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If a new high-mass resonance is discovered at the Large Hadron Collider, model-independent
techniques to identify the production mechanism will be crucial to understand its nature and effective
couplings to Standard Model particles. We present a powerful and model-independent method to
infer the initial state in the production of any high-mass color-singlet system by using a tight veto
on accompanying hadronic jets to divide the data into two mutually exclusive event samples (jet
bins). For a resonance of several hundred GeV, the jet binning cut needed to discriminate quark
and gluon initial states is in the experimentally accessible range of several tens of GeV. It also yields
comparable cross sections for both bins, making this method viable already with the small event
samples available shortly after a discovery. Theoretically, the method is made feasible by utilizing
an effective field theory setup to compute the jet cut dependence precisely and model-independently
and to systematically control all sources of theoretical uncertainties in the jet binning, as well as
their correlations. We use a 750 GeV scalar resonance as an example to demonstrate the viability
of our method.

INTRODUCTION

The increased center-of-mass energy of the Large
Hadron Collider (LHC) significantly enhances the sen-
sitivity for the discovery of new heavy particles. Should
a new high-mass state be found, a key goal will be to
identify its production mechanism.

It is well known that the different patterns of initial-
state radiation (ISR) for gluon- and quark-induced pro-
cesses provide in principle a way to discriminate between
these initial states. Typically, methods to exploit this
fact require a substantial amount of data for the pre-
cise measurement of shapes of differential distributions.
In this paper, we show that for any high-mass color-
singlet system, the measurement of just two cross sec-
tions, namely dividing the data into events with and
without additional hadronic jets in the final state, pro-
vides a strong discrimination between production mech-
anisms, which is furthermore experimentally accessible
with event samples of limited size. The method is also
theoretically clean, as it is both model independent and
has well-controlled theory uncertainties.

As a concrete example, we investigate a color-singlet
resonance with a mass of 750 GeV. The ATLAS and
CMS experiments have recently reported some devia-
tion from the background expectation in the diphoton
invariant mass spectrum around 750 GeV [1, 2]. Assum-
ing the deviation to be a first sign of a new particle, a
large number of proposals on its interpretation and pos-
sible property studies have been made [3]. Exploratory
studies of the initial state have utilized the luminosity
ratio between 8 and 13 TeV (which is limited by the
available 8 TeV data), the transverse momentum and
rapidity distribution of the new state [4], multiplicity

and kinematic distributions of hadronic jets [5], and b-
tagging [4, 6]. Different techniques for tagging the initial
state have been studied earlier, see e.g. Refs. [7–12]. Be-
yond its viability for small data sets, our method offers
several additional advantages. Compared to considering
additional jets at high pjet

T [5, 6, 13], the low pjet
T range

we exploit has more discrimination power and is more
model independent. Compared to the diphoton pT spec-
trum, the pjet

T of hadronic jets provides a more direct
measure of ISR, making it insensitive to the possibility
of more complicated decays of the resonance, for exam-
ple, three-body [14, 15] or cascade decays [16–21]. Our
method is also unaffected by limited experimental ac-
ceptance for photons, which for example hinders fully
exploiting the diphoton rapidity distribution to discrimi-
nate valence quarks by their different parton distribution
function (PDF) shapes.

The 0-jet cross section is defined by requiring that all
accompanying jets have pjet

T ≤ pcut
T . The QCD dynamics

of low-pT radiation produced in association with a hard
scattering process into a final state F with total invari-
ant mass m(F ) ' mX can be described using the Soft
Collinear Effective Theory (SCET) [22–25]. At the scale
µ ∼ pcut

T � mX , the leading effective field theory (EFT)
Lagrangian has the form (see e.g. [26–28])

Leff(pcut
T ) = LSCET (1)

+ cλ1λ2

ggF B
λ1
n B

λ2
n̄ F +

∑
q

cλ1λ2

qq̄F χ̄λ1
qnχ

λ2
qn̄ F .

Here, LSCET is the universal Lagrangian encoding the in-
teractions of soft and collinear quarks and gluons. The
gauge-invariant operators BnBn̄ and χ̄qnχqn̄ describe the
annihilation of energetic gluons or quarks q = u, d, s, c, b
along the beam directions, n = (1, ẑ) and n̄ = (1,−ẑ),
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with helicities λ1 and λ2 (implicitly summed over), and F
collects all fields required to produce F . All hard degrees
of freedom are integrated out, including quarks and glu-
ons of virtuality ∼ mX as well as any intermediate new
heavy degrees of freedom leading to F .

We stress that Leff(pcut
T ) provides a completely model-

independent description of the small-pcut
T region, up to

power corrections suppressed by (pcut
T /mX)2. It is valid

for any produced color-singlet system X leading to F , for
example the decay of a finite-width resonance, the Stan-
dard Model background pp → F , and even the signal-
background interference [29], as all of the dynamics of
the production and decay of X are contained in the hard
Wilson coefficients cλ1λ2

ggF and cλ1λ2

qq̄F and because the lead-
ing perturbative SCET dynamics are insensitive to the
helicity structure of the operators and the details of F .
The 0-jet cross section thus only depends on the hard
coefficients ∣∣cijF ∣∣2 =

∫
dΦF

∑
λ1λ2

∣∣cλ1λ2

ijF (ΦF )
∣∣2 , (2)

where the integral is over the final-state phase space for
F including any kinematic selection cuts. As a result,
the pcut

T dependence is independent of any details of F
and in particular also the spin of X. (See Ref. [30] for a
detailed analysis in a specific new-physics context.)

To predict the inclusive cross section pp→ X → F we
need to know the Lagrangian at the scale µ ∼ mX , which
contains the full QCD Lagrangian plus the (effective) in-
teractions of X with quarks and gluons. This becomes
somewhat more model-dependent, and requires, for ex-
ample, specifying the spin of X. For our concrete study
we take X to be a scalar, coupling to gluons and quarks
via the effective Wilson coefficients Cg and Cq as

Leff(mX) ⊃ − Cg
1 TeV

αsG
µνGµνX −

∑
q

Cq q̄q X , (3)

where Gµν is the gluon field strength and αs is the strong
coupling. (We assume that X does not couple directly
to top quarks, as this would have shown up in tt̄ pro-
duction.) Comparing quark and gluon luminosities as is
often done is equivalent to using Eq. (3) at leading order
(LO). With Eq. (3) specified, we can now match it onto
Eq. (1) and compute |cqq̄F |2 and |cggF |2.

For our purposes, any model can be represented by
Eq. (3) at leading order in αs(mX). Treated as an EFT,
Eq. (3) is a priori only correct to O(mX/Λ), where Λ
is the mass scale of additional heavy degrees of freedom
that induce the effective interactions of X. For exam-
ple, the possibility of real QCD radiation from inter-
nal heavy states is not captured by Eq. (3). However,
even for Λ ∼ mX hard emissions only affect the inclu-
sive cross section by O(αs(mX)), while emissions below
the scale pcut

T are power suppressed. Similarly, a different
choice of Leff(mX) in Eq. (3) (e.g. for a spin-2 resonance)

changes the inclusive cross section and the matching in
Eq. (4) only by terms of O(αs(mX)), i.e., at the 10%-
20% level. The crucial point is that the pcut

T dependence
for pcut

T � mX is described by Eq. (1). Hence, for more
complicated scenarios than the one considered here, our
main conclusions regarding the initial-state discrimina-
tion are unaffected as they rest on the dynamics at the
scale µ ∼ pcut

T , which is described model-independently.

CALCULATIONAL SETUP

Considering for simplicity the narrow-width approxi-
mation, we have∣∣cqq̄F (µH)

∣∣2 = B(X → F )
∣∣Cq(µH) (1 + · · · )

∣∣2 , (4)∣∣cggF (µH)
∣∣2 = B(X → F )

∣∣αs(µH)Cg(µH) (1 + · · · )
∣∣2 ,

where µH ∼ mX is the hard matching scale, and the
ellipses indicate the αs(µH) corrections from hard virtual
QCD emissions. The branching ratio B ≡ B(X → F )
also depends on all Wilson coefficients Ci, but will drop
out in our final analysis.

The jet cross sections we consider are given by

σ≥0 = |Cg|2σg≥0 +
∑
q

|Cq|2σq≥0 ,

σ0(pcut
T ) = |Cg|2σg0(pcut

T ) +
∑
q

|Cq|2σq0(pcut
T ) ,

σ≥1(pcut
T ) = |Cg|2σg≥1(pcut

T ) +
∑
q

|Cq|2σq≥1(pcut
T ) , (5)

where σ≥0 = σ0(pcut
T )+σ≥1(pcut

T ). We take Ci ≡ Ci(mX)
as the unknown parameters to be determined from the
data. Their evolution from the fixed input scale mX

to the hard matching scale µH is included in the σim
in Eq. (5), so they are defined to be scale independent
to all orders. The σg≥0 and σq≥0 are the inclusive cross
sections that follow from the ggX and qq̄X operators
in Leff(mX) in Eq. (3). The inclusive 1-jet cross sec-
tions are computed as σi≥1(pcut

T ) = σi≥0 − σi0(pcut
T ). The

0-jet cross sections contain large Sudakov logarithms of
pcut
T /mX , which are resummed utilizing the pjet

T resum-
mation framework of Refs. [31, 32] based on SCET (see
also Refs. [33–36]). They are given by

|Cg|2σg0(pcut
T ) =

π

4E2
cm

m2
X

TeV2

∣∣cggX(µ)
∣∣2 ∫ dY Bg(p

cut
T , µ)

×Bg(pcut
T , µ)Sgg(p

cut
T , µ) + σg nons

0 (pcut
T ) ,

|Cq|2σq0(pcut
T ) =

π

6E2
cm

∣∣cqq̄X(µ)
∣∣2 ∫ dY Bq(p

cut
T , µ) (6)

×Bq̄(pcut
T , µ)Sqq̄(p

cut
T , µ) + σq nons

0 (pcut
T ) .

The Bi are quark and gluon beam functions, which de-
scribe the dynamics of collinear radiation along the beam
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directions. In general, the type of the incoming parton is
changed by both collinear PDF evolution and fixed-order
corrections, so beyond LO an operator in the Lagrangian
receives contributions from all PDFs. However, in the
0-jet cross section, both of these effects only occur up to
the scale pcut

T and are contained in the beam functions.
Above the scale pcut

T , the parton type of the initial state is
uniquely defined and matches between the beam function
and the operator in the Lagrangian [26]. Similarly, the
dynamics of wide-angle soft radiation, described by the
soft functions Sgg/qq̄, is unique to the parton type and
does not change it. The fact that the jet veto freezes the
initial-state parton type at the scale pcut

T is what lends
our method its strong discrimination power, as it pro-
vides a large energy range between pcut

T and mX where
the initial state evolves without changing its type.

We calculate σq≥0 to next-to-leading order (NLO) in

αs, and σq0(pcut
T ) is resummed to NLL′+NLO order.

Due to the substantially larger uncertainties for glu-
ons, we include the full next-to-next-to-leading order
(NNLO) corrections for σg≥0, and σg0(pcut

T ) is resummed
to NNLL′+NNLO [32]. The inclusive cross sections are
obtained with SusHi 1.6.0 [37–41].

The nonsingular corrections σi nons
0 (pcut

T ) in Eq. (6)
contain the power corrections starting at (pcut

T /mX)2.
They ensure that σi0(pcut

T ) smoothly matches onto σi≥0

for large pcut
T , and are correspondingly included to NLO

for quarks and NNLO for gluons. They are extracted
from the fixed-order pcut

T spectra predicted by Eq. (3),
obtained from SusHi for qq̄X and MCFM [42, 43] for ggX.

We perform a careful analysis of the different sources
of theoretical uncertainties and their correlations for σ≥0,
σ0, and σ≥1. The total theory covariance matrix for all
parton types and bins under consideration is then ob-
tained by adding the covariance matrices of all sources
discussed below,

Cth = CFO + Cresum + Cϕ + CPDF . (7)

For the perturbative uncertainties we follow the treat-
ment developed in Refs. [27, 32, 44] and distinguish var-
ious independent sources. The first is an overall fixed-
order yield uncertainty, CFO, which is fully correlated
between all bins, and reproduces the usual fixed-order
uncertainty for the inclusive cross section. The resum-
mation uncertainty, Cresum, is induced by the binning
cut and is correspondingly treated as a migration uncer-
tainty that is fully anticorrelated between σ0 and σ≥1 and
drops out of σ≥0. The individual uncertainty contribu-
tions are estimated using profile scale variations [45, 46]
for the relevant resummation scales, as discussed in de-
tail in Ref. [32]. Finally, we use a complex hard scale
µH = −imX to resum large virtual QCD corrections.
The corresponding resummation uncertainty, Cϕ, is es-
timated by varying the phase of µH and corresponds
to a yield uncertainty. The perturbative uncertainties
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FIG. 1. The ratio σ0(pcutT )/σ≥1(pcutT ) for u (red), c (yellow), b
quarks (blue) and gluons (green). The lines show the central
values and the bands the theoretical uncertainties.

are treated as fully correlated among all quark flavors
and uncorrelated between quarks and gluons. We use
the MMHT2014nnlo68cl [47] parton distribution functions
(PDFs) with the corresponding αs(mZ) = 0.118 and 3-
loop running. The parametric PDF uncertainties, CPDF,
are constructed from the 25 independent eigenvectors of
MMHT2014nnlo68cl. They are subdominant compared to
the perturbative uncertainties.

INITIAL-STATE DISCRIMINATION

As a demonstration of the technique, we consider a
hypothetical scalar resonance of mass mX = 750 GeV
produced in 13 TeV pp collisions. In Fig. 1 we show the
ratio σi0(pcut

T )/σi≥1(pcut
T ) as a function of pcut

T for differ-
ent initial states i = u, c, b, g including all theoretical
uncertainties, see Eq. (7). For all our results we use
a jet radius of 0.4. The analogous results for d and s
quarks are mostly indistinguishable from u quarks and
are not shown. The split of the cross section into the
0-jet and ≥1-jet bins is clearly different for the differ-
ent initial states, allowing one to distinguish light quarks
(u,d,s), c quarks, b quarks, and gluons. The discrimina-
tion between b quarks and gluons is less good, in part due
to the sizeable uncertainty in the gluon cross sections.

The optimal pcut
T value for discriminating between dif-

ferent possible initial states depends on the true initial
state. Numerically, we observe only a mild sensitivity of
the discrimination between initial states on the pcut

T value
within the range pcut

T ∈ [25, 65] GeV. The pcut
T value can

thus be chosen to optimize the experimental sensitivity
with limited statistics. A roughly equal split of the cross
section is achieved at pcut

T ' 25 GeV (65 GeV) for a light-
quark (gluon) induced signal. In our subsequent analysis
we use pcut

T = 40 GeV, for which the cross section ratio is
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FIG. 2. ∆χ2 = 1-contours for various scenarios. (a) gluon signal, (b) mixed gluon / u-quark signal, (c) u-quark signal, (d)
b-quark signal, (e) c-quark signal, (f) gluon signal. The constraints from σ0 and σ≥1 are shown by the blue and green bands,
respectively. The combined constraint from both are shown by the orange/yellow regions. The inner darker regions correspond
to theory uncertainties only, while the full lighter bands include both theory and assumed experimental uncertainties.

between 0.5 and 2 for any initial state.
Note that effects from hadronization and multi-parton

interactions, which are not included in our calculations,
can affect the leading jet pT spectrum at small pT . How-
ever their effects partially compensate each other. We
checked that the net effect in the cross section ratios we
consider becomes negligible above pcut

T
>∼ 20 GeV.

To study the constraints on the Wilson coefficients Ci
from measuring σ0 and σ≥1, we minimize the χ2-function

χ2(Ci) =
∑

m,n∈{0,≥1}

(σmeas
m − σm)(C−1)mn(σmeas

n − σn) , (8)

where σmeas
m is the measured pp → X → F cross section

in bin m, C is the sum of the experimental and theory
covariance matrices, and σm is the predicted cross section
in bin m in Eq. (5). In the narrow-width approximation
and considering a single decay channel (e.g. F = γγ), we
only constrain Ci

√
B [see Eq. (4)]. To render our results

independent of the details of F , we define

C incl
i

√
B =

√
σmeas
≥0 /σi≥0 , (9)

which is the value of Ci
√
B for which the measured inclu-

sive cross section is completely attributed to initial state
i. By considering the ratios |Ci/C incl

i |, our analysis only
depends on the ratio σ0/σ≥1 but not the absolute cross
sections or B. With more than one final state, the sum in
Eq. (8) runs over the respective bins for all final states,
and the dependence of the different branching ratios on
the Wilson coefficients Ci and the associated uncertain-
ties need to be taken into account.

Figure 2 shows the constraints on |Ci/C incl
i | that can

be achieved for various scenarios of the assumed true val-
ues of the Ci. For this purpose, we assume that the inclu-
sive cross section is measured with a relative uncertainty
of 20%, which can be realistically expected not very long
after a discovery of a new state. We split the cross sec-
tion into measured 0-jet and ≥1-jet bins according to the
theoretical predictions for the assumed signal, with the
resulting σmeas

0 /σmeas
≥1 given in each plot. The relative

uncertainties, ∆σmeas
m , on the measurements in the two

bins are assumed to be uncorrelated and split according
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to ∆σmeas
0 /∆σmeas

≥1 =
√
σmeas
≥1 /σmeas

0 .

In Fig. 2, contours of ∆χ2 = 1 only including the theo-
retical uncertainties are shown by the inner darker bands
and combining theoretical and assumed experimental un-
certainties by the outer lighter bands. The individual
constraints from σ0 and σ≥1 are shown by the blue and
green bands, respectively, while the combined constraint
from both is shown in yellow/orange.

Figure 2 (a)-(c) illustrates the good discrimination be-
tween light quarks, here u, and gluons in the initial state,
for a purely gluon-induced signal in (a), for a mixed sig-
nal with the cross section ratio equal to one in (b), and
a purely u-quark induced signal in (c). Figure 2 (d) and
(e) demonstrate the good discrimination between u and
b quarks for a b-quark signal, and between gluons and c
quarks for a c-quark signal, respectively. Only the dis-
crimination between b quarks and gluons, shown in Fig. 2
(f) for a gluon signal, remains challenging due to the
weaker separation already seen in Fig. 1.

We conclude that even with fairly large experimental
uncertainties, as expected soon after a potential discov-
ery, a clear separation between different initial states can
be achieved for most scenarios. A combined fit to all co-
efficients will of course require more data, and will then
also benefit from using several pcut

T values. We stress that
thanks to the used resummation framework, the theoret-
ical uncertainties and correlations can be robustly esti-
mated and are not a limiting factor, and if necessary,
could also be reduced further.

CONCLUSIONS

Should the deviation in the diphoton spectrum at
750 GeV manifest into a discovery, the method proposed
here can be readily applied to identify its initial state. It
is then preferable for the measurements to be fiducial in
the kinematics of the X decay products to minimize the
model dependence introduced by acceptance corrections.

We restricted our attention to discriminate quark- and
gluon-initiated production. Using our method, it will also
be possible to identify photoproduction, which has been
considered in several recent studies [48–55]. In this case,
the 0-jet cross section is given in terms of photon beam
functions calculated in terms of photon PDFs at the scale
µ ∼ pcut

T and without QCD evolution above pcut
T . This

implies that the σ0/σ≥1 ratio will be substantially larger
than for light quarks, thus providing a good discrimina-
tion against the production via quarks and gluons. The
utility of a jet-veto to distinguish photon production from
vector-boson fusion or gluon initial states was discussed
in [50].

Our method allows for an early, model-independent,
and theoretically clean identification of the production
mechanism of any new high-mass color-singlet state.

Since the ratio σi0(pcut
T )/σi≥1(pcut

T ) depends to good ap-

proximation only on pcut
T /mX , and pcut

T
>∼ 25 GeV is ex-

perimentally feasible at the LHC, we expect it to work
well for masses mX

>∼ 300 GeV.
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