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We compute the dominant, logarithmically enhanced radiative corrections to the electron spec-
trum in the bound muon decay in the whole experimentally interesting range. The corrected spec-
trum fits well the TWIST results. The remaining theoretical error, dominated by the nuclear charge
distribution, can be reduced in the muon-electron conversion searches by measuring the spectrum
slightly below the New Physics signal window.

I. INTRODUCTION

The spectrum of electrons from the decay of a muon
bound in an atom (decay in orbit, DIO) has two parts.
The low-energy part, Ee . mµ/2 (Ee is the electron en-
ergy and mµ is the muon mass) is present also in the free
muon decay but is reshuffled because the bound muon
is moving and the daughter electron interacts with the
electric field of the nucleus. This modification of the
spectrum was observed by TWIST [1].
In addition, the possibility of transferring momentum

to the nucleus approximately doubles the range of energy
accessible to the electron, adding the high-energy region
mµ/2 . Ee . mµ. This region has already been explored
for some nuclei including titanium, sulfur and gold [2–
6]. Upcoming experiments COMET and Mu2e [7–9] will
measure it for aluminum with a high precision. Their
main goal is to discover the lepton-flavor violating muon-
electron conversion. High-energy electrons from the DIO
are a background in this search.
The purpose of this paper is to improve the theoretical

description of the entire spectrum by determining loga-
rithmically enhanced radiative corrections. We focus on
aluminum, the stopping material in COMET and Mu2e.
The spectrum of the free muon decay is known includ-

ing corrections of the first [10] and of the second order
[11] in the fine structure constant α ≈ 1/137, as well

as the leading logarithms in the third order
(

α
π
ln

mµ

me

)3

[12]. In the case of the bound muon, even O (α) effects
are known only in a limited range of electron energies.
Radiative corrections near the top of the electron spec-
trum in the free muon decay (Ee ∼

mµ

2 ) were evaluated
in [13] by convoluting the O (α) free-muon spectrum with
the so-called shape function [14], reconciling TWIST re-
sults [1] with quantum electrodynamics. This approach
had been developed in the heavy quark effective theory
to describe decays of B-mesons [15, 16] using factoriza-
tion theorems. Alas, the factorization cannot be applied
when the electron energy is much larger than the half of
the muon mass.
Fortunately, the highest energy endpoint of the DIO

spectrum (Ee ∼ mµ) offers a different simplification: one

∗
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can expand in the number of photons exchanged with
the nucleus, parameterized by Zα where Z is the proton
number of the nucleus (for aluminum, Z = 13). Radia-
tive corrections in the endpoint region have been eval-
uated in [17]. It is still unknown how to compute full
radiative corrections for intermediate electron energies
1
2mµ < Ee < mµ [18].
However, the likely largest corrections can be com-

puted. Enhanced effects ∼ α
π
ln

mµ

me
arise from collinear

photons and can be found from collinear factorization
theorems [19], without a new loop calculation.
In a muonic atom, vacuum polarization (VP) is an

additional source of large logarithms. It modifies the
Coulomb potential and is taken into account numerically
together with the effects of the finite charge distribution
in the nucleus. Typically, the VP correction is on the

order of α
π
ln

Zαmµ

me
, or α

π
ln

mµ

me
near the DIO endpoint.

Section II presents details of both collinear and VP
corrections. Section III summarizes numerical results. In
Section IV we discuss the uncertainty due to the nuclear
charge distribution and suggest a means of lowering it.

II. LEADING LOGARITHMIC CORRECTIONS

TO THE DIO SPECTRUM

We assume that the daughter electron is relativistic.
For a low-energy electron, additional non-perturbative
phenomena would have to be considered. For example, a
slow electron can be captured into the atom in the final
state. The low-energy part of the spectrum is not yet
fully understood [20]. However, it involves only a small
fraction of electrons because of the phase space suppres-
sion and it is not relevant for conversion experiments,
sensitive only to the high-energy region of the spectrum.

A. Collinear photons

Focusing on an energetic electron, we first consider the
emission of collinear photons. For electron energies much
larger than the electron mass Ee ≫ me, Coulomb correc-
tions are small and do not affect the collinear limit of the
amplitude in the leading order in Zα. Before the emis-
sion of a collinear photon, the electron is almost on-shell
and propagates over distances large compared with the
size of the muonic atom. Hence, the collinear emission
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is a long-distance phenomenon that takes place after the
electron escapes the region of the strong binding poten-
tial. On the other hand, if the photon is emitted before
the last scattering of an electron on the nucleus, the elec-
tron is still off-shell and the amplitude is not singular.
In such case, the corrections are not enhanced by a large
logarithm ln

mµ

me
or are suppressed by additional powers

of Zα. For aluminum, Zα ln
mµ

me
∼ 1

2 . These corrections

are comparable with the non-logarithmic term O (α) and
we neglect them.

Collinear corrections can be calculated using a factor-
ization theorem, previously employed to improve the free
muon spectrum [12, 21, 22]. Following Ref. [21] we evalu-
ate the collinear logarithms dΓCL

dEe
convoluting the leading

order spectrum dΓLO

dEe
with the electron structure func-

tion,

dΓCL

dEe

=
dΓLO

dEe

⊗De +O

(

Zα
α

π
ln

mµ

me

)

, (1)

where

De(x) = δ(1−x)+
α

2π

(

ln
m2

µ

m2
e

− 1

)

Pe (x)+O
(

α2
)

(2)

and the electron splitting function is

Pe(x) =

[

1 + x2

1− x

]

+

.

We employ the dimensionless variable x = Ee/Emax

with Emax denoting the maximum electron en-
ergy. The convolution is defined as A ⊗ B (z) =
´ 1

0 dx
´ 1

0 dyδ (z − xy)A(x)B(y) and the leading order

term dΓLO

dEe
includes Coulomb effects to all orders in Zα.

Eq. (1) ensures a cancellation of the mass singularity in
the correction to the bound muon lifetime, in agreement
with the Kinoshita-Lee-Nauenberg theorem [23, 24].

B. Vacuum polarization

The second type of large logarithms comes from the
vacuum polarization that strengthens the binding. The
VP does not contribute to the free muon spectrum at
one loop, hence this correction is exclusive to the bound
muon and related to other binding effects. The O (α)
correction to the potential is known as the Uehling term
[25]. For a pointlike nucleus the binding potential is

V (r) = −
Zα

r

(

1 +
2α

3π

ˆ

∞

1

dxe−2merx
2x2 + 1

2x4

√

x2 − 1

)

+O

(

(Zα)3
)

. (3)

The VP potential for an arbitrary charge distribution is
given in Ref. [26]. The electron loop modifies the poten-
tial at distances comparable to the Compton wavelength
of electron re ∼

1
me

or smaller. The VP term reduces the
endpoint energy and increases the number of high-energy
electrons. It also shrinks the muon orbit. As a result, the
muon kinetic energy and the lifetime increase.

In muonic atoms, the VP effect is much larger than in
ordinary atoms [27]. The binding energy,

Eb ≃ −mµ

(Zα)2

2
, (4)

receives a correction that is not suppressed by extra pow-
ers of Zα. In an ordinary atom the Lamb shift con-
tributes at the (Zα)4 order. For example, the VP cor-

rection starts with − 4
15

α
π
(Zα)

4
me. This behaviour fol-

lows from the range of the VP potential, much smaller
than the size of the electron orbit 1

me
≪ 1

meZα
. When

the electron is replaced by a muon, the potential reaches
beyond the muon orbit, 1

me
≫ 1

mµZα
, and the correction

to the binding energy behaves as ∼ α
π
(Zα)2 ln

mµZα

me
. For

a pointlike nucleus and using non-relativistic muon wave
function, in the limit me ≪ mµ, we get the correction to

the binding energy

∆BVP =
α

π
(Zα)

2
mµ

(

11

9
−

2

3
ln

2mµZα

me

)

= −2.7 keV for aluminum. (5)

This is larger than the total uncertainty in the binding
energy and has to be included in the evaluation of the
endpoint energy. We will return to this correction in the
discussion of numerical results in Section III.
The logarithmic terms in the VP correction can also

be reproduced by using in eq. (4) the running coupling

constant α
(

Q2
)

= α

1− α
3π

ln

(

Q2

m2
e

) , with
√

Q2 = mµZα.

In the DIO spectrum, the VP effects do not factor-
ize, unlike the collinear corrections. They are accounted
for, together with the finite nuclear size, by numerically
solving the Dirac equation.
Large corrections with logarithms of Zα are also

present in the DIO spectrum. Pure relativistic correc-
tions can contain lnZα, typically suppressed by two pow-
ers of Zα [28]. In our numerical approach, we solve the
Dirac equation without any non-relativistic expansion;
hence, these terms are automatically included in our lead-
ing order spectrum.
Logarithms of Zα will appear also in radiative cor-

rections involving ultra-soft photons, like in the classical
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FIG. 1. Leading corrections to the bound muon spectrum.
The VP correction NVP−NLO

NLO
is mostly positive (solid line).

We have shifted the electron energies in the VP term, Ee →

Ee + ∆BVP, so that the NVP and NLO spectra have a com-
mon endpoint energy, Eµe. The correction NCL−NLO

NLO
, due to

collinear photons, decreases the number of electrons near the
endpoint (dotted line). The dashed line represents the total
correction. See text for details.

calculation of the Lamb shift [29]. These Bethe-type log-
arithms are suppressed by additional powers of Zα, in
the same manner as the VP shift of the binding energy
in electron atoms.

III. NUMERICAL RESULTS

We compute wave functions of the bound muon and of
the daughter electron by numerically solving the Dirac
equation [30, 31]. An analytical solution is not known
for a realistic distribution of the nuclear charge density.
In order to find the DIO spectrum we have implemented
in Python matrix elements, including nuclear recoil cor-
rections, given in [32]. As a check of the numerical code,
we have compared the muon binding energy and the DIO
spectrum with previous results [32, 33].
We use the Fermi model for the nuclear charge density

distribution fitted to the electron elastic scattering data
[34]. In Section IV we discuss other possible models and
the uncertainty related to the nuclear charge radius.
Near the endpoint, the spectrum rapidly varies with

energy, like (Emax − Ee)
5, so a precise value of Emax is

critical. We predict, including the charge distribution
corrections, the VP term, and the recoil correction (see
eq. (13) in [32]),

Emax = mµ − Erec + Eb = 104.971(1) MeV. (6)

The error comes from the uncertainty in the charge
distribution. The difference between our result and
the endpoint energy without the VP correction, Eµe =
104.973(1) [32], is consistent with Eq. (5).
We denote NCL = dΓCL

dEe
and NLO = dΓLO

dEe
. We also

introduce NVP = dΓVP

dEe
as the leading order spectrum

that includes the VP correction only. Relative collinear
NCL−NLO

NLO
and VP NVP−NLO

NLO
corrections are presented in

Fig. 1. For a 1 MeV signal window near the endpoint,
we obtain a 12% reduction of the number of DIO events,
consistent with [17].
Should the DIO spectrum be needed for electron ener-

gies closer to the endpoint, we recommend using eq. (2)
in [17], where soft photons have been exponentiated.
For low electron energies, Ee ≤

mµ

2 −mµZα, the DIO
spectrum is dominated by the free muon decay corrected
by the binding effects. Consequently, in this region, the
VP is a relatively unimportant subleading effect. The VP
correction becomes significant for electron energies above
the free muon endpoint, Ee >

mµ

2 , where the free muon
spectrum is absent. Here, the spectrum is dominated
by the binding effects and is sensitive to the details of
the binding potential. The VP correction is particularly
important near the endpoint Ee ≃ Emax where highly-
virtual Coulomb photons transfer a large momentum to
the nucleus.
In Fig. 2 we show the VP correction in the DIO end-

point region, where the spectrum has a simple depen-
dence on the electron energy,

dΓ

dEe

≡ N ∼ (Emax − Ee)
5
. (7)

Here the VP correction manifests itself in two ways. The
correction due to the shift in the endpoint energy (5) is
important only very close to Emax. For smaller electron
energies it becomes negligible. To illustrate this effect we

plotted
(

Emax−Ee

Eµe−Ee

)5

− 1 in Fig. 2.

The VP also modifies muon and electron wave func-
tions. This effect does not depend strongly on the elec-
tron energy, because it is dominated by the running of the
coupling constant α

(

Q2
)

. It varies slowly for
∣

∣Q2
∣

∣ ∼ m2
µ.

To quantify this effect, we define the shift of the spec-
trum due to the VP correction to the wave functions as

δVP =
NVP (Ee +∆BVP)−NLO (Ee)

NLO (Ee)
(8)

in the limit when Ee approaches the endpoint of the lead-
ing order spectrum Eµe. We find numerically δVP =
2.5%. Ref. [17] provided the correction to the leading
term of the spectrum expanded in Zα: δVP,(Zα)5 = 2.9%.
The difference with δVP is caused by higher orders in Zα,
estimated as minus 20% of the leading (Zα)

5
term [17].

As a check, we have compared our results with the
spectrum measured by TWIST [1]. The results are pre-
sented in Fig. 3. The quality of the fit is comparable to
our previous approach based on the shape function (see
Fig. 3 in [13]). However, now we are not limited to elec-
tron energies Ee .

mµ

2 . Also, we are not including the
energy scale uncertainty in the fit. This reduces the num-
ber of fit parameters to one: the overall normalization of
the spectrum. The quality of the fit is characterized by
χ2 per degree of freedom, χ2/dof. The leading order DIO
spectrum gives χ2/dof=8.8. When radiative corrections
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FIG. 2. Vacuum polarization correction to the DIO spectrum
around the endpoint. The solid line illustrates the relative
change of the spectrum due to the decrease of the endpoint

energy,
(

Emax−Ee

Eµe−Ee

)5

− 1. The dotted line is a correction due

to the shift in the wave functions δVP, see Eq. (8). The dashed
line shows both effects combined.

are included using the shape function, this decreases to
χ2/dof=3.9. The spectrum obtained in the present paper
gives a slightly better χ2/dof=2.8. The quality of the fit
could likely be improved by including the TWIST sys-
tematic errors and correlations among energy bins but
we are not qualified to do this.

IV. NUCLEAR CHARGE DISTRIBUTION

In order to quantify the uncertainty due to the nu-
clear charge density, we have examined three experimen-
tal sources. Two use the Fermi model,

̺(r) =
̺0

1 + exp
(

r−r0
a

) , (9)

where r0 is a fitted parameter describing the radius of
the distribution and a is related to the so-called skin
thickness. Elastic electron scattering gives [34] r0 =
2.84(5) fm for a = 0.569 fm and transitions in muonic
aluminum [35] give, more precisely, r0 = 3.0534(13) fm
for a = 0.523 fm. Even though the radii seem to differ by
more than one standard deviation, they have been fitted
at different values of the parameter a. In our calculation
these differences partially compensate one another, as we
shall see below.
Another parameterization employs the spherical Bessel

function j0,

̺(r) =
∑

n

anj0

(nπr

R

)

, r < R; ̺(r) = 0, r ≥ R, (10)

where R is a cutoff beyond which the density is assumed
to be zero, taken to be R = 7 fm, and the coefficients
ai, for i = 1, . . . , 12, are given in [34]. Unfortunately, no
error estimate seems to be available for ai.

Only the high-energy part of the DIO spectrum is sen-
sitive to the smearing of the nuclear charge. Fig. 4 shows
the predictions of the three models in that region, con-
sistent within the electron scattering errors.
Electron scattering data give the largest error for the

charge density. We use them to tabulate the DIO spec-
trum for aluminum including leading logarithmic correc-
tions; see supplemental material [36]. This choice is fur-
ther justified by the muon DIO amplitude near the end-
point being proportional to the elastic scattering ampli-
tude [17]. To quantify the dependence of the error on the
electron energy, we approximate the one-sigma bound-
aries (the shaded region in Fig. 4) by

∆N

N
≈ σ

2Ee − Emax

Emax
, with σ = 0.022. (11)

The coefficient 2 in front of Ee reflects the approximate
vanishing of the sensitivity to the nuclear distribution in
the low-energy region: at Ee = Emax/2 and below.
The uncertainty (11) can be reduced by measuring, in

conversion experiments, the DIO spectrum outside the
conversion signal window. To fit r0, such measurements
should use the radiatively corrected DIO spectrum; not
only are the corrections large but they also change the
simple functional form of the DIO spectrum near the end-
point, Eq. (7).
To achieve the necessary accuracy, the DIO spectrum

measurement requires a precise energy calibration. The
endpoint energy has been calculated with a precision
of 1 keV, see Eq. (6). The upcoming experiments will
measure the endpoint energy with a larger uncertainty,
∆Emax. From Eq. (7) we estimate how ∆Emax influences
the number of electrons with energy Ee = Emax− δ. De-
noting the uncertainty in the spectrum due to ∆Emax as
∆NE we get

∆NE

N
≈ 5

∆Emax

δ
, (12)

hence in order to constrain the error related to the nu-
clear charge distribution, the number of DIO events N
with energy Ee has to be measured with an experimental
precision ∆Nexp such that

√

(

∆Nexp

N

)2

+

(

∆NE

N

)2

.
∆N

N
(13)

It is most efficient to use the DIO measurement at an
energy for which the largest

∆Nexp

N
can be tolerated. This

optimal energy can be calculated using (11) and (12),

Eopt
e

Emax
= 1− ξ −

2

3
ξ2 −

4

3
ξ3 +O

(

ξ4
)

ξ ≡
3

√

25

2

(

∆Emax

σEmax

)2

(14)

For example, for ∆Emax = 30 keV, the optimal energy
is 90 MeV, and the experimental uncertainty should be

smaller than
∆Nexp

N
. 0.012.
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FIG. 3. Left panel: the difference between TWIST data and the theoretically calculated spectrum normalized to our theoretical
evaluation of the DIO spectrum. Crosses represent the leading order evaluation without any radiative corrections. Dots
correspond to our new evaluation that includes leading logarithmic corrections. Right panel: the DIO spectrum (solid line)
fitted to TWIST data (dots). With the results of this paper, a measurement of the DIO spectrum at energies Ee ∼

mµ

2
can be

used to calibrate the energy response in the future conversion experiments.
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FIG. 4. Relative uncertainty in the DIO spectrum near the
endpoint related to nuclear charge distribution. The shaded
region is obtained by varying r0 in (9) within limits obtained
from electron scattering data [34]. Solid line corresponds to
the Bessel parametrization (10) and the dashed line to the
Fermi distribution obtained from muonic atoms [35].

V. CONCLUSIONS

We have calculated the energy spectrum of electrons
in the bound muon decay including leading logarithmic
corrections. For electron energies Ee > 100 MeV the
sum of vacuum polarization and collinear photon effects
decreases the number of DIO events by more than 10%,

in agreement with the endpoint expansion [17].
Our present result is valid in the entire energy range

Ee ≫ me and can be used to calibrate the energy in
conversion experiments. This was not possible with pre-
vious results available only near the endpoint Emax and
in the low-energy (shape function) region, without means
to interpolate in the remaining high-energy region.
The dominant remaining uncertainty comes from the

nuclear charge distribution. Here new input from experi-
ments is required. We suggest that the DIO spectrum be
used to constrain the charge distribution, as a byproduct
of the conversion search.
We have neglected the screening by the electron cloud

(see [32] for a discussion). In order to further improve the
theoretical description of the DIO spectrum, this effect
should be included together with non-logarithmic radia-
tive corrections O

(

α
π

)

.
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