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We analyze Yukawa unification in the the context of E8×E8 heterotic Calabi-Yau models which

rely on breaking to a GUT theory via a non-flat gauge bundle and subsequent Wilson line

breaking to the standard model. Our focus is on underlying GUT theories with gauge group

SU(5) or SO(10). We provide a detailed analysis of the fact that, in contrast to traditional

field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa

unification. Using this formalism, we present various scenarios where Yukawa unification can

occur as a consequence of additional symmetries. These additional symmetries arise naturally

in some heterotic constructions and we present an explicit heterotic line bundle model which

realizes one of these scenarios.

evgeny.buchbinder@uwa.edu.au

andrei.constantin@physics.uu.se

jamesgray@vt.edu

lukas@physics.ox.ac.uk

1



1 Introduction

One of the attractions of heterotic string phenomenology is its ability to preserve many of the suc-

cesses of conventional Grand Unified Theories (GUTs) while avoiding their undesirable consequences.

For example, the unification of gauge coupling constants seen in GUTs [1–4] can be reproduced in

the string theory [5–14]. Indeed, such unification is mandatory, barring large threshold corrections

or unusual embeddings of the standard model group. This is a simple consequence of the fact that

the theory only has a single gauge coupling constant in each sector at high energies [15,16]. On the

other hand, it has long been known that the unification of Yukawa couplings observed in conven-

tional Grand Unification [17,18], which can lead to many phenomenological issues, is not generically

reproduced in heterotic models [19]. In this paper, we will present a detailed approach to study

this phenomenon in generality. This will allow us to investigate under what special circumstances

(partial) Yukawa unification can, in fact, be exhibited. For some nice related work in the context of

orbifold compactifications see [20,21].

In order to address these questions it is important to be specific about the underlying class of

models. For the purpose of the present paper, we will focus on the standard heterotic Calabi-Yau

models with an intermediate GUT stage [19, 22]. By this we mean models which are constructed

in a two-step process. In the first step, the original E8 gauge group is broken to a GUT group,

typically SU(5) or SO(10), by a gauge bundle V̂ → X̂ with a non-flat connection on a smooth

Calabi-Yau manifold X̂. In a second step, this model is divided by a discrete symmetry Γ of X̂ and

V̂ and the GUT group is broken to the standard model group by introducing a Wilson line on the

quotient. For such constructions, a well-defined and consistent string model with GUT symmetry

can be associated to the resulting standard model and we can ask if this underlying GUT model

can lead to Yukawa unification. Such models can also be compared to traditional field theory GUTs

with SU(5) or SO(10) gauge symmetry. The simplest versions of these field theory GUTs lead to

the unification of d-quark and lepton Yukawa couplings for all families in the case of SU(5) and to

unification of all three types of Yukawa couplings in the case of SO(10). Under what circumstances

do heterotic Calabi-Yau models with an intermediate GUT symmetry share these properties?

At this point we may pause and ask why we insist on models with an underlying GUT symmetry

(beyond the desire for unification of the gauge couplings). One may attempt instead to construct

heterotic models without Wilson lines where the E8 gauge group is directly broken down to the

standard model group by a bundle with non-flat connection. In Refs. [23–25] such models have been

considered and an interesting conclusion has been obtained. First of all, it turns out it is possible to

break to the standard model directly by including flux in the standard hypercharge direction within

SU(5) while keeping a suitable “flipped” version of hypercharge massless and obtain standard model

multiplets with the correct values of hypercharge. However, when trying to engineer a standard
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model spectrum within such setting a serious obstruction arises. Having broken up the spectrum

into all the various standard model multiplets means that an independent index condition for each

multiplet has to be imposed on the compactification. It turns out, and has been shown in Ref. [26],

that these index conditions can never be satisfied simultaneously for any Calabi-Yau. In other

words, the standard model spectrum is too complicated and too fragmented to be obtained directly,

at least in the heterotic context, without an underlying GUT symmetry. This problem disappears

for models with an intermediate GUT symmetry and Wilson line breaking. Obtaining the correct

chiral asymmetry at the GUT level requires only one index condition and the subsequent Wilson

line breaking, while splitting GUT multiplets into standard model multiplets, does not change the

chiral asymmetry. This strongly suggests that heterotic models with an intermediate GUT theory

constitute the right approach to heterotic model building. In addition to reminding us of how non-

trivial it is that the heterotic string is able to reproduce the standard model spectrum, the above

comments also add emphasis to the question on what effect this intermediate GUT theory might

have on the unification of Yukawa couplings.

Returning to the main line of argument, the observation that generically Yukawa couplings do

not unify is simple and relatively easy to explain by comparing the string standard model with

the associated underlying GUT theory. First, consider a heterotic GUT model, with GUT group

SU(5) or SO(10), based on a Calabi-Yau three-fold X̂ and a vector bundle V̂ → X̂ . Assume that

X̂ has a freely-acting discrete symmetry Γ so that X = X̂/Γ is a Calabi-Yau manifold. Further

assume that the symmetry Γ “lifts” to the bundle V̂ which then descends to a bundle V → X on

the quotient manifold. On the quotient we add a Wilson line W , so that the gauge bundle becomes

V ⊕W , in order to break the GUT symmetry to the standard model symmetry. The “upstairs”

and “downstairs” indices are related by ind(V ) = ind(V̂ )/|Γ| (where |Γ| is the order of the group Γ)

while, as discussed earlier, the Wilson line does not affect the index. Hence, for a standard model

with three families of quarks and leptons we require an underlying GUT model with 3|Γ| families

and the associated GUT Yukawa couplings are matrices of size (3|Γ|) × (3|Γ|). It turns out, and

we will show explicitly in the course of the paper, that the standard model Yukawa matrices which

would be equal in the context of a field theory GUT always originate from different parts of this

larger Yukawa matrices present in the GUT theory. Thus the Grand Unified symmetry itself never

relates the Yukawa couplings.

For example, consider a model with SU(5) GUT symmetry. For a standard field theory GUT

the Yukawa couplings Yij 5
H
5
i
10j, where i, j = 1, 2, 3, lead to Y

(e)
ij = Y

(d)
ij , that is, to equal lepton

and d-quark Yukawa matrices. In contrast, consider a heterotic Calabi-Yau model with intermediate

SU(5) GUT symmetry and, say, discrete group Γ = Z2. In this case, the GUT Yukawa couplings

ŶIJ 5
H
5
I
10J , where I, J = 1, . . . , 6, involve six families and a 6× 6 Yukawa matrix ŶIJ . One finds
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that the 3 × 3 lepton and d-quark Yukawa matrices Y
(e)
ij and Y

(d)
ij always originate from different

parts of the 6× 6 matrix ŶIJ and are, hence, unrelated by the GUT symmetry.

The comments of the previous paragraph do not mean that Yukawa unification cannot occur

in such models. For one, special choices of the upstairs Yukawa couplings ŶIJ can lead to Yukawa

unification, although such ad-hoc choices might seem unconvincing. One might also ask whether

Yukawa unification can be enforced by additional symmetries of the upstairs theory, distinct from

the GUT symmetry. Having developed a concrete formalism to describe the phenomenon discussed

in the previous two paragraphs, we then employ this technology to address this question. The

upstairs theory is certainly invariant under the discrete symmetry Γ and in addition, depending on

the structure of the bundle V̂ , can have a number of additional U(1) symmetries Ĵ = S(U(1)f ). We

will show that the additional symmetries Ĵ and Γ do not enforce Yukawa unification if they commute.

On the other hand, we present scenarios with non-commuting Ĵ and Γ which can lead to (full or

partial) Yukawa unification. We also construct an explicit example, in the context of heterotic line

bundle models, where such a scenario is realized. For this concrete example we compute the Yukawa

couplings directly, using the formalism developed in [27,28], to demonstrate that they do not vanish

and that the model does indeed exhibit unification.

In conclusion, the underlying GUT symmetry in heterotic models never enforces Yukawa unifi-

cation in the same way that it does for field theory GUTs. However, in certain examples, Yukawa

unification can be exhibited, being enforced by certain symmetries in the high energy theory that

we characterize.

The plan of the paper is as follows. In the next section, we will review the construction of

heterotic Calabi-Yau models with both underlying SU(5) and SO(10) GUT theories. In Section 3,

we analyze the relation between upstairs and downstairs Yukawa couplings and show that the GUT

symmetry does not lead to unification. Scenarios where additional symmetries of the GUT theory

can lead to Yukawa unification are presented in Section 4. Section 5 provides an explicit heterotic

line bundle model which realizes one of these scenarios. We conclude in Section 6.

2 Heterotic GUT models

In this section, we describe the basic model-building set-up for both SU(5) and SO(10) heterotic

GUT models (for more details, see Refs. [29–31]). In either case, the “upstairs” GUT model is

based on a Calabi-Yau three-fold X̂ with freely-acting discrete symmetry Γ and a vector bundle

V̂ → X̂ with a structure group that embeds into E8 and with a Γ-equivariant structure. There is a

projection π : X̂ → X to the quotient manifold X = X̂/Γ and, thanks to its equivariant structure,

the bundle V̂ descends to a bundle V → X, so that V̂ = π∗V . The quotient manifold X, together
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with the bundle V and a Wilson line W on X define the “downstairs” theory.

2.1 Models with underlying SU(5) GUT

In this case, the structure group Ĥ of V̂ is embedded into E8 via Ĥ ⊂ SU(5) ⊂ E8, using the

SU(5) × SU(5) maximal sub-group of E8. The low-energy gauge group is the commutant of Ĥ

with E8 and we require that it is of the form SUGUT(5) × Ĵ , where Ĵ = S(U(1)f ) represent a

certain number, f − 1, of additional U(1) symmetries. For the maximal choice of structure group,

Ĥ = SU(5), there is no additional U(1) symmetry and Ĵ is trivial. The other extreme is a maximally

split bundle with structure group Ĥ = S(U(1)5) for which we have four additional U(1) symmetries,

Ĵ = S(U(1)5). Altogether the GUT theory has gauge symmetry SUGUT(5) × Ĵ and a discrete

symmetry Γ. It should be noted that the additional U(1) symmetries are typically Green-Schwarz

anomalous and, hence, have super-heavy associated gauge bosons.

This theory can, in principle, contain the SU(5) multiplets 10, 10, 5, 5 and 1 which are associ-

ated with the following cohomologies:

10 ↔ H1(X̂, V̂ ) , 10 ↔ H1(X̂, V̂ ∗) , 1 ↔ H1(X̂, V̂ ⊗ V̂ ∗) ,

5 ↔ H1(X̂,∧2V̂ ) , 5 ↔ H1(X̂,∧2V̂ ∗) .
(2.1)

For the correct chiral asymmetry, we only have to impose the single condition ind(V ) = −3|Γ|
(since ind(∧2V ) = ind(V ) holds in general for SU(5) bundles). In order to avoid anti-families we

require the absence of 10 multiplets, that is, h1(X̂, V̂ ∗) = 0. Finally, we require a vector-like 5–5

pair to account for the Higgs so we should demand that h1(X̂,∧2V̂ ∗) > 0. If these three conditions

are satisfied we have obtained a GUT model with a physically promising spectrum.

The downstair model is obtained as a quotient of the upstairs theory by Γ and it is defined on

the quotient Calabi-Yau manifold X = X̂/Γ. Since V̂ has a Γ-equivariant structure all cohomologies

of V̂ become Γ-representations and V̂ descends to a bundle V → X. The Wilson line W on X is

embedded into the standard hypercharge direction within SUGUT(5) and can be described by two

characters, χ2 : Γ → C∗ and χ3 : Γ → C∗ satisfying χ2
2 ⊗ χ3

3 = 1 and χ2 ≇ χ3. Such a Wilson line

breaks SUGUT(5) to the standard model group, GSM, so that the full downstairs gauge symmetry

is GSM × J , where J is the part of Ĵ which survives the quotient.

Since the index is unaffected by the Wilson line, the 3|Γ| upstairs families in 10⊕5 automatically

give rise to three families of quarks and leptons downstairs, with the GUT multiplets splitting in

the standard way as 10 → (Q,u, e) and 5 → (d, L). The vector-like 5–5 pairs decompose into Higgs

doublets and triplets as 5 → (T,H) and 5 → (T̄ , H̄). For a suitable choice of equivariant structure

and Wilson line it is often possible to project out the Higgs triplets and keep exactly one pair, H, H̄,

of Higgs doublets. Every downstairs multiplet acquires a Wilson line charge which is related to its
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hypercharge and explicitly given by

χQ = χ2 ⊗ χ3, χu = χ2
3, χe = χ2

2, χd = χ∗
3, χL = χ∗

2, χH = χ∗
2, χH̄ = χ2 . (2.2)

Let us denote a generic downstairs multiplet by ψ, its associated Wilson line representation, as given

above, by χψ and the corresponding induced Wilson line bundle by Wψ. Then, the multiplet ψ is

associated with the cohomologies

ψ ↔ H1(X,V ⊕Wψ) ∼=
[

H1(X̂, V̂ )⊗ χψ

]

sing
. (2.3)

The subscript “sing” in the last expression refers to the Γ-singlets of the enclosed expression. This

formula shows that the downstairs spectrum can be computed purely from representation theory of

Γ applied to the upstairs cohomology.

2.2 Models with underlying Spin(10) GUT

The set-up is analogous to the SU(5) one. The structure group Ĥ of V̂ is now embedded into E8

via Ĥ ⊂ SU(4) ⊂ E8, using the maximal subgroup1 SU(4) × Spin(10) of E8. Further, Ĥ should

be sufficiently large such that its commutant with E8 is Spin(10) × Ĵ , where Ĵ = S(U(1)f ). For

the maximal choice Ĥ = SU(4) there are no additional U(1) symmetries and Ĵ is trivial while the

minimal choice Ĥ = S(U(1)4) leads to three additional U(1) symmetries, so Ĵ = S(U(1)4). Hence,

the symmetry of the GUT theory includes Spin(10) × Ĵ and the discrete symmetry Γ. As in the

SU(5) case, the additional U(1) symmetries are typically Green-Schwarz anomalous.

The possible Spin(10) multiplets in the GUT theory are 16, 16, 10 and 1, with associated

cohomologies

16 ↔ H1(X̂, V̂ ), 16 ↔ H1(X̂, V̂ ∗), 10 ↔ H1(V̂ ,∧2V̂ ), 1 ↔ H1(X̂, V̂ ⊗ V̂ ∗) . (2.4)

As before, we need to impose one index condition, ind(V̂ ) = −3|Γ|, for the correct chiral asymmetry.

In addition, we need h1(X̂, V̂ ) = 0 for the absence of anti-families and h1(X̂,∧2V̂ ) > 0 so that at

least one 10 multiplet is present as a possible origin of the Higgs multiplets.

The downstairs model can be obtained by a two-step process. In the first step, we focus on the

maximal sub-group SUGUT(5)×UX (1) ⊂ Spin(10) and include a Wilson line in the UX(1) direction.

Following Ref. [32], we specify the embedding of UX(1) = {eiθ | θ ∈ [0, 2π]} into Spin(10) by using

the spinor representation 16. It turns out that this embedding is given by

g16(θ) = diag(e−iθ110, e
3iθ
15, e

−5iθ) , (2.5)

1The maximal sub-group of E8 does involve Spin(10), rather than SO(10).
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which means that the branching 16 → 10−1 ⊕ 53 ⊕ 1−5 under SUGUT(5) × UX(1) provides the

correctly normalized values of the UX(1) charge. We can specify the Wilson line by a character

χ : Γ → UX(1) and in order for this to break Spin(10) to SUGUT(5) × UX(1), rather than a larger

sub-group, we have to require from Eq. (2.5) that

χ−1, χ3, χ−5 are inequivalent. (2.6)

The various resulting SUGUT(5) multiplets receive the Wilson line charges

χ10 = χ∗, χ
5
= χ3, χ1 = χ−5, χ

5
H = χ−2, χ

5H̄ = χ2 , (2.7)

where the last two relations follow from the branching 10 → 5H̄2 ⊕ 5
H
−2 of the fundamental rep-

resentation under SUGUT(5) × UX(1). For the second step we can proceed as in the SU(5) case

and embed another Wilson line, described by two characters χ2 and χ2 with χ2
2 ⊗ χ3

3 = 1 and

χ2 ≇ χ3, into the standard hypercharge direction in SUGUT(5). Under certain additional conditions

on Γ, χ, χ2 and χ3 which will not be relevant for our purposes the gauge group is then broken to

GSM×UB−L(1)×J , where UB−L(1) is obtained as a specific combination of UX(1) with hypercharge

and J is the part of Ĵ which survives the quotient. The standard model multiplets in this theory are

characterized by their Wilson line charge χφ in Eq. (2.7) and the Wilson line charge χψ in Eq. (2.2),

where φ = 10,5,5
H
,5H̄ and ψ = Q,u, e, d, L,H, H̄ . They are associated to the cohomologies

(φ,ψ) ↔ H1(X,V ⊕Wφ,ψ) ∼=
[

H1(X̂, V̂ )⊗ χφ ⊗ χψ

]

sing
. (2.8)

3 Yukawa couplings upstairs and downstairs

We will now discuss Yukawa couplings in the upstairs and downstairs theories and the relation

between them. Again, in order to be specific we will do this separately for SUGUT(5) and Spin(10).

3.1 Yukawa couplings for SU(5)

We begin with the Yukawa couplings in the upstairs theory. The only Yukawa couplings poten-

tially relevant for unification are of the form 5 510 and (2.1) shows that the relevant associated

cohomologies are

V10 := H1(X̂, V̂ ) , V
5
:= H1(X̂,∧2V̂ ) . (3.1)

It it useful to introduce a basis

V10 = Span
(

ν
(10)
I

)

I=1,...,3|Γ|
, V

5
= Span

(

ν
(5)
I

)

I=1,...,3|Γ|+n̂H

(3.2)

of bundle-valued (0, 1)-forms on these cohomologies, where we recall that we have 3|Γ| families in

the upstairs theory. The number of vector-like 5–5 pairs is denoted by n̂H . The four-dimensional
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SUGUT(5) multiplets associated to these basis forms are denoted 10I and 5
I
and the relevant Yukawa

terms in the superpotential read

Ŵ = ŶIJK5
I
5
J
10K + · · · , ŶIJK =

∫

X̂

Ω̂ ∧ ν(5)I ∧ ν(5)J ∧ ν(10)K , (3.3)

where Ω̂ is the holomorphic (3, 0)-form on X̂ . This defines the holomorphic Yukawa couplings ŶIJK

which arise in the superpotential. For the physical Yukawa couplings we also require the relevant

matter field kinetic terms given by

K̂ = K
(10)
IJ 10I10∗J + K

(5)
IJ 5

I
5
∗J

+ · · · ,

K
(10)
IJ =

1

v̂

∫

X̂

ν
(10)
I ∧ ∗ν(10)J , K

(5)
IJ =

1

v̂

∫

X̂

ν
(5)
I ∧ ∗ν(5)J ,

(3.4)

where v̂ is the volume of X̂.

The relevant multiplet types in the downstairs theory are ψ = Q, e, d, L, where for convenience

of notation, we write the Higgs H as one of the lepton doublets L, with associated cohomologies

and basis forms

Vψ := H1(X,V ⊕Wψ) = Span
(

ν
(ψ)
i

)

. (3.5)

The index range is i = 1, 2, 3 for ψ = Q, e, d and i = 1, . . . , 3 + nH for ψ = L, where nH is the

number of Higgs doublets pairs which remain from the the n̂H vector-like 5–5 pairs. The relevant

superpotential and Kähler potential terms then read

W = Y
(e)
ijkL

iLjek + Y
(d)
ijk L

idjQk + . . . , K =
∑

ψ

K
(ψ)
ij ψiψ∗j + . . . , (3.6)

where

Y
(e)
ijk =

∫

X

Ω∧ν(L)i ∧ν(L)j ∧ν(e)k , Y
(d)
ijk =

∫

X

Ω∧ν(L)i ∧ν(d)j ∧ν(Q)
k , K

(ψ)
ij =

1

v

∫

X

ν
(ψ)
i ∧∗ν(ψ)j .

(3.7)

Here, Ω is the holomorphic (3, 0)-form on X and v is the volume of X.

We have now set up the relevant terms and couplings in both the upstairs and the downstairs the-

ory. How are they related? The equivalence in Eq. (2.3) shows that the downstairs (0, 1)-forms ν
(ψ)
i ,

pulled back to X̂ can be written as linear combinations of the upstairs (0, 1)-forms. This means

π∗ν
(Q)
i = cI(Q)iν

(10)
I , π∗ν

(e)
i = cI(e)iν

(10)
I , π∗ν

(d)
i = cI(d)iν

(5)
I , π∗ν

(L)
i = cI(L)iν

(5)
I , (3.8)

where cI(ψ)i are the coefficients which project onto the appropriate Γ-representations, in line with

Eq. (2.3). This shows that the upstairs and downstairs holomorphic Yukawa couplings are related

by

Y
(e)
ijk = cI(L)ic

J
(L)jc

K
(e)kYIJK , Y

(d)
ijk = cI(L)ic

J
(d)jc

K
(Q)kYIJK , (3.9)
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where YIJK = ŶIJK/|Γ|. Analogously equations

K
(Q)
ij = cI(Q)ic

J
(Q)jK

(10)
IJ , K

(e)
ij = cI(e)ic

J
(e)jK

(10)
IJ (3.10)

K
(d)
ij = cI(d)ic

J
(d)jK

(5)
IJ , K

(L)
ij = cI(L)ic

J
(L)jK

(5)
IJ (3.11)

hold for the matter field Kähler metrics. Hence, the key to understanding the relation between

upstairs and downstairs couplings are the coefficients cI(ψ)i which, up to trivial basis transformations,

are determined by Γ representation theory.

To make this more explicit, we recall a few simple facts from the representation theory of finite

groups [33]. Consider a (unitary) representation ρ : Γ → Gl(V) of a finite group Γ over a complex

vector space V. For any character χ : Γ → C∗ we can define define the linear maps

P(χ) =
1

|Γ|
∑

γ∈Γ

χ(γ)ρ(γ) . (3.12)

which project onto the sub-space of representations χ within V. It is easy to verify from this

definition, that the projectors for two characters χ and φ satisfy

P(χ)P(φ) = 〈χ, φ〉P(χ) , 〈χ, φ〉 := 1

|Γ|
∑

γ∈Γ

χ∗(γ)φ(γ) . (3.13)

In particular, this shows, setting φ = χ, that the P(χ) are indeed projectors and, choosing χ ≇ φ,

that P(χ)P(φ) = 0, that is, they are orthogonal projectors provided the two characters are different.

Returning to Yukawa couplings, we recall that, as a result of the equivariant structure on V̂ ,

the two relevant upstairs cohomologies V10 and V
5
become Γ representations. Hence, we have two

representations

ρ10 : Γ → Gl(V10) , ρ
5
: Γ → Gl(V

5
) , (3.14)

which we think of as given by matrices relative to our choice of basis on each space. Given these

representations we can define the projectors

P(Q) =
1

|Γ|
∑

γ∈Γ

χQ(γ)ρ10(γ) , P(e) =
1

|Γ|
∑

γ∈Γ

χe(γ)ρ10(γ) ,

P(d) =
1

|Γ|
∑

γ∈Γ

χd(γ)ρ5(γ) , P(L) =
1

|Γ|
∑

γ∈Γ

χL(γ)ρ5(γ) .
(3.15)

The key observation is now that the Wilson line characters χ2 and χ3 are different and, hence,

from Eq. (2.2), that χQ ≇ χe and χd ≇ χL. From Eq. (3.13) this implies orthogonality of the

corresponding projectors, that is,

P(Q)P(e) = 0 , P(d)P(L) = 0 . (3.16)
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It follows that c
†
(Q)ic(e)j = (P(Q)c(Q)i)

†(P(e)c(e)j) = (P 2
(Q)c(Q)i)

†(P(Q)P(e)c(e)j) = 0 and similarly in

the d and L sectors. Here c(ψ)i are the vectors whose components are cI(ψ)i. As a result, we have

the orthogonality relations

c
†
(Q)ic(e)j = 0 , c

†
(d)ic(L)j = 0 . (3.17)

Comparing with Eq. (3.9) this means that Y (e) and Y (d) originate from different components of

the upstairs Yukawa couplings Ŷ . Yukawa unification between leptons and d-quarks is still pos-

sible, provided the upstairs couplings ŶIJK are suitably related. However, since these couplings

are independently SUGUT(5)-invariant such relations cannot be enforced but the GUT symmetry.

Hence, the SUGUT(5) symmetry does not lead to any Yukawa unification, unlike standard SU(5)

field theory GUTs which predict Y (e) = Y (d).

3.2 Yukawa couplings for Spin(10)

For Spin(10), the relevant superpotential term is of the form 10 16 16 so from (2.4) the associated

cohomologies are

V10 = H1(X̂,∧2V̂ ) , V16 = H1(X̂, V̂ ) . (3.18)

As before, we introduce a basis of bundle-valued (0, 1)-forms on these spaces

V10 = Span
(

ν
(10)
I

)

A=1,...,n̂H

, V16 = Span
(

ν
(16)
I

)

A=1,...,3|Γ|
(3.19)

and denote the corresponding four-dimensional Spin(10) multiplets by 10I and 16I , respectively.

The relevant superpotential term is

W = ŶIJK10
I 16J 16K + · · · , ŶIJK =

∫

X̂

Ω̂ ∧ ν(10)I ∧ ν(16)J ∧ ν(16)K , (3.20)

and analogous expressions for the matter field Kähler metrics.

For the downstairs theory the Spin(10) multiplets break up, first, into the SU(5) multiplets

φ = 10,5,5
H
,5H̄ and then into the standard model multiplets ψ = Q,u, e, d, L,H, H̄ with associated

cohomologies

Vφ,ψ = H1(X,V ⊕Wφ,ψ) = Span
(

ν
(ψ)
i

)

. (3.21)

We have the downstairs Yukawa terms

W = Y
(e)
ijkL

iLjek + Y
(d)
ijk L

idjQk + Y
(u)
jk H̄ujQk + . . . (3.22)

where Y (e) and Y (d) are given by Eq. (3.7) and

Y
(u)
ijk =

∫

X

Ω ∧ ν(H̄)
i ∧ ν(u)j ∧ ν(Q)

k . (3.23)
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With the relation of upstairs and downstairs (0, 1)-forms as in Eq. (3.8) the Yukawa couplings of

the two theories satisfy

Y
(e)
ijk = cI(L)ic

J
(L)jc

K
(e)kYIJK , Y

(d)
ijk = cI(L)ic

J
(d)jc

K
(Q)kYIJK , Y

(u)
ijk = cI(H̄)c

J
(u)jc

K
(Q)kYIJK , (3.24)

where Y = Ŷ /|Γ|. From Eqs. (2.6) and (2.7) we know that χ10 ≇ χ
5
and a projector argument

similar to the one we have used for SU(5) then shows that

c
†
(u)ic(d)j = 0 . (3.25)

As a result, the d-quark and u-quark Yukawa matrices are not related due to the underlying GUT

symmetry. Further, since χQ ≇ χe and χd ≇ χL, the projector relations (3.17) remain valid and

imply that Y (e) and Y (d) are unrelated by the GUT symmetry. Hence our conclusion is similar to

the one for SU(5). In contrast to standard SO(10) field theory models, the underlying Spin(10)

symmetry does not enforce any unification of the three types of Yukawa couplings.

4 Engineering Yukawa unification

In the previous section, we have seen that the underlying GUT symmetry does not lead to Yukawa

unification. This happens because the downstairs Yukawa couplings which would unify in field theory

GUTs originate from different parts of the underlying larger Yukawa couplings of the upstairs theory

which has 3|Γ| rather than just three families. This does not mean that Yukawa unification cannot

be incorporated. In particular, additional symmetry of the upstairs theory which impose relations on

the upstairs Yukawa couplings might translate to unification-type relations between the downstairs

Yukawa couplings. In this section, we discuss to what extent the discrete symmetry Γ and the U(1)

symmetries in Ĵ may lead to such a unification. We will also present some model-building scenarios

where (full or partial) unification due to these symmetries can be realised. For definiteness we will

focus on models with an underlying SU(5) GUT symmetry from now on, but analogous arguments

can be made for Spin(10).

4.1 A no-go statement

Recall that, for models based on SU(5) the two relevant cohomologies are V10 and V
5
, as defined in

Eq. (3.1). We have already seen that these spaces are equipped with representations of the discrete

group Γ, namely

ρ10 : Γ → Gl(V10) , ρ
5
: Γ → Gl(V

5
) . (4.1)

In addition, they also form representations of the U(1)-symmetries Ĵ = S(U(1)f ) which we denote

by

R10 : Ĵ → Gl(V10) , R
5
: Ĵ → Gl(V

5
) . (4.2)
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Invariance of the upstairs theory under both symmetries imposes the following conditions

R
5
(g)LIR5

(g)MJR10(g)
N
KYLMN = YIJK , ρ

5
(γ)LIρ5(γ)

M
Jρ10(γ)

N
KYLMN = YIJK . (4.3)

on the Yukawa couplings. Our task is to translate these condition into conditions on the downstairs

Yukawa couplings. We begin by writing the projectors (3.15) as

Pψ =
∑

i

c
†
(ψ)ic(ψ)i , (4.4)

where ψ = Q, e, d, L, assuming that the vectors c(ψ)i are chosen to be orthonormal.

Let us first discuss the implications of Γ-invariance of the upstairs Yukawa couplings. From

ρ10(γ)P(ψ) = χ∗
ψ(γ)P(ψ) (for ψ = Q, e) and ρ

5
(γ)P(ψ) = χ∗

ψ(γ)P(ψ) (for ψ = d, L) for γ ∈ Γ, it

follows that

ρ10(γ)
I
Jc
J
(ψ)j = χ∗

ψ(γ)c
I
(ψ)j , ρ

5
(γ)I

J
cJ(ψ)j = χ∗

ψ(γ)c
I
(ψ)j . (4.5)

Multiplying the second relation (4.3), which expresses Γ-invariance of the upstairs Yukawa couplings,

with the relevant c vectors and using the previous equations leads to

Y (e) = χL(γ)
2χe(γ)Y

(e) , Y (d) = χL(γ)χd(γ)χQ(γ)Y
(d) . (4.6)

However, from the Wilson line relations (2.2) it follows immediately that

χL(γ)
2χe(γ) = χL(γ)χd(γ)χQ(γ) = 1 , (4.7)

so that these relations are trivially satisfied. In particular, no relations between Y (e) and Y (d) are

implied. This means, invariance of the upstairs Yukawa couplings under the discrete symmetry Γ

does not lead to any relations between Y (e) and Y (d).

Next, we consider the effect of the symmetry Ĵ . In fact, for the purpose of our no-go statement

we focus on the sub-group

J = {g ∈ Ĵ | [R10(g), ρ10(γ)] = [R
5
(g), ρ

5
(γ)] = 0 ∀γ ∈ Γ} , (4.8)

of Ĵ which commutes with Γ. For a g ∈ J it follows immediately from the definition of the pro-

jectors (3.15) that [R10(g), P(ψ) ] = 0 for ψ = Q, e and [R
5
(g), P(ψ) ] = 0 for ψ = d, L. By direct

calculation, this leads to

RI
10,Kc

K
(ψ),j = R(ψ)(g)

i
j
cI(ψ),i , R(ψ)(g)

i
j
:= c∗(ψ),K

iR10(g)
K
Jc
J
(ψ)j , (4.9)

for ψ = Q, e and similarly for R
5
and ψ = d, L. Then, contracting the first relation (4.3), which

reflects the Ĵ-invariance of the upstairs Yukawa couplings, with the appropriate c vectors, using the

previous identities and the definitions (3.24) of the downstairs Yukawa couplings we find

R(L)(g)
l
i
R(L)(g)

m
j
R(e)(g)

n
k
Y

(e)
lmn = Y

(e)
ijk , R(L)(g)

l
i
R(d)(g)

m
j
R(Q)(g)

n
k
Y

(d)
lmn = Y

(d)
ijk , (4.10)
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These relations are valid for all g ∈ J but not necessarily for all g ∈ Ĵ . As is evident, these relations

simply reflect J-invariance of the downstairs theory and, while this may lead to constraints on the

couplings in Y (e) and Y (d), it does not lead to unification-type relations between Y (e) and Y (d).

We conclude that the sub-group J ⊂ Ĵ which commutes with Γ cannot cause Yukawa unification.

In particular, if J = Ĵ , that is, if Ĵ and Γ commute, then neither of these symmetries can lead to

unification. On the other hand, if Ĵ and Γ do not entirely commute so that J is a proper sub-group of

Ĵ the non-commuting part Ĵ\J of the symmetry may have some effect on Yukawa unification. This

statement provides us with useful guidance for model building: We should aim to construct models

where Ĵ and Γ do not commute. In the remainder of this section, we will consider model-building

scenarios with this feature and show that they can indeed lead to Yukawa unification.

4.2 A unification scenario for Γ = Z2

This scenario is within the context of heterotic line bundle models which are defined by a line bundle

sum

V =

5
⊕

a=1

La , (4.11)

with c1(V ) = 0. For suitably generic line bundles La the upstairs gauge symmetry of such models

is SUGUT(5)× Ĵ , where Ĵ = S(U(1)5) ∼= U(1)4. Explicitly, we write Ĵ as

Ĵ =

{

g(α) = (eiα1 , . . . , eiα5) |
5
∑

a=1

αa = 0

}

. (4.12)

For such models, the various SUGUT(5) multiplets in the low-energy theory acquire a characteristic

pattern of S(U(1)5) charges. Specifically, the 10 multiplets carry charge 1 under precisely one of

the U(1) symmetries and such a multiplets is denoted by 10a, where a = 1, . . . , 5, if it is charged

under the ath U(1) symmetry. The 5 multiplets carry charge 1 under precisely two U(1) symmetries

and are correspondingly denoted by 5a,b, where a, b = 1, . . . , 5 and a 6= b.

Our example is for the discrete group Γ = Z2 = {1,−1} and has the postulated GUT spectrum

V10 = Span(104,105) , V
5
= Span(5

H
1,2,53,4,53,5) . (4.13)

(Here, we have identified the low-energy multiplets with the underlying bundle valued (0, 1)-forms

which are the actual elements of the above cohomologies.) This means that the Ĵ representations

are given by

R10(α) = diag
(

eie4·α, eie5·α
)

(4.14)

R
5
(α) = diag

(

ei(e1+e2)·α, ei(e3+e4)·α, ei(e3+e5)·α
)

, (4.15)
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where ea are the five-dimensional standard unit vector. For the Z2 representations we choose

ρ10(−1) = σ , ρ
5
(−1) = diag(−1, σ) , σ =

(

0 1

1 0

)

, (4.16)

that is, multiplets charged under the 4th and 5th U(1) symmetry are exchanged under Z2. Finally,

we specify the Wilson by setting χ2(−1) = −1 and χ3(−1) = 1 which, from Eq. (2.2), implies

χQ(−1) = −1 , χe(−1) = 1 , χd(−1) = 1 , χL(−1) = −1 , (4.17)

for the Wilson charges of the relevant standard model multiplets. At this point it is, of course,

unclear if an actual heterotic line bundle model with all these properties can be engineered. We

will see in the next section that this is, in fact, possible. For now we just proceed with the above

scenario and discuss its implications for Yukawa unification.

The first observation is that the sub-group J of Ĵ which commutes with Γ (as defined in Eq. (4.8))

is

J = {g(α) ∈ Ĵ |α4 = α5} (4.18)

and is, hence, a proper sub-group of Ĵ . From our discussion in Section 4.1 this means that there is

at least a chance for Yukawa unification. From Eqs. (3.15), the projectors are easily computed as

P(Q) =
1

2
(12−σ) , P(e) =

1

2
(12+σ) , P(d) = diag(0, P(e)) , P(L) = diag(1, P(Q)) . (4.19)

Note that the Higgs triplet is projected out (which is indicated by the zero entry in the upper left

corner of P(d)) while the doublet is kept (which is indicated by unity in the upper left corner of

P(L)), as a result of choosing 5
H
1,2 to be Z2-odd. The corresponding c vectors are

c(Q) =
1√
2

(

1

−1

)

, c(e) =
1√
2

(

1

1

)

, c(d) = c(e) , c(L) = c(Q) , (4.20)

where, for simplicity of notation, we have left out the the Higgs direction in V
5
.

The most general Ĵ invariant upstairs Yukawa couplings of type 5 510 are

Ŵ = 5
H
1,2

(

53,4,53,5
)

Ŷ

(

104

105

)

, Ŷ = 2Y =

(

0 y

y′ 0

)

. (4.21)

In fact, Γ = Z2 invariance implies, in addition, that y′ = −y but we will not impose this for now.

For the downstairs Yukawa couplings we find

Y (e) = cT(L)Y c(e) = cT(Q)Y c(e) =
1

4
(y − y′) , Y (d) = cT(d)Y c(Q) = cT(e)Y c(Q) =

1

4
(y′ − y) , (4.22)

so, Y (d) = −Y (e). The sign is, of course, physically irrelevant so that we have a case of Yukawa

unification. The statement persists if we impose the Z2 constraint y′ = −y but it is, in fact,
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true irrespective of that. In essence, Yukawa unification in this case is a consequence of the U(1)

symmetry in Ĵ which does not commute with Γ and is, hence, not contained in J . Under this U(1)

(generated by α4 − α5) a family with subscript 4 has charge +1 and a family with subscript 5 has

charge −1 while all other multiplets are invariant. This enforces the off-diagonal form of the Yukawa

couplings in (4.21) which, in turn, leads to Yukawa unification downstairs. The fact that c(d) = c(e)

and c(L) = c(Q) also means that the the matter field Kahler metrics for d and e as well as for L and

Q are the same so that not only the holomorphic but also the physical Yukawa couplings unify.

This example can easily be generalized to multiple families. We can introduce n pairs each

of (104,105) and (53,4,53,5) plus (6 − 2n) families 10 ⊕ 5 with other sets of charges, so that they

cannot appear in the upstairs Yukawa couplings. Then, the above calculation goes through basically

unchanged but with y and y′ now n × n matrices. The result in the downstairs theory is Yukawa

unification for n families and 3− n families without (perturbative) Yukawa couplings.

4.3 A unification scenario for Γ = Z3

Following similar lines, we can also set up a scenario for the discrete group Γ = Z3, where three

upstairs families are permuted. We postulate the upstairs spectrum

V10 = Span(103,104,105) , V
5
= Span(5

H
1,2,54,5,53,5,53,4) , (4.23)

so that the relevant Ĵ representations are given by

R10(α) = diag
(

eie3·α, eie4·α, eie5·α
)

(4.24)

R
5
(α) = diag

(

ei(e1+e2)·α, ei(e4+e5)·α, ei(e3+e5)·α, ei(e3+e4)·α
)

. (4.25)

We write Z3 = {1, β, β2}, where β = exp(2πi/3) and introduce the representations

ρ10(β) = σ , ρ
5
(β) = diag(1, σ) , σ =









0 1 0

0 0 1

1 0 0









. (4.26)

The Wilson line is defined by χ2(β) = 1 and χ3(β) = β which, from Eq. (2.2), leads to

χQ(β) = β , χe(β) = 1 , χd(β) = β2 , χL(β) = 1 . (4.27)

The sub-group J ⊂ Ĵ which commutes with Γ is then given by

J = {g(α) ∈ Ĵ |α3 = α4 = α5} , (4.28)
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and is, hence, a proper sub-group of Ĵ , as required in order to avoid the no-go statement from

Section 4.1. Dropping the Higgs direction in V
5
, we find the projectors

PQ =
1

3









1 β β2

β2 1 β

β β2 1









, Pe = PL =
1

3









1 1 1

1 1 1

1 1 1









, Pd =
1

3









1 β2 β

β 1 β2

β2 β 1









(4.29)

with associated c vectors

cQ =
1√
3









1

β2

β









, ce = cL =
1√
3









1

1

1









, cd =
1√
3









1

β

β2









. (4.30)

The Ĵ-invariant 55 10 term in the superpotential reads

Ŵ = 5
H
1,2(54,5,53,5,53,4)Ŷ









103

104

105









, Ŷ = 3Y = diag(λ3, λ4, λ5) . (4.31)

Invariance under Γ leads to the additional constraints λ3 = λ4 = λ5 but, as before, this is not

relevant for Yukawa unification. For the downstairs theory this implies

Y (e) = cT(L)Y c(e) =
1

9
(y3 + y4 + y5) , Y (d) = cT(d)Y c(Q) =

1

9
(y3 + y4 + y5) , (4.32)

and, hence, unification of the holomorphic Yukawa couplings. Due to the Z3 symmetry, the upstairs

Kähler metrics in the 10 and 5 sectors are both proportional to the unit matrix. Even though the

structure of c vectors in Eq. (4.30) is more complicated than in the Z2 case this means that the

Kähler metrics for Q and e as well as the d and L are identical and, hence, that the physical Yukawa

couplings unify as well.

As for the Z2 case, we can generalize this set-up by introducing n triplets (103,104,105) and

(54,5,53,5,53,4) each and 9− 3n families 10⊕ 5 with other Ĵ charges such that they cannot appear

in the upstairs Yukawa couplings. Then we obtain a downstairs model with Yukawa unification for

n families and 3− n families without (perturbative) Yukawa couplings.

5 An example with Yukawa unification

We would now like to construct an explicit line bundle model which realizes the Z2 scenario described

in Section 4.2. The very specific pattern of multiplets required for this scenario imposes strong

constraints on model building and it is not easy to find a viable model. In fact, our model building

experience [31, 34–43] indicates that such models are quite rare, at least within the context of line
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bundle models. The model presented below is not realistic in that it leads to four families (starting

from eight families upstairs) and contains various exotics. However, it does have a sub-sector which

realizes the scenario of Section 4.2 and, therefore, serves as a proof of existence.

In the first part of this section, we will present the model and show that it does indeed realize

the scenario in Section 4.2. In the second part, we will compute the upstairs Yukawa couplings for

this model explicitly and show that it is non-vanishing.

5.1 The model

The manifold underlying the model is a complete intersection Calabi-Yau (CICY) [44, 45] defined

in the eight-dimensional ambient space A = P1 × P1 × P1 × P1 × P2 × P2. Its configuration matrix

reads

X̂ ∼

























P1 1 0 1 0 0

P1 1 0 1 0 0

P1 0 1 0 0 1

P1 0 1 0 0 1

P2 1 0 0 1 1

P2 0 1 1 1 0

























6,26

−40

. (5.1)

Here, the column vectors, which we also denote by qr, where r = 1, . . . , 5, represent the multi-

degrees of five polynomials whose common zero locus in A defines the Calabi-Yau manifold X̂. The

superscript in Eq. (5.1) gives the Hodge numbers h1,1(X̂), h2,1(X̂) and the subscript corresponds to

the Euler number of X̂. It will be useful to introduce the line bundles Nr = OA(qr) whose sections

are the defining polynomials, as well as their sum

N =

5
⊕

r=1

Nr (5.2)

whose restriction N = N|X is the normal bundle of X̂ in A. We also denote the homogeneous

coordinates of the four P1 factors by xi,α, where i = 1, 2, 3, 4 and α = 0, 1 and the homogenous

coordinates of the two P2 factors by y = (y0, y1, y2)
T and z = (z0, z1, z2)

T .

For suitably restricted defining polynomials, this manifold has a freely-acting Z2 symmetry [46]

which acts on the homogeneous coordinates as

xi,α → (−1)α+1xi,α , y ↔ z , (5.3)

and on the defining equations or, equivalently, the line bundles Nr as

N1 ↔ N3 , N2 ↔ N5 , N4 → N4 . (5.4)
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The line bundle model is defined by a sum of five line bundles La → A and their restrictions

La = La|X̂ to X̂ which are explicitly given by

L1 = O
X̂
(−1, 0,−1, 1, 0, 0) , L2 = O

X̂
(2, 1, 2, 0,−1,−1) , L3 = O

X̂
(1, 1,−1,−1, 0, 0) ,

L4 = O
X̂
(−1,−1, 0, 0, 0, 1) , L5 = O

X̂
(−1,−1, 0, 0, 1, 0) .

(5.5)

Using the methods developed in Refs. [30,47–49] the line bundle cohomology of La and their tensor

product can be calculated as

h•(X̂, L2) = (0, 6, 0, 0) , h•(X̂, L4) = (0, 1, 0, 0) ,

h•(X̂, L5) = (0, 1, 0, 0) , h•(X̂, L1 ⊗ L2) = (0, 2, 0, 0) ,

h•(X̂, L1 ⊗ L3) = (0, 2, 0, 0) , h•(X̂, L1 ⊗ L4) = (0, 0, 2, 0) ,

h•(X̂, L1 ⊗ L5) = (0, 0, 2, 0) , h•(X̂, L3 ⊗ L4) = (0, 1, 0, 0) ,

h•(X̂, L3 ⊗ L5) = (0, 1, 0, 0) , h•(X̂, L4 ⊗ L5) = (0, 7, 1, 0) ,

(5.6)

with all other cohomologies of La and La ⊗ Lb appearing in wedge products of the sum of line

bundles vanishing. These results can be translated into the GUT spectrum

104 , 105 , 25
H
1,2 , 53,4 , 53,5

6102 , 251,3 , 251,4 , 251,5 , 754,5 , 54,5 .
(5.7)

Comparison with Eq. (4.13) shows that, apart from the presence of two rather than one Higgs

multiplet, the top line realizes the spectrum required for the Z2 unification scenario for one family

while the remainder of the spectrum in the bottom line accounts for three more families and some

exotics. Clearly, this model is not realistic but does contain a sub-sector of the required type on

which we focus. Of course we still have to check that the multiplets in this sub-sector have the correct

Z2 transformation properties. To this end, we determine the cohomologies for the multiplets in the

first line of the spectrum (5.7) more explicitly. By chasing through the relevant Koszul sequences we

learn that these cohomologies can be expressed in terms of ambient space cohomologies as follows.

H1(X̂, La) ∼= H2(A,N ∗ ⊗ La) = H2(A,N ∗
b ⊗ La) = H2(A,OA(−2,−2, 0, 0, 0, 0))

∼= Span

(

1

x1,0 x1,1 x2,0 x2,1

)

for (a, b) = (4, 3), (5, 1) (5.8)

H1(X̂, L3 ⊗ La) ∼= H2(A,N ∗⊗L3⊗La) = H2(A,N ∗
b ⊗L3⊗La) = H2(A,OA(0, 0,−2,−2, 0, 0))

∼= Span

(

1

x3,0 x3,1 x4,0 x4,1

)

for (a, b) = (4, 2), (5, 5) (5.9)

H1(X̂, L1 ⊗ L2) ∼= H4(∧3N ∗ ⊗ L1 ⊗ L2)

= H4(A,N ∗
1 ⊗N ∗

2 ⊗N ∗
4 ⊗ L1 ⊗ L2)⊕H4(A,N ∗

3 ⊗N ∗
4 ⊗N ∗

5 ⊗ L1 ⊗ L2)

= H4(A,OA(0, 0, 0, 0,−3,−3))⊕2

∼= Span

(

1

y0 y1 y2 z0 z1 z2

)⊕2

. (5.10)
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These results, together with the transformations (5.3) and (5.4), can be used to determine the Z2

representations of the various multiplets. For example, the explicit representation for H1(X̂, L4)

and H1(X̂, L5) in terms of coordinates show that these cohomologies are invariant under the coor-

dinate part (5.3) of the Z2 action. However, the action (5.4) on the normal bundle exchanges N1

and N3 which means, again from Eq. (5.8) that the multiplets 104 and 105 are exchanged. The

transformation of the other multiplets can be reasoned out in a similar fashion. The end result is

that the cohomologies

V10 = Span (104,105) , V
5
= Span

(

5
H,1
1,2 ,5

H,2
1,2 ,53,453,5

)

(5.11)

carry the Z2 representations

ρ10(−1) = σ =

(

0 1

1 0

)

, ρ
5
(−1) = diag(σ, σ) . (5.12)

This differs from the required transformation (4.16) only in that two Higgs multiplets are present.

We can get to a complete match by focusing on the Z2 odd combination 5
H
1,2 = 5

H,1
1,2 − 5

H,2
1,2 . Then,

using the same Wilson line choice as in Eq. (4.17) will project out the Higgs triplet from this odd

combination and keep the Higgs doublet. (For the even combination it is, of course, the other way

around and the Higgs triplet will be kept.) Focusing on this sub-sector we have indeed the same

Yukawa couplings of type 5 510 as in Eq. (4.21), namely

Ŵ = 5
H
1,2

(

53,4,53,5
)

Ŷ

(

104

105

)

, Ŷ = 2Y =

(

0 y

y′ 0

)

. (5.13)

This leads to Yukawa unification for one family of d-quarks and leptons from the arguments presented

in Section 4.2.

5.2 Explicit computation of the Yukawa coupling

While our previous example realizes the correct multiplet structure required for the Yukawa uni-

fication scenario it is of course important for any meaningful statement about Yukawa unification

that the requisite Yukawa couplings in (5.13) are indeed non-zero. There are no obvious symmetry

reasons to forbid these couplings but, as has been observed in Refs. [27, 28,50], there may be other

reasons for the absence of perturbative Yukawa couplings in string theory. Following the methods

developed in Refs. [27, 28], we will now explicitly calculate the Yukawa couplings in Eq. (5.13) and

show that they are non-zero.

The upstairs Yukawa couplings are given by the following general expression

λ̂IJK =

∫

X̂

Ω ∧ ν(HI ) ∧ ν(5
J
) ∧ ν(10K) . (5.14)
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We would like to compute the Yukawa couplings for the particles in the first line of the spectrum (5.7),

so that I, J,K = 1, 2. We denote 5
1
= 53,4, 5

2
= 53,5, 101 = 105, 102 = 104 and H1,H2

represent the two Higgs fields 5
H
1,2 in (5.7). According to the computational procedure developed in

Refs. [27, 28] we can lift the integral to the ambient space as

λ̂IJK =
1

(2πi)5

∫

A
µ ∧ ν̂(HI ) ∧ ν̂(5

J
) ∧ ν̂(10K) ∧ ∂

( 1

p1

)

∧ · · · ∧ ∂
( 1

p5

)

. (5.15)

Here ν̂ for each particle is the lift of the corresponding form ν from X̂ to A, that is ν = ν̂|
X̂
,

p1, . . . , p5 are the defining polynomials described in (5.1) and µ is the holomorphic volume form on

the ambient space. On a single projective space Pn with homogeneous coordinates xi, µ is given by

µ =
1

n!
xa0dxa1 ∧ · · · ∧ dxanǫa0a1...an , (5.16)

while on a product of projective spaces µ is given by the wedge product of the individual holomorphic

volume forms on each projective space. Since an integral over Pn can be viewed as an integral over

Cn (provided all the forms are well-defined as forms on Pn) we can introduce affine coordinates w

on Pn in which µ is simply

µ = dnw . (5.17)

In the present case we have

µ = dw1 ∧ dw2 ∧ dw3 ∧ dw4 ∧ du1 ∧ du2 ∧ dv1 ∧ dv2 , (5.18)

where wi are affine coordinates on the four P1 spaces in (5.1), and ui, vi are affine coordinates on

the two P2 spaces in (5.1).

As explained in [27,28] the forms ν̂ are, in general, no longer closed. However, they are related

to a collection of closed forms on A which can be obtained using the Koszul exact sequence and

the corresponding cohomology long exact sequence. Let ν ∈ H1(X̂,K) for some line bundle K and

ν̂ ∈ Ω1(A,K) where K = K|
X̂
. If X̂ is of co-dimension m in A the Koszul sequence has the form

0 −→ ΛmN ∗ ⊗K qm−1−→ Λm−1N ∗ ⊗K qm−2−→ · · · q1−→ N ∗ ⊗K p−→ K r−→ K → 0 . (5.19)

Here N is the normal bundle, r is the restriction map, p = (p1, . . . , pm) is the row vector of m

defining polynomials and qa are the induced maps between higher exterior powers of vector bundles.

The maps qa are uniquely fixed (up to a constant which can be absorbed in the coefficients of the

polynomials pa) by the composition properties

qa ◦ qa+1 , p ◦ q1 = 0 (5.20)
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and by the degrees of the vector bundles in (5.19). It was shown in [27, 28] that ν̂ is obtained by

solving the following system of differential equations

ν = ν̂|
X̂
, ν ∈ H1(X̂,K) ,

∂ν̂ = pω̂1 , ν̂ ∈ Ω1(A,K) ,

∂ω̂1 = q1ω̂2 , ω̂1 ∈ Ω2(A,N ∗ ⊗K) ,

. . . . . . . . . . . .

∂ω̂m−1 = qm−1ω̂m , ω̂m−1 ∈ Ωm(A,Λm−1N ∗ ⊗K) ,

∂ω̂m = 0 , ω̂m ∈ Hm+1(A,ΛmN ∗ ⊗K) . (5.21)

The consistency of this system follows from (5.20). The general solution to (5.21) is given by the

general solution to the homogeneous equations and a partial solution to the inhomogeneous ones.

The former describes closed forms, that is elements in Hk+1(A,ΛkN ∗⊗K), k = 0, 1, . . . ,m−1. The

total number of independent closed forms obtained this way is in one-to-one correspondence with

the number of particles described by ν.2 Since Yukawa couplings depend only on the cohomology

classes we can choose these closed forms to be harmonic forms on A with respect to the Fubini-

Study metric. Such forms were explicitly constructed in [27, 28]. Knowing the general solution to

the homogeneous equation we can then solve (5.21) to find a partial solution to the inhomogeneous

equations. Of course, in some cases it may happen that the system (5.21) is truncated at a earlier

step and ω̂s = ω̂s+1 = · · · = ω̂m = 0 for some s ≤ m. Then the maximal degree of an ambient space

closed form associated to ν is s < m+ 1.

Let us now apply this procedure to the present example. All relevant non-vanishing cohomology

groups with coefficients in ΛkN ∗ ⊗ K for relevant K are given in Eqs. (5.8), (5.9), (5.10). Let us

start with ν̂(H
I ). We see that they are related to closed (0, 4)-forms. Hence, the system of equations

becomes

∂ν̂(H
I ) = pω̂

(HI )
1 , ∂ω̂

(HI )
1 = q1ω̂

(HI)
2 , ∂ω̂

(HI)
2 = q2ω̂

(HI )
3 , ∂ω̂

(HI )
3 = 0 . (5.22)

Since Hk+1(A,ΛkN ∗ ⊗ L1 ⊗ L2) = 0 for all k except k = 3, it follows that the only solution to the

homogeneous system is ω̂
(HI )
3 and all partial solutions to the inhomogeneous equations are restored

using ω̂
(HI)
3 . Since the form ω̂

(HI )
3 takes values in Λ3N ∗ ⊗ L1 ⊗ L2 it can be viewed as a tensor or

rank 3 whose components we will denote as ω̂
(HI )
3,abc , where

ω̂
(HI )
3,abc ∈ H4(A,N ∗

a ⊗N ∗
b ⊗N ∗

c ⊗ L1 ⊗ L2) , a < b < c . (5.23)

2There is a subtlety that, in general, thus obtained closed forms do not span the entire space Hk+1(A,ΛkN ∗ ⊗K)

but rather a subspace in it given by the kernel or cokernel of qa. This all can be obtained from the cohomology

long exact sequence corresponding to the Koszul sequence (5.19). This subtlety will not play any role in the present

example and we will not discuss it. See Refs. [27,28] for more details.
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From eq. (5.10) we see that ω̂
(HI )
3,abc has only following non-vanishing components

ω̂
(H1)
3,345 , ω̂

(H2)
3,124 . (5.24)

Using the results of [27,28] we can write down harmonic representatives of these forms. Since

H4(A,N ∗
1 ⊗N ∗

2 ⊗N ∗
4 ⊗ L1 ⊗ L2) = H4(A,N ∗

3 ⊗N ∗
4 ⊗N ∗

5 ⊗L1 ⊗ L2)

= H4(A,OA(0, 0, 0, 0,−3,−3)) ,

h4(A,OA(0, 0, 0, 0,−3,−3)) = 1 (5.25)

it follows that ω̂
(H1)
3,345 and ω̂

(H2)
3,124 are equal to each up to a coefficient. Their harmonic representatives

are

ω̂
(H1)
3,345 =

a1
(1 + |u1|2 + |u2|2)3(1 + |v1|2 + |v2|2)3

du1 ∧ du2 ∧ dv1 ∧ dv2 ,

ω̂
(H2)
3,124 =

a2
(1 + |u1|2 + |u2|2)3(1 + |v1|2 + |v2|2)3

du1 ∧ du2 ∧ dv1 ∧ dv2 . (5.26)

The coefficients a1 and a2 can be absorbed into the four-dimensional field H1 and H2. However, we

will keep them for reasons that will become clear later on. The solution for the lower-degree forms

(which are not closed) in (5.22) can be obtained using the explicit form of ω̂
(HI )
3,abc in (5.26) and the

maps p, q1, q2. It is a very lengthy calculation but fortunately these forms will not be needed.

Now we apply the system (5.21) to ν̂(5
I
). We see from Eq. (5.9) that it is associated to a closed

(0, 2)-from and the system (5.21) becomes

∂ν̂(5
I
) = pω̂

(5
I
)

1 ,

∂ω̂
(5

I
)

1 = 0 . (5.27)

Since all Hk+1(A,ΛkN ∗ ⊗ L3 ⊗ La) = 0 except for k = 1 it follows that the only solution to the

homogeneous system is ω̂
(5

I
)

1 and a partial solution for ν̂(5
I
) is obtained using ω̂

(5
I
)

1 by solving (5.27).

We view the forms ω̂
(5

I
)

1 as (column) vectors with components ω̂
(5

I
)

1,a ∈ H2(A,N ∗
a ⊗L3 ⊗Lb), where

the index b labels different 5 multiplets just like the index I. From Eq. (5.9) we see that ω̂
(5

I
)

1 have

the following non-vanishing components

ω̂
(5

1
)

1,2 ∈ H2(A,N ∗
2 ⊗L3 ⊗ L4) , ω̂

(5
2
)

1,5 ∈ H2(A,N ∗
5 ⊗ L3 ⊗ L5) . (5.28)

Since

H2(A,N ∗
5 ⊗ L3 ⊗ L5) = H2(A,N ∗

2 ⊗ L3 ⊗L4) = H2(A,OA(0, 0,−2,−2, 0, 0)) ,

h2(A,OA(0, 0,−2,−2, 0, 0)) = 1 (5.29)
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it follows that the forms in (5.28) are equal to each other up to a coefficient which can be absorbed

in the four-dimensional fields 5
I
. The harmonic representatives of (5.28) are given by

ω̂
(5

1
)

1,2 = ω̂
(5

2
)

1,5 =
1

(1 + |w3|2)2(1 + |w4|2)2
dw3 ∧ dw4 . (5.30)

The solution for ν̂(5I) can be found from (5.27) using (5.30) and the explicit formulas for the

polynomials p1, . . . , p5 but fortunately we will not need it.

Finally, we apply the same procedure to ν̂(10
I). From Eq. (5.8) we see that it is also related to

a closed (0, 2)-form and the system of equations describing it is

∂ν̂(10
I) = pω̂

(10I)
1 ,

∂ω̂
(10I)
1 = 0 . (5.31)

The (column) vectors ω̂
(10I)
1,a have the following non-vanishing components

ω̂
(101)
1,1 ∈ H2(A,N ∗

1 ⊗ L5) , ω̂
(102)
1,3 ∈ H2(A,N ∗

3 ⊗ L4) . (5.32)

Since

H2(A,N ∗
1 ⊗ L5) = H2(A,N ∗

3 ⊗ L4) = H2(A,OA(−2,−2, 0, 0, 0, 0)) ,

h2(A,OA(−2,−2, 0, 0, 0, 0)) = 1 (5.33)

it follows that

ω̂
(101)
1,1 = ω̂

(102)
1,3 =

1

(1 + |w1|2)2(1 + |w2|2)2
dw1 ∧ dw2 . (5.34)

In the upstairs theory we have two down Yukawa couplings

Ŵ = λ̂1,IH
I
1,253,4105 + λ̂2,IH

I
1,253,5104 , (5.35)

where λ̂1,I and λ̂2,I are given by

λ̂1,I =
1

(2πi)5

∫

C8

µ ∧ ν̂(HI ) ∧ ν̂(5
1
) ∧ ν̂(101) ∧ ∂

( 1

p1

)

∧ · · · ∧ ∂
( 1

p5

)

,

λ̂2,I =
1

(2πi)5

∫

C8

µ ∧ ν̂(HI ) ∧ ν̂(5
2
) ∧ ν̂(102) ∧ ∂

( 1

p1

)

∧ · · · ∧ ∂
( 1

p5

)

. (5.36)

To compute λ̂1,I and λ̂2,I we integrate by parts using Eqs. (5.22), (5.27), (5.31) and the maps p, qa.

Fortunately, our analysis simplifies because the total degree of the closed forms ω
(HI)
3,abc, ω

(5
I
)

1,a , ω
(10I)
1,a

is 4+2+2 = 8 which is the dimension of A. On general grounds, after integration by parts we have

to obtain the following result
∫

C8

µ ∧ β8 (5.37)
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for some (0, 8)-form β8. There is only one possibility to create β8 out of ω
(HI )
3,abc , ω

(5
I
)

1,a , ω
(10I )
1,a and

the lower-degree forms arising as partial solutions of Eqs. (5.22), (5.27) and (5.31) which is β8 ∼
ω
(HI )
3 ∧ ω(5

I
)

1 ∧ ω(10I)
1 . However, one has to be more specific because all these forms carry indices

which must be appropriately contracted. For the integral (5.37) to make sense the form β8 must

take values in the canonical bundle of A

KA ≃ Λ5N ∗ = N ∗
1 ⊗N ∗

2 ⊗N ∗
3 ⊗N ∗

4 ⊗N ∗
5 . (5.38)

This means that only such combinations of components can appear in ω
(HI )
3 ∧ ω

(5
I
)

1 ∧ ω
(10I)
1 in

which each N ∗
a appears exactly once. Looking at eqs. (5.24), (5.28), (5.32) we then conclude that

λ̂1,2 = λ̂2,1 = 0. That, the first Higgs particle couples only to 53,4105 and the second Higgs particle

couples only to 53,5104.
3 Up to an overall coefficient there is a unique way to build the general

expression for β8 satisfying the above properties. It is given by

β8 = ǫabcdeω
(H)
3,abc ∧ ω

(5)
1,d ∧ ω

(10)
1,e , (5.39)

where it is assumed that a < b < c and ǫabcde is totally antisymmetric with ǫ12345 = −1. The overall

coefficient can be fixed by performing a sample calculation when ω
(H)
3 , ω

(5)
1 , ω

(10)
1 each has only

one component and these components can combine according to Eq. (5.39). This fixes β8 in the

form (5.39). We will not present this calculation in the paper because it is rather lengthy and the

precise value of the coefficient is not important for our discussion (as long as it is non-zero). Then

using Eqs. (5.24), (5.28), (5.32) we find that

λ̂1,1 =
1

(2πi)5

∫

C8

µ ∧ ǫabcdeω(H1)
3,abc ∧ ω

(5
1
)

1,d ∧ ω(101)
1,e (5.40)

for (a, b, c) = (3, 4, 5), d = 2, e = 1 and

λ̂2,2 =
1

(2πi)5

∫

C8

µ ∧ ǫabcdeω(H2)
3,abc ∧ ω

(5
2
)

1,d ∧ ω(102)
1,e (5.41)

for (a, b, c) = (1, 2, 4), d = 5, e = 3. Substituting now the forms using Eqs. (5.26), (5.30), (5.34) we

obtain

λ̂1,1 = a1y , λ̂2,2 = −a2y , (5.42)

where

y =
1

(2πi)5
I4
1I2

2 ,

I1 =
∫

C8

dw ∧ dw
(1 + |w|2)2 , I2 =

∫

C8

dw1 ∧ dw1 ∧ dw2 ∧ dw2

(1 + |w1|2 + |w2|2)3
. (5.43)

3The vanishing of the couplings H2
1,253,4105 and H1

1,253,5104 is pure geometric and cannot be explained by sym-

metries of the theory.
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Evaluating the integrals gives4

I1 = 2πi , I2 = (2πi)2 , y = (2πi)3 . (5.44)

The down Yukawa coupling in the upstairs theory is then given by

Ŵ = y(a1H
1
1,253,4105 − a2H

2
1,253,5104) . (5.45)

This formula is similar to Eq. (5.13) except we have two Higgs fields. However, when we mod out

by the action of Z2 to go to the Standard Model only one Higgs field will survive the projection. To

bring (5.45) to the form (5.13) lets us eliminate the Higgs field which will not descent to the Standard

Model. Using the properties of the Z2 action in (5.3), (5.4) and Eqs. (5.24), (5.26) it follows that

the Z2 action interchanges the forms ω
(H1)
3,345 and ω

(H2)
3,124 or, equivalently, it interchanges a1 and a2.

Let us recall from Eq. (2.2) that the Higgs field has the charge χ2 under the discrete symmetry Γ.

For Γ = Z2 it is easy to realize that χ2 must be non-trivial, that is the Higgs field is odd under Z2.

This means that the appropriate linear combination of the forms in (5.26) which will descend to the

downstairs Calabi-Yau threefold X is their difference ∼ a1 − a2. Similarly, the appropriate linear

combination of the Higgs fields which will descent to the Standard Model is H1,2 = H1
1,2 − H2

1,2.

Ignoring the other linear combination H1
1,2 +H2

1,2 and absorbing a1 − a2 into H1,2 we obtain

Ŵ = yH1,253,4105 − yH1,253,5104 . (5.46)

Thus, we obtain precisely Eq. (5.13) where y′ = −y and y is given by Eq. (5.44). As was discussed

before this leads to Yukawa unification for one family in the downstairs theory.

6 Conclusion

In this paper, we have discussed Yukawa unification in the context of heterotic Calabi-Yau models

based on the standard, two-step construction. This involves a non-flat gauge bundle, which breaks

E8 to a more standard GUT group, in the first step. The second step is to introduce a Wilson

line on a quotient of the original manifold, breaking the gauge group to the standard model. As

reviewed in the introduction, models of this kind are the only ones in the context of smooth, Kähler,

heterotic compactifications that are capable of producing a realistic low-energy spectrum. Our main

question has been whether such models can ever lead to Yukawa unification similar to that seen in

traditional field theory GUTs.

We have provided a detailed analysis of the fact [19] that such unification is never enforced by

the underlying GUT symmetry, at least for the two main GUT groups SU(5) and SO(10) on which

4The integral (2πi)−1I1 is just the integral of the Kähler form J over P1 which is normalized to 1. The integral

(2πi)−2I2 is the integral of J ∧ J over P2 which is also normalized to 1.
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we have focused. The reason for this can be easily understood qualitatively. The standard model

and the underlying GUT theory are related by a quotient with a discrete symmetry Γ. In order to

obtain three standard model families the GUT theory requires 3|Γ| families and it has, hence, larger

Yukawa matrices of size (3|Γ|)× (3|Γ|). The standard model Yukawa matrices always originate from

different parts of the larger upstairs Yukawa matrix. Hence, the GUT group never enforces Yukawa

unification for such models.

Additional symmetries in the GUT theory can, however, lead to relations between the upstairs

Yukawa couplings which, in turn, may translate into Yukawa unification in the downstairs model.

We have studied the possibility that the discrete symmetry Γ, together with possible additional U(1)

gauge factors, can play this role. It turns out that these symmetries do not lead to unification if

they commute. In contrast, we have presented two scenarios in the context of heterotic line bundle

models where the discrete groups Γ = Z2,Z3 do not commute with some of the high energy U(1)

symmetries, and where (full or partial) Yukawa unification does occur. In particular, it is possible

to unify Yukawa couplings for one family but not the others.

Finally, as a proof of existence, we have presented an explicit heterotic line bundle model based

on SU(5), where this scenario is realized for Γ = Z2. It is clear that such models are quite rare and

difficult to find.

In this paper, we have focused on obvious sources of additional symmetries, namely the discrete

symmetry Γ and additional U(1) factors which can originate from split bundles. Further discrete

symmetries might be available in specific models and might also result in complete or partial Yukawa

unification.
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