
3He
1 was observed. For the kinematics, the low-level

variables of the electron momentum p and scattering an-
gle θ were changed within their relative uncertainties of
1% and 1.4% [86] respectively, and the kinematic factors
were re-evaluated, and the change in the A1 asymmetry
was observed. The resulting contributions to the sys-

tematic uncertainty in A
3He
1 are listed in Tables XXXVI

and XXXVII for the 4.74GeV and 5.89GeV runs, respec-
tively.
The systematic uncertainties for An

1 are listed in in
Tables XXXVIII and XXXIX. The inputs in the An

1 ex-

traction that were varied consisted of Fn
2 and F p

2 , F
3He
2 ,

Ap
1 and our A

3He
1 data. For the neutron and proton F2,

various models [134, 141, 189] were compared, and the
largest difference in An

1 was taken as the uncertainty,
listed in the Fn,p

2 column. The same procedure was used

for F
3He
2 , where the models considered were F1F209 [122]

and NMC95 [190]. This uncertainty is given in the F
3He
2

column. Our fit of the world Ap
1 data was varied within

its uncertainty and the change in An
1 was taken as the

uncertainty, listed in the Ap
1 column. The values for

the effective neutron (proton) polarization P̃n (P̃p) were
varied within their uncertainties, and the change in An

1

was taken as the uncertainty. These contributions are
listed as P̃n and P̃p for the neutron and proton, respec-

tively. We varied our A
3He
1 data within their systematic

uncertainties and observed the changes in the An
1 results,

which were taken as the uncertainties, listed in the A
3He
1

column. The in-quadrature sum of all contributions is
given in the column labeled “Total”.
To evaluate the systematic uncertainties on g1/F1

data, shown in Tables XL, XLI, XLII and XLIII, the
same procedure used for the A1 data was applied. The

same models for F2 on the neutron, proton and 3He were
used, in addition to the effective polarizations of the neu-
tron and proton, P̃n and P̃p.
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TABLE XXXV. The systematic uncertainties contributing to the an
2 result over the full x-range. See Appendix E 5 for a

discussion of the various contributions to the systematic uncertainty listed below.

〈

Q2
〉 (

GeV2
)

low-x high-x P̃p P̃n ap
2 a

3He
2 Total

3.21 1.374E-4 1.373E-04 2.439E-04 3.012E-04 3.068E-04 3.052E-04 6.125E-04
4.32 8.878E-5 8.880E-05 2.518E-04 3.054E-04 3.118E-04 3.089E-04 6.042E-04
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7. Flavor decomposition systematic uncertainties

Tables XLIV and XLV give a breakdown of the sys-
tematic uncertainties at E = 4.74GeV for the up and
down quark ratios, respectively. Tables XLVI and XLVII
list the uncertainties for E = 5.89GeV. The columns of
the table represent the contribution due to our gn1 /F

n
1

data, our fit to world gp1/F
p
1 data, the (d+ d̄)/(u+ ū) pa-

rameterization, and the strange uncertainty, respectively.
The value of these uncertainties, except for the strange
uncertainty (see Section VC), was determined by varying
each of these contributions within reasonable limits and
taking the change in the quark ratio as the uncertainty.
This was done for both the up and down quark ratios.
The in-quadrature sum of all contributions is displayed
in the last column, labeled “Total.”
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TABLE XXXVI. Systematic uncertainties for A
3He
1 data at E = 4.74GeV. See Appendix E 6 for a discussion of the various

contributions to the systematic uncertainty.

< x > A‖ A⊥ Kin. Total
0.277 3.850E-03 1.900E-04 1.200E-04 3.860E-03
0.325 1.480E-03 1.400E-04 7.000E-05 1.480E-03
0.374 9.900E-04 2.100E-04 5.400E-04 1.150E-03
0.424 2.650E-03 1.700E-04 1.200E-04 2.660E-03
0.473 1.840E-03 1.100E-04 1.900E-04 1.850E-03
0.523 1.100E-03 1.600E-04 1.900E-04 1.130E-03
0.574 2.430E-03 3.300E-04 2.000E-04 2.460E-03
0.623 1.840E-03 3.600E-04 1.400E-04 1.880E-03
0.673 2.620E-03 5.000E-04 1.300E-04 2.670E-03
0.723 3.770E-03 4.400E-04 2.000E-04 3.800E-03
0.773 7.510E-03 8.900E-04 3.900E-04 7.570E-03
0.823 7.000E-03 1.180E-03 3.200E-04 7.100E-03
0.874 1.019E-02 1.250E-03 1.960E-03 1.045E-02

TABLE XXXVII. Systematic uncertainties for A
3He
1 data at E = 5.89GeV. See Appendix E 6 for a discussion of the various

contributions to the systematic uncertainty.

< x > A‖ A⊥ Kin. Total
0.277 5.520E-03 1.800E-04 5.900E-04 5.550E-03
0.325 1.850E-03 9.000E-05 2.400E-04 1.870E-03
0.374 1.230E-03 4.000E-05 4.000E-05 1.230E-03
0.424 1.510E-03 1.100E-04 2.200E-04 1.530E-03
0.474 3.270E-03 9.000E-05 4.000E-05 3.270E-03
0.524 1.200E-03 1.200E-04 1.000E-05 1.210E-03
0.573 1.800E-03 1.400E-04 1.300E-04 1.810E-03
0.624 3.120E-03 1.000E-04 1.600E-04 3.130E-03
0.674 2.770E-03 2.700E-04 7.000E-05 2.780E-03
0.723 2.740E-03 3.900E-04 1.300E-04 2.770E-03
0.773 4.430E-03 3.500E-04 1.100E-04 4.450E-03
0.823 7.870E-03 7.100E-04 6.600E-04 7.930E-03
0.873 9.270E-03 1.170E-03 1.400E-04 9.340E-03

TABLE XXXVIII. Systematic uncertainties for An
1 at E = 4.74 GeV. See Appendix E 6 for a discussion of the various contri-

butions to the systematic uncertainty.

< x > Fn,p
2 F

3He
2 P̃p P̃n Ap

1 A
3He
1 Total

0.277 2.730E-03 7.000E-04 5.160E-03 1.500E-04 5.080E-03 2.680E-03 8.220E-03
0.325 2.690E-03 1.010E-03 6.160E-03 1.200E-04 6.050E-03 1.850E-03 9.280E-03
0.374 6.900E-03 6.500E-04 7.200E-03 1.690E-03 6.690E-03 6.370E-03 1.371E-02
0.424 5.980E-03 1.810E-03 8.310E-03 1.190E-03 7.710E-03 6.390E-03 1.449E-02
0.473 5.740E-03 1.710E-03 9.570E-03 8.500E-04 8.960E-03 5.280E-03 1.537E-02

TABLE XXXIX. Systematic uncertainties for An
1 at E = 5.89GeV. See Appendix E 6 for a discussion of the various contributions

to the systematic uncertainty.

< x > Fn,p
2 F

3He
2 P̃p P̃n Ap

1 A
3He
1 Total

0.277 4.500E-03 4.000E-04 5.140E-03 2.070E-03 5.130E-03 3.370E-02 3.483E-02
0.325 2.440E-03 1.310E-03 6.140E-03 5.900E-04 5.810E-03 3.060E-03 9.430E-03
0.374 2.650E-03 6.400E-04 7.190E-03 5.200E-04 6.700E-03 1.470E-03 1.032E-02
0.424 2.900E-03 2.120E-03 8.300E-03 7.400E-04 7.940E-03 3.740E-03 1.263E-02
0.474 3.940E-03 1.350E-03 9.560E-03 8.400E-04 9.240E-03 9.750E-03 1.702E-02
0.524 9.950E-03 0.000E+00 1.096E-02 1.720E-03 1.060E-02 5.050E-03 1.897E-02
0.573 1.300E-02 1.500E-04 1.247E-02 2.140E-03 1.207E-02 8.000E-03 2.321E-02
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TABLE XL. Systematic uncertainties for g
3He
1 /F

3He
1 data at E = 4.74GeV. See Appendix E 6 for a discussion of the various

contributions to the systematic uncertainty.

< x > A‖ A⊥ Kin. Total
0.277 3.680E-03 5.300E-04 4.000E-05 3.720E-03
0.325 1.340E-03 3.500E-04 4.000E-05 1.380E-03
0.374 9.200E-04 4.900E-04 4.000E-05 1.040E-03
0.424 2.560E-03 3.300E-04 1.300E-04 2.580E-03
0.473 1.710E-03 2.000E-04 1.100E-04 1.720E-03
0.523 1.030E-03 2.600E-04 2.000E-05 1.060E-03
0.574 2.200E-03 4.700E-04 3.000E-05 2.260E-03
0.623 1.610E-03 5.000E-04 1.700E-04 1.690E-03
0.673 2.430E-03 6.700E-04 1.400E-04 2.530E-03
0.723 3.350E-03 5.100E-04 2.000E-04 3.390E-03
0.773 6.410E-03 9.700E-04 1.600E-04 6.490E-03
0.823 5.760E-03 1.260E-03 2.800E-04 5.900E-03
0.874 8.590E-03 1.230E-03 3.200E-04 8.680E-03

TABLE XLI. Systematic uncertainties for g
3He
1 /F

3He
1 data at E = 5.89GeV. See Appendix E 6 for a discussion of the various

contributions to the systematic uncertainty.

< x > A‖ A⊥ Kin. Total
0.277 5.320E-03 2.570E-03 5.000E-05 5.910E-03
0.325 1.720E-03 1.070E-03 4.000E-05 2.030E-03
0.374 1.170E-03 1.900E-04 1.000E-05 1.190E-03
0.424 1.350E-03 9.500E-04 4.000E-05 1.650E-03
0.474 3.160E-03 1.100E-04 5.000E-05 3.160E-03
0.524 1.200E-03 1.100E-04 0.000E+00 1.200E-03
0.573 1.640E-03 6.800E-04 1.000E-05 1.780E-03
0.624 2.720E-03 9.100E-04 2.000E-05 2.870E-03
0.674 2.420E-03 4.400E-04 1.000E-05 2.460E-03
0.723 2.370E-03 1.070E-03 2.000E-05 2.600E-03
0.773 3.900E-03 1.120E-03 4.000E-05 4.060E-03
0.823 7.090E-03 1.068E-02 1.800E-04 1.282E-02
0.873 8.480E-03 2.030E-03 1.000E-04 8.720E-03

TABLE XLII. Systematic uncertainties for gn1 /F
n
1 at E = 4.74GeV. See Appendix E 6 for a discussion of the various contribu-

tions to the systematic uncertainty.

< x > Fn,p
2 F

3He
2 P̃p P̃n gp1/F

p
1 g

3He
1 /F

3He
1 Total

0.277 2.530E-03 7.100E-04 5.320E-03 1.200E-04 2.950E-03 7.630E-03 1.011E-02
0.325 2.480E-03 9.800E-04 6.270E-03 1.300E-04 3.650E-03 3.060E-03 8.310E-03
0.374 5.640E-03 2.900E-04 7.230E-03 1.080E-03 4.680E-03 2.470E-03 1.064E-02
0.424 5.770E-03 1.730E-03 8.190E-03 1.100E-03 6.020E-03 6.360E-03 1.346E-02
0.473 6.020E-03 1.700E-03 9.240E-03 9.700E-04 7.600E-03 5.050E-03 1.445E-02

TABLE XLIII. Systematic uncertainties for gn1 /F
n
1 at E = 5.89GeV. See Appendix E 6 for a discussion of the various contri-

butions to the systematic uncertainty.

< x > Fn,p
2 F

3He
2 P̃p P̃n gp1/F

p
1 g

3He
1 /F

3He
1 Total

0.277 4.500E-03 4.500E-04 5.100E-03 2.450E-03 2.970E-03 1.193E-02 1.427E-02
0.325 2.180E-03 1.160E-03 6.030E-03 3.300E-04 3.760E-03 4.510E-03 8.780E-03
0.374 2.420E-03 6.200E-04 6.950E-03 5.300E-04 4.790E-03 2.920E-03 9.290E-03
0.424 3.110E-03 2.110E-03 7.890E-03 8.400E-04 6.020E-03 4.410E-03 1.152E-02
0.474 3.770E-03 1.260E-03 8.900E-03 7.600E-04 7.280E-03 9.170E-03 1.525E-02
0.524 9.150E-03 0.000E+00 9.980E-03 1.680E-03 9.620E-03 3.940E-03 1.716E-02
0.573 1.240E-02 1.500E-04 1.111E-02 2.280E-03 1.183E-02 7.140E-03 2.176E-02
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TABLE XLIV. Systematic uncertainties for (∆u + ∆ū)/(u + ū) at E = 4.74GeV. See Appendix E 7 for a discussion of the
various contributions to the systematic uncertainty.

< x > gn1 /F
n
1 gp1/F

p
1 (d+ d̄)/(u+ ū) s Total

0.277 9.900E-04 2.918E-02 3.260E-03 8.700E-03 3.064E-02
0.325 7.800E-04 3.556E-02 3.590E-03 6.450E-03 3.633E-02
0.374 9.300E-04 4.243E-02 3.610E-03 4.580E-03 4.284E-02
0.424 1.090E-03 4.967E-02 4.620E-03 3.280E-03 5.000E-02
0.473 1.100E-03 6.300E-02 5.070E-03 2.350E-03 6.326E-02

TABLE XLV. Systematic uncertainties for (∆d+∆d̄)/(d+ d̄) at E = 4.74GeV. See Appendix E 7 for a discussion of the various
contributions to the systematic uncertainty.

< x > gn1 /F
n
1 gp1/F

p
1 (d+ d̄)/(u+ ū) s Total

0.277 8.240E-03 1.518E-02 1.455E-02 1.673E-02 2.811E-02
0.325 7.140E-03 2.027E-02 1.886E-02 1.363E-02 3.167E-02
0.374 9.290E-03 2.647E-02 2.280E-02 1.071E-02 3.770E-02
0.424 1.193E-02 3.399E-02 3.467E-02 8.140E-03 5.066E-02
0.473 1.343E-02 4.814E-02 4.754E-02 5.940E-03 6.923E-02

TABLE XLVI. Systematic uncertainties for (∆u + ∆ū)/(u + ū) at E = 5.89GeV. See Appendix E 7 for a discussion of the
various contributions to the systematic uncertainty.

< x > gn1 /F
n
1 gp1/F

p
1 (d+ d̄)/(u+ ū) s Total

0.277 1.380E-03 3.088E-02 1.980E-03 8.300E-03 3.207E-02
0.325 8.100E-04 3.675E-02 3.750E-03 6.190E-03 3.746E-02
0.374 7.800E-04 4.430E-02 3.800E-03 4.390E-03 4.469E-02
0.424 9.400E-04 5.109E-02 4.460E-03 3.110E-03 5.139E-02
0.474 1.160E-03 6.267E-02 4.810E-03 2.220E-03 6.290E-02
0.524 1.220E-03 6.976E-02 4.130E-03 1.600E-03 6.991E-02
0.573 1.430E-03 8.454E-02 3.860E-03 1.240E-03 8.465E-02

TABLE XLVII. Systematic uncertainties for (∆d + ∆d̄)/(d + d̄) at E = 5.89GeV. See Appendix E 7 for a discussion of the
various contributions to the systematic uncertainty.

< x > gn1 /F
n
1 gp1/F

p
1 (d+ d̄)/(u+ ū) s Total

0.277 1.158E-02 1.622E-02 8.640E-03 1.631E-02 2.716E-02
0.325 7.470E-03 2.116E-02 1.973E-02 1.339E-02 3.274E-02
0.374 7.850E-03 2.792E-02 2.503E-02 1.036E-02 3.969E-02
0.424 1.039E-02 3.539E-02 3.438E-02 7.810E-03 5.102E-02
0.474 1.436E-02 4.863E-02 4.929E-02 5.660E-03 7.094E-02
0.524 1.731E-02 6.181E-02 5.298E-02 3.580E-03 8.331E-02
0.573 2.341E-02 8.633E-02 6.641E-02 2.130E-03 1.114E-01
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