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1 Laboratoire de Physique Théorique de Matiere Condensée,
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Abstract

In this paper we study a (1+1)-dimensional version of the famous Nambu-Jona-Lasinio model of

quantum chromodynamics (QCD2) both at zero and finite baryon density. We use non-perturbative

techniques (non-abelian bosonization and the truncated conformal spectrum approach (TCSA)).

When the baryon chemical potential, µ, is zero, we describe a formation of fermion three-quark

(nucleons and ∆-baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We

also study at µ = 0 a formation of a topologically nontrivial phase. When the chemical potential

exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram

which includes phases with density wave and superfluid quasi-long-range (QLR) order as well as a

phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a

condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).

PACS numbers: 12.38.-t,12.38.Aw,11.10Kk

2



I. INTRODUCTION

The famous Nambu-Jona-Lasinio (NJL) model [1] of particle physics is frequently used

as a simplified model of Quantum Chromodynamics (QCD) where the Yang-Mills force is

replaced by a point-like four fermion current-current interaction. The replacement does not

affect the low energy sector of the theory.

The (1+1)-dimensional version of the NJL model along with its prototype QCD2 has

been a subject of intense interest (see, for instance Refs. [2, 3] for reviews and Ref. [4] for

more recent work) since here one can obtain non-perturbative results solving the problem

of many-body bound states and obtaining a reliable description of the excitation spectrum.

However, few results are available for the formation of baryons in the (1+1)-D NJL model

with a bare quark mass which breaks the U(1) chiral symmetry of the model. This problem

has been mostly investigated in the past by variational approaches [5] and in the large-N

limit for the model with an SU(N) symmetry [6].

In this paper, we study the non-perturbative spectrum and the zero-temperature phase

diagram of the massive (1+1)-D NJL model with two flavors (SU(3)color×SU(2)isospin×U(1)

symmetry). Our approach is based on non-abelian bosonization, conformal field theory

(CFT) techniques [7, 8], and non-perturbative numerical calculations based on the trun-

cated conformal spectrum approach (TCSA) [9–11]. Although non-abelian bosonization

was applied to QCD2 before [3, 12, 13], its combination with TCSA is new and this allows

us to obtain a comprehensive description of the problem beyond the semiclassical and large

color number approximations. The new results include bosonized expressions for the baryon

operators, nonperturbative results for the excitation spectrum in the zero chemical potential

regime, and the phase diagram (see Fig. IV.6).

At zero baryon density (zero chemical potential), the model has two gapped phases sepa-

rated by an Ising quantum critical point corresponding to the spontaneous breaking of a Z2

symmetry. The order parameter is the γ5 quark mass. In the language of condensed matter

physics this corresponds to a spontaneous dimerization of an insulator [22]. This breaking

emerges when the t’Hooft term [14] has positive coupling and is sufficiently strong. In the

disordered phase the low energy spectrum consists of isospin I = 1/2 and I = 3/2 baryons

(three-quark bound states), I = 0, 1 six-quark bound states (deuterons and dibaryons), and

at least eight mesons (quark-antiquark bound states). The TCSA results for their masses

3



are given in Table IV.1.

When the chemical potential exceeds some critical value so that the density of baryons

becomes finite, the phase diagram becomes more complicated. It includes several phases,

each with a different quasi long range (QLR) order. Depending on the strength of the

forward scattering and the hadron density, one may have a phase where the SU(2) isospin

sector is gapped and hence the QLR does not originate from a Fermi surface instability,

but emerges as a Bose condensation of the scalar mesons (a 2kF density wave (DW)) or the

deuterons (superfluidity). The latter instability becomes dominant when the density exceeds

some critical limit. In (1+1)-D there is no color superconductivity due to pairing of quarks

contrary to what has been found in higher dimensions [15], but only the aforementioned

superfluid phase of colorless six-quark bound states (the deuterons) as it was found in one-

dimensional SU(N) cold fermions models [16]. There is also a critical phase (a baryon

strange metal) of gapless baryons forming a Tomonaga-Luttinger liquid with gapped color

degrees of freedom.

The main body of this paper is divided into four sections. In Section II we discuss the

NJL model and the sigma model which emerges as its low energy equivalent. Here we also

discuss the bosonized form of fermionic operators responsible for creation of mesons, baryons,

and baryon bound states. In Section III we provide a simplified analysis of the excitation

spectrum by means of a semiclassical approximation. In Section V, which contains most of

our new results, we analyze the spectrum using TCSA. In Section IV we discuss the case of

finite particle density. This section also contains a description of the model phase diagram.

II. THE MODEL

The NJL model describes fermionic quarks with a bare mass m interacting via a current-

current interaction. In (1+1)-dimensions, a Dirac spinor has two components corresponding

to right- and left moving quarks. The Hamiltonian density of the left and right movers is

H = i(−R†jσ∂xRjσ + L†jσ∂xLjσ) +m(L†jσRjσ + H.c.) + gJAJ̄A + gfJ J̄ , (II.1)

where Rjσ, Ljσ are annihilation operators of the right- and the left moving quarks, j = 1, 2, 3

are color indices while σ =↑, ↓ are flavor indices corresponding to up and down quarks (we

neglect all others in this treatment). The speed of light is set to one and a summation over
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repeated indices is implied in the following.

We begin the treatment of this Hamiltonian through recourse to non-abelian bosonization

(for additional details see Appendix A). To this end we identify the SU(3)2 Kac-Moody (KM)

currents of right and left chirality:

JA =: R†jσT
A
jkRkσ :, J̄A =: L†jσT

A
jkLkσ :,

where TAjk (A = 1, . . . , 8) are the generators in the fundamental representation of the SU(3)

group. In addition, there are also chiral U(1) currents:

J =: R†jσRjσ :, J̄ =: L†jσLjσ : .

The U(1) symmetry does not correspond to electric charge which we do not treat here.

Instead the quarks carry baryonic charge. The interaction of the U(1) currents is an extra

feature absent in (3+1)-dimensions. To analyze (II.1) using non-abelian bosonization, we

use the fact that the Hamiltonian density of free Dirac fermions with symmetry U(1)×

SU(N)×SU(M) can be represented as a sum of a Gaussian U(1) theory and two Wess-

Zumino-Novikov-Witten (WZNW) CFT models of levels k = M and k = N respectively [17–

19]. As a consequence, for each integer n one can write down n-point correlation functions of

fermions in terms of products of n-point right and left conformal blocks of the U(1) Gaussian

theory and the WZNW models.

At g > 0 the model (II.1) is asymptotically free and acquires a mass gap Mq =

Λg2/3 exp(−2π/3g) with Λ being the ultraviolet cut-off, in the color sector even if the bare

mass m is zero. In the latter case the model is integrable [20]. We consider this dynamically

generated quark mass, Mq, as the largest energy scale in the problem. The corresponding

effective Lagrangian density for energies, E � Mq, is written in terms of the abelian and

non-abelian Goldstone modes. It has a sigma model form [3, 12, 17]:

L =
K

2
(∂µθ)

2 + WZNW[SU(2)3;G] +m∗Tr(ei
√

2π/3θG+H.c.) + λ cos(
√

8π/3θ), (II.2)

where m∗ ∼ m, G is an SU(2) matrix corresponding to the WZNW field (see Appendix A),

and the term labeled WZNW stands for the WZNW Lagrangian on group SU(2) of level

k = 3. In (II.2), φ is a free massless bosonic field governing the U(1) density fluctuations

and the Luttinger parameter K is related to the abelian coupling gf , so that at |gf | � 1,

K − 1 = O(gf ). For attractive interactions, K < 1.

5



There is a direct analogy with (3+1)-D case as a similar sigma model [14] appears there

as an effective low energy action for QCD and is used to study mesons and baryons with

the latter appearing as solitons. The last term in Eqn. (II.2), absent in the original formu-

lation (II.1), was introduced by t’Hooft [14] who argued that instantons generate the term

proportional to the real part of the determinant of the U(2) matrix, exp(i
√

2π/3θ)G (in

condensed matter physics such a term is generated by Umklapp processes).

In Eqn. (II.2), the SU(2) matrix WZNW field G corresponds to the SU(2)3 primary field

Φ(j) with j = 1/2 and has scaling dimension 3/10 [8]. Therefore the scaling dimension of

the interaction term in Eqn. (II.2) with coupling constant m∗ is

dm∗ =
1

6K
+

3

10
,

so that it becomes irrelevant at K < 5/51. We note however that this interaction will

generate at second order a relevant perturbation in the spin sector for K < 5/33 so that

in fact the theory is always gapped in the isospin sector – see section V. The instanton

term, cos(
√

8π/3θ), in Eqn. (II.2) has scaling dimension dλ = 2/(3K) and is relevant when

K > 1/3. It becomes more relevant than the m∗-perturbation in Eqn. (II.2) when K > 5/3.

Below we list the most relevant operators local in terms of quarks which survive after the

projection onto the SU(3) singlet sector given by the ground state of the SU(3)2 WZNW

model perturbed by its current-current interaction (see Appendix A). The operators with

smallest scaling dimensions should correspond to mesons (U(1) neutral particles with Lorentz

spin zero which are two-body bound states of quarks) and baryons (particles with Lorentz

spin 1/2 and 3/2, formed as three-body bound states of quarks). After projection we obtain

the following expressions for the meson operators at energy E �Mq:

~M = R†jα~σαβLjβ ∼ e−i
√

2π/3θTr[~σ(G−G†)],

M0 = i(R†jαLjα −H.c.) ∼ ie−i
√

2π/3θTr G+ H.c.,
(II.3)

with ~σαβ being the Pauli matrices. The right-moving baryon operators given by the three-

quark SU(3) singlet bound states with respective Lorentz spins 3/2 and 1/2 are:

∆αβγ
3/2 = εabcRaαRbβRcγ ∼ exp(3i

√
2π/3ϕ)F (3/2)

3/4 , (II.4)

nαβγ1/2 = εabcRaαRbβLcγ

∼ exp[i
√

2π/3(2ϕ− ϕ̄)]
[
F (1)

2/5F̄
(1/2)
3/20

]
, (II.5)
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where ϕ and ϕ̄ are the chiral components of the bosonic field, θ = ϕ + ϕ̄, and F (j)
hj
, F̄ (j̄)

h̄j̄
)

denote the SU(2)3 holomorphic and anti-holomorphic conformal blocks with isospin j, j̄ =

0, 1/2, 1, 3/2 and weights hj = j(j+1)
5

. Their counterparts with opposite chirality are given

by similar expressions with R replaced by L. As shown in Appendix A, the ∆3/2 operator

has isospin I = 3/2 (respectively I = 1/2) and is called a ∆-baryon in the following, while

the n1/2 operator has I = 1/2 and is termed a nucleon.

There is also a bosonic (Lorentz spin 0) dibaryon operator with isospin I = 0 and U(1)

charge 2 (see Appendix A) which is the analogue of the deuteron. This operator is identified

as follows in the low-energy E �Mq limit:

d0 = (R1αεαβL1β)(R2γεγδL2δ)(R3ηεηρL3ρ) ∼ exp(i
√

6πφ)Tr(G+G†), (II.6)

where φ = ϕ− ϕ̄ is the dual field to θ. There is also a similar six-quark boson ~d with isospin

I = 1 described by Eqn. (II.6) with (G+G†) replaced by iσa(G−G†).

III. SEMICLASSICAL ANALYSIS OF THE LOW-ENERGY SPECTRUM

To get a qualitative understanding of model (II.2) we can employ a semiclassical approxi-

mation which will be later augmented by the numerical analysis based on the TCSA. Despite

its a priori restricted validity, our numerical results presented in the next section confirm

that this analysis presents a qualitatively correct picture of the excitation spectrum.

To permit the semiclassical approximation, we represent the SU(2) matrix G as Ĝ =

σÎ + iσ̂aπa, σ2 + ~π2 = 1. Using this, we can write the interaction term in in (II.2) as

V = m∗ cos(
√

2π/3θ)σ + λ cos(2
√

2π/3θ). (III.1)

The ground state is determined by minima of V as the rest of the action (II.2) contains

derivatives of the fields. The potential for λ = 0 has degenerate minima at
√

2π/3θ =

0, 2πn, σ = −1 and
√

2π/3θ = π(1+2n), σ = 1. This fact suggests that there are two kinds

of excitations: (i) fluctuations around the degenerate potential minima of (III.1) (η and π

mesons); and (ii) kinks interpolating between these minima. The kinks interpolating between

minima with the opposite sign of σ correspond to baryons, while the ones interpolating

between the vacua with the same sign of σ are deuterons and isotriplet dibaryons. The

small fluctuations constitute neutral isoscalar (η) and isovector (π) mesons. In Ref. [14] for
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QCD3+1 it was predicted that there are eight mesons in total (one scalar and three vector

mesons for each of the two vacua). In our numerics, we find these particles, but we also

conclude that there are likely to be meson-meson bound states.

We have discovered that our numerical calculations indicate that we can make our semi-

classical analysis quantitative. More precisely, the numerical calculations demonstrate that

for 0.3 < K < 1.5 and Λ = 0 the charge sector is well described by the sine-Gordon model.

Hence for analytical calculations one can use the decoupling procedure where the bosonic

exponent in Eq. (II.2) by its average and that similarly the U(1) charge sector can be well

described by replacing TrG by its vacuum average

m∗Tr(ei
√

2π/3θG+ H.c.) → m∗(〈ei
√

2π/3θ〉TrG+ ei
√

2π/3θ〈TrG〉+ H.c.), (III.2)

where the theory that then describes the U(1) boson is sine-Gordon with coupling propor-

tional to 〈σ〉. In this decoupling procedure, the scalar mesons correspond to the sine-Gordon

breathers and the deuterons to the sine-Gordon solitons. As is known, the breathers disap-

pear from the spectrum when the scaling dimension of cos(
√

2π/3θ) becomes larger than 1

corresponding to K < 1/6. For K > 1/6 there are bound states of the first breather corre-

sponding to bound states of the scalar mesons. If we assume that this procedure continues

to work for λ 6= 0, it will yield the double sine-Gordon model for the charge sector.

We can understand the effects of a nonzero λ > 0 if we expand (III.1) around a particular

minimum. For the sake of argument, we suppose m∗σ > 0:

V ∼ A(θ −
√

3π/2)2 +B(θ −
√

3π/2)4, (III.3)

where B > 0 and A may change sign depending on the mutual strength of m∗ and λ. For

A > 0 the minimum is located at θ =
√

3π/2. At A < 0 the minima shift away from

these points and A = 0 corresponds to the Ising phase transition as in the double sine-

Gordon model [21, 22, 25]. The transition occurs when λ1/(2−dλ) ∼ m∗1/(2−dm∗ ), that is at

λ ∼ (m∗)4(3K−1)/(51K/5−1) and K > 1/3, i.e. when both operators in Eqn. (III.1) are relevant.

When λ exceeds the critical value the minima of the potential (III.1) split so that the effective

potential (Eqn. III.1) has two minima in the unit cell 0 <
√

2π/3θ < 2π. Then the bosonic

vertex operator sin(
√

2π/3θ) acquires a nontrivial vacuum expectation value. This implies

that M0 (II.3) also has a non-trivial vacuum expectation value. This Ising order parameter

having a finite expectation value might suggest that the condensate of mesons with zero
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SU(2) isospin is topologically nontrivial in the sense of Kitaev [23]. However because this

Ising order is occurring in an interacting system, we cannot conclude definitively that this

phase is topological. In the condensed matter context a similar spontaneously dimerized

phase emerges when one increases the electron-electron repulsive interaction in an insulator

[22]. The splitting of the minimum of the effective potential creates a possibility that U(1)

charged particles with isospin zero (deuterons) will have two different U(1) (baryon) charges

corresponding to the short and long kinks of the field θ.

When λ < 0 we point to the possibility that two kinks (not kink-antikink) of the double

sine-Gordon model may have bound states because an attractive potential in 1D generically

leads to bound states. Such states would correspond to nuclei with baryonic charges higher

than that of deuterium. However we will leave the resolution of this question to future work.

IV. NON-PERTURBATIVE NUMERICS

To go beyond the semiclassical approximation and to determine the coherence and stabil-

ity of the low-energy excitations we have investigated the non-perturbative energy spectrum

of model (Eqn. II.2) by TCSA. The bosonized form (II.2) permits a straightforward appli-

cation of TCSA using its recent extension to treat deformations of conformal field theories

of the WZNW-type [11].

In the case λ = 0, m 6= 0 and zero particle density we have found that the operators (II.3)

and (II.6) indeed annihilate (create) coherent single-particle excitations. In particular d0 and

~d destroy coherent excitons with isospin I = 0 and I = 1 respectively, with masses below

the baryon continuum. Masses of the nucleons, mesons, and deuterons determined from the

TCSA for different values of K are listed in Table IV.1. The mass ratios of the isoscalar

particles turn out to be well described by the known exact result for the sine-Gordon model

(see Eqn. IV.7), which is an important evidence for the validity of the approximation in

Eqn. III.2). For the case where λ is nonzero, our numerics clearly indicate a phase transition

at finite positive λ.

Below we discuss the application of TCSA to the model (II.2) and present a detailed

analysis of the numerical results.
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A. The settings of the TCSA

Following standard procedures of TCSA (see e.g. [9–11, 25]), the quantum field theory

is considered in a periodic spatial box of volume L. Introducing a unit of mass M as

m∗ = M2−dm∗ dm∗ =
1

6K
+

3

10
(IV.1)

we can define a dimensionless volume parameter l = ML and measure energies in units of

M . Mapping the coordinates (τ, x) (where τ is Euclidean time) to the complex plane

z = eτ−ix , (IV.2)

the dimensionless Hamiltonian can then be written as

h(l) =
1

M
H(L) =

2π

l

(
L0 + L̄0 −

c

12

)
+

l1−dm∗

(2π)−dm∗
Bm∗ +Mdλ−2λ

l1−dλ

(2π)−dλ
Bλ, (IV.3)

where L0 + L̄0 − c/12 is the conformal term and Bm∗ , Bλ are the matrices of the operators

cos
(√

2π/3θ(z, z̄)
)(

Φ
(1/2)
−1/2,1/2(z, z̄)− Φ

(1/2)
1/2,−1/2(z, z̄)

)
(IV.4)

particle species K = 0.4 0.6 0.8 1.0 1.2 1.4

nucleona 4.5 4.3 4.5 4.8 5.1 5.4

isoscalar meson 5.5 3.9 3.2 2.8 2.5 2.3

isovector meson 3.6 3.1 2.9 2.8 2.7 2.7

isoscalar deuteron 6.7 7.4 8.2 8.9 9.7 10.2

isovector deuteron 8.2 8.3 8.7 9.2 9.7 10.2

aThe mass of the lightest baryon is estimated from the two-particle continuum in the baryonic charge two

sector.

TABLE IV.1: Masses of the low-energy particles at λ = 0 and zero particle density determined

from TCSA in units M = (m∗)1/(2−dm∗ ). We estimate the error to be 0.5M and 1M in the meson

and deuteron sectors, respectively, independent of K, and a relative accuracy to be one order of

magnitude smaller.
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and

cos
(

2
√

2π/3θ(z, z̄)
)
, (IV.5)

respectively, at the point z = 1 in the basis spanned by the conformal states. This space is

truncated by keeping states for which

L0 + L̄0 < Ncut, (IV.6)

for some cutoff value Ncut. With the cutoff in place, the resulting Hamiltonian can be numer-

ically diagonalized. Due to translational invariance, the space can be split into sectors corre-

sponding to the value of momentum; we restrict ourselves to discussing the zero-momentum

sector, sufficient to obtain the information we need. In addition, it is possible to split the

Hilbert space according to the value of baryonic charge and the third component of isospin,

which makes the computation more efficient.

The matrix elements of the perturbing operators can be evaluated by reducing them

to conformal field theory structure constants using conformal Ward identities (for example

[24]) for an explicit description of the procedure which can be easily adapted to the Kac-

Moody algebra considered here). Structure constants for diagonal primary fields in the SU(2)

WZNW models have been obtained in [35], while those of the bosonic part are trivially

obtained from free field theory. The inherent cut-off dependence is reduced using NRG

techniques [10] to push Ncut to higher values, and analytic RG techniques to eliminate the

cut-off dependence by introducing a running coupling following the procedure in [26–29].

We performed calculations in the parameter regime 0.3 ≤ K ≤ 1.5 with a step size of 0.1.

Representative spectra are shown and analyzed below.

B. Mesons

Initially we study the λ = 0 case. We plot the zero momentum levels in the zero baryonic

charge sector in Fig. IV.1 for the values K = 0.3, 1 and 1.5, with levels colored according

to the isospin multiplet they belong to. The spectra are normalized by subtracting the

ground state. There is another vacuum state which becomes exponentially degenerate with

the lower ones for large volume, and accordingly all neutral particles come in two copies.

One-particle states can be identified by being below and separated from the dense con-

tinuum, and tending exponentially to a flat behavior. Some of these levels also show a dip
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FIG. IV.1: Finite volume spectra in baryon charge zero sector at K = 0.3, 1.0, 1.5. The vacua

(black), and the mesons (isosinglets – blue, isovectors – orange) are highlighted.

before becoming flat for larger volumes, which is a behavior that is typical for one-particle

states due to so-called µ-terms dominating their finite size corrections [30].

We find a meson isotriplet (ρ) and an isosinglet (ω) meson, two copies for each. For

K = 1 the numerics shows them to be degenerate. When K > 1 the triplet is heavier than

the singlet, while for K < 1 it is the mass of the singlet that is heavier than that of triplet.

From the ground state level we can also measure the bulk energy density, as shown

in Fig. IV.2. For this we must perform a perturbative renormalization improvement to

eliminate the leading dependence on the cutoff Ncut; we follow the procedure used in [11].

This improvement leads to scaling the levels corresponding to different cut-offs on top of

each other, and is more relevant for smaller K. The resulting vacuum energy densities B

defined by the asymptotic behaviour

E0(L) = −BL+ . . .

where the omitted terms decay exponentially in the volume. The results of the linear fit are

shown in the fourth subfigure of Fig. IV.2.

For excited states, we implemented further RG corrections corresponding to introducing

a running coupling as in [26], however for this model the corrections induced by this proved

to be negligible. We also added cut-off extrapolation improvements following [26]. Results

from even and odd cut-offs can be extrapolated separately, and the extrapolated results are

consistent, but they do not lead to any appreciable improvement of the results either.
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FIG. IV.2: Raw (blue) and renormalized (orange dots) vacuum energies for K = 0.3, 1.0, 1.5 and

at energy truncation Ecut/M = 8. The lines are linear fits yielding the energy densities in the

bottom right panel.

S = 4

S = 3

S = 2

S = 1

S = 0

0 1 2 3 4 5
ML

5

10

15

E�M

FIG. IV.3: Finite volume spectra for K = 0.3 in the baryonic charge 2 sector, also showing the

different isomultiplets formed by the various lines.

C. Baryon bound states

Presently, the truncated conformal space approach can only access sectors of even bary-

onic charge. Sectors of odd baryonic charge correspond to half-integer isospin, i.e. transform

under spinorial representations of the diagonal subgroup of the SU(2)L x SU(2)R symmetry.

Such states can only arise from fields that transform differently under the left and right
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SU(2) groups. However, the structure constants of such fields are presently unknown; only

the ones corresponding to diagonal fields are available [35]. In the sector with baryon charge

2 we find both isospin singlet and triplet bound states, as shown by the spectrum in Fig.

IV.3. The isospin singlet state (coming in two copies due to the doubly degenerate vacuum

is the analogue of the deuteron. However, the isotriplet has no analogue in 3+1 dimensional

strong interactions; the reason is that in the isospin triplet channel the nucleon-nucleon

potential is not attractive enough to form a bound state. However in one-dimensional space

any attractive potential – no matter how shallow – leads to a bound state. From these

considerations the appearance of the isotriplet bound state (two members of this multiplet

would correspond to proton-proton and neutron-neutron bound states in the usual language

of the strong interaction) is not so surprising. For higher values of K one of the triplets

joins the continuum, i.e. the corresponding bound state disappears.

Assuming the validity of the semiclassical decoupling in Eqn. III.2 one expects the

dynamics of isosinglet states will be dominated by the sine-Gordon like dynamics of the

field θ as the isospin degrees of freedom corresponding to the WZNW field G are frozen.

The deuteron excitations correspond to sine-Gordon solitons, while the isosinglet mesons to

the breathers. Their masses are known to be related by the exact relation

mmeson

mdibaryon

= 2 sin

(
π/2

12K − 1

)
, (IV.7)

which is comparable to the numerically observed mass ratio in Fig. IV.4 so providing

numerical support for the decoupling approximation in Eqn. (III.2). Our plot also shows

that this ratio does not hold in the isotriplet channel, which can be expected since these

excitations have a more complicated structure due to the presence of the isospin degrees of

freedom.

D. The case λ 6= 0

In Fig. IV.5 we show spectra at fixed K = 1.5 and with increasing λ. The most prominent

feature is a change in the vacuum structure: two additional vacua develop from the lines

corresponding to the λ = 0 singlet mesons. This supports the existence of the critical point

established by our semiclassical analysis. For K = 1.5 we estimate the critical value of the

coupling to be Mdλ−2λ = 1.2. Above this value the vacua come in two pairs approaching
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FIG. IV.4: Isoscalar and isovector meson/dibaryon mass ratios (mmeson/mdibaryon) and the ap-

proximate estimate for this in Eqn. IV.7.
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FIG. IV.5: Finite volume spectra at K = 1.5 and different settings of the dimensionless coupling

Mdλ−2λ in baryonic charge zero sector. Ecut/M = 8.

each other algebraically. With increasing λ the triplet mesons join the continuum. We

conclude therefore in the large λ phase that all eight mesons are unstable.

V. FINITE BARYON DENSITY

New phases emerge when considering the model at finite baryon density by introducing

into the Hamiltonian (II.1) a chemical potential, µ, coupled to the baryonic charge (recall
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FIG. IV.6: The phase diagram of the NJL model as a function of the parameters K, K̃ (Luttinger

parameters at zero and finite chemical potential respectively) and λ (the coupling constant of the

instanton term). Here K̃−1 − 1 can be thought of as a proxy for the density of baryons in the

Fermi sea. The K̃ = 1, λ = 0 axis is marked by three transitions. For K < 5/51, the theory is

gapped in the (iso)-spin sector but gapless in the charge sector (treating the nominally irrelevant

m∗ perturbation at second order in perturbation theory). In contrast for 5/51 < K, the relevant m∗

perturbation leads to the theory being gapped in both of these sectors. For K > 1/3 the instanton

term becomes relevant. At finite λ > 0 and K > 1/3, the K − λ plane is divided into two by an

Ising-like transition. The ordered side of the transition is characterized by a meson condensate.

The K̃−1 −K plane corresponds to the NJL model at finite baryon density induced by a chemical

potential coupling to the U(1) charge. For K < 10/21 the charge sector is gapless, but the spin

sector is again gapped out by a perturbation generated at second order (note however that the value

of K at which this happens differs from the zero baryon density phase). For K > 10/21 we have a

genuine baryon metal where both the spin and charge sectors are gapless. At finite baryon density

the systems has different dominant quasi-long range orders, either deuteronic superconductivity

(deuteron SC) or a meson density wave (meson DW). In certain regions of the finite density phase

diagram, the instability to both of these orders is present (see text).

that the baryonic charge of quarks is 1/3)

Vµ = µ(2/3π)1/2∂xθ. (V.1)
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This explicit chemical potential term can be removed using the position dependent field

redefinition
√

2π/3θ →
√

2π/3θ + 2kFx, where the Fermi vector is kF ∼ (µ2 − Mn)1/2,

with Mn being the nucleon mass. Since the chemical potential has no influence on the color

sector, the ground state remains a color singlet and the quarks remain massive.

At finite baryon density the terms containing exponents of θ field in the effective La-

grangian (II.2) become oscillatory. Normally such terms are dropped from the Lagrangian.

However at second order in perturbation theory, the m∗-term coupling SU(2)3 with the U(1)

boson may give rise to the term in the action

−A(η)(m∗)2TrΦ(1)(x, τ), (V.2)

where Φ1 is the spin-1 SU(2)3 primary field. At second order in perturbation theory in m∗,

this field is generated by the operator product of the TrG fields:

ei(
√

2π/3θ(x1,τ1)+2kF x1)TrG(x1, τ1)e−i(
√

2π/3θ(x2,τ2)+2kF x2)TrG(x2, τ2) =

e2ikF (x1−x2)(x2
12 + τ 2

12)−dm∗+dadj/2TrΦ(1)(x2, τ2) + ... (V.3)

Here dm∗ = 1/6K + 3/10 and dadj = 4/5. The operator (V.2) is generated if A(η), the

coefficient of the operator in the effective action given by,

A(η) =

∫
Λeff

dτdy
cos(2kFy)

(y2 + τ 2)(η+1)/2
, (V.4)

converges at large distances where η = 2d∗m−dadj−1. This integral comes equipped with an

effective UV cutoff, Λeff , that reflects we have dropped all higher order terms in the OPE.

Λeff is proportional to 1/R where R is the size of the region where the integrand

cos(2kFy)

(y2 + τ 2)(η+1)/2
,

in the above integral has significant support and encodes the fact that TrΦ(1)(x) is really

smeared over a region R. As K → Kc, R goes to ∞ and A(η) vanishes. For K away from

Kc, we can take Λeff to ∞ and explicitly evaluate A(η):

A(η) =

∫ ∞
0

drJ0(2kF r)r
−2dm∗+dadj+1 ∼ kη−1

F

Γ(1/2− η/2)

Γ(1/2 + η/2)
, (V.5)

This integral is IR convergent if η = 1/3K − 6/5 > −1/2 or K < Kc = 10/21. Note the

effect that finite baryon density, i.e. kF 6= 0, has. At zero density, the integral is instead IR

convergent if η > 1 which corresponds to K < 5/33.
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Returning to finite density case, we furthermore can estimate R to be

R =

(√
π

2

2−ηΓ(1−η
2

)

Γ(1+η
2

)

)− 1
η+1/2

. (V.6)

The effective action for K < Kc = 10/21 is then

L =
K̃

2

[(∂τθ)
2

vc
+ vc(∂xθ)

2
]

+ WZNW[SU(2)3;G]− γTrΦ(1), (V.7)

Here K̃ and the Fermi velocity, vc, depend on the bare K and the chemical potential, µ. γ

is defined as

γ = A(η)(m∗)2.

Because A(η) vanishes as K → Kc, we see that the mass generated by the relavent pertur-

bation, TrΦ(1), also goes to zero.

A. Baryon metal phase, K > Kc

Hence we have two different situations depending on the strength of the attractive forward

scattering in the original model. For sufficiently weak attractive interactions, K > Kc, the

adjoint operator, Φ(1), is not generated Then at distances � k−1
F the finite particle density

phase is described by two critical models:

L =
K̃

2

[(∂τθ)
2

vc
+ vc(∂xθ)

2
]

+ WZNW[SU(2)3;G], (V.8)

i.e. the U(1) Gaussian model and the SU(2)3 WZNW model describing the π-meson field.

Their spectra are linear with velocities vc and vs respectively. Due to the vanishing gaps, this

critical phase is a conductor that we call a baryon metal. The asymptotics of the correlation

functions of the baryon operators can be extracted from the identification (II.4,II.5) and we

find:

〈∆3/2(τ, x)∆†3/2(0, 0)〉 =
Z3/2

(
τ2
0

τ2+(x/vc)2

)η̃c,3/2
[(τ − ix/vc)(τ − ix/vs)]I

;

〈n1/2(τ, x)n†1/2(0, 0)〉 =
Z1/2

(
τ2
0

τ2+(x/vc)2

)η̃c,1/2( τ2
0

τ2+(x/vs)2

)η̃s,1/2
[(τ − ix/vc)(τ − ix/vs)]I

, (V.9)

where τ0 ∼ K−1
F is an ultraviolet cutoff and η̃c,3/2 = 3

8
(
√
K̃ − 1/

√
K̃)2, η̃c,1/2 = 1

24
(1/
√
K̃ −

3
√
K̃)2, and η̃s,1/2 = 3/10. The correlator of the left-moving particles is obtained by x→ −x

and the one of the right- and the left- moving ones is zero.
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From Eqn. (V.9) one can see that the baryons are incoherent: their single particle Green’s

functions have branch cuts which is the hallmark of a Tomonaga-Luttinger liquid [7]. In such

a liquid there are no quasiparticles possessing both isospin and baryonic charges. Instead

they decay into cascades of collective excitations (π-mesons) propagating with different

velocities.

In this phase, there are instabilities to both deuteronic superconductivity and a meson

density wave. The instability towards deuteronic superconductivity is revealed as a sin-

gularity in the response function of the deuteron operator (see Eqn. (II.6)). The scaling

dimension of this field is ddeut = 3(K̃/2 + 1/10), yielding a singular susceptibility as T → 0

for K̃ ≤ 7/15:

χdeut =

∫ 1/T

0

dτ

∫
dx〈T̂ d0(τ, x)d†0(0, 0)〉 ∼ T−2+2ddeut , (V.10)

where T is temperature. We note that this instability can be in either the isospin I = 0 or

I = 1 channels.

The meson density wave instability (with wavevector 2kF ) is, on the other hand, related

to the scalar meson operator M0 = R†aαLaα ∼ e−i
√

2π/3θTrG. This scaling dimension of this

order parameter is dDW = 1
6K̃

+ 3
10
. This order becomes singular at low temperatures for

K̃ ≥ 5/21.

B. Phase with gapped isospin excitations, K < Kc

At K < Kc the effective action (V.7) contains the relevant perturbation, γTrΦ(1). Since

the operator Φ
(1)
m,m̄ acts only in the isospin sector the field θ remains gapless with central

charge c = 1. The SU(2) sector of (V.7) has been studied in [11, 31]. At γ > 0 (the

present case) it becomes massive and the spectrum consists of two degenerate massive triplets

(pions). These baryons are incoherent, i.e. their correlation functions do not have poles in

frequency-momentum plane, only branch cuts (see Appendix C).

Like for K > Kc, here there is an instability to deuteronic superconductivity. Unlike

in the baryon metal phase at K < Kc, the amplitude of the SU(2) part of the deuteron

operator, Tr(G + G†), acquires a vacuum expectation value so that the operator can be

replaced by d0 ∼ exp(i
√

6πφ). The resulting scaling dimension is ddeut = 3K̃/2, yielding a

singular susceptibility as T → 0 for K̃ ≤ 2/3.
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The 2kF meson density wave can also be found here. Once the isospin sector is gapped

〈TrG〉 6= 0, the scaling dimension of this order parameter is dDW = 1/6K̃. Hence at 1/6 <

K̃ < 2/3 both the meson density wave and deuteronic superconductor susceptibilities are

singular as T → 0.

VI. CONCLUSIONS

Our results demonstrate that 1+1D NJL model reproduces many properties expected for

its 3 + 1D prototype [34]. We see, for example, that the masses of mesons and baryons are

comparable to each other, as found in 3 + 1D. We stress that we have obtained these results

for a realistic numbers of colors , i.e. Nc = 3. This was possible due to our use of the TCSA

approach, a technique heretofore never applied to this particular problem. This powerful

method enabled us to obtain masses of the multi-quark bound states including the six-quark

deuteron, a notable achievement in the study of non-integrable strongly correlated systems.

Although we have not explored this possibility, our theory can describe bound states of

twelve quarks or more; they may emerge in the presence of the t’Hooft term with λ < 0.

The spectrum that we have obtained numerical estimates for include stable fermionic solitons

with quantum numbers of baryons: U(1) charge ±1, SU(2) isospin I = 1/2 (nucleons) and

I = 3/2 (∆-baryons). There are also stable excitations with quantum numbers of mesons

(U(1) neutral particles with isospin 0 and 1 and Lorentz spin 0), and six-quark bound states

(isospin I =1 dibaryons and isospin I=0 deuterons).

A part of our work is related to the dense baryon matter. We have obtained the phase di-

agram which contains such phases as a baryon metal, analogous to non-Fermi liquid metallic

states of one-dimensional condensed matter models, and various states with isospin gap and

quasi-long range order, such as 2kF meson density wave as well as a superconducting phase

of condensed deuterons.
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Appendix A: Non-abelian bosonization

The foundation of this method is the fact that the Hamiltonian density of free Dirac

fermions with symmetry U(1)×SU(N)×SU(M) can be represented as a sum of a Gaus-

sian theory and two Wess-Zumino-Novikov-Witten conformal field theories (WZNW CFT)

models of levels k = M and k = N respectively [17–19]:

M∑
j=1

N∑
σ=1

i(−R†jσ∂xRjσ + L†jσ∂xLjσ) = WZNW[SU(N)M ] + WZNW[SU(M)N ]

+
1

2

[
(∂xθ)

2 + (∂xφ)2
]
. (A.1)

As a consequence, one can write down n-point correlation functions of fermions as a linear

combination of products of n-point holomorphic and antiholomorphic conformal blocks of a

U(1) Gaussian theory and the corresponding WZNW models. Hence, in the general case,

such a decomposition must be understood not as an operator identity, as was the case for

abelian bosonization, but only as an identity for the conformal blocks [3, 19]. Nevertheless,

such identities will emerge at low energies in the theory given in Eqn. II.2 of the main text.

The Hamiltonian density of the SU(M)N WZNW model is a sum of bilinears of its chiral

Kac-Moody SU(M)N currents JA, J̄A:

WZNW[SU(M)N ] =
2π

N +M

[
: JAJA : + : J̄AJ̄A :

]
, (A.2)

where : A : stands for the normal ordering of A. Each symmetry sector is decoupled. This

remains true even when the interaction terms in Eqn. II.1 are added as they are given in

terms of the currents of individual symmetry sectors. When M = 2, the SU(2)N WZNW

model Hamiltonian can be decomposed further and represented as a sum of a Gaussian U(1)

model describing the Cartan subalgebra and a critical model of ZN parafermions CFT [32].

We will need this decomposition in the discussion that follows.

It is reasonable to suggest that as soon as the interaction dynamically generates mass

in the SU(3) sector that certain operators with zero Lorentz spin may acquire vacuum
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expectation values. Here we will consider the dynamically generated quark mass Mq as very

large. It then follows that all physical operators in the low-energy sector must be SU(3)

singlets. The model of Eqn. II.2 represents a projection of the initial NJL Hamiltonian onto

this color singlet space. To obtain operators acting in the low energy sector, we will need to

project (II.3,II.4,II.5) onto the ground state |GS〉 of the integrable model

Hcolor = WZNW[SU(3)2] + gJAJ̄A =
2π

5
[: JAJA : + : J̄AJ̄A :] + gJAJ̄A. (A.3)

We claim that after such reduction Eqns. (II.3,II.4,II.5) become operator identities. The

proof is similar to the one given by Reshetikhin and Smirnov who performed the reduction

of the sine-Gordon model to the minimal model with an integrable perturbation [33].

To perform the projection to the color singlet state we need to consider first the case

when the bare quark mass and the instanton term are zero: m∗ = 0, λ = 0. In this case, the

sigma model in Eqn. (A.3) is gapless and critical and has an extended conformal symmetry.

The underlying conformal field theory is

[U(1)× SU(2)3]R × [U(1)× SU(2)3]L.

This symmetry is reduced to U(1)×SU(2) as soon as m∗ 6= 0.

Let us define the following fields in terms of θ and its dual φ:

ϕ = (φ+ θ)/2, ϕ̄ = (θ − φ)/2. (A.4)

At K = 1 (this corresponds to gf = 0) these fields are chiral. For future purposes we need

to know that the vertex operator

Vn,m = exp[i
√

2π/3(nϕ+mϕ̄)] (A.5)

has conformal dimensions for general K:

h =
1

48

[
(n+m)/

√
K + (n−m)

√
K
]2

,

h̄ =
1

48

[
(n+m)/

√
K − (n−m)

√
K
]2

, (A.6)

so that their conformal (Lorentz) spin is independent of K:

h− h̄ = (n2 −m2)/12. (A.7)
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We will see that we will need exactly such vertex operators to construct the operators

creating the mesons and the baryons.

Conformal blocks of the primary fields of the SU(N)k WZNW model transform according

to various representations of the SU(N) group. Their conformal dimensions are related to

the quadratic Casimir operators of the corresponding representations [8]:

hrep =
Crep
k +N

. (A.8)

In particular, the conformal blocks of the SU(2)3 theory transforming according to the spin

j representation will be denoted as

F (j)
h , hj =

j(j + 1)

5
, (A.9)

with j = 0, 1/2, 1, 3/2. As far as the blocks for the SU(3)2 CFT are concerned, we will need

only one of them, namely the one which transforms according to the representation with a

single box Young tableau. The corresponding Casimir for the SU(N) is Crep = (N−1/N)/2,

for N = 3 it becomes 4/3 and the conformal dimension is 4/15.

To illustrate the non-abelian bosonization procedure let us consider, for instance, the

meson operators. They are bilinear in the fermionic operators, made from the right- and

left- moving quarks. Hence they are bosonic operators with Lorentz spin 0. The symmetry

considerations suggest that a meson operator must be a product of a bosonic exponent of

field θ and primary fields from the SU(2) and SU(3) groups respectively. Moreover, these

fields have to transform according to the representations corresponding to the single box

Young tableau:

R+
jαLkβ = e−i

√
2π/3θGαβDjk, (A.10)

where G is the matrix of Eqn. (II.2) which transforms in the j = 1/2 representation of the

SU(2) isospin group and D is the SU(3) fundamental matrix field. According to (A.8) the

conformal dimensions of these matrix fields for SU(N)k model is given by the relation

h =
N2 − 1

2N(k +N)
,

so that for the G matrix it is 3/20 and the SU(3) matrix field D it is 4/15. Then at K = 1

(the noninteracting theory) the sum of all three dimensions is 1/2 as it must be. When

the quarks becomes massive the operator from the SU(3) sector acquires a finite vacuum
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average. Thus for the mesons we have

~M = 〈GS|R+
jα~σαβLjβ|GS〉 ∼ e−i

√
2π/3θTr[~σ G+]. (A.11)

Now let us consider the operator for the right-moving nucleon. This operator is made of

three quark fields. Since nucleon is a fermion, it has Lorentz spin 1/2 and therefore must

contain two right- and one left-moving quarks. The bare conformal dimensions of such an

operator is (1,1/2). The nucleon has isospin 1/2, hence the primary field in the SU(2) sector

must transform as j = 1 in the holomorphic and as j = 1/2 in the antiholomorphic sector.

The conformal dimensions of such operator are (2/5,3/20). In the SU(3) sector we have a

color singlet. Here we suggest it is described by conformal blocks of the SU(3) matrix field

D with conformal dimensions (4/15,4/15). The result is

εabcRaαRbβLcγ = exp[i
√

2π/3(2ϕ− ϕ̄)]F (1)
2/5F̄

(1/2)
3/20 TrD. (A.12)

It is easy to check that the conformal dimensions of the left hand side coincide with the ones

of the right hand side. The projection on the color singlet state where TrD condenses yields

nαβγ1/2 = εabc〈GS|RaαRbβLcγ|GS〉 ∼ exp[i
√

2π/3(2ϕ− ϕ̄)]F (1,1/2)
2/5,3/20. (A.13)

We can repeat the same analysis for the ∆-baryon operator with isospin I = 3/2 of Eq.

(II.4). Since the latter is made of three right-moving quarks in an SU(3) singlet state, we

find:

∆αβγ
3/2 = εabcRaαRbβRcγ ∼ exp(i

√
6πϕ)F (3/2)

3/4 ISU(3), (A.14)

where ISU(3) is the identity field of the SU(3)2 CFT. By projecting out the color singlet

state, the identification (II.4) is then reproduced.

At this point, it is interesting to express the baryonic operators in terms of Z3

parafermionic fields by exploiting the coset construction: SU(2)3/U(1) ∼ Z3 [32]. The

SU(2)3 primaries (Φj,j̄
mj ,m̄j) are related to the Z3 parafermionic ones (f l,l̄m,m̄, m = 2mj, m̄ =

2m̄j, l = 2j, l̄ = 2j̄) by [32]:

Φj,j̄
mj ,m̄j = f l,l̄m,m̄ : exp

(
im

√
2π

3
ϕs + im̄

√
2π

3
ϕ̄s

)
:, (A.15)

where ϕs and ϕ̄s are the chiral components of a free bosonic field which accounts for the

U(1) sector in the coset description. The Z3 primary fields are subject to the constraints:
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f l,l̄m,m̄ = f 3−l,3−l̄
m+3,m̄+3, f l,l̄m,m̄ = f l,l̄6+m,6+m̄, where we take m to have periodicity 6, i.e. m+ 6 ≡ m.

The ∆-baryon operator (II.4) with isospin I = 3/2 can then be expressed as a quartet field:

∆3/2,m ∼ exp
(
i
√

6π ϕ
)
Fm, (A.16)

Fm=±3/2 = exp
(
±i
√

6π ϕs

)
, Fm=±1/2 = exp

(
±i
√

2π/3 ϕs

)
(Ψ,Ψ+), (A.17)

where Ψ is the Z3 parafermionic current with holomorphic weight 2/3. By introducing the

isospin projection from

Iz =

√
3

2π

∫
dx ∂xΦs, (A.18)

Φs = ϕs + ϕ̄s being the total bosonic field, one can check that Eq. (A.17) has the correct

isospin projection quantum numbers.

We now consider the right-moving nucleon field n1/2 (A.13) with isospin I = 1/2 and

Lorentz spin 1/2. By using the identification (A.15), we find the following description for

this doublet in the Z3 parafermionic basis:

n1/2,m=±1/2 ∼ exp[i
√

2π/3(2ϕ− ϕ̄)] exp[±i
√

2π/3(2ϕs + ϕ̄s)](µ, µ
†), (A.19)

where µ is the Z3 disorder field with scaling dimension 2/15 [32]. Using the bosonized

expression of the isospin projection (A.18), one can readily check that the operator (A.19)

has the correct quantum numbers, i.e., isospin projection m = ±1/2 and Lorentz spin 1/2.

Appendix B: Quantum numbers of baryons

We analyze in greater depth the excitations that interpolate between the different vacua

of the semi-classical potential of Eq. (III.1) of the main text. There are two kinds of solitons.

Type 1 solitons are those which interpolate between the vacua corresponding to different

signs of TrG. These particles carry both U(1) charge and isospin and so are baryons. The

corresponding operators are given in Eqs. (II.4) and (A.16). Then there are type 2 solitons

with isospin zero; they interpolate between the degenerate minima of the bosonic exponent

(2π/3)1/2θ → (2π/3)1/2θ+ 2πn. The operator creating this particle is given by Eq. (II.6) of

the main text. Type 2 solitons have baryon number 2.

We define the baryon U(1) charge as one. It is determined by the operator,

Q̂ =

√
2

3π

∫
dx∂xθ. (B.1)
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Let |q〉 be an eigenfunction of Q̂ with eigenvalue q. Then using the identity

Q̂ei2n
√

2π/3ϕ(x)|q〉 = (q + 2n/3)ei2n
√

2π/3ϕ(x)|q〉, (B.2)

we establish that the above bosonic exponent of the chiral field ϕ raises the charge by 2n/3.

The baryon operator (II.4) has n = 3/2 and hence creates a state of charge one. Therefore

we conclude that this operator has a matrix element between the vacuum and a type 1

soliton state. Thus such solitons in our model are coherent particles.

Now we will show that the vacua TrG = ±2 really have structure. This becomes manifest

in the Z3 parafermion representation. The mass term of Eqn. (II.2) of the main text in this

representation reads as follows using the identification (A.15):

ei
√

2π/3(θ+Φs)σ +H.c, (B.3)

where σ is the Z3 spin field with scaling dimension 2/15.

Transitions between minima of this effective potential give rise to solitons. Stable

(anti)solitons are charged ones with U(1) charge Q = ±1. They interpolate between the

vacua as follows: √
2π/3θ →

√
2π/3θ ± π, (B.4)

σ† → e−2kiπ/3σ†, σ → e2kiπ/3σ,√
2π/3Φs →

√
2π/3Φs + π(±1− 2k/3), k = 0, 1, 2.

Using the identity (A.18), these processes correspond to isospin projection Iz = ±3/2−k.

From Eq. (B.5), we observe that the transformation on the σ spin field corresponds to its

Z3 charge assignment [32]. Operators F±3/2 in Eq. (A.16) correspond to k = 0 and hence to

Iz = ±3/2 as might be expected. The operator F1/2 in Eq. (A.17) has k = 1 since the Z3

parafermion current Ψ carries a k = 1 Z3 charge [32] and therefore corresponds to Iz = 1/2

as it should.

As we have already said, there are also charge neutral particles corresponding to√
2π/3θ →

√
2π/3θ

σ† → e−2kiπ/3σ†, σ → e2kiπ/3σ,√
2π/3Φs →

√
2π/3Φs + 2π(1− k/3), k = 0, 1, 2. (B.5)
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In principle they can decay into soliton-antisoliton pairs of charged ones. Without numerical

calculations their stability cannot be assured. Such particles, if they exist, are likely to be

I = 1 mesons (pions). To look at dibaryons (charge 2) we can treat TrG in Eq. (III.1) by a

mean-field approximation, resulting in an effective double sine-Gordon model.

Appendix C: Correlation functions

1. Zero density of baryons

In the zero density phase the charge and the isospin sector are coupled and the baryons

exist as coherent particles. The coherent parts of their Green’s functions are fixed by the

Lorentz symmetry. For the nucleons we have the following time-ordered Euclidean Green’s

function:

〈Tna1/2(x, τ)n†b1/2(0)〉 = θ(τ)

∫
dθ

2π
e−mτ cosh(θ)+imx sinh(θ)e−α1/2abθ

−θ(−τ)

∫
dθ

2π
emτ cosh(θ)−imx sinh(θ)e−α1/2abθ, (C.1)

where the rapidity θ parameterize the energy, m cosh(θ), and momentum, m sinh(θ), of a

particle and a, b = R,L indicates whether the nucleon is right or left moving. e−α1/2abθ is

the matrix element squared between a nucleon state with rapidity, θ, and the nucleon field

operator. This matrix element is determined by Lorentz symmetry to be:

e∓
θ
2 = 〈0|nR/L,1/2(0, 0)|0〉,

(up to a normalization constant). The factor of 1/2 in argument of the exponential reflects

the nucleons having Lorentz spin 1/2 and so α1/2ab = δab. If we take the Fourier transform

and then continue ω → −iω + ε, we obtain

〈na1/2n
†
b1/2〉(ω, q) =

Z1/2

ω2 − ε21/2(q)

(
(q − ω) −M1/2ω

ε1/2(q)

−M1/2ω

ε1/2(q)
−(ω + q)

)
ab

, a, b = R,L, (C.2)

where Z1/2 is an overall normalization factor, M1/2 is the mass of the nucleon, and ε1/2(q) =√
M2

1/2 + q2.

We can do the same for the ∆-baryons. Here the relevant matrix element is

e∓
3θ
2 = 〈0|∆R,L,3/2(0, 0)|0〉.
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Fourier transforming as before we obtain

〈∆a3/2∆†b3/2〉(ω, q) =
Z3/2

2M2
3/2ε3/2(q)

×

( (ε3/2(q)−q)3

ε3/2(q)−ω −
(ε3/2(q)+q)3

ε3/2(q)+ω

−2M3
3/2

ω

ω2−ε2
3/2

(q)

−2M3
3/2

ω

ω2−ε2
3/2

(q)

(ε3/2(q)+q)3

ε3/2(q)−ω −
(ε3/2(q)−q)3

ε3/2(q)+ω

)
ab

, a, b = R,L. (C.3)

We see that both the nucleon and ∆−baryon Green’s functions fall off as 1/ω.

2. Finite density of baryons

In the gapped phase of the dense baryon matter the spin excitations are gapped and the

charge ones are not. The gapped excitations which determine the single baryon Green’s

functions are charge neutral solitons interpolating between different minima of the potential

TrG = ±2. The corresponding matrix elements (in the SU(2)3 sector of the theory) between

these excitations are the baryon fields are again fixed by the Lorentz invariance:

〈θ|F (3/2)
3/4 (τ, x)|0〉 ∼ e−3θ/4e−M3/2(τ cosh θ+i(x/vs) sinh θ)

〈θ|F (1)
2/5F

(1/2)
3/20 (τ, x)|0〉 ∼ e−θ/4e−M1/2(τ cosh θ+i(x/vs) sinh θ).

(C.4)

Here we will consider only the part of the single baryon Green’s function which originates

from emission of this single massive soliton.

Generally for nucleons and the ∆−baryons the Green’s functions become (we focus only

on the right-mover fields here)

〈nR,1/2(x, τ)n†R,1/2(0, 0)〉 =
(τ + ix

vs
)1/4

(τ − ix
vc

)1/2(τ − ix
vs

)1/4

( τ 2
0

τ 2 + ( x
vc

)2

)ηc,1/2
K1/2(M1/2ρ) + ...,

〈∆R,3/2(x, τ)∆†R,3/2(0, 0)〉 =
(τ + ix

vs
)3/4

(τ − ix
vc

)3/2(τ − ix
vs

)3/4

( τ 2
0

τ 2 + ( x
vc

)2

)ηc,3/2
K3/2(M3/2ρ) + ...,

ρ2 = τ 2 + (
x

vs
)2, (C.5)

where τ0 ∼ (kFvc)
−1 is the ultraviolet cut-off, the dots stand for contributions which include

more than one massive particle (for instance, one soliton and mesons).
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We have been unable to perform the Fourier transform in full generality (i.e. vc 6= vs and

η1/2,3/2 6= 0) and so we focus on the easiest case, vc = vs = v, η1/2,3/2 = 0. We note that

while it is possible to consider the case of equal spin and charge velocities when η1/2,3/2 6= 0,

this gives rise to unphysical behaviour in the response functions at large ω. Considering

then this simplest case (which would hold for very low densities of baryons such that the

velocities have not been renormalized) we find (with vc = vs = 1):

I1/2(ω, k) ≡
∫
dτdxeiωτ−ikx〈nR,1/2(x, τ)n†R,1/2(0, 0)〉;

I3/2(ω, k) ≡
∫
dτdxeiωτ−ikx〈∆R,3/2(x, τ)∆†R,3/2(0, 0)〉;

Ia(ω, k) = −4π

(
k − iω
k + iω

)a
(ω2 + k2)aΓ(a+ 1)

2aM2+a
a Γ(1 + 2a)

2F1(a+ 1, 1, 1 + 2a,−ω
2 + k2

Ma

), (C.6)

where a = 1/2, 3/2 for the nucleons/∆−baryons respectively.

Continuing ω so as to obtain the retarded response, we plot the spectral weight (the

imaginary part of Ia(−iω + ε)) for each of the nucleon and ∆−baryon in Fig. (C.1). We

see that this weight appears as a broadened δ-function. In the zero baryon density phase,

the spectral weight of the baryon propagators are only seen at ω = k. But in the presence

of finite baryon density, the baryons are no longer coherent particles and this weight is

smeared over a finite energy range. We also the spectra function of the nucleons is much

more peaked than that of the ∆−baryons, indicating the nucleons remain considerably more

coherent than their spin-3/2 counterparts in the presence of finite baryon density.
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FIG. C.1: The spectral weight of the baryon Green’s functions plotted vs
√

(ω2 − k2)/Ma of the

nucleons and ∆-baryons.
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