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We find clear numerical evidence for a bilinear condensate in three-dimensional QCD in the
’t Hooft limit. We use a non-chiral random matrix model to extract the value of the condensate Σ
from the low-lying eigenvalues of the massless anti-Hermitian overlap Dirac operator. We estimate
Σ/λ2 = 0.0042 ± 0.0004 in units of the physical ’t Hooft coupling.

PACS numbers:

It has been recently shown [1], contrary to expectations (see references in [1]), that QED in three dimensions
with parity-invariant coupling to massless two-component fermions does not result in a bilinear condensate for any
number of fermion flavors. Further numerical analysis using overlap fermions [2] that preserves the U(2Nf ) global
symmetry of the theory on the lattice with 2Nf flavors of two-component fermions shows that the theory behaves in
a scale-invariant manner.
Three-dimensional QCD with SU(Nc) as the color group and 2Nf flavors of two-component fermions has also

been studied with the aim of finding a critical number of fermion flavors below which the theory is confined and
develops bilinear condensate for massless fermions. Analysis of the gap equation [3] suggests the existence of such
a critical number of fermion flavors. A numerical study of the SU(3) gauge theory in the quenched approximation
using staggered fermions has shown evidence for a bilinear condensate at finite lattice spacings [4]. This issue has
been recently studied in [5] using the ǫ-expansion about four dimensions.
Consider the theory in the limit of Nc → ∞. If the fermions are coupled in a parity-invariant manner, then the

fermion determinant is real and positive, and does not contribute to the measure in the Nc → ∞ limit, provided Nf

is kept finite [6, 7]. The pure gauge theory in the large-Nc limit is in the confined phase at zero temperature, and
undergoes deconfinement transition at a temperature Tc. The continuum reduction [8] implies that the theory in a
periodic box of size ℓx × ℓy × ℓz is in the confined phase if ℓx, ℓy, ℓz > 1

Tc

and there is no dependence on the box size.

A computation of the string tension using a variational technique [9]; a numerical evaluation [10] at finite values of
Nc extrapolated to Nc → ∞; and a numerical evaluation [11] at large Nc using continuum reduction are all in good
agreement with each other. Since fermions do not provide a back reaction in the ’t Hooft limit and the theory has a
non-zero string tension, we expect massless fermions to develop a non-zero bilinear condensate in the large-Nc limit.
A numerical study establishing the presence of a bilinear condensate using techniques similar to the ones used in [2]
will serve as a sanity check and justify a future numerical study of SU(Nc) gauge theory coupled to 2Nf flavors of
dynamical fermions and map the critical line in the (Nc, Nf ) plane that separates the phase where scale invariance is
broken from one that is scale-invariant. This is the aim of this brief report.
We used the standard Wilson gauge action and b is the lattice gauge coupling, which is related to the physical

’t Hooft coupling, λ = g2Nc, by

b =
1

aλ
, (1)

where a is the lattice spacing. We used the primes Nc = 7, 11, 13, 17, 19, 23, 29, 37, 41 and 47 in this study. We worked
on a periodic L3 lattice. Based on the numerical studies in [8], we know that b ∈ [0.55, 0.75] is in the confined phase
as long as L ≥ 4. We used five different lattice couplings; b = 0.55, 0.6, 0.65, 0.7 and 0.75 on 43 lattice; to study the
approach to the continuum limit. We also used L = 4, 5 and 6 at b = 0.75 to check for any volume dependence. We
used overlap fermions with the standard Wilson kernel as described in [2] and studied the behavior of the five low-lying
eigenvalues. We used the Cabibo-Marinari SU(2) heat bath along with the SU(Nc) over-relaxation algorithm [12] to
generate 300-500 statistically independent gauge field configurations for the pure gauge theory. Details pertaining to
the overlap Dirac operator in three dimensions and the computation of low-lying eigenvalues can be found in [2].
The eigenvalues iΛj are associated with an anti-Hermitian operator in the case of overlap fermions. There is no

symmetry in three dimensions that pairs up eigenvalues of opposite signs per configuration. The parity symmetry
implies that the spectrum is flipped about zero under parity. Therefore, the distribution of eigenvalues will be
symmetric around zero. The presence of a bilinear condensate implies a non-zero density at zero eigenvalue. Level

∗Electronic address: nkarthik@fiu.edu
†Electronic address: rajamani.narayanan@fiu.edu



2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

z1

z2 z3 z4 z5

P
(z
)

z

Nc = 23 b = 0.75 L = 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

z1

z2 z3 z4 z5

P
(z
)

z

Nc = 47 b = 0.75 L = 4

FIG. 1: The agreement between the distributions of the five scaled low-lying eigenvalues (data points) of the overlap Dirac
operator, NcL

3Σ(i, Nc, L)Λi, and the distributions from the non-chiral random matrix model (solid curves) is shown. All the
data are on 43 lattice. Two different Nc’s are shown : Nc = 23 on the top panel and Nc = 47 on the bottom. Agreement with
the non-chiral RMM gets better when Nc is increased.

repulsion implies that the level spacing of eigenvalues near zero will be inversely proportional to NcL
3. The individual

distributions of the low-lying eigenvalues (ordered by their absolute values) will be governed by an appropriate non-
chiral random matrix model (RMM) [13, 14], which in our case will be a Hermitian random matrix model: the matrix
elements of a k× k Hermitian matrix, H , are independently and normally distributed with zero mean and a variance
of π2/4k. The spectrum of each randomly generated H will not be symmetric about zero but the distribution will
be symmetric on the average since H and −H have the same weight. The distributions of the low lying eigenvalues
zj in the RMM model can be obtained using the sinc-kernel and the associated Fredholm determinants [15, 16]. We
numerically evaluated the eigenvalues of the kernel required for the computation of the determinants and traces of
the resolvents, and we were able to determine the distributions of the five lowest eigenvalues zj in the RMM needed
for our comparison to a very good accuracy.
The bilinear condensate can be obtained by matching the distribution in the large-Nc gauge theory to the RMM

model in the large k limit. In theory, for very large Nc one should be able to make such a matching for all the
eigenvalues using a single number Σlat(b), which is the condensate. In practice, at finite Nc we scale the j-th
eigenvalue by Σlat(j,Nc, b, L) such that their respective distributions Pj match:

Pj

( {

NcL
3Σlat(j,Nc, b, L)

}

Λj

)

= Pj (zj) , (2)

where iΛj is the j-th eigenvalue of the anti-Hermitian overlap Dirac operator computed in the quenched SU(Nc) gauge
theory on a L3 lattice at lattice gauge coupling b, and zj is the j-th eigenvalue of H in the k → ∞ limit. If a non-zero
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FIG. 2: On the top panel, the distributions of the scaled eigenvalues of the overlap Dirac operator at various lattice sizes L = 4,
5 and 6, at the same b = 0.75, are compared with the distributions from the non-chiral RMM. An agreement is seen independent
of the volume. On the bottom panel, such a comparison between the data at b = 0.75, 0.65, 0.55 and the non-chiral RMM
distributions is made at the same L = 4 and Nc = 47. The agreement is seen at all lattice spacings in this study.

condensate Σlat(b) is present in the large-Nc theory on the lattice, then

Σlat(b) = lim
Nc→∞

Σlat(j,Nc, b, L) 6= 0, (3)

and it should be independent of j (only one scale parameter) and L (lattice volume independence) for large enough
Nc. If a non-zero condensate Σ is present in the continuum limit of the large-Nc theory, then

Σ

λ2
= lim

b→∞
Σlat(b)b

2. (4)

With the intention of obtaining the continuum limit, we consider the quantity, b2Σlat(b), in the following discussion.
In Figure 1, we make a comparison of distributions at two different values of Nc (= 23 and 47), at the finest lattice
spacing used in this study. An agreement between the scaled eigenvalues of the overlap operator, and the non-chiral
RMM distributions is seen for the low-lying eigenvalues. As one would expect in the presence of a bilinear condensate,
this agreement is seen to get better as Nc is made larger. Further, we find this agreement with the non-chiral RMM
for three different lattice volumes at a fixed lattice coupling as shown in the top panel of Figure 2. The agreement
with RMM continues to hold as one changes the lattice coupling as seen in the bottom panel of Figure 2.
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FIG. 3: Infinite Nc extrapolation of Σ/λ2. The top panels are for Σ(1)/λ2 estimated from the means of the first five low-lying

eigenvalues of the overlap Dirac operator, while the bottom ones are for Σ(2)/λ2 estimated from standard deviation of the
distributions (refer Eq. (5)). The leftmost panels are at a lattice coupling b = 0.55 on L = 4 lattice. The center panels are at
b = 0.75 on L = 4 lattice. The rightmost panels are at the same b = 0.75 but on L = 6 lattice.

A convenient way to obtain Σlat(j,Nc, b, L) is from the mean and central moments of the RMM and Λ distributions:

Σ
(1)
lat (j,Nc, b, L) ≡

1

NcL3

〈zj〉

〈Λj〉
; Σ

(n)
lat (j,Nc, b, L) ≡

1

NcL3

(

〈(zj − 〈zj〉)
n
〉

〈(Λj − 〈Λj〉)
n
〉

)1/n

for n > 1. (5)

If the distributions agree in the large-Nc limit, then the values of Σ
(n)
lat (j,Nc, b, L) should be the same for all n. Since,

one requires larger statistics to get reliable values of higher central moments, we restrict ourselves to the mean (n = 1)
and standard deviation (n = 2) in this paper. In Figure 3, we show the extrapolation of Σ(1)/λ2 and Σ(2)/λ2 to infinite
Nc using Σ(Nc = ∞)/λ2 + a2/Nc + a3/N

2
c ansatz. It is clear that the extrapolations of both Σ(1) and Σ(2) at various

b, L and j lead to values Σ
λ2 ≈ 0.004, significantly away from zero. In Figure 4, we show the various estimates of Σ/λ2

(from different b, L and five different eigenvalues) in the large-Nc limit. The top panel shows the estimates obtained
from Σ(1) and the bottom panel for the estimates from Σ(2). It is clear that Σ/λ2 from the mean and the standard
deviation of the eigenvalue distributions are consistent with each other. The estimates of the condensate using the
same j-th eigenvalue, Σ(j)/λ2, at the same lattice spacing but different L are consistent within errors, thereby serving
as a check on continuum reduction which is a requirement for using smaller L3 lattices. A similar consistency is also
seen between the estimates of Σ(j)/λ2 at different lattice spacings, which indicates that our estimate is close to the
continuum value. Using these independent estimates of Σ(j)/λ2 at different b and L, we can get a combined estimate
of Σ(j)/λ2, and we have shown these as the different purple filled bands superimposed on the data in Figure 4. We
tabulate these values in Table I for different j. Each of the tabulated entry is an estimate of the condensate in the
large-Nc limit. It is evident that these Σ(j)/λ2, lie in a narrow range between 0.0038 and 0.0046. Even though
this range of values is small, it is bigger than the statistical errors in Σ(1)/λ2. We take this small variation in Σ/λ2

between the eigenvalues to be the systematic error in our estimate (which could possibly arise due to higher order
1/Nc corrections that we are not able to capture and due to lattice corrections), and quote our estimate as

Σ = (0.0042± 0.0004)λ2. (6)
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FIG. 4: Bilinear condensate at infinite Nc as obtained from the mean (top panel), and from the standard deviation (bottom
panel) of the j-th eigenvalue distribution, for j = 1, . . . , 5. The purple filled bands over each j are the combined 1-σ estimates
of Σ(j)/λ2 using the values at different b and L, which are shown using symbols. The unfilled bands in the two panels enclose
all the estimates of Σ(j)/λ2 at different j, thereby giving an estimate of the systematic error in Σ/λ2 due to the large-Nc

extrapolations and lattice spacing effects.

This is shown by the unfilled band in Figure 4. We checked that this value is consistent with the estimates from the
third central moments of the eigenvalue distributions, which are noisy compared to Σ(1) and Σ(2). Comparing with
the value of string tension, σ, at Nc → ∞ from [9–11], we can express

Σ

σ
= 0.10± 0.01. (7)

The result in this paper implies that SU(Nc) gauge theories coupled to 2Nf flavors of massless fermions must have
a confined phase with a non-zero bilinear condensate. Our future plan is to numerically study such theories using
massless overlap fermions with the aim of mapping out the critical line that separates such a phase from a scale
invariant phase.
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j Σ(1)/λ2 Σ(2)/λ2

1 0.0046(2) 0.0041(1)
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5 0.00383(6) 0.0038(2)

TABLE I: Estimates of bilinear condensate obtained using Σ(1)(j) and Σ(2)(j) from the first five low-lying eigenvalues Λj at

infinite Nc, by a combined fit of the estimates of Σ(1)(j) and Σ(2)(j) at different L and b.
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