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Strong-field tidal distortions of rotating black holes:
II. Horizon dynamics from eccentric and inclined orbits

Stephen O’Sullivan1 and Scott A. Hughes1
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In a previous paper, we developed tools for studying the horizon geometry of a Kerr black hole
that is tidally distorted by a binary companion using techniques that require large mass ratios but
can be applied to any bound orbit and allow for arbitrary black hole spin. We now apply these tools
to generic Kerr black hole orbits. This allows us to investigate horizon dynamics: the tidal field
perturbing the horizon’s geometry varies over a generic orbit, with significant variations for eccentric
orbits. Many of the features of the horizon’s behavior found previously carry over to the dynamical
case in a natural way. In particular, we find significant offsets between the applied tide and the
horizon’s response. This leads to bulging in the horizon’s geometry which can lag or lead the orbit,
depending upon the hole’s rotation and the orbit’s geometry. An interesting and apparently new
feature we find are small-amplitude, high-frequency oscillations in the horizon’s response. We have
not been able to identify a mechanism for producing these oscillations, but find that they appear
most clearly when rapidly rotating black holes are distorted by very strong-field orbits.

PACS numbers: 04.70.Bw, 04.25.Nx, 04.25.dg

I. INTRODUCTION

The study of relativistic tidal deformations and their
impact on the dynamics of compact binaries has received
a great deal of attention in recent years. Much of this re-
cent activity was kicked off by studies of tides in systems
containing neutron stars [1–8]. Older work had already
demonstrated that tidal coupling was quite important in
systems containing black holes, but used language that
clouded the role of tides, using instead a dual description
of tidal coupling as “radiation down the event horizon”
[9–12]. Recent papers focusing on black holes in bina-
ries have examined in detail how tides distort black holes
and their near-hole geometry. Most of these papers have
focused on non-rotating [5, 13–16] and slowly rotating
[17–19] black holes (with Ref. [19] discussing tidal distor-
tions of a broad class of spinning objects).

Our contribution to this body of work has been to de-
velop numerical tools for characterizing tidally distorted
black holes which are good for strong-field orbits and ar-
bitrary black hole spins. These tools are based on black
hole perturbation theory, and so assume binaries of ex-
treme mass ratio: the mass µ of the small body which is
the source of the tide is much less than the mass M of
the black hole that is tidally distorted. In Ref. [20] (here-
after “paper I”), we developed tools for characterizing the
tidal field that acts on a Kerr black hole. The tools are
designed in order to adapt pre-existing codes which have
been used to study gravitational wave emission from ex-
treme mass ratio binaries (e.g., [21]). We also developed
tools to visualize a tidally distorted black hole by em-
bedding the two-dimensional horizon at each moment in
some time slicing in a flat three-dimensional Euclidean
space. These embeddings are only good for Kerr spin
parameter a/M ≤

√
3/2; for higher spins, the horizon

cannot be globally embedded in a Euclidean space even
in the absence of a distorting tide [22].

Although the tools we developed in paper I are generic
and can be applied to any bound Kerr black hole or-
bit, we only showed results for tidal distortions arising
from circular and equatorial orbits. By focusing on this
relatively simple case, we were able to examine some of
the key aspects of event horizon physics in a particu-
larly clean limit. For example, paper I examined in some
detail the phase offset between the angle at which the
horizon is maximally distorted (the location of its “tidal
bulge”) and the position of the orbit. As has been am-
ply discussed in past literature [23–26], the event horizon
acts in many ways like the surface of a gravitating fluid
body; a very readable summary discussion of this con-
nection can also be found in Cardoso and Pani [27]. The
horizon is deformed by tidal stresses, tending to bulge
toward the “moon” which is the source of the tide. The
bulging response is, however, not synchronous with the
applied tide. For a fluid body, viscosity causes the fluid’s
response to lag the applied tide. As a consequence, if
the moon’s orbit is faster than the body’s spin, the bulge
lags the orbit’s position. Conversely, if the orbit is slower
than the spin, then the bulge leads the orbit’s position.

At least for very slowly varying tidal fields, this picture
describes the geometry of the black hole’s tidal bulge
with respect to the orbit — provided we swap “lead” and
“lag.” Tides from a moon which orbits faster than the
hole’s spin raise a bulge which leads the orbit’s position;
tides from a moon which orbits more slowly lag the orbit’s
position. The swap of “lead” and “lag” as compared to
the fluid star is due to the teleological nature of the event
horizon: how the horizon depends at some moment in a
given time slicing depends upon the stresses that it will
feel in the future. Though this counterintuitive behavior
might seem to violate causality, it is a simple consequence
of how the horizon is defined: whether an event is inside
or outside the horizon depends on that event’s future. See
paper I and references therein (as well as the references
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cited above) for much more detailed discussion of the
horizon’s teleological nature and its consequences.

Although circular and equatorial orbits were useful for
testing our tidal distortion toolkit, this limit does not
show the full range of horizon dynamics that can be ex-
pected from tidal interactions. Indeed, the horizon’s dis-
tortion is stationary in this case, showing no variation at
all in a frame that co-rotates with the orbit. The purpose
of this paper is to go beyond this limit and to explore how
the horizon responds to generic — inclined and eccentric
— orbits. Generic orbits and the tides they produce are
dynamical even when examined in a frame that corotates
at the orbit’s axial frequency. Eccentricity is particularly
important: at leading order the tidal field varies as 1/r3,
so as the orbit’s radius varies from rmax to rmin, the tidal
field varies by a factor r3

max/r
3
min. If the large black hole

spins, even constant radius inclined orbits show horizon
dynamics, since the on-horizon tidal field varies as the
orbit moves in the non-spherical black hole spacetime.

The remainder of this paper is organized as follows.
We begin in Sec. II with a summary of the formalism
that we developed in paper I. Section II A introduces the
notation and conventions that we use, and carefully de-
fines several quantities that are critical to our analysis,
such as the Newman-Penrose basis legs, the tidal field
Ψ0, and the horizon’s shear σ. This section also briefly
describes the techniques we use to compute these quan-
tities; further details are given in paper I. Appendix A
supplements this material, demonstrating that the com-
plex fields we use for various quantities needed to de-
scribe the horizon’s distortion are equivalent to certain
2nd-rank tensors defined on the horizon which other au-
thors have used (notably Ref. [16], hereafter VPM11).
Section II B summarizes how these quantities are used to
understand the distorted horizon’s geometry.

We show our results in Secs. III, IV, V, and VI. Much
of the horizon’s dynamics turns out to be closely corre-
lated to the dynamics of the applied tidal field, so we
begin in Sec. III by examining this tide in some detail.
We show that the vast majority of the tide’s behavior can
be understood as a simple consequence of the orbital dy-
namics. There are, however, subtle features related to a
position-dependent phase and a mode-dependent ampli-
tude correction that must be explained with some care.
We turn to the horizon’s response proper in Sec. IV, care-
fully examining the Schwarzschild limit, a = 0. This limit
is spherically symmetric, so the horizon distortions must
exhibit certain symmetries as an orbit is inclined from
equatorial to some arbitrary inclination θinc. We demon-
strate that this is the case. This is not a surprise, since
the black hole perturbation theory code on which our
analysis is based has previously been shown to handle
this limit correctly [11, 21]. It is reassuring to see that
the modifications we made to analyze distorted horizons
have not broken this behavior.

In Sec. V, we next compare certain important aspects
of the applied tidal field Ψ0 to the horizon shear σ that
arises from this field. We first (Sec. V A) look at the rel-

ative phase of the tide and the shear, an analysis quite
similar to one that we undertook in paper I. We focus
for simplicity on equatorial orbits. In the Schwarzschild
limit, the tide and the shear are very similar. Much of
the difference between the two quantities is due to a sim-
ple temporal offset of κ−1 = 4M (where κ is the event
horizon’s surface gravity). This offset can be understood
by examining the equation relating the ride to the shear
in the frequency domain. The difference becomes much
less simple as the black hole’s spin is increased.

It’s worth noting that some of the physics associated
with the offset between the orbiting body and the hori-
zon’s distortion that we discussed above is reproduced in
the tide-shear analysis. In particular, we find that the
shear response leads the applied tidal field for a = 0, but
lags it for large black hole spin — just as the horizon
bulge always leads the orbit in Schwarzschild, but lags
the orbit for rapidly spinning Kerr. Because the tide and
the shear are evaluated at the same coordinate radius,
many ambiguities associated with comparing the posi-
tion of the horizon’s bulge with the position of the orbit
disappear. This helps to put notions of which quantities
“lead” and “lag” on a firm footing.

In the course of this analysis, we have found an inter-
esting oscillatory feature in the horizon’s response which
is most apparent for strong-field orbits of rapidly rotat-
ing black holes. Examining the response of a black hole
with spin a = 0.9999M to the tidal field of a strong-field
eccentric orbit, we see a very strong response near peri-
apse with properties that closely correlate to the near-
periapsis orbital dynamics. This is followed by about
seven cycles of low-amplitude, high-frequency oscillations
in the horizon’s response. We do not see corresponding
oscillations in the tide.

Although we can estimate the frequency of these os-
cillations fairly well, we have not been able to connect
them to any of the frequencies that describe this orbit or
this black hole. The rate at which the oscillations decay
also does not appear to correlate with any timescale that
we can imagine would lead to such behavior. Having not
succeeded in coming up with a compelling explanation
for this phenomenon, for now we simply present it as an
empirical finding of our analysis, hoping that future work
may offer some physical understanding.

We conclude by examining the dynamics of horizon
embeddings in Sec. VI. For several representative cases,
we show a sequence of still images taken from an anima-
tion that combines the behavior of the small body’s orbit
with the dynamics of the horizon embedding. Those an-
imations can be found at the URL listed in Ref. [28].
Although we have endeavored to describe the dynamics
as clearly as possible using these stills, some of these
results are particularly clear when examined with the
animations. We first consider orbits that are circular
but inclined in Sec. VI A, examining in detail orbits
of a Schwarzschild black hole and of a Kerr hole with
a = 0.6M . The Schwarzschild results confirm our ex-
pectations from Sec. IV about how the horizon should
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behave in this spherically symmetric example. The non-
spherical Kerr results show more interesting shape dy-
namics. We then consider eccentric orbits in Sec. VI B.
As expected, the horizon’s distortion varies considerably
as an orbit moves from rmax to rmin and back. We exam-
ine in some detail two highly eccentric (e = 0.7) orbits:
one that is equatorial, and one inclined at θinc = 30◦.
The generic case combines features that we see from the
inclined circular and the eccentric equatorial limits.

II. SUMMARY OF FORMALISM

A. Tools, notation, and conventions

All of our calculations are performed in the spacetime
of a Kerr black hole with mass M and spin angular mo-
mentum J . Throughout this analysis, we work in in-
going coordinates (v, r, θ, ψ) which are well behaved on
the black hole’s event horizon. In these coordinates, the
spacetime’s line element is given by

ds2 = −
(

1− 2Mr

Σ

)
dv2 + 2dv dr − 2a sin2 θ dr dψ

− 4Mar sin2 θ

Σ
dv dψ + Σ dθ2

+
(r2 + a2)2 − a2∆ sin2 θ

Σ
dψ2 , (2.1)

with a = J/M . (Here and throughout the paper, we use
units in which G = 1 = c.) Equation (2.1) introduces
the functions ∆ = r2− 2Mr+ a2 and Σ = r2 + a2 cos2 θ.
The event horizon is at coordinate radius r = r+ = M +√
M2 − a2, the larger root of ∆. Although not needed

here, for completeness we note that ingoing coordinates
are simply related to the more commonly used Boyer-
Lindquist coordinates (t, r, θ, φ): the coordinates r and
θ are identical, and the ingoing time v and angle ψ are
related to Boyer-Lindquist time t and angle φ via

dv = dt+
r2 + a2

∆
dr , (2.2)

dψ = dφ+
a

∆
dr . (2.3)

The tidal field which distorts the black hole’s horizon
arises from a small body on a bound Kerr geodesic; de-
tailed discussion of these orbits, with an emphasis on
the properties relevant to this analysis, is given in Refs.
[29, 30]. Such geodesics are parameterized by three con-
served integrals: the orbital energy E, related to the
spacetime’s timelike Killing vector; the axial angular mo-
mentum Lz, related to the spacetime’s axial Killing vec-
tor; and the Carter constant Q, related to the Kerr space-
time’s Killing tensor. Once E, Lz, and Q have been
selected, the orbit’s motion is determined up to initial
conditions. A particularly important feature of bound
Kerr orbits is that they are triperiodic [29]. Each orbit

has a frequency Ωr which describes radial oscillations,
a frequency Ωθ which describes polar oscillations, and a
frequency Ωφ which describes rotations about the black
hole’s spin axis. Once E, Lz, and Q are known, it is not
too difficult to compute Ωr, Ωθ, and Ωφ [29, 30].

We remap the motion in r and θ to the parameters p
(semi-latus rectum), e (eccentricity), and θm, defined by

r =
p

1 + e cosχr
, (2.4)

cos θ = cos θm cos(χθ + χθ,0) . (2.5)

The orbit’s radius r thus oscillates between periapsis
rmin = p/(1 + e) and apoapsis rmax = p/(1 − e); the
polar angle θ oscillates between θmin = θm and θmax =
180◦ − θm.

With the parameterization (2.4) and (2.5), the geodesic
equations for the coordinates r and θ become equations
for the angles χr and χθ. Note that we could include an
offset phase χr,0 in Eq. (2.4). We have set χr,0 = 0, which
is equivalent to setting the origin of our time coordinate
to the moment that the orbit passes through periapsis.
References [29, 30] give easy-to-use expressions relating
the (E, Lz, Q) and (p, e, θm) parameterizations. For
much of our analysis, we use the angle θinc introduced in
Ref. [21] in place of θm:

θinc = 90◦ − sgn(Lz)θm . (2.6)

This angle varies smoothly from 0 to 180◦ as the orbit
varies from prograde equatorial (θm = 90◦, Lz > 0) to
retrograde equatorial (θm = 90◦, Lz < 0).

The tidal field is quantified by the complex scalar field1

Ψ0, which is built from the Weyl curvature tensor:

Ψ0 = −Cµανβlµmαlνmβ . (2.7)

The vectors used here are the Newman-Penrose null legs
in the Hawking-Hartle representation [23]:

lµ
.
=

[
1,

∆

2$2
, 0,

a

$2

]
, (2.8)

nµ
.
=

1

Σ

[
−a2 sin2 θ/2,−$2 +

a2∆ sin2 θ

4$2
, 0,

−a+
a3 sin2 θ

2$2

]
, (2.9)

mµ .
=

1√
2(r + ia cos θ)

[
0,− ia∆ sin θ

$2
, 1,

i csc θ − ia2 sin θ

$2

]
. (2.10)

The symbol
.
= means “the components of the quantity

on the left-hand side are represented by the array on the

1 In this paper, we use capital Ψ rather than the more commonly
used lowercase ψ to denote the Weyl curvature scalars in order
to avoid confusion with the ingoing axial coordinate.



4

right-hand side in ingoing Kerr coordinates.” For brevity,
we have introduced $2 = r2 + a2. These legs satisfy

lµnµ = −1 , mµm̄µ = 1 , (2.11)

with overbar denoting complex conjugate; all other inner
products between legs vanish.

Following VPM11, the Weyl curvature on the hori-
zon is completely described by a two-dimensional trace-
free symmetric tensor CAB , where capital Roman indices
denote components associated with coordinates on the
horizon. Such a tensor has only two independent com-
ponents, which we can describe as “tidal polarizations,”
and denote C+ and C×. These polarizations are simply
related to the curvature scalar Ψ0 on the horizon:

Ψ0(r+) = − (C+ + iC×) . (2.12)

See App. A for further details and a proof of Eq. (2.12).
We use the polarizations C+,× in much of our presenta-
tion of results, especially in Sec. V.

The tidal field can be decomposed into harmonics of
the three fundamental Kerr frequencies, allowing us to
write its value at r = r+ as

Ψ0(v, θ, ψ) =
1

16M2r2
+

∑
lmkn

WH
lmknS

+
lmkn(θ)eiΦmkn(v,ψ) .

(2.13)
The function

S+
lmkn(θ) = +2Slm(θ; aωmkn) (2.14)

is a spheroidal harmonic of spin-weight +2; detailed dis-
cussion of this function and how it is computed can be
found in Ref. [11]. The frequency ωmkn is a harmonic of
the orbital frequencies,

ωmkn = mΩφ + kΩθ + nΩr . (2.15)

The product aωmkn sets the “oblateness” associated with
S+
lmkn(θ). We describe the phase Φmkn(v, ψ) in more

detail below.
The amplitude WH

lmkn can be found by solving the
Teukolsky equation [9]. In practice, we compute the field
Ψ4, a different projection of the Weyl curvature. In the
limits r → r+ and r → ∞, the fields Ψ4 and Ψ0 can be
related to one another without too much trouble [10]. As
r → r+, Ψ4 takes the form

Ψ4 =
∆2

(r − ia cos θ)
4

∑
lmkn

ZH
lmknS

−
lmkn(θ)eiΦmkn(v,ψ) .

(2.16)
Detailed discussion of how to compute the amplitude
ZH
lmkn using the Teukolsky equation is given in Ref. [21].

The function

S−lmkn(θ) = −2Slm(θ; aωmkn) (2.17)

is a spheroidal harmonic of spin-weight −2; see [11] for
detailed discussion.

The Starobinsky-Churilov identities [31] connect the
amplitudes of these two curvature scalars:

WH
lmkn = βlmknZ

H
lmkn , (2.18)

where

βlmkn =
64(2Mr+)4pmkn(p2

mkn + κ2)(pmkn + 2iκ)

clmkn
,

(2.19)

|clmkn|2 = {[(λ+ 2)2 + 4maωmkn − 4a2ω2
mkn]

×(λ2 + 36maωmkn − 36a2ω2
mkn)

+(2λ+ 3)(96a2ω2
mkn − 48maωmkn)}

+144ω2
mkn(M2 − a2) , (2.20)

Im clmkn = (−1)l+k+m 12Mωmkn , (2.21)

Re clmkn = +
√
|clmkn|2 − 144M2ω2

mkn . (2.22)

In these equations,

pmkn = ωmkn −mΩH , (2.23)

with ΩH = a/2Mr+, the angular frequency associated
with the Kerr event horizon. The real number λ is related
to the eigenvalue of the spheroidal harmonic:

λ = E − 2amωmkn + a2ω2
mkn − s(s+ 1) , (2.24)

where s = −2, and E is the eigenvalue2 associated with
the s = −2 spheroidal harmonic. In the limit a = 0,
E = l(l + 1). Note that the imaginary part of clmkn is
positive for “polar” modes (l+k+m even), and is negative
for “axial” modes (l + k + m odd). This sign is given
incorrectly in many papers in the literature, including
the first one in which the constant is computed [10]. We
discuss this error briefly in an erratum which was recently
published for Ref. [20]; further discussion will be given in
a forthcoming paper by Flanagan and Hinderer [38].

Other important quantities appearing in these equa-
tions are the black hole’s surface gravity,

κ =

√
M2 − a2

2Mr+
, (2.25)

and the phase

Φmkn(v, ψ) = m[ψ −K(a)]− (mΩφ + kΩθ + nΩr)v ,
(2.26)

where

K(a) =
a

2M(Mr+ − a2)

{
a2 −Mr+

+ 2M2arctanh
(√

1− a2/M2
)

+ M
√
M2 − a2 ln

[
a2

4(M2 − a2)

]}
. (2.27)

2 Multiple conventions for this eigenvalue can be found in the liter-
ature. Another common one puts λ = A− 2amωmkn + a2ω2

mkn;
they are related by A = E − s(s+ 1).
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In Eqs. (2.13) and (2.16), the sum over l goes from 2
to ∞; the sum over m from −l to l; and the sums over k
and n from −∞ to ∞. We abbreviate this set of indices
Λ ≡ {l,m, k, n}. With this, Eq. (2.13) becomes

Ψ0(v, θ, ψ) =
1

16M2r2
+

∑
Λ

WH
Λ S

+
Λ (θ)eiΦΛ(v,ψ)

≡
∑
Λ

Ψ0,ΛS
+
Λ (θ)eiΦΛ(v,ψ) . (2.28)

We have introduced

Ψ0,Λ =
WH

Λ

16M2r2
+

=
64M2r2

+pΛ(p2
Λ + κ2)(pΛ + 2iκ)ZH

Λ

cΛ
.(2.29)

Note that the phase ΦΛ ≡ Φmkn and wavenumber pΛ ≡
pmkn don’t actually depend on the index l. Using Λ as
a label for these quantities is thus somewhat redundant,
though this redundancy is harmless.

B. The geometry of a distorted event horizon

1. The shear to the horizon’s generators

The first tool we need to understand how the tidal
field affects the horizon’s geometry is the shear σ of the
horizon’s generators. It is given by

σ = mµmν∇µlν , (2.30)

evaluated at r = r+. (Note that, for an unperturbed
black hole, lµ is tangent to the generators at r = r+.)
Just as the complex Weyl scalar Ψ0 can be written using
polarizations C+,× of the on-horizon Weyl tensor, the
complex shear can be written in terms of polarizations
σ+,× of an on-horizon shear tensor:

σ = σ+ + iσ× . (2.31)

See App. A for further details and a proof of Eq. (2.31).
We will use σ+,× in much of our discussion of results,
especially in Sec. V.

With the tetrad and gauge that we use, the perturbed
shear is governed by the equation [25]

(D − κ)σ = Ψ0 , (2.32)

where the derivative operator D ≡ lµ∂µ. Let us expand
σ as we expanded Ψ0:

σ(v, θ, ψ) =
∑
Λ

σΛS
+
Λ (θ)eiΦΛ(v,ψ) . (2.33)

Using the fact that D → ∂v + ΩH∂ψ on the horizon, we
find that Eq. (2.32) is satisfied if

σΛ = 64M2r2
+c
−1
Λ pΛ(pΛ + iκ)(ipΛ − 2κ)ZH

Λ .

As was extensively discussed in paper I, there is a phase
offset between the shear and the applied tidal field. The
phase offset for each mode is simple to calculate:

σΛ

Ψ0,Λ
=

i

pΛ − iκ
=

exp [−i arctan(pΛ/κ)]√
p2

Λ + κ2
. (2.34)

In other words, for each mode, the shear leads the tide by
an angle given by the mode’s wavenumber pΛ times the
inverse surface gravity κ−1. For circular and equatorial
orbits, pΛ → m(Ωφ − ΩH), so each mode experiences
the same phase shift, modulo m. For these orbits, we
find a simple, constant offset between the tidal field and
the resulting shear. More complicated behavior results
for generic orbits, since many modes, each with different
phase shifts, contribute to Ψ0 and σ.

Although we do all of our calculations in this paper
in the frequency domain, it is also useful to examine Eq.
(2.32) in a “time-like” domain. As mentioned above, the
Newman-Penrose leg lµ is tangent to the unperturbed
horizon generators at r = r+. We may therefore write
D ≡ d/dλ on the horizon, where λ is affine parameter
along the generator. In this representation, λ is effec-
tively a time measure, albeit a somewhat unusual time,
measured by a clock that ticks at a uniform rate as it
follows a specific horizon generator.

With this in mind, following Ref. [26] Sec. VI C 6, let
us find the Green’s function G(λ, λ′) for Eq. (2.32):

(D − κ)G(λ, λ′) = δ(λ− λ′) . (2.35)

This equation has the solution

G(λ, λ′) = −eκ(λ−λ′)Θ(λ′ − λ) , (2.36)

where the step function

Θ(x) = 1 x > 0

= 0 x < 0 . (2.37)

The shear along the generator is then

σ(λ) = −
∫ ∞
λ

eκ(λ−λ′)Ψ0(λ′)dλ′ , (2.38)

or, using Eqs. (2.12) and (2.31),

σ+,×(λ) =

∫ ∞
λ

eκ(λ−λ′)C+,×(λ′)dλ′ . (2.39)

Notice that the behavior at λ depends on the tides to the
future of λ — a manifestation of the horizon’s teleological
nature. What we see is that the shear at λ on a particular
generator depends on the tide integrated over an interval
from λ to λ+ (a few)× κ−1.

2. The curvature of the distorted horizon

The tidal field Ψ0 on the horizon also tells us the scalar
Ricci curvature of the black hole, RH. This is discussed
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in great detail in paper I. Briefly, the scalar curvature of
the hole’s event horizon is given by

RH = R
(0)
H +R

(1)
H , (2.40)

where

R
(0)
H =

2

r2
+

(1 + a2/r2
+)(1− 3a2 cos2 θ/r2

+)

(1 + a2 cos2 θ/r2
+)3

(2.41)

describes an undistorted Kerr black hole, and

R
(1)
H = −4Im

∑
Λ

ð̄ð̄Ψ0,Λ

pΛ(ipΛ + κ)
(2.42)

is the perturbation to RH arising from the tidal field Ψ0.
The operator ð̄ lowers the spin weight of the angular basis
functions. As discussed in Sec. IIC of paper I, it is quite
simple to evaluate ð̄ð̄Ψ0,Λ with the spectral expansion
for the spin-weighted spheroidal harmonics that we use.
See paper I for detailed discussion.

To visualize the curvature of a distorted horizon, we
embed the horizon in a global Euclidean 3-space. This
means finding the function

rE(θ, ψ) = r
(0)
E (θ) + r

(1)
E (θ, ψ) (2.43)

that defines a surface with the same Ricci scalar curva-
ture as the distorted horizon. This works well for spins
a/M <

√
3/2; for higher spins, global Euclidean embed-

dings do not exist even for the undistorted event horizon
[22]. As such, we confine our embedding visualizations

in this paper to the range 0 ≤ a/M <
√

3/2. Work in
progress indicates that an elegant way to lift this restric-
tion will to be embed the horizon’s distorted geometry in
the globally hyperbolic space H3 [32].

Confining our discussion to Euclidean 3-space, a sim-
ple analytic solution exists for the undistorted hole’s em-

bedding radius r
(0)
E (θ) [22]. To find the perturbation

r
(1)
E (θ, ψ), we expand in spherical harmonics, writing

r
(1)
E (θ, ψ) = r+

∑
`m

ε`mY`m(θ, ψ) . (2.44)

Given this form, it is a straightforward (although rather

lengthy) exercise to construct the scalar curvature R
(1)
E

associated with r
(1)
E ; details are given in Appendix B of

paper I. By enforcing R
(1)
E = R

(1)
H , we read off the em-

bedding coefficients ε`m. Full details of the algorithm for
doing this are given in Appendix B of paper I.

III. BEHAVIOR OF THE TIDAL FIELD

Before examining how the horizon responds to dynam-
ical tides, we first look at some examples of tides from
geodesic orbits. As we will see in later sections, the shear
polarizations σ+,× largely follow the behavior of the driv-
ing tides C+,×. There are, however, some features of the
shear that are unique. It is thus useful to examine the
tide in detail to set a baseline for comparing the two
functions’ behaviors.

A. Circular inclined orbits

The simplest behavior is seen for circular orbits of
Schwarzschild black holes, for which Ωθ = Ωφ. These
orbits do not precess, instead maintaining a fixed orien-
tation for all time. Figure 1 shows3 a typical example of
the behavior we see in this case. The four panels of this
figure all illustrate the tidal field arising from an orbit
with a = 0, p = 10M , θinc = 60◦. The orbit is oriented
so that θ = 30◦ at ψ = 0◦. It crosses the equator at
ψ = 90◦, continues to θ = 150◦ at ψ = 180◦, crosses the
equator again at ψ = 270◦ and returns to θ = 30◦ at
ψ = 360◦.

Although simple, the tidal field shown in Fig. 1 demon-
strates certain important features which will recur in
more complicated examples. Perhaps most significantly,
note the strong modulation of the tide’s amplitude with
azimuthal position ψ. The panels on the left show the
tide evaluated at ψ = 0◦, where the tide is near its max-
imum; those on the right show it at ψ = 90◦, near its
minimum. The amplitude varies sinusoidally with ψ be-
tween these extremes.

The two upper panels show the tidal field including
modes up to l = 9; the two lower panels only include
quadrupole modes (l = 2, m+ k = ±2). The quadrupo-
lar tidal field is a pure sinusoid, oscillating twice per or-
bit. Additional modes complicate this structure, adding
features which oscillate at both lower frequency (m = 1
modes) and higher frequency.

Consider next the tide arising from circular orbits of
Kerr black holes. Two examples are shown in the left-
hand panels of Fig. 2. The top example is for spin a =
0.3M , and the bottom is for a = 0.85M ; both examples
use p = 10M , θinc = 60◦ and include modes up to l = 9.
Thanks to frame dragging, the orbit’s orientation is not
fixed in these cases. The orbit instead precesses about
the black hole’s spin axis, modulating the tide. This
precession causes a modulation of the fields C+,×; they
oscillate between bounds similar to those seen in Fig. 1
at ψ = 0◦ and ψ = 90◦. This precession is substantially
faster at a = 0.85M than at a = 0.3M , leading to the
more rapid modulation seen in the bottom figure than in
the top.

More interestingly, the amplitude is roughly an order
of magnitude smaller for a = 0.3M than for a = 0.85M .
The reason for this can be understood by examining Eq.

3 We use a mass ratio µ/M = 1/30 for all figures which show
quantities computed in black hole perturbation theory (such as
C+, σ+, or the embedding surfaces). This fairly large mass ratio
is only used so that the effects we compute are clearly visible
in these figures. Since we use linear perturbation theory, one
can easily extrapolate to other mass ratios. We also scale these
quantities by r3

min/M
3 = p3/[M(1+e)]3, accounting for the 1/r3

leading-order scaling associated with tides. This makes it easier
to compare tidal distortions for different orbits, ensuring that the
maximum distortion is roughly the same in all cases we present.
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FIG. 1: Examples of the on-horizon tidal field C for circu-
lar orbits around a Schwarzschild black hole. The four plots
shown here are for an orbit with p = 10M and with inclination
angle θinc = 60◦. The solid (red) line shows the polarization
C+; the dashed (blue) line shows C×. The top two panels
illustrate how this field varies with ingoing time v at azimuth
angle ψ = 0◦ and ψ = 90◦; the bottom two figures show the
same data, but including only quadrupolar modes (i.e., modes
for which l = 2 and m + k = ±2). These plots illustrate the
importance of modes beyond the quadrupole, as well as the
strong functional dependence of the tide on the position at
which it is measured.

(2.29): each mode of the tidal field is proportional to the
wavenumber pΛ = ωΛ − mΩH. For a = 0.3M , Ωθ and
Ωφ are roughly a factor of two from ΩH (MΩθ = 0.0312,
MΩφ = 0.0317, MΩH = 0.0768). By contrast, these
frequencies are quite different for a = 0.85M (MΩθ =
0.0303, MΩφ = 0.0318, MΩH = 0.2784). The wavenum-
ber is substantially smaller in the case a = 0.3M for the
most important modes of the tide, and the resulting field
is of much smaller amplitude. This dependence of tide on
pΛ causes a strong variation of its amplitude as a function
of a. The right-hand panel of Fig. 2 shows how, holding
the orbit geometry fixed, the amplitude of C+ varies with
a. The effect is quite significant, with the field being a
factor ∼ 70 larger for nearly maximal Kerr holes than it
is for very slow rotation. Although differing in detailed
behavior, similar variation of the tide with a is found for
other orbits. For example, for strong-field orbits with
(p, e, θinc) fixed, the we typically find a minimal tide at
a/M ∼ 0.1− 0.3.

B. Eccentric equatorial orbits

Let us now examine tides from eccentric orbits in
the black hole’s equatorial plane. We again begin with
Schwarzschild black holes, and examine the tidal field C+

for an orbit with p = 8M , e = 0.5. The left-hand panels
of Fig. 3 show the behavior of C+ close to the moment
that the orbit passes through periapsis. We examine this
field in the hole’s equatorial plane, θ = 90◦, and at four
evenly spaced axial angles, ψ = 0◦, 90◦, 180◦, and 270◦.
Note that the cross polarization C× vanishes for all equa-
torial orbits, so we do not show it in any of our figures.
(Away from the equatorial plane, C× is non zero, but is
qualitatively quite similar to C+.) The right-hand panel
of Fig. 3 shows the orbit’s radius as a function of ingoing
time near periapse passage.

The behavior of C+ at ψ = 0◦ can be regarded as a
prototype for the tidal field from eccentric orbits: there
is a large spike at roughly the same time as periapsis,
with smaller scale oscillations before and after. These
dynamics in C+ occur when the small body is closest
to the event horizon. To quantify this, we have marked
with large dots the moments at which the orbital radius
is r = 101/3rmin (v ' 295M and v ' 475M). Since at
leading order the tide scales as 1/r3, we expect that the
tide will be about an order of magnitude smaller than its
peak at these moments. Comparing the left-hand panels,
we see that C+ in all cases is at least a factor of ten
smaller than its peak value at these times.

The remaining three left-hand panels show how the
tide is modulated by the azimuthal angle. In all cases,
we see three oscillations, but the relative amplitude of
these oscillations varies significantly with the value of ψ
at which the field is measured: the middle oscillation is
“large” and the other two small for the prototypical form
we see at ψ = 0◦, but all three wiggles are of nearly equal
amplitude at ψ = 180◦. As we saw in the circular case
(cf. Fig. 1), the position at which the field is measured
significantly affects the tide.

Figure 4 examines the tide for eccentric equatorial Kerr
black hole orbits. We show C+ for orbits with p = 8M ,
e = 0.5 about black holes with spins a = 0.3M , a =
0.6M , and a = 0.9M , as well as an orbit with p = 3.5M ,
e = 0.7 about a black hole with spin a = 0.9M . Two
of the examples (p = 8M , e = 0.5 for a = 0.6M and
a = 0.9M) are similar to the prototype eccentric tide we
examined for Schwarzschild (the ψ = 0◦ case of Fig. 3): a
large spike near periapsis, with smaller scale oscillations
before and after. The only notably new feature we see
in these examples is the rather different amplitude of C+

as compared to the Schwarzschild case, and as compared
to each other. This is explained similarly to how we
explained the varying tidal amplitudes of circular Kerr
orbits (cf. Fig. 2 and associated discussion): the ampli-
tude of each mode Λ is proportional to pΛ = ωΛ −mΩH.
Modes can be significantly suppressed when the orbit fre-
quencies are close to ΩH.

The cases a = 0.3M , p = 8M , e = 0.5 (top-left panel
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FIG. 2: Examples of the on-horizon tidal polarizations C+,× for circular orbits around Kerr black holes (left panels), and the
amplitude as a function of black hole spin (right panel). All data are for orbits with p = 10M , θinc = 60◦. The top plot on the
left is for a black hole with spin a = 0.3M ; bottom is for a hole with spin a = 0.85M . Notice that the amplitude is significantly
smaller for a = 0.3M , and that the modulation is significantly slower. The difference in modulation is simply explained: frame
dragging is substantially stronger at a = 0.85M , so the orbit precesses much more rapidly. The amplitude effect is more subtle.
Each mode Λ of the on-horizon tidal field is proportional to pΛ ≡ ωΛ −mΩH. At a = 0.3M , both Ωφ and Ωθ are close enough
to ΩH to suppress the most important modes of the tide. On the right, we we show the amplitude of C+ as a function of a,
showing how strongly this field varies thanks to this proportionality of the modes with pΛ.

of Fig. 4) and a = 0.9M , p = 3.5M , e = 0.7 (bottom-
right panel) both demonstrate significate deviations from
this prototype. Consider the a = 0.3M case first: the
spike at periapse passage in this case is interrupted by
about a cycle and a half of very small amplitude wiggle.
This phenomenon appears to arise because of a change in
the relative angular speeds of the orbit and of the event
horizon during periapse passage.

To understand this, recall (as discussed in paper I) that
the tidal field Ψ0 (and hence C+) vanishes for orbits that
co-rotate with the event horizon. This only occurs for
circular, equatorial orbits, and is simple to understand:
such orbits are characterized by only one frequency, Ωφ,
and so ωmkn → mΩφ. If Ωφ = ΩH, then pΛ = m(Ωφ −
ΩH) = 0, and by Eq. (2.29) Ψ0 = 0.

In our case, the orbit does not co-rotate with the hori-
zon for all time, but it co-rotates at two moments as it
moves through periapsis. The top panel on the right of
Fig. 4 shows dφ/dt near periapse passage, comparing it to
the horizon’s spin frequency MΩH. The orbit’s angular
speed is slower than the horizon’s spin until v ' 315.9M .
It is then faster than the horizon until v ' 346.3M , re-
turning to a slower angular speed than the horizon. The
small-scale oscillations in C+ occur almost precisely dur-
ing the moments that the orbit overtakes the hole’s ro-
tation. The tidal field oscillates with small amplitude as
the orbit passes through co-rotation and back near its

periapse passage.

The additional oscillations we see in the periapse spike
for the case a = 0.9M , p = 3.5M , e = 0.7 are sim-
pler to explain. This orbit has a “zoom-whirl” structure,
in which the small body “whirls” multiple times around
the event horizon at periapsis before “zooming” back to
apoapsis. The bottom panel on the right of Fig. 4 shows
the number of windings about the horizon, φ/2π, that the
orbit executes as a function of time. The orbit winds the
horizon about two and a half times in the time interval
180M . v . 230M (periapsis occurs at v = 203M , near
the middle of this range). The multiple oscillations in
C+ occur during the period in which the orbit is whirling
close to the black hole.

C. Summary of tidal behavior

We conclude our discussion of the tide by summarizing
the features that we found above. For the most part, we
find that the dynamics of the fields C+,× correlate with
the dynamics of the orbit. For circular orbits, the tides
are essentially sinusoidal, with the amplitude modulated
by the axial angle at which the field is measured. Thanks
to frame dragging, for the Kerr case this modulation be-
comes associated with the orbit, leading to a dynamical
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FIG. 3: Examples of the on-horizon tidal field C+ for an eccentric equatorial orbit of a Schwarzschild black hole (left), and a
portion of that orbit’s radial motion (right). The orbit has p = 8M , e = 0.5. We examine C+ on the hole’s equator at four
different axial positions. (We don’t show the cross polarization since C× = 0 at θ = 90◦ for tides from equatorial orbits.)
Consider first the tidal field at ψ = 0◦. The shape of this field can be considered a prototype of the tide from an eccentric
orbit: There is a large spike at roughly the moment the orbit passes through r = rmin, with smaller scale oscillations before
and after. The oscillations and spike occur only when the orbit is close to the event horizon. In the right-hand panel, we
have marked with large dots the moments when the orbital radius is r = 101/3rmin. Since the tide scales roughly as 1/r3,
these should indicate when the tide has fallen by about an order of magnitude from its peak value. Indeed, at these moments
(v ' 295M and v ' 475M) the tide has fallen by at least an order of magnitude. The three other small panels on the left-hand
side illustrate how the tide is modulated by azimuth angle. The position at which the field is measured can significantly affect
the qualitative appearance of the tide during periapse passage.

modulation of the tide’s amplitude.

For eccentric orbits, the prototype form of the tide is
a large spike at periapse passage, modulated by the axial
angle in a manner similar to the axial modulation we saw
with circular orbits. “Zoom whirl” orbits, fairly common
in the strong field of rapidly spinning black holes, are or-
bits in which the orbit “whirls” around the black hole at
periapsis, completing multiple revolutions before “zoom-
ing” back out to apoapsis. In such cases, multiple oscil-
lations occur during the large amplitude periapse spike.

Certain interesting and seemingly subtle features of the
tides we find originate in the fact that modes of the tidal
field are proportional to pΛ = ωΛ − mΩH. This factor
varies quite a bit depending on the hole’s spin and the
nature of the orbit. This leads to substantial variation in
the amplitude of the tide when we consider a sequence
in which the orbit’s geometry is held fixed and the black
hole spin is varied. It also leads to interesting behavior
when we consider orbits for which ωΛ ' mΩH.

Figure 5 shows how the features of tides from in-
clined circular and equatorial eccentric cases combine for
generic orbits. We examine two orbits with p = 8M ,
θinc = 60◦ about a black hole spin a = 0.6M . One orbit
has eccentricity e = 0.2, the other e = 0.5. The low ec-

centricity case blends the features of the inclined circular
and equatorial eccentric limits in fairly straightforward
way: we find relatively high amplitude tidal spikes at
each periapse passage, with sinusoidal tidal oscillations
between each passage. In the case e = 0.5, the behavior
we see practically cannot be distinguished from an equa-
torial eccentric case. The eccentricity is sufficiently large
in this case that there is a very large contrast between
the tidal spike near periapsis and the much weaker tide
at apoapsis. Any oscillations between periapse passages
are dwarfed by the much more important spike in the
tide when the orbit is closest to the black hole.

IV. HORIZON DYNAMICS I: CONSISTENCY
TEST FOR THE SCHWARZSCHILD LIMIT

We now turn to our examination of the dynamics of the
horizon’s geometry. We begin by first testing whether the
Schwarzschild limit exhibits the correct behavior. These
black holes are spherically symmetric, so there is no phys-
ical distinction between an equatorial orbit (θinc = 0◦)
and an orbit of arbitrary inclination. Our representation
of these orbits will certainly be different, but this is due
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FIG. 4: Examples of the on-horizon tidal field C+ for equatorial eccentric orbits of Kerr black holes (left), and features of
the orbits which we use to explain some of the behavior we find (right). The cases shown here demonstrate several examples
of interesting behavior for strong-field Kerr orbits. On the left, the top panels and the bottom left panel are for orbits with
p = 8M , e = 0.5, and show orbits about black holes with spins a = 0.3M , a = 0.6M , and a = 0.9M ; the bottom right panel on
the left is for an orbit with p = 3.5M , e = 0.7 about a black hole with a = 0.9M . In all cases, we examine the field at θ = 90◦,
ψ = 0◦; C× vanishes there for all equatorial orbits. The behavior we see in the top-right and bottom-left panels is very similar
to the prototype behavior of C+ we saw in Fig. 3: a large spike coinciding with periapse passage, and smaller-scale oscillations
before and after. The behavior we see in the top-left and bottom-right deviates from the prototype in interesting ways. For
a = 0.3M , p = 8M , e = 0.5, C+ undergoes additional very small-amplitude oscillations during the spike. On the right, the
top panel compares the orbit’s axial speed dφ/dt with the horizon’s spin frequency ΩH. The small amplitude oscillations occur
during the brief span in which dφ/dt exceeds ΩH. For a = 0.9M , there are multiple high-amplitude oscillations near the largest
spike. This is correlated with “whirling” orbital dynamics. As shown in the bottom panel on the right, the orbit wraps around
the black hole multiple times at periapsis before “zooming” back out to apoapsis.

to the coordinate orientation we have chosen. (By con-
trast, when a 6= 0, the black hole’s spin axis picks out a
preferred spatial direction.) We thus expect that many
properties related to black hole perturbations should be-
come invariant with respect to orbit inclination for a = 0,
or else vary in a simple way.

This limiting behavior has been discussed in past work,
in particular describing how the amplitude of gravita-
tional waves and the energy that they carry varies as the
orbit’s inclination varies. As one example, consider the
energy carried by gravitational waves. The total energy
carried by a given l-mode must be constant as a function
of orbital inclination:(

dE

dt

)
l

≡
∑
mkn

(
dE

dt

)
lmkn

= constant with θinc . (4.1)

The sum in Eq. (4.1) is taken over m from −l to l, and
over n from −∞ to ∞. The sum over k in principle runs
from −∞ to ∞, though many modes do not actually
contribute, as we discuss momentarily.

Although the summed flux (dE/dt)l does not vary with
θinc, the distribution of gravitational-wave power among
the harmonic indices varies with inclination quite a bit.
In the Schwarzschild limit, Ωθ = Ωφ. Consider two orbits
which are identical except for inclination. One is equa-
torial (θinc = 0◦), the other is not. Power in an axial
m-mode at θinc = 0◦ becomes distributed among polar
k-modes and axial modes with m′ = (m − k) in the in-
clined orbit. The way in which the power is so distributed
is easily deduced from the rotation properties of spherical
harmonics:

(dE/dt)l(m−k)kn(θinc)

(dE/dt)lm0n(θinc = 0◦)
=
∣∣∣Dl(m−k)m(θinc)

∣∣∣2 . (4.2)

Here, Dl(m−k)m is a Wigner function, which relates the

spherical harmonic Ylm at θ to the harmonic Yl(m−k) at
θ − θinc. (This relation implies that there is no power in
any mode with |m + k| ≥ l.) Further discussion of this
relation is given in Refs. [11] (with a few minor errors)
and [21] (which corrects those errors).

What applies to the gravitational wave flux likewise
applies to all the quantities which describe tidal distor-
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FIG. 5: Example of the on-horizon tidal polarizations C+,×
for generic Kerr orbits. Both panels show the tide for orbits
with p = 8M , θinc = 60◦ about black holes with spin a =
0.6M ; top is for an orbit with the relatively low eccentricity
e = 0.2, bottom is for the much larger value e = 0.5. The
solid (red) curves show C+, and the dashed (blue) curves
show C×. In both cases, we show the tide resulting from five
complete radial cycles of the orbit’s motion. For e = 0.2, we
see a blending of features of the circular inclined and eccentric
equatorial tides, with larger amplitude spikes occuring near
periapse passage, and sinusoidal oscillations between these
spikes. For e = 0.5, the behavior is dominated by the very
large spike seen at periapse passage, and is quite similar in
form to the eccentric equatorial case.

tions of a Schwarzschild black hole’s event horizon. We
find that, in all cases we have checked, quantities trans-
form under rotation exactly as they should. This is not
terribly surprising, since this property of our code has
been checked very carefully in previous analyses. It is re-
assuring, however, that the modifications we have made
to compute the horizon’s tidal distortion have not broken
this behavior.

Figure 6 shows one example of a test for the rota-
tional consistency of Schwarzschild horizon distortions.
Consider two orbits around a Schwarzschild black hole,
both with p/M = 10 and e = 0.5. One orbit is equa-
torial in the coordinates we impose, the other is highly
inclined (θinc = 80◦) in these coordinates. Due to spher-
ical symmetry, the horizon distortion for the equatorial
case should be identical to the horizon distortion in the
inclined case, correcting for the tilt of θinc.

In this figure, we show the perturbation to the radius of

the horizon’s embedding surface, r
(1)
E , for these two cases.

The solid (blue) line shows the distortion for the inclined
case as measured at ψ = 0, θ = 10◦ (i.e., rotated θinc

FIG. 6: A test for consistency of our results in the a = 0 limit:
the distortion to the embedded horizon arising from a highly
inclined orbit [θinc = 80◦; solid (blue) curve] as measured
by an observer sitting θinc above the equator, and from an
equatorial orbit [θinc = 0◦; points (red)] as measured by an
observer on the equator. Both data sets include modes to
l = 7; we estimate that contributions beyond this affect the

horizon’s shape at a level r
(1)
E /2M . 10−7. The two data

sets agree to within numerical accuracy, as they should — a
Schwarzschild black hole is spherically symmetric, so there is
no unique notion of the hole’s equator.

from the equator). The dots (red) show the distortion at
ψ = 0 on the equator for the equatorial orbit. We include
all modes which contribute to the horizon’s distortion up
to l = 7; we estimate that modes beyond this affect the

horizon’s shape at a level r
(1)
E /2M . 10−7.

Although these calculations were done using very dif-
ferent orbits, and very different modes enter the expan-

sion, the horizon distortions r
(1)
E we find are essentially

identical, only differing due to accumulated round-off er-
ror at a level . ε, where ε ' 10−10 is a parameter control-
ling the accuracy of numerical integrals. If both curves
had been plotted as solid lines, they would have been
indistinguishible here. This is a typical example of how
our code handles this consistency test.

V. HORIZON DYNAMICS II: APPLIED TIDAL
FIELD AND RESULTING SHEAR

We begin with an analysis of the horizon’s response
to an equatorial, eccentric orbit. The applied tidal field
varies from quite strong near periapsis [r = rmin = p/(1+
e)] to weak near apoapsis [r = rmax = p/(1 − e)], giving
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FIG. 7: Applied tidal field versus shear response for an ec-
centric equatorial orbit of a non-spinning black hole. Data
are for an orbit with p = 8M , e = 0.5, θinc = 0◦. We show
the on-horizon Weyl curvature polarization C+ [dashed (blue)
curves], as well as the resulting shear polarization σ+ [solid
(red) curves]. Both fields are plotted at θ = 90◦, ψ = 0◦,
and include all modes up to l = 9. The top panel shows C+

and σ+ as functions of ingoing time v. Notice that σ+ ap-
pears to lead C+ by an almost constant time interval. The
bottom panel shows the same data, but with σ+ shifted by
∆v = κ−1 = 4M . The shear response lines up almost per-
fectly with the driving tide in this panel, showing that the
shear σ+ leads the tide by κ−1 in the Schwarzschild limit.

us a chance to study the horizon’s response for a wide
range of applied tidal field.

A. Relative phase of the tide and shear

We begin our study of the shear induced on the hori-
zon by examining its phase relative to the driving tide.
In paper I, the driving tide was stationary, and the dif-
ference between the tide and the response amounted to
a simple phase shift. For generic orbits, the difference is
not so simple.

Figures 7, 8, and 9 compare the tidal field and shear
in five different situations. In all cases, the orbit has
p = 8M , e = 0.5, θinc = 0◦, but the black hole spin varies
over a/M ∈ [0, 0.3, 0.6, 0.9, 0.9999]. We include all modes
up to l = 9 in these plots. We compare one polarization
of the on-horizon Weyl tensor, C+ [dashed (blue) curves],
to the corresponding polarization of the horizon’s shear,
σ+ [solid (red) curves]. The orbits are all equatorial,
so we examine these quantities in the holes’ equatorial
planes: all data are shown at the point θ = 90◦, ψ = 0◦.

FIG. 8: Applied tidal field versus shear response for eccentric
equatorial orbits of spinning black holes. Data in both panels
are for an orbit with p = 8M , e = 0.5, θinc = 0◦, and include
modes up to l = 9. Top is for a hole with spin a = 0.3M ,
bottom for a = 0.6M . As in Fig. 7, we show the on-horizon
Weyl curvature polarization C+ [dashed (blue) curve] and the
shear polarization σ+ that results [solid (red) curve]. All data
are plotted at θ = 90◦, ψ = 0◦.

Begin with Fig. 7, which shows C+ versus σ+ for orbits
of a Schwarzschild black hole. The top panel of this figure
shows that the horizon’s response leads the driving tide
by what is apparently a constant offset. To understand
this, consider again Eq. (2.34):

σΛ

Ψ0,Λ
=

exp [−i arctan(pΛ/κ)]√
p2

Λ + κ2
. (5.1)

In the Schwarzschild limit, pΛ = ωΛ, and κ−1 = 4M .
Each mode σΛ of the shear response leads the driving
tide Ψ0 by 4MωΛ radians. This is equivalent to σ leading
Ψ0 in time by 4M . We check this in the bottom panel
of Fig. 7: this plot is identical to the top panel of Fig. 7,
but we have shifted σ+ by ∆v = κ−1 = 4M . Notice that
the tide and the shear are almost precisely aligned in this
panel, confirming that the responses here differ primarily
by a temporal offset of κ−1 = 4M .

As the black hole’s spin increases, the shift between
the applied tide and the shear response becomes more
complicated: the timescale κ−1 becomes larger as a →
M , and the wavenumber pΛ = ωΛ−mΩH which enters the
mode ratio (2.34) differs significantly from the frequency
ωΛ. We can see the impact of this change in Fig. 8. In the
top panel, we examine C+ and σ+ for the same orbit used
in Fig. 7 (p = 8M , e = 0.5, θinc = 0◦), but now about a
black hole with spin a = 0.3M . In this case, the tide and
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FIG. 9: Applied tidal field versus shear response for eccentric
equatorial orbits of spinning black holes. Data in both panels
are for an orbit with p = 8M , e = 0.5, θinc = 0◦, and include
modes up to l = 9. Top is for a hole with spin a = 0.9M ,
bottom for a = 0.9999M . As in Figs. 7 and 8, we show the on-
horizon Weyl curvature polarization C+ [dashed (blue) curves]
and the shear polarization σ+ that results [solid (red) curves].
All data are plotted at θ = 90◦, ψ = 0◦.

the shear are nearly coincident as a function of ingoing
time v (including the small-amplitude oscillations in the
periapse spike we discussed in Sec. III). In the bottom
panel, we plot C+ and σ+ for this orbit about a black
hole with spin a = 0.6M . The tide now leads the shear,
and the shapes are not congruent. Empirically, we find
that if we shift σ+ by δv ' 3.8M we can make the largest
peaks line up. Other features, however, do not line up
so well; the differing behaviors of C+ and σ+ cannot be
ascribed to a simple time shift.

The trend seen in Fig. 8 continues in Fig. 9, which
shows C+ and σ+ for the same orbit about black holes
with a = 0.9M (top) and a = 0.9999M (bottom). We
again see that the tidal field C+ leads the shear response
σ+. We can match the largest peaks by shifting σ+ by
δv ' 8M in the case a = 0.9M , and by δv ' 9M in the
case a = 0.9999M . However, none of the other features
align when we do this, indicating that the shift at these
large spins cannot be described as a simple shift in time.

One interesting feature that comes across as we review
Figs. 7 – 9 is the transition from shear leading the tide at
a = 0 to shear lagging the tide for a > 0.3M . This tran-
sition is reminiscent of the behavior of the tidal bulge
that was seen in paper I. There, we found for circular
equatorial orbits that the tidal bulge leads the applied
tide at small spin, and lags the applied tide at large spin.
At least in the small a and large a limits, this could

be understood in the circular equatorial case as reflect-
ing the relative angular frequencies of the orbit and the
black hole. Qualitatively similar behavior clearly shows
up for these dynamical situations, although quantifying
it is not so straightforward since these orbits have a more
complicated time-frequency structure.

B. High-frequency oscillations at high spin

At the highest spins we have examined, a new phe-
nomenon emerges: a high-frequency oscillation in the
shear σ following the orbit’s passage through periapsis.
This oscillation decays over a time of about 70M for the
orbits we have examined. An example is shown in Fig. 10.
Both panels of this figure show data for equatorial orbits
with e = 0.7 about black holes with spin a = 0.9999M .
The left panel shows data from an orbit with p = 10M .
The behavior of C+ and σ+ is quite similar to the cases
discussed previously: C+ shows a large spike near pe-
riapse passage, with small scale oscillations before and
after; σ+ has a similar shape, offset somewhat in time.
(Because this is an equatorial orbit and we examine these
fields on the equator, C× and σ× are both zero.)

On the right, we show a much stronger field orbit,
p = 3M . The spike at periapse passage has several large
amplitude oscillations characteristic of the “whirling”
near periapsis common for large spin, strong-field or-
bits. This is essentially the same phenomemon seen in
the bottom-right panel on the left-hand side of Fig. 4.
The new phenomenon to which we call attention are the
low-amplitude, high-frequency wiggles that follow peri-
apse passage. We see roughly seven low-amplitude cycles
in σ+ between periapse spikes, decaying in amplitude as
the system evolves from one spike to the next. These
wiggles are only apparent in the shear σ+; we have not
seen evidence of them in the tidal field C+.

As we complete this analysis, the origin of these low-
amplitude oscillations is a mystery. They do not ap-
pear to be a numerical artifact; we are confident that
our harmonic expansion has converged, as including ad-
ditional modes does not change our results beyond the
ninth or tenth digit. The fact that these oscillations only
appear in the shear σ+ and not in the tidal field C+ or
Ψ0 indicates that they cannot be related to the hole’s
quasi-normal modes. As we’ll discuss in a moment, the
behavior of their decay also argues against such an expla-
nation. In an earlier version of this paper, we argued that
these wiggles could be understood as an imprint of the
teleological Green’s function discussed in Sec. II B, with
the oscillation frequency related to the horizon’s spin fre-
quency ΩH, and the decay to the Green’s function’s de-
cay time κ−1 = 2r+/

√
1− (a/M)2. On deeper analysis

(prompted by our original submission’s referee report),
we have concluded that the data does not support this
explanation either.

For now, rather than offering any hypotheses attempt-
ing to explain these wiggles, we simply lay out the empir-
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FIG. 10: Detailed study of the horizon’s shear response σ+ [solid (red) curves] given a driving tidal field C+ [dashed (blue)
curves] for the case of very rapid spin, a = 0.9999M . In both panels, we consider equatorial (θinc = 0◦) orbits with eccentricity
e = 0.7, and include all modes up to l = 9. In the left-hand panel, the orbit has semi-latus rectum p = 10M ; in the right,
p = 3M . For the case p = 10M , no particularly noteworthy feature is evident. This behavior is qualtitatively similar to the
shear response that we see across a wide range of orbits: σ has a shape similar to C, but is offset as a function of time. However,
for high spins and strong-field orbits, new behavior emerges: low-amplitude, high-frequency wiggles can be seen in the shear
between the high-amplitudes “bursts” corresponding to the orbit’s periapse passage. Notice that these wiggles are not present
in the tidal field, only in the shear response.

ical situation as it stands. Figure 11 zooms in on the re-
gion of Fig. 10 in which this phenomenon is apparent. We
also include data for additional spin values for orbits with
this geometry. The trend we see is that the frequency of
the oscillations is nearly the same for these cases, evolv-
ing slightly as the spin moves toward the extremal limit.
The decay time likewise is nearly constant over this range
of spin. The near constancy of the decay time appears
to rule out an explanation for these wiggles based on
black hole quasi-normal modes, or on the Green’s func-
tion (2.39). Both of these explanations would require the
decay time to become dramatically longer as a → M .
The form of the teleological Green’s function, for exam-
ple, would lead us to expect the decay time to increase
by a factor of ten as the spin changes from a = 0.9999M
to a = 0.999999M . The lack of such increase points to
some other mechanism.

By fitting and subtracting a quadratic to remove the
secular trend in the data shown in Fig. 11, we can more
accurately locate the position of the peaks and estimate
the frequency associated with the wiggles. Assuming that
the phase of these wiggles follows the form

Φwiggle = Ωwigglev + δΦ (5.2)

and requiring that the phase of the peaks lie on the line

Φwiggle(peak) = 2πn (5.3)

a/M
√

1− (a/M)2 MΩwiggle MΩH MΩφ MΩr

0.9995 0.03162 0.5826 0.4844 0.0988 0.0399

0.9999 0.01414 0.5805 0.4930 0.0988 0.0399

0.99999 0.004572 0.5792 0.4978 0.0988 0.0399

0.999999 0.001414 0.5787 0.4993 0.0988 0.0399

TABLE I: The best-fit frequency Ωwiggle characterizing the
high-frequency oscillations shown in Fig. 11. We present this
frequency as a function of both the black hole spin a/M , and

the parameter ε ≡
√

1− (a/M)2 which characterizes devi-
ation from extremality. For comparison, we show the hole’s
spin frequency ΩH for these spins, and the orbit’s geodesic fre-
quencies Ωφ and Ωr. We see no obvious physically motivated
way to connect Ωwiggle to these other frequencies.

with n integer, we can estimate the wiggle frequency that
best fits our data. The results are summarized in Table I.
We present the best-fit frequencies versus both the spin a
and a parameter ε ≡

√
1− (a/M)2, which characterizes

the deviation of the spacetime from extremal Kerr.
We find that a linear fit in ε describes our best fit

frequencies quite well. Performing a least-squares fit of
our data, we find

MΩwiggle = (0.5786± 0.0001) + (0.1288± 0.0032) ε .

(5.4)
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FIG. 11: A zoom on the high-frequency wiggles shown in the
right-hand panel of Fig. 10. Along with the a = 0.9999M
case shown previously, we include data describing wiggles for
orbits with the same values of p, e, and θinc, but for spins a =
0.9995M , a = 0.99999M , and a = 0.999999M . As described
in the text, the frequency associated with the wiggles (which
we have not succeeded in relating to other frequencies in the
problem) decreases slightly as a function of spin. The rate at
which the amplitude decays does not vary significantly with
spin. We have not been able to come up with a satisfactory
explanation for the phenomenon of these wiggles.

Although the goodness of this fit with ε is intriguing, we
cannot yet claim any understanding for what this might
signify. In Table I, we include the geodesic frequencies Ωφ
and Ωr for the orbits used in Fig. 11, as well as the hori-
zon frequency ΩH. As an exercise in arithmetic, we can
find no combination of these frequencies that produces
the values we find for Ωwiggle. Absent any compelling
physical model, any combination we did find would ar-
guably be no more useful than numerology.

For now, we leave this phenomenon as an intriguing
empirical finding of this analysis, and hope that addi-
tional work may explain it in the future.

VI. HORIZON DYNAMICS III: HORIZON
EMBEDDINGS

In this section, we examine dynamical horizon embed-
dings for several representative orbits. Our goal will be
to show how the horizon behaves as a function of the or-
bit’s behavior, so we will show a sequence of figures that
show both the tidally distorted horizon and the smaller
member of the binary. As discussed at length in paper
I, there is substantial ambiguity in such a plot, associ-

ated with the fact that the horizon and the orbit are at
different positions in a curved spacetime. Comparing the
horizon and the orbit requires that we carefully define ex-
actly what is shown. Following the choices that we made
in paper I, our plots are all shown on a slice of constant
ingoing time v; this is equivalent to what we called the
“instantaneous map” in paper I.

One might wonder why, given this ambiguity, we
choose to present our data using these embedding di-
agrams. Indeed, there are multiple ways that one can
present data representing the geometry of distorted black
holes. For example, one could make a color map repre-

senting the scalar curvature R
(1)
H , or a color map repre-

senting the phase between the on-horizon tide Ψ0 and the
resulting shear σ. (Note that both Ψ0 and σ are spin-
weight 2 quantities, and so cannot be simply represented
on a surface — both, for example, are multiply valued
at the poles, θ = 0 and θ = π.) Such representations
have the advantage of presenting quantities that are less
ambiguious.

In the end, we have chosen to use embeddings pri-
marily for aesthetic reasons. One of our goals was to
develop graphics which demonstrate the extent to which
a black hole’s shape was distorted by tides from its com-
pansion. Although one must be careful in interpreting
this shape, embeddings provide a compelling picture of
this tidal shape distortion. We supplement the shape
with a color map which codes the horizon’s distortion
from the shape it would have in the absence of a binary
companion. In all of the figures which follow, surfaces
colored green are essentially undistorted from the em-
bedding of an isolated black hole; those colored red have
larger radius than that of an isolated black hole; and
those colored blue have smaller radius. We find that
color maps of other quantities, such as the scalar curva-

ture R
(1)
H are visually quite similar to the color maps we

associate with the embedding. For our purposes, horizon
embeddings, though somewhat arbitrary, convey exactly
the information that we hoped to present. Using the tools
we have developed here and in paper I, it is straighfor-
ward to modify this analysis to focus upon other mea-
sures of horizon distortion.

As in paper I, a major shortcoming of our use of em-
beddings is that we embed the horizon in a Euclidean
three-dimensional space. This means we are confined to
spin parameter a/M ≤

√
3/2; for faster spins, even an

undistorted horizon cannot be embedded in this geome-
try. As mentioned previously, work in progress indicates
that embedding the horizon in the globally hyperbolic
space H3, following Ref. [32], is an elegant way to get
around this restriction.

The cases we examine in detail are associated with
Figs. 12 – 15. These figures are each a series of snapshots
taken from animations showing the combined orbital and
embedded horizon dynamics. These animations are avail-
able at [28]. Readers may find it useful to examine these
visualizations in concert with the text presented below.
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A. Embeddings from inclined circular orbits

We begin with an especially simple case: an inclined,
circular orbit of a Schwarzschild black hole. Figure 12
shows an embedding of the distorted horizon for the
case of a circular orbit with radius r = 6M inclined at
θinc = 60◦. We show 12 frames illustrating the hori-
zon embedding and particle motion for this orbit; the
frames are evenly spaced over nearly one orbital pe-
riod (Torb = 92.3M for a circular orbit at r = 6M for
Schwarzschild). Axes indicate the location of the equa-
torial plane; they are static in this sequence, since the
horizon of a Schwarzschild black hole is static. The bot-
tom two panels of this figure show the angular position of
the horizon’s bulge [defined as the coordinate for which
the embedding radius is largest; dotted (blue) curves] and
the orbiting body [solid (red) curve], both as functions of
ingoing time v. Bottom left panel shows cos θ(v); bottom
right shows ψ(v)−Ωφv. (We subtract Ωφv to remove an
uninteresting overall secular growth in ψ over an orbit.)

As should be expected following Sec. IV, the results we
see in Fig. 12 are consistent with the fact that the physics
of an inclined orbit is identical to that of an equatorial
orbit in the a = 0 limit. In particular, the embedded
horizon is identical to that shown in the rorb = 6M panel
of paper I’s Fig. 3, but with the distortion centered on a
plane that is inclined at θinc = 60◦ to our chosen equator.
The offset between the orbit and the horizon’s bulge is
constant over the orbit, with the bulge leading the orbit-
ing body by a fixed amount; this can be seen particularly
clearly in an animation of the horizon and orbit dynam-
ics, and in the plot of cos θ(v). As we have previously
discussed, this can be understood as due to the spherical
symmetry of the Schwarzschild spacetime — the magni-
tude of the tidal field is constant over an orbit. In paper
I, the lead was purely axial (i.e., purely in the direction
of ψ); here it is a mixture of the axial and polar angles ψ
and θ. As discussed extensively in paper I, bulge leading
orbit is exactly what we expect for circular Schwarzschild
orbits.

We next consider an inclined, circular orbit of a Kerr
black hole. Circular Kerr orbits are defined as those for
which the Boyer-Lindquist coordinate radius r is con-
stant. Although they are therefore closely tied to a par-
ticular coordinate system, they nonetheless are a well-
defined and well-studied subset of Kerr orbits. It has
been shown that the eccentricity e of Kerr orbits [de-
fined in Eq. (2.4)] decreases over all but the most strong-
field orbits due to gravitational-wave driven backreaction
[33, 34], and that orbits with e = 0 remain at e = 0 [35–
37]. As such, we expect that gravitational-wave emission
will drive large mass-ratio binaries toward the constant
Boyer-Lindquist radius circular limit.

Figure 13 is much like Fig. 12, but for an orbit of a
black hole with spin parameter a = 0.6M . The orbit
again has constant radius r = 6M , and is inclined at
θinc = 60◦. We show 12 frames illustrating the horizon
and particle motion for this orbit, with frames evenly

spaced over nearly one orbital period4. In this sequence,
the axes (which indicate the equatorial plane) are tied to
the horizon’s spin, which completes a full rotation in a
period TH = 2π/ΩH = 37.7M . The bottom two panels of
Fig. 13 compare cos θ and ψ for the horizon’s bulge and
the orbit’s position.

Some new horizon dynamics begin to appear in Fig. 13.
Over the course of an orbit, the tidal field arising from
the small body is not of constant magnitude since the
spacetime is no longer spherically symmetric. As a conse-
quence the shape of the embedded horizon varies over an
orbit. There is also interesting new behavior associated
with the bulge-orbit offset. As discussed at length in pa-
per I (and briefly in Sec. I), for circular, equatorial orbits
of rapidly spinning black holes, the horizon bulge tends
to lag the position of the orbiting body on a constant v
timeslice. Let us call this “Kerr-like” bulge-orbit behav-
ior, and let us call the opposite behavior (bulge leading
the orbit on a constant v timeslice) “Schwarzschild-like.”
What we see in Fig. 13 is that the bulge behaves in a
Kerr-like manner in the ψ-direction, but behaves in a
Schwarzschild-like manner in the θ-direction. This can
be seen by carefully examining the sequence of stills (and
the animation from which these stills are taken), but is
especially clear in the bottom two panels showing the
angular position of the orbit and of the horizon’s bulge.

We have found that this bulge-orbit behavior
(Schwarzschild-like with respect to the θ direction, Kerr-
like with respect to the ψ direction) is quite generic. It
is clear in all the circular, inclined cases we have exam-
ined, and appears in inclined eccentric examples as well.
This behavior arises from the fact that the black hole’s
spin picks out the ψ direction as special. The hole’s ro-
tation plus the horizon’s teleological nature mixes time
and axial angle: a tide that would produce a bulge on a
Schwarzschild black hole at (θmax, ψmax) will produce a
bulge on a Kerr black hole at roughly (θmax, ψmax− δψ),
where δψ is (at leading order) proportional to the black
hole’s spin parameter a.

B. Horizon embeddings from eccentric orbits

We conclude our analysis by examining horizon em-
beddings for highly eccentric black hole orbits. The key
point to bear in mind here is that, at leading order, the
tidal field varies with orbital separation as 1/r3. As such,
the tidal field from an orbit with eccentricity e varies by
(1 + e)3/(1− e)3 over the course of an orbit. This factor
grows very quickly with e. The two cases we examine in

4 “Orbital period” is somewhat ambiguous for this orbit: the pe-
riod to complete a single polar oscillation is Tθ = 98.7M , and the
period to complete a rotation of 2π radians in the axial direction
is Tφ = 91.5M . These two periods differ only by ∼ 10%, so our
statement that we show nearly one period is accurate no matter
which notion of period we use.
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v = 0 v = 7.8M v = 15.6M

v = 23.4M v = 31.2M v= 39.0M

v = 46.8M v = 54.6M v = 62.4M

v = 70.2M v = 78.0M v = 85.8M

FIG. 12: Top: Snapshots of an animation depicting an embedding of the distorted horizon for a circular inclined orbit of a
Schwarzschild black hole (a = 0). Bottom: Angular position of the horizon’s bulge [dotted (blue) curve] versus the angular
position of the orbiting body [solid (red) curve]. The orbit is at radius r = 6M , inclined at θinc = 60◦ to our chosen equatorial
plane. The axes shown in these snapshots indicate the hole’s equatorial plane; we have placed the camera slightly above this
plane in order to illustrate the hole’s bulge geometry. The orbiting body is indicated by the small “moon” (dark blue in color
plot) located near one of the horizon bulges. The small body’s orbit begins on the side of the black hole near the camera,
descends down through the equatorial plane (crossing just after v = 7.8M), sweeps behind the far side of the hole (moving
from right to left as plotted), then comes up through the equatorial plane (crossing just after v = 54.6M) to pass in front of
the side near the camera again. The animation from which these stills are taken is available at [28]. The bottom two panels
show the angular position of the bulge and the orbit, illustrating the polar angle (cos θ, left) and the axial angle (ψ, right).
The horizon’s bulge moves in lockstep with the orbiting body, always leading the orbit by a small, constant angle.
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detail have e = 0.7, for which the tide varies by a factor
of about 180. This means that the hole can be essentially
unaffected by its companion for much of the orbit, but
be highly distorted as the smaller body passes through
periapsis.

Figure 14 shows this behavior quite clearly; see [28]
for the animation from which these stills were taken. The
large black hole used here has spin a = 0.85M , nearly the
largest value for which a globally Euclidean embedding
exists. The orbit is equatorial (θinc = 0◦), quite strong
field (p = 4M), and highly eccentric (e = 0.7). We only
show a portion of a full radial cycle, from r ' rmax/2
to rmin = p/(1 + e) back to r ' rmax/2. As in Fig. 13,
the axes indicating the equatorial plane rotate with the
horizon. For a = 0.85M , the period of this rotation is
TH = 22.6M . We sample our animation every 5.6M . By
coincidence, this is nearly TH/4, so the axes are sam-
pled in a nearly stroboscopic fashion, and appear to be
stationary.

The embedded horizon of an undistorted a = 0.85M
black hole is an oblate ellipsoid that is nearly flat at the
poles. This geometry can be seen in the first and last
few frames shown in Fig. 14 — the tidal field is so weak
in these frames5 (for which r ∼ rmax/2) that the horizon
is not noticeably distorted by the companion. The dis-
tortion becomes quite strong as the orbital approaches
periapsis: we see the horizon beginning to change shape
at v = 11.03M , and is highly distorted over the range
22.06M ≤ v ≤ 33.10M . At its peak, the horizon’s distor-
tion is similar to the most distorted horizon embedding
shown in paper I, the right-hand panel of that paper’s
Fig. 7. Notice the Kerr-like bulge-orbit behavior: the
bulge’s position in ψ lags the orbit in all cases. This is
quite clear in the v = 27.58M panel, and in the plot of
ψ(v). (Since the orbit is equatorial, there is no lag or
lead associated with θ.)

Notice also the high-frequency, low-amplitude wiggles
in the ψ position of the horizon’s bulge at v ' 40M and
v ' 260M . These are reminiscent of the high-spin fea-
tures that we discussed in Sec. V B. In this case, we do
not see such strong wiggles in the shear σ. It is plausible
that the wiggles are present in σ, but at such low ampli-
tude that they cannot be cleanly pulled out of that data;
it could be that constructing other quantities associated

with the horizon distortion, such as R
(1)
H and the em-

bedding surface, makes the wiggles stand out even more
strongly. Similar behavior is seen near periapsis for the
generic case we discuss next (cf. lower right-hand panel
of Fig. 15). We hope to study this further in future work.

Figure 15 shows the embedding for a horizon distorted
by tides from a generic orbit. We again consider spin

5 This is why we show only a fraction of an orbit here. A full radial
cycle of this orbit takes Tr = 229.8M , with the tide having a large
impact only for r ' rmin. The hole is practically undistorted for
the majority of the orbit.

a = 0.85M , and a very strong-field (p = 4M), highly
eccentric (e = 0.7) orbit, but we now take the orbit to be
inclined at θinc = 30◦. The set of frames we show again
corresponds to motion from roughly rmax/2 to rmin and
back to nearly rmax/2. We have moved the “camera”
in this sequence to a point slightly above the equatorial
plane in order to more clearly see the orbit’s polar mo-
tion, and the distortions associated with motion above
and below this plane.

The embedding dynamics shown in Fig. 15 combines
the features found for inclined circular orbits with those
found for eccentric equatorial orbits. In particular, no-
tice that the embedded horizon geometry is practically
undistorted in the first frame, as well as the last two or
so frames. This again reflects the large range of the tidal
field that acts on the horizon for eccentric orbits; when
r & rmax/2, the horizon’s distortions are so mild that
they cannot be seen in these graphics. A full radial cycle
of this orbit takes Tr = 255.1M , so the horizon is practi-
cally undistorted for a large fraction of this orbit. As the
orbit oscillates above and below the equatorial plane, the
horizon’s bulge likewise oscillates above and below the
plane. The bulge lags the orbit’s ψ position, but leads6

its θ position. This is basically the same behavior that
we saw for the inclined circular Kerr orbit (Fig. 13) —
Kerr-like in the axial direction, Schwarzschild-like in the
polar direction. Having already examined the equatorial
and the circular limits in detail, there are no surprises in
Fig. 15. The interesting behaviors seen in the previously
considered cases combine in the generic case in a very
logical way.

VII. CONCLUSIONS

In this paper, we have taken the tools that we intro-
duced in paper I for studying event horizons that are
distorted by a strong-field (but small mass ratio) binary
companion, and have applied them to eccentric and in-
clined binaries. For such orbits, the on-horizon tidal field
varies significantly over the course of an orbit, leading to
dynamical event horizon behavior. We have studied these
horizon dynamics with multiple measures, examining the
phase offset between the applied tide and the resulting
shear to the horizons, as well as examining embeddings
of the distorted horizons in a globally Euclidean 3-space.

Many of the results we have found follow in a fairly
natural and logical way from results that were shown in
paper I. In particular, we find that tidal bulges tend to
lead the position of the orbiting body for very slow black

6 The θ behavior of the bulge is only clear when the orbit is at
periapsis. When the orbit is far from periapsis, the tidal defor-
mation is gentle, and our algorithm for determining the position
of the bulge becomes inaccurate due to discretization errors. The
algorithm returns θbulge = 90◦ in this case, corresponding to the
largest radius of the undistorted Kerr embedding.
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v = 0 v = 8.06M v = 16.13M

v = 24.19M v = 32.25M v = 40.32M

v = 48.38M v = 56.44M v = 64.50M

v = 72.57M v = 80.63M v = 88.69M

FIG. 13: Identical to Fig. 12, except that the black hole shown here is spinning with Kerr parameter a = 0.6M . As in
Fig. 12, the axes indicate the hole’s equatorial plane. In this plot, these axes rotate with the event horizon at frequency
ΩH = a/2Mr+ = 1/6M (corresponding to a rotation period TH = 2π/ΩH = 37.7M). In this sequence, the orbiting body (small
sphere, dark blue in color) begins near the face close to the camera on the lower right-hand side of the black hole. It then sweeps
up, crossing the equator soon after v = 16.13M , passes behind the black hole, and then descends downward again, crossing the
equator soon after v = 64.5M . The horizon’s distortions in this case do not move in lockstep with the orbiting body. Instead,
the horizon exhibits mild shape variations. This is because the hole is not spherically symmetric, and so the tidal field acting
on the horizon varies slightly over the orbit. Notice that the horizon’s bulge leads the angular position of the orbit in the polar
(θ) direction, but lags its position in the axial (ψ) direction; this can be seen in the snapshots, but is especially clear in the
angle versus time plots shown in the bottom two panels. (We subtract Ωφv from ψ to remove the uninteresting secular growth
in this angle over a single orbit.) The polar behavior is much like what we see for Schwarzschild or very slow rotation; the axial
behavior is about the same as the behavior we saw for equatorial circular orbits in paper I. The animation from which these
stills are taken is available at [28].



20

hole spin, but lag the orbit for fast black hole spin. This is
exactly the teleological tidal behavior that was seen with
the simpler orbits we examined in paper I. We find an
interesting variant of this behavior in the present analysis
by looking at orbits that are inclined with respect to the
hole’s equatorial plane: the bulge tends to lead the orbit
in the θ direction (“Schwarzschild-like” behavior), but
lags the orbit for rapid spin in the ψ direction (“Kerr-
like” behavior). The fact that the bulge exhibits different
behavior with respect to the two angles is not surprising,
since the hole rotates in the direction of ψ.

One interesting new behavior we have found are the
low-amplitude, high-frequency wiggles which appear in
the shear σ associated with the distortion of nearly ex-
tremal (a & 0.9995M) black holes. A perhaps related
low-amplitude, high-frequency wiggle is apparent in the
horizon embedding of more slowly rotating (a = 0.85M)
black holes. We have not succeeded in constructing a
compelling explanation for these features. Although we
can estimate the frequency of the wiggles fairly well, we
cannot link them to other frequencies in the problem;
and, the rate at which the oscillations decay with time
does not appear to relate to other timescales in the prob-
lem, such as the correlation time κ−1 associated with the
Green’s function which connects to the tide to the shear.
We hope that future work will elucidate the nature of
this interesting phenomenon.
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Appendix A: Newman-Penrose fields and on-horizon
tensors

In this paper, we work with quantities that are based
on Newman-Penrose fields such as the complex curvature
scalar Ψ0. Other papers, notably VPM11, use tensors
which live in the manifold defined by the black hole’s
event horizon. There is a simple one-to-one correspon-
dence between these two representations for the quanti-
ties which are important for our analysis. We develop
this correspondence in this appendix.

We begin by defining some notation and background.
As elsewhere in this paper, we use ingoing Kerr coor-
dinates (v, r, θ, ψ) here. Components of tensors in the

2-dimensional manifold of the black hole’s event horizon
are labeled with upper-case Latin indices; these compo-
nents range over the set (θ, ψ). (As elsewhere, Greek in-
dices denote tensors in 4-dimensional spacetime.) Define
the projection tensor PAα, whose components in ingoing
Kerr coordinates are given by the matrix

PAα
.
=

(
0 0 1 0

0 0 0 1

)
; (A1)

the components of the inverse tensor P βB are the trans-
pose of this. When this operates on tensors at r = r+, it
projects quantities onto a slice of constant v on the hori-
zon. At a given moment on the horizon, the spacetime’s
line element (2.1) becomes

ds2 = gABdx
AdxB = Σ+ dθ

2 +
4M2r2

+ sin2 θ

Σ+
dψ2 , (A2)

where Σ+ = r2
+ + a2 cos2 θ. Finally, we will need the

Newman-Penrose null legs in the Hawking-Hartle repre-
sentation [10, 23]; these are given in Eqs. (2.8)–(2.10).
For r → r+,

lµ → [1, 0, 0, aΩH] , (A3)

mµ → 1√
2(r+ + ia cos θ)

[0, 0, 1, i (csc θ − aΩH sin θ)] .

(A4)

(We will not need nµ.) At r = r+, lµ is tangent to the
null generators of an unperturbed Kerr hole’s horizon.
Let us manipulate mµ(r+): we write

mA(r+) ≡ mµ(r+)PAµ

=
1√
2

(
αA + iβA

)
, (A5)

where

αA
.
=

1

Σ+
[r+, a cos θ (csc θ − aΩH sin θ)] , (A6)

βA
.
=

1

Σ+
[−a cos θ, r+ (csc θ − aΩH sin θ)] . (A7)

Notice that gABα
AαB = gABβ

AβB = 1, gABα
AβB = 0.

The intrinsic geometry of the horizon is governed by
the Weyl curvature. In our analysis, we use the Newman-
Penrose scalar Ψ0, which is given by

Ψ0 = −Cµανβlµmαlνmβ . (A8)

Our focus is on this quantity on the horizon. Let us define

CAB ≡
(
Cµανβ l

µPαA l
νP βB

)
r+

, (A9)

where the subscripted r+ means that all the quantities in
parentheses are to be evaluated at r = r+. This definition
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v = 0 v = 5.52M v = 11.03M

v = 16.55M v = 22.06M v = 27.58M

v = 33.10M v = 38.61M v = 44.13M

v = 49.65M v = 55.16M v = 60.68M

FIG. 14: Snapshots of an animation depicting an embedding of the distorted horizon for an equatorial eccentric orbit of a
rapidly spinning Kerr black hole (a = 0.85M). The spin is nearly the largest value for which a Euclidean embedding of the
undistorted horizon exists; the undistorted embedding geometry at this spin is of an axially symmetric oblate spheroid that
is nearly flat at its poles. The orbit has semi-latus rectum p = 4M and eccentricity e = 0.7, so its orbital radius varies from
rmax = 13.33M to rmin = 2.34M . As in Fig. 13, the axes indicating the equatorial plane rotate at the horizon frequency
ΩH = a/2Mr+, corresponding to period TH = 22.6M . The axes complete a quarter turn every 5.6M ; this is very close to
the cadence with which we sample this animation, so the axes appear nearly stationary in this sequence. The orbiting body
is shown moving from roughly rmax/2 to rmin, and back out to roughly rmax/2. For the first and last few stills shown here,
the embedded horizon is nearly identical to that of an undistorted Kerr black hole. The embedded horizon by contrast is
highly distorted in stills corresponding to r ' rmin (16.55M ≤ v ≤ 44.13M). This reflects the fact that the tidal field varies
at leading order as 1/r3, which changes by a factor (1 + e)3/(1 − e)3 over an eccentric orbit. The tidal field thus varies by a
factor ∼ 180 for this orbit; even over this limited segment (for which the orbit only goes out to about rmax/2), the tidal field
varies by ∼ 180/8 ' 22. The horizon bulge lags the particle’s position in ψ at all times, consistent with the behavior seen and
discussed in paper I for rapidly rotating Kerr black holes. (The θ behavior is uninteresting, since this is an equtorial orbit.)
The high-frequency wiggles in the ψ-position of the bulge near v ' 40M and v ' 260M are perhaps related to the high-spin
phenomenon discussed in Sec. V B. The animation from which these stills are taken is available at [28].
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is identical to that in VPM11 [see text following their Eq.
(2.30)]. Using this, on the horizon we have

Ψ0 = −CABmAmB

= −1

2
CAB

(
αAαB − βAβB + iαAβB + iβAαB

)
≡ −CAB

(
eAB+ + ieAB×

)
. (A10)

On the second line, we used Eq. (A5); on the third, we
introduced the polarization tensors

eAB+ =
1

2

(
αAαB − βAβB

)
, (A11)

eAB× =
1

2

(
αAβB + βAαB

)
. (A12)

We further simplify Eq. (A10) by defining the Weyl po-
larization components:

C+ ≡ CABe
AB
+ , (A13)

C× ≡ CABe
AB
× , (A14)

yielding

Ψ0 = − (C+ + iC×) . (A15)

In other words, the on-horizon Weyl polarizations are
simply the real and imaginary parts of Ψ0 on the horizon,
modulo an overall sign.

Lowering indices on the polarization tensors,

e+
AB = gACgBDe

CD
+ , (A16)

e×AB = gACgBDe
CD
× , (A17)

allows us to construct the on-horizon Weyl tensor from
the polarization components:

CAB = C+e
+
AB + C×e

×
AB . (A18)

Another important Newman-Penrose quantity which
we can analyze in this manner is the spin coefficient

σ = mµmν∇µlν . (A19)

At r = r+, this describes the shear of the horizon’s gen-
erators. Because mv = mr = 0 at r = r+, we have

σ(r+) =
(
mAmB∇AlB

)
r+

. (A20)

Define

σAB =
1

2
(∇AlB +∇BlA)r+ . (A21)

Note that σAB is trace free since ∇AlA = 0 on the hori-
zon. This definition of the shear tensor for the horizon’s
null generators is therefore equivalent to that used in
VPM11 [compare their Eqs. (2.11) and (2.15)]. Using
Eqs. (A5), (A16), and (A17), we find

σ(r+) = σAB
(
eAB+ + ieAB×

)
= σ+ + iσ× . (A22)

The shear polarizations written here were introduced by
VPM11; they are defined in a manner analogous to C+

and C×, and are just the real and the imaginary parts of
the Newman-Penrose quantity σ.
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v = 0 v = 7.14M v = 14.29M

v = 21.43M v = 28.58M v = 35.72M

v = 42.86M v = 50.01M v = 57.15M

v = 64.29M v = 71.44M v = 78.58M

FIG. 15: Snapshots of an animation depicting an embedding of the distorted horizon for a generic orbit of a rapidly spinning
Kerr black hole (a = 0.85M). The system is nearly identical to that used in Fig. 14, but we have inclined the orbit to θinc = 30◦.
The orbiting body is again shown moving from roughly rmax/2 to rmin, and back out to roughly rmax/2. The horizon’s dynamics
here shares features with both the equatorial case depicted in Fig. 14 and the inclined cases in Figs. 12 and 13. In particular,
the horizon varies from nearly undistorted when r ' rmax/2 (roughly first and last stills in this sequence) to highly distorted
when r ' rmin (stills from 28.52M ≤ v ≤ 57.15M), in a manner qualitatively similar to the eccentric equatorial case. However,
the horizon bulge flexes above and below the plane as the orbital motion oscillates in the polar direction, very much like the
circular inclined cases. The panels illustrating cos θ and ψ versus time shows that the bulge lags the body in ψ. At periapsis,
the bulge lags the body the body in θ. This is exactly the same offset behavior that was seen in the circular inclined Kerr case
shown in Fig. 13. (When the orbiting body is far from periapsis, the location of the bulge is difficult to determine accurately;
our code returns θ = 90◦ for the bulge’s position, reflecting the oblate spheroid shape of the undistorted black hole.) The
animation from which these stills are taken is available at [28].
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