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Abstract

Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing

precision. As experiments become more precise, so too must theoretical predictions. Previous work has made

numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional non-

linear partial differential equation (PDE). In this paper, calculating the chameleonic force using a numerical

relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed

spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We exam-

ine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic

force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the

vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the

backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably,

the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical

treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field

theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al.

because we had slightly underestimated the size of the vacuum chamber. This computational technique will

continue to be useful as experiments become even more precise, and will also be a valuable tool in optimizing

future searches for chameleon fields and related theories.

1 Introduction

Over the past decade there has been tremendous activity, both theoretical and experimental, de-

voted to theories of the dark sector with new light degrees of freedom that couple to ordinary

matter and mediate a fifth force [1]. These degrees of freedom (generally considered to be scalar

fields) couple to matter with strength comparable to, or stronger than, the gravitational force.

Nevertheless they have managed to escape detection (thus far) through so-called screening mech-

anisms. In regions of high density, where experiments are performed, the scalar fields develop

strong non-linearities which result in an effective decoupling and correspondingly weak force. Thus

screening mechanisms rely on the interplay between the interactions with matter and the non-linear

self-interactions of the scalar.

Broadly speaking, one distinguishes two universality classes of screening mechanisms:

• In the first universality class, scalar non-linearities arise from a self-interaction potential V (φ).

As a result, whether a source is screened or not depends on the local scalar field value. This

class includes chameleons [2–7], symmetrons [8–12], varying-dilatons [13] and their variants.

• In the second universality class, scalar non-linearities arise from derivative interactions. In
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this case, whether a source is screened or not depends on the local field gradients. This class

includes K-mouflage-type scalars [14–16], galileons [17–20] and disformally-coupled scalars [21,

22].

Theories within the same universality class all lead to similar phenomenology, even though their

Lagrangians may look quite different. Theories belonging to the first universality class yield the

richest phenomenology on small scales, including in the laboratory and in the solar system. On the

other hand, the range of the scalar-mediated force can be at most ∼ Mpc cosmologically [23, 24].

Theories belonging to the second universality class have the largest impact on scales larger than

∼ Mpc, but presently lead to unmeasurably small effects in the laboratory [25].

In this paper we focus on chameleon scalar field theories, though our methods and results can

be generalized to other theories in the first universality class. In chameleon theories, the mass of

chameleon particles depends on the local environmental matter density, which is the result of an

interplay between their self-interaction potential and their coupling to ordinary matter. In dense

regions, such as in the laboratory, the mass of the chameleon is large, and the resulting force

mediated by the chameleon is short-ranged, shielding the chameleon interaction from detection. In

regions of low density, such as in space, the mass of chameleon particles can be much smaller, and

the resulting force mediated by the chameleon is long-ranged.

The simplest Lagrangian for a chameleon theory is

Lcham = −1

2
(∂φ)2 − V (φ)− φ

M
ρm , (1)

where ρm is the matter density, assumed to be non-relativistic. The chameleon mechanism is

achieved for various different potentials. For concreteness, in this paper we will focus on the inverse

power-law form [26, 27]

V (φ) = Λ4

(
1 +

Λn

φn

)
; n > 0 . (2)

The inverse power-law form, considered in the original chameleon papers [2, 3], is motivated by

earlier studies of tracker quintessence models [28, 29] and arises generically from non-perturbative

effects in supergravity/string theories, e.g., [30–32]. (Potentials with positive powers, V (φ) ∼ φ2s

with s an integer ≥ 2, can also realize the chameleon mechanism [4].) The constant piece can drive

cosmic acceleration at the present time for Λ = Λ0 ' 2.4 meV. The 1/φn term is responsible for

the non-linear scalar interactions required for the chameleon mechanism to be operational.

This is a specific example of a fifth force being sensitive to its environment, an idea which

has spurred a great deal of activity. Astrophysically, chameleon scalars affect the internal dynam-

ics [33, 34] and stellar evolution [35–37] of dwarf galaxies residing in voids or mildly overdense

regions. In the laboratory, chameleons have motivated multiple experimental efforts aimed at

searching for their signatures, including torsion-balance experiments [38, 39], Bose-Einstein conden-

sates [40], gravity resonance spectroscopy [41, 42] and neutron interferometry [43–46]. Assuming an

additional coupling between photons and chameleons, the CHameleon Afterglow SEarch (CHASE)

experiment [47, 48] has looked for an afterglow from trapped chameleons converting into photons.

Similarly, the Axion Dark Matter eXperiment (ADMX) resonant microwave cavity was used to

search for chameleons [49]. Photon-chameleon mixing can occur deep inside the Sun [50] and affect

the spectrum of distant astrophysical objects [51].

Our primary interest is atom interferometry. Following the initial theory papers promoting

this method [52, 53], we carried out an experiment at UC Berkeley to search and constrain the
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chameleon parameter space [54]. The experiment measures the force between an aluminum sphere

(the “source” mass) and 133Cs atoms (the “test” mass). Because the experiment is performed in

vacuum, the chameleon Compton wavelength is comparable to the size of the vacuum chamber and

hence relatively long-ranged on the scale of the experiment. Moreover, due to their microscopic size,

the Cs atoms are unscreened and hence act as test particles. The chameleon force they experience

is still suppressed by the fact that the source mass is screened, but less so than the force between

two macroscopic objects. With this set-up, we were able to bound an anomalous contribution to

the acceleration: a < 5.5 µm/s2 at the 95% confidence level [54].

To translate this into a constraint on the chameleon parameter space, in [54] we used a number

of analytical approximations. Specifically, we treated the vacuum chamber as a sphere and ignored

the details of chamber walls. The assumption of spherical symmetry reduces the static equation

of motion, which is a three-dimensional partial differential equation (PDE), to a one-dimensional

ordinary differential equation (ODE) that can easily be integrated numerically. We then calculated

the force between source mass and atoms using approximate analytical expressions derived in the

early chameleon papers [2, 3]. In the past these methods have proven to do a fairly good job at

estimating the chameleon profile in various situations. But if we are to rigorously exclude part of

the chameleon theory space, a more accurate treatment is warranted.

In this paper we present a scheme to solve the full three-dimensional PDE for the chameleon

profile in the vacuum chamber, making it possible to calculate the force due to the chameleon

field at any point and along any direction. This is similar to work done in the context of neutron

interferometry [46, 55]. The improved computational technique allows us to relax the assumption

of spherical symmetry, and to therefore accurately model the cylindrical vacuum chamber used

in [54]. Furthermore, we can exactly and consistently include the effects of the chamber walls and

the source mass, which is offset from the center, without having to resort to approximate analytical

expressions.

The motivations for this work are three-fold. Firstly, the exact approach followed here allows

us to quantify the validity of the approximations made in [54], as well to place rigorous constraints

on chameleon theories from the experimental bound on a. Secondly, it allows us to check claims in

the literature that accounting for the chamber walls leads to a significant effect on the field profile

deep inside the chamber [56] or that the thin-shell expression that goes back to [2, 3] gives a poor

approximation to the chameleon force [57]. We will see that these claims are wrong. A detailed

treatment of the walls has negligible effect inside the chamber, a conclusion that is now shared

by the authors of [56] in a revised version of their paper. We will also find that the thin-shell

approximation works remarkably well.

Our main findings are at once reassuring and disappointing! The analytical approximations

made in [54] work remarkably well and unexpectedly well. Specifically, carefully simulating the

vacuum chamber as a cylinder with dimensions matching those of [54], taking into account the

backreaction of the source mass, its offset from the center, and the effects of the chamber walls, the

acceleration on a test atomic particle is found to differ by only 20% from the simplified analysis

of [54]. A 20% difference would be barely visible on the logarithmic exclusion plots, but the actual

difference is even smaller, thanks to a fortuitous cancellation. Namely, while the acceleration

in [54] is a slight overestimate (by ∼ 20%) of the actual answer, this is compensated by an a

slight underestimate of the vacuum chamber radius (5 cm instead of the actual 6 cm). These two

“mistakes” interfere destructively, leaving us with almost identical constraints on the chameleon

parameters. We apologize to the reader for the lack of drama. Being that most of us were authors
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Figure 1: Schematic of the effective potential felt by a chameleon field (solid line), given by the sum of the

bare potential of runaway form, V (φ) (dashed line), and a density-dependent piece, from coupling to matter

(dotted line).

on [54], we view this outcome as quite positive.

Looking ahead, our code can be used to determine the ideal source mass geometry and position

to optimize the chameleon signal in future experiments. Although our treatment is cast in the

context of atom interferometry, the code is quite versatile and can be applied to any experiment —

atom interferometry, cold neutrons or a torsion pendulum — aimed at constraining the chameleon

field inside a vacuum chamber. To illustrate the usefulness of the code, we will apply it in Sec. 7 to

forecast the signal in an improved version of our experiment, as well as for a proposed interferometry

experiment to take place in NASA’s Cold Atom Laboratory [58] aboard the International Space

Station.

This paper is organized as follows. We give a brief review of the chameleon mechanism in Sec. 2,

including a discussion of the thin-shell approximate treatment used in [54]. We summarize existing

experimental constraints and motivations for the present work in Sec. 3. After a brief description of

our numerical method in Sec. 4, we present the results of 3D integration as a series of refinements,

from the crude “spherical cow” approximation made in [54] all the way to the actual experimental

set-up with cylindrical chamber and offset source mass in Sec. 5. In Sec. 6 we simulate the chameleon

profile with the experimental set-up [54] for a range of chameleon parameters, and derive realistic

constraints on the space of chameleon theories. In Sec. 7 we report results on ongoing and upcoming

experiments. We summarize our results and discuss future applications in Sec. 8.

2 Chameleons: A Brief Review

A chameleon scalar field has the defining property of coupling to matter in such a way that its effec-

tive mass increases with increasing local matter density [2–7]. The scalar-mediated force between

matter particles can be of gravitational strength (or even stronger), but its range is a decreasing

function of ambient matter density, and therefore avoids detection in regions of high density. Deep

in space, where the mass density is low, the scalar is light and mediates a fifth force of gravitational

strength, but near the Earth, where experiments are performed, and where the local density is
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high, it acquires a large mass, making its effects short ranged and hence unobservable.

2.1 Theoretical set up

In the Newtonian limit where matter is non-relativistic, the Lagrangian for a prototypical chameleon

theory is

Lcham = −1

2
(∂φ)2 − V (φ)−A(φ)ρm . (3)

This generalizes (1) to include a general coupling function A(φ) to the matter density ρm. For

simplicity, we assume that the chameleon scalar field φ couples universally to matter, i.e., via a

single function A(φ). Generalizations involving different coupling functions for different matter

species are also possible, resulting in violations of the weak equivalence principle. In the simpler

case of interest, the theory is characterized by two functions: the self-interaction potential V (φ)

and the coupling function to matter A(φ). The coupling function is assumed to be approximately

linear,1

A(φ) ' 1 +
φ

M
. (4)

To compare with experiments we will be primarily interested in the range 10−5 MPl ∼< M ∼< MPl,

where MPl = (8πGN)−1/2 ' 2.4 × 1018 GeV is the reduced Planck mass. This range of M is

interesting because it has not yet been experimentally ruled out. Over this range, the field excursion

is much smaller than M throughout the apparatus, and hence the linear approximation (4) is

justified.

For the self-interaction potential, as mentioned in the Introduction we specialize to the Ratra–

Peebles inverse power-law form [26, 27]

V (φ) = Λ4

(
1 +

Λn

φn

)
, (5)

with n > 0. The constant piece can drive cosmic acceleration at the present time for Λ = 2.4 meV,

whereas the 1/φn piece is responsible for the chameleon mechanism.

It is clear from the action (3) that the scalar field is governed by a density-dependent effective

potential

Veff(φ) = V (φ) +A(φ)ρm . (6)

This is sketched in Fig. 1. In an environment of homogeneous ρm, the effective potential is minimized

at

φeq =

(
nMΛ4+n

ρm

) 1
n+1

. (7)

The mass of chameleon particles around this state, defined as usual by m2(φeq) = ∂2Veff
∂φ2

∣∣∣
φ=φeq

, is

m2
eq =

n(n+ 1)Λ4+n

φn+2
eq

∼ ρ
n+2
n+1
m . (8)

As the value of ρm increases, we see that φeq decreases while meq increases, as desired. This is

sketched in Fig. 2.

1In the symmetron [8–12] and varying-dilaton [13] mechanisms, on the other hand, a φ→ −φ symmetry precludes

the linear term in A(φ). The appropriate form in those classes of theories is A(φ) ' 1 + φ2

M2 . In practice, however,

the phenomenology of symmetrons/varying-dilatons is qualitatively similar to that of the chameleon.
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Figure 2: Effective potential for low ambient matter density (Left) and high ambient density (Right). As

the density increases, the minimum of the effective potential, φmin, shifts to smaller values, while the mass

of small fluctuations, mφ, increases.

More generally, to compute the chameleonic acceleration on a test particle due to an arbitrary

static distribution of matter, we begin by solving for the φ profile:

~∇2φ = Veff ,φ , (9)

For general ρm(~x), we must of course resort to numerical integration. Given the resulting field

profile φ(~x), the acceleration on a test particle due to the chameleon interaction readily follows

from (3):

~a =
1

M
~∇φ . (10)

For the parameters of interest, we will see that the atoms in the experiment behave as test particles

to an excellent approximation. Indeed, this is one of the virtues of using atom-interferometry to test

chameleons! More generally, the chameleon force on an extended body can be computed borrowing

a method developed by Einstein, Infeld and Hoffmann [59] in the context of General Relativity, as

nicely shown in [33].

2.2 Thin-shell approximate treatment

Before solving the chameleon equation of motion exactly using numerical integration, it is helpful

to gain intuition on how the chameleon force is suppressed in the presence of high ambient density

by reviewing the approximate solution first presented in [2, 3]. One of the main goals of this paper

is to assess to what extent the approximate treatment works.

Consider a static, spherical source with radius R and homogeneous density ρobj. For the moment,

we imagine that this object is immersed in a homogeneous medium with density ρbg. (We will come

back shortly to the case of the vacuum chamber, where the ambient density is approximately zero.)

We denote by φobj and φbg the minima of the effective potential at the object and ambient density,

respectively. The scalar equation of motion reduces to

φ′′ +
2

r
φ′ = V,φ +

ρm(r)

M
; ρm(r) =

{
ρobj r < R

ρbg r > R
. (11)
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The boundary conditions are φ′(r = 0) = 0, enforcing regularity at the origin; and φ → φbg as

r →∞, which minimizes the effective potential far from the source.

For a sufficiently large body — in a sense that will be made precise shortly — the field approaches

the minimum of its effective potential deep in its interior:

φ ' φobj ; r < R . (12)

Outside of the object, but still within an ambient Compton wavelength away (r < m−1
bg ), the field

profile goes approximately as 1/r: φ ' C
r + φbg. One integration constant has already been set to

fulfill the second boundary condition above. The other constant C is fixed by matching the field

value at r = R, with the result

φ ' −R
r

(φbg − φobj) + φbg . (13)

Further intuition on this solution follows from a nice analogy with electrostatics [60, 61]. Since

∇2φ ' 0 both inside and outside the source, the body acts as a chameleon analogue of a conducting

sphere. Any chameleon “charge” is confined to a thin shell of thickness ∆R near the surface. The

surface “charge density”
ρobj∆R
M must support the discontinuity in field gradients:

dφ

dr

∣∣∣∣
r=R+

=
ρobj∆R

M
. (14)

Substituting (13) fixes the shell thickness:

∆R =
Mφbg

ρobjR
, (15)

where we have assumed φbg � φobj appropriate for large density contrast. For consistency, we

should have ∆R � R, in other words
Mφbg

ρobjR2 � 1. In that case the object is said to be screened.

The acceleration on a test particle located within r < m−1
bg away is

a ' aN

(
MPl

M

)2 6∆R

R
(screened) , (16)

where aN is the Newtonian acceleration. If instead
Mφbg

ρobjR2 � 1, the object is said to be unscreened,

and the exterior acceleration is unsuppressed:

a ' 2aN

(
MPl

M

)2

(unscreened) . (17)

In the case of a vacuum chamber, the background density is so small that the Compton wave-

length m−1
bg is much larger than the radius of the chamber, hence the field is unable to minimize

its effective potential. Instead the scalar field approaches a value about which the Compton wave-

length is comparable to the size of the vacuum chamber, m−1
vac ∼ Rvac. In other words, from (8)

the background value is set by the condition φvac ∼
(
n(n+ 1)Λ4+nR2

vac

) 1
n+2 . Following [54] it is

convenient to introduce a “fudge” factor ξ, to turn the relation into an equality:

φbg = ξ
(
n(n+ 1)Λ4+nR2

vac

) 1
n+2

. (18)
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(a) (b)

Figure 3: Current constraints due to atom interferometry and torsion pendulum experiments.

We are mainly concerned with Λ = Λ0, indicated by the black line on the first plot, so that the

chameleon field can drive the observed accelerated expansion of the universe. The narrow light blue

stripes on the left panel show the influence of varying the fudge parameter over 0.55 ≤ ξ ≤ 0.68.

The second plot shows MPl/M vs. n, and also assumes Λ = Λ0. The “torsion pendulum” region

shown in green has been corrected from [54] to accurately reflect the constraints imposed by that

experiment, following [39].

In [54] it was found that ξ is largely insensitive to n, Λ and M , as well as to the assumed chamber

geometry. Specifically, for n = 1 and the dark energy value Λ = 2.4 meV, one finds ξ = 0.55 for a

spherical vacuum chamber and ξ = 0.68 for an infinite cylinder.

The field profile for a spherical source inside a spherical chamber follows identically from the

earlier derivation, with φbg now given by (18). In particular the expression for the shell thick-

ness (15) becomes ∆R = Mξ
ρobjR

(
n(n+ 1)Λ4+nR2

vac

) 1
n+2 . For the parameter values considered here,

it is easily seen that the source mass is always screened, i.e., the resulting acceleration on a test

particle is given by (16). Similarly, the atoms are unscreened — they do not significantly perturb

the chameleon field and therefore behave as test particles to an excellent approximation.

3 Existing Constraints and Motivations for this Work

The class of chameleon theories described above are specified by three parameters: the coupling

scale M , with M ∼MPl corresponding to gravitational strength fifth force; the scale of the potential

Λ, with Λ = Λ0 ' 2.4 meV corresponding to the value needed to reproduce the observed cosmic

acceleration; and the inverse power n specifying the shape of the potential.

Figure 3a) shows current experimental constraints in the (Λ,M) plane for n = 1, where the solid

line indicates Λ = Λ0 ' 2.4 meV. The narrow light blue stripes on the left panel show the influence

of varying the fudge parameter over 0.55 ≤ ξ ≤ 0.68. Meanwhile, Fig. 3b) plots the excluded region

in the (M,n) plane, with Λ fixed to the dark energy value 2.4 meV. Various experiments contribute

to these plots. These include measurements of the Casimir-Polder force using an oscillating 87Rb
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Bose-Einstein condensate [40], gravity resonance spectroscopy using ultracold neutrons [41, 42] and

neutron interferometry [43–46]. The Eöt-Wash torsion balance experiment [38] constraint rules out

M ∼> 10−2 MPl with Λ = Λ0 ' 2.4 meV, corresponding to the lower region of Fig. 3b).2

In this paper we focus on the Berkeley atom interferometry experiment [54], which rules out

most of the parameter space shown in the figures. In particular, for Λ = Λ0 ' 2.4 meV and n = 1

(Fig. 3a)) atom interferometry excludes the range M ∼< 10−5 MPl. This constraint is several orders

of magnitude stronger than the ones from neutron interferometry. This additional sensitivity is

due to the fact that [54] uses more test particles (roughly 106 atoms per second) and that the

atoms are colder, allowing them to be used for a longer period of time before being carried away

by thermal motion. Of course, if one is willing to accept non-universal chameleon-matter coupling

(i.e. different values of M for different species of matter) we would simply say that the experiments

currently constrain MCs ∼< 10−5 MPl and Mneutron ∼< 10−5 MPl . However, in this paper we will

assume the simpler case of a single, universal coupling M for all species of matter, and therefore

view [54] as a direct improvement over neutron interferometry.

The Berkeley experiment, motivated by a theory paper of Burrage et al. [52], used atom inter-

ferometry to measure the force between 133Cs atoms and an Al sphere. The original experiment

constrained an anomalous contribution to the free-fall acceleration as ∆a = (0.7±3.7) µm/s2. The

excluded regions were then generated using a number of simplifying assumptions:

• The background chameleon field profile φbg was computed i) without the source mass, ii) ig-

noring the thickness of the chamber walls, and iii) assuming a spherical vacuum chamber.

• The chameleon acceleration acting on the atoms was calculated using the thin-shell expres-

sion (16) described earlier.

The purpose of our paper is to check those assumptions. We do so by computing the chameleon

field profile numerically using a 3-dimensional PDE solver that we developed for this purpose. Our

numerical method will be described in detail in the next Section. We solve for the chameleon field

profile inside the source sphere, vacuum chamber, and within the vacuum chamber walls. However,

we neglect the backreaction of the atoms, treating them as test particles that do not significantly

influence the chameleon field profile. This assumption is justified by the fact that the atoms are

small and light enough to be unscreened for the range of parameters considered here. We will

perform a battery of checks, described in detail in Sec. 5.

For the benefit of the anxious reader, we can summarize our findings succinctly as follows:

the simplifying assumptions made in [54] and listed above work remarkably and surprisingly well.

Specifically, carefully simulating the vacuum chamber as a cylinder with dimensions matching those

of [54], taking into account the backreaction of the source mass, its offset from the center, and the

effects of the chamber walls, the acceleration on a test atomic particle is found to differ by only

20% from the simplified analysis of [54]. A 20% difference would be barely visible on a logarithmic

scale such as in Fig. 3, but the actual difference is even smaller, thanks to a fortuitous cancellation.

Namely, while the acceleration [54] is a slight overestimate (by ∼ 20%) of the actual answer, this

is compensated by a slight underestimate of the vacuum chamber radius (5 cm instead of the

actual 6 cm). These two “mistakes” interfere destructively, leaving us with an identical constraint:

M ∼< 2.3× 10−5MPl is ruled out for Λ = Λ0.

2As already mentioned in the Introduction, other experiments constrain the electromagnetic coupling eβγφFµνF
µν ,

which induces photon/chameleon oscillations.
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Material ρ (g/cm3)

source mass (aluminum) 2.7

vacuum (6× 10−10 Torr) 6.6× 10−17

vacuum chamber walls (steel) 7

Table 1: Densities of the materials in the experiment.

4 Numerical Method

We integrate the chameleon equation of motion (9) through successive under-relaxation with in-

termediate steps calculated by the Gauss-Siedel scheme [62]. This method is briefly reviewed in

the Appendix. We demand that the first derivative of φ vanish at the edge of the simulation box,

which is justified so long as φ has minimized its effective potential by that point. This assumption

works because the Compton wavelength of the chameleon particle is always much smaller than the

width of the vacuum chamber walls for the parameter range of interest.

The convergence time of this method is highly dependent upon the initial guess for the field

configuration. There is a delicate tradeoff — within dense regions (i.e., source sphere and chamber

walls), the equation of motion is highly nonlinear, and small steps are required to ensure conver-

gence; within the vacuum region, on the other hand, the equation is approximately linear but can

take many steps to reach the much larger field value. Steps small enough to ensure convergence in

the dense regions make the convergence time in the vacuum region intolerably large, while steps

large enough to converge inside the vacuum make the numerical scheme unstable in dense regions.

To address this issue we begin with a course-grained simulation, where φ in the dense areas

is forced to minimize its effective potential as a boundary condition. This is done only in regions

where the thickness of the chameleon thin shell is more than an order of magnitude smaller than the

grid spacing, so the chameleon is expected to minimize Veff everywhere in the region. The resulting

course-grained output for φ is then interpolated into an initial guess for a higher resolution run.

This method allows φ to quickly relax to its solution in the vacuum, while holding φ fixed in the

numerically unstable regions.

5 Successive Steps Towards Realistic Set-Up

In this Section we describe the results of the numerical integration, presented as successive steps

towards the realistic experimental set-up. First, to make contact with our earlier analysis, we use

the 3D code to check the approximate analytical expression used in [54] to place constraints on

the chameleon parameter space. Remarkably, we find only a 20% difference. As our next step, we

compare the realistic cylindrical vacuum chamber to a spherical vacuum chamber of the same radius.

This will determine how sensitive the force calculation is to the “spherical cow” approximation.

Here, we find an 18% difference in the resulting acceleration at the interferometer between these

two cases. Next we examine the impact of offsetting the source mass from the center of the vacuum

chamber, as is done in the actual experiment. We find the difference in acceleration at the location

of the interferometer to be negligible. As our final step, we examine the effect of accounting for

a circular bore through the source mass, as in the experiment. Again, we find the difference in

acceleration to be negligible. For all the checks performed in this Section (except Sec. 5.1), we

assume Λ = Λ0 = 2.4 meV, M = 10−3MPl, and focus on the power-law n = 1 following [54].
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Figure 4: The chameleon field as a function of distance along the center of the spherical vacuum

chamber. The black horizontal line marks the central value of φ predicted inside an empty chamber

using (18). The red vertical line denotes the location of the interferometer. We find essentially no

difference between letting φ minimize its potential in atmosphere vs in steel at the walls.

5.1 Comparison to analytic approximation

As a check on the code, we integrate the chameleon equation of motion under the same conditions as

those explored in [54]: a spherical vacuum chamber of radius Rvac = 5 cm. (As already mentioned,

the actual vacuum chamber is not a sphere, and a better estimate for its effective radius is 6 cm, but

for the purpose of comparing with earlier work we use the same parameters as [54]. This includes

matching the parameters3 Λ = 0.1 meV, M = 10−3MPl.) The field profile is calculated everywhere

inside the chamber for 3 separate cases:

1. Without source mass (i.e., empty vacuum chamber), and with boundary condition φ→ φatm

at r = Rvac.

2. Without source mass, and with boundary condition φ→ φsteel at r = Rvac.

3. Including a source mass of radius rs = 1 cm at the center of the chamber, imposing the same

boundary condition as in Case 2.

The density of the different parts of the experiment are listed in Table 1. (For Case 1, we use

ρ = 10−3 g/cm3 for atmospheric density.)

The results are shown in Fig. 4. The chameleon field profiles in Cases 1 and 2 (i.e., the cases

without source mass), shown as the blue and green curves respectively, are virtually identical,

leading us to conclude that the boundary conditions imposed at the vacuum chamber walls are

unimportant to the dynamics near the center of the vacuum chamber. The black horizontal line

indicates the central φ value predicted by (18) with ξ = 0.55, as found in [54]. We see that Cases 1

and 2 closely match this approximate constant solution near the center, in particular at the location

3The Λ = 0.1 meV value is chosen solely for the purpose of comparison with the 1D numerical results of [54]. For

the rest of our analysis we will use the fiducial dark energy value Λ = Λ0 = 2.4 meV.
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Figure 5: Diagram and dimensions of experimental setup. The cross marks the center of the

vacuum chamber. The vacuum chamber walls are ∼ 2 cm thick, which is much greater than the Compton

wavelength of the chameleon inside steel in all cases examined.

of the interferometer (red vertical line), confirming that the code’s results are consistent with [54].

Case 3, shown as the red curve, includes the source mass and allows us to calculate the accel-

eration on a test atom exactly and directly using (10). The acceleration is attractive (pointing

towards the center) near the source mass, but is repulsive (pointing away from the center, and

towards the chamber walls) further out. At the location of the interferometer,4 the answer is

a = 5.0 × 10−10 m/s2 towards the source mass. The value calculated in [54] using the approxi-

mate “thin-shell” expression (16) was 6.4 × 10−10 m/s2, an overestimate of approximately 20%.

(As already mentioned, however, this is compensated by a slight underestimate of the vacuum

chamber radius. The actual radius is 6 cm, resulting in a larger acceleration at the location of the

interferometer.)

5.2 Comparison: spherical vs cylindrical vacuum chamber

Next we examine the effect of approximating the cylindrical vacuum chamber as a sphere. For this

purpose we assume a cylindrical geometry that matches the actual vacuum chamber used in the

experiment [54]. As shown in Fig. 5 (except that the source mass in the present case is centered

rather than offset), the vacuum chamber is a short cylinder, with inner radius of 6.1 cm, turned

so that the axis of the cylinder is perpendicular to Earth’s gravity. For comparison, we choose a

sphere of the same radius, Rvac = 6.1 cm, such that the distance between the source mass and

the vacuum chamber wall is the same in the direction of the interferometer. This makes for a

fair comparison since, keeping the distance between the source mass and interferometer fixed, the

4The atoms actually traverse nearly 5 mm during the acceleration measurement. Following [54], we approximate

the atoms’ average distance from the source mass as 8.8 mm.
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(a) Field profile (b) Acceleration

Figure 6: Spherical vs cylindrical vacuum chamber. Chameleon profile and acceleration as a

function of distance from the center of the spherical source mass, for a spherical (blue curve) and cylindrical

(green curve) vacuum chamber. The dimensions of the cylindrical vacuum chamber are chosen to match

that of the experiment in [54] and are shown in Fig. 5. The radius of the sphere is chosen to match the

inner radius of the cylinder. At the location of the interferometer (red vertical line), the acceleration in the

spherical case is 18% larger than in the cylindrical chamber.

chameleon gradient at the location of the interferometer is primarily influenced by its distance

from the vacuum chamber wall [39]. Recall also that we are now going back to the cosmologically-

motivated value of Λ = Λ0 = 2.4 meV.

The results, shown in Fig. 6, demonstrate a minor departure between the cylinder vs the sphere.

In particular, the acceleration at the interferometer is 18% larger for the sphere than for the cylinder.

5.3 Comparison: source mass offset vs centered

We now examine the effect of moving the source mass away from the center of the cylindrical

vacuum chamber. For this purpose we once again assume a cylindrical geometry that matches the

actual vacuum chamber used in the experiment [54], with dimensions listed in Fig. 5 (except with

a solid source mass). We compare the chameleon profile and acceleration between a source mass at

the center and a source mass located 2.55 cm below the center, as in the actual experiment. The

distance to the interferometer is kept fixed. The results, shown in Fig. 7, demonstrate that although

the acceleration profiles are different in certain regions of the vacuum chamber, the difference at

the interferometer is negligible. Had the interferometer been located further away from the source,

the difference in acceleration would have been more significant.

5.4 Comparison: solid source mass vs source mass with bore

As a final step towards the experimentally realistic setup, we examine the effect of a vertical circular

bore through the center of the spherical source mass. We use the dimensions listed Fig. 5, only in

one case without the bore. The results, shown in Fig. 8, show that the difference in acceleration

at the interferometer is again negligible. The difference is, however, significant within the source
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(a) Field profile (b) Acceleration

Figure 7: Source mass centered vs offset. Same plot as the previous figure, now comparing

a source mass at the center (blue curve) and offset by 2.55 cm from the center (green curve), as in the

actual experiment. As in the previous figure, the dimensions of the cylindrical chamber match those of the

experiment. Although the field profile is altered by the offset, the acceleration at the interferometer (red

vertical line) changes by less than 1%.

(a) Field profile (b) Acceleration

Figure 8: Source mass with vs without bore. Same as the previous two figures, but now comparing

a solid source mass (blue curve) against one with a 3 mm diameter circular bore through the center (green

curve), as in the experiment. All other dimensions are chosen to match those of the experiment. The only

significant difference is inside the sphere, as the green line passes through the center of the bore, so it is still

in vacuum. The acceleration at the interferometer (red vertical line) again changes by less than 1%.
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mass. This is because the plot shows the chameleon profile through the center of the bore, a path

which is in vacuum from wall to wall. Indeed, when inside the sphere the bore acts as a miniature

vacuum chamber, and the chameleon field reaches a value such that the Compton wavelength is

comparable to the radius of the bore.

6 Simulation of the Experiment

We are now in position to simulate the experiment [54] and derive realistic constraints on chameleon

parameters. Once again the dimensions of the vacuum chamber are sketched and listed in Fig. 5.

The material densities are listed in Table 1. Following [54] and as assumed in the previous Section,

we focus on the power-law n = 1 and assume Λ = Λ0 = 2.4 meV.

The chameleon profiles are plotted in Fig. 9, for M ranging from 10−5MPl to MPl. The first

thing to note from Fig. 9 is that the field profile inside the vacuum region is relatively insensitive

to M . This can be understood as follows. On the one hand, in the vacuum region the density is

effectively zero. Since M only appears in the equation of motion as ρ/M , the chameleon equation of

motion is essentially independent of M in that region. The only dependence comes from the dense

regions (source mass and chamber walls). But even so, the chameleon is screened and minimizes

its effective potential at a very small field value in those dense regions, and for all intents and

purposes φ ' 0 there relative to the much larger field value in the bulk of the chamber. This is why

the profile is quite insensitive to M inside the chamber. (For larger values of M than considered

here, the source mass and chamber walls eventually become unscreened and this argument would

no longer hold.)

The acceleration at the interferometer can be calculated using the gradient of the chameleon

profiles. Since ~∇φ at that position is essentially independent of M , the only dependence on this

parameter comes from the prefactor of 1/M in the expression (10) for the acceleration. We find

the resulting acceleration due to the chameleon field at the interferometer to be

a =
~∇φ
M

= 1.2× 10−4 MPl

M
µm/s2 . (19)

As a particular example, with M = 10−4 MPl this yields an acceleration at the interferometer of

1.2 µm/s2. The thin-shell approximate method used in [53, 54] yields an acceleration of 1.4 µm/s2,

a difference of ∼ 20%.

The atom interferometry experiment [54] placed an upper limit of a < 5.5 µm/s2 (95% confi-

dence level) on the chameleon acceleration. As can now be calculated from (19), this corresponds to

M ≤ 2.3×10−5MPl. Remarkably, this is the same constraint as quoted in [54] using the approxima-

tions describe above. The reason for this coincidence is that these authors slightly underestimated

the radius of the vacuum chamber (5 cm instead of the actual 6 cm), which just so happens to

compensate the overestimate inherent in the approximate thin-shell method.

7 Forecasts for ongoing and upcoming experiments

In this Section we describe two upcoming experiments that will place even tighter constraints on the

chameleon theory’s parameters. The first is an improvement upon the experiment [54], performed

by the same authors, and is currently underway. The second is a proposed experiment for NASA’s

Cold Atom Laboratory [58] aboard the International Space Station.
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Figure 9: Simulation of the experimental configuration, for values of M ranging from 10−5MPl to MPl. We

find that the profiles in vacuum are nearly identical, differing only in the walls. The field values inside the

metal of the source mass also scale with M , but we are showing a path that passes through the center of

the bore in the source mass. The bore acts as a miniature vacuum chamber, so instead the chameleon field

goes to an M -independent value such that the Compton wavelength is of order the radius of the bore.

(a) Field profile (b) Acceleration

Figure 10: Spherical source mass vs cylindrical source. Comparison between two experimental

setups: that of [54] (blue line) and of an improved version of the experiment that is currently underway

(green line). The main difference is that the latter employs a tungsten cylinder as the source mass, while

the former used an aluminum sphere. The cylinder has a wedge cut out of it, allowing for vastly improved

control over systematics. These show that the cutout comes at no cost to the chameleon signal, in fact, the

cylinder confers a 5% stronger chameleon force over the previous setup.
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Figure 11: Same plot as Fig. 9, but for the empty rectangular vacuum chamber of the CAL experiment.

The field profiles are taken along the long axis of the vacuum chamber. Again, we find that the profiles in

vacuum are nearly identical.

7.1 Laboratory experiment: spherical source with wedge

This experiment is similar to [54], except with greater sensitivity thanks to a variety of technical

improvements such as colder atoms, additional vibration isolation, and the atoms are now launched

upwards (rather than dropped) to allow them to spend more time near the source mass. Another

key difference is that the source mass is now a tungsten hollow cylinder with a wedge cutout. This

geometry was chosen so that the source mass may be moved away from the interferometer without

breaking the atom/laser beam line, allowing for better control of the systematic errors.

To evaluate the sensitivity of this new setup, we perform a comparison against the geometry

described in the previous Section. As before, we assume Λ = 2.4 meV, M = 10−3MPl, and n = 1.

The source mass is a hollow cylinder with an outer diameter of 2.54 cm, inner diameter 0.99 cm,

and length 2.56 cm. It is made of tungsten, which has a density of 19.25 g/cm3 . There is a wedge

cut out of one side with thickness 0.50 cm.

The results, plotted in Fig. 10, show that the new setup produces an acceleration that is 5%

larger than the previous one. This comes with a large improvement in systematic errors as well,

which will allow for much greater sensitivity. Altogether, the new setup is expected to improve

upon the limit of M ≤ 2.3× 10−5MPl from [54] by 1-2 orders of magnitude.

7.2 Space-based experiment: Cold Atom Laboratory

This experiment is proposed to take place inside NASA’s Cold Atom Laboratory [58] aboard the

International Space Station, and is currently scheduled to be launched in 2017. Ground-based

experiments are limited in that Earth’s gravity causes the atoms to only spend a limited amount
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of time near the source mass. Performing the experiment in space obviates this issue, allowing for

greater sensitivity.5

The experiment consists of an empty rectangular vacuum chamber with 3× 3 cm cross section

and length 10 cm. Interferometry is performed with atoms located on an axis parallel, and close, to

the central long axis of the vacuum chamber. The atoms’ acceleration may be measured anywhere

along this path (up to within ∼ 0.5 mm of the walls). The walls are made of glass, with a density

of roughly 2.5 g/cm3. We assume the same chameleon parameters as in the previous Section.

The resulting chameleon field profiles along the long axis of the vacuum chamber are shown

in Fig. 11. If the measurement is performed 2 mm from the vacuum chamber walls, we find an

acceleration

a = 2.7× 10−3 MPl

M
µm/s2 , (20)

towards the wall. This value is independent of M (to within 5%) as long as M .MPl.

This demonstrates that, thanks to how close the atoms may get to the walls, the magnitude

of the chameleonic acceleration is similar to that of the ground-based experiments. This result,

combined with the much longer interaction times between the source and the atoms, as well as

common-mode rejection of the influence of vibrations achieved by running two simultaneous atom

interferometers with potassium and rubidium atoms, respectively, gives hope for much tighter

restrictions on chameleon parameter space. An optimized version could in principle be designed to

be sensitive to the entire parameter space M .MPl.

8 Conclusions

In this paper we have solved the three-dimensional nonlinear PDE governing the chameleon scalar

field inside a vacuum chamber, for static configurations. Along the way, through a series of in-

creasingly realistic runs, we have explored the impact of various approximations made in earlier

work. In particular, approximating the cylindrical vacuum chamber with a sphere while keeping

the distance between the interferometer and the nearest chamber wall fixed, results in an 18%

difference in acceleration at the location of the interferometer. Moving the source mass away from

the center while keeping the distance to the interferometer fixed, has negligible effect on the mea-

sured acceleration. We then solved for the chameleon field in an experimentally realistic setup for

10−5MPl ≤ M ≤ MPl, finding that the chameleon profile is largely independent of M inside the

vacuum chamber. We have ruled out M < 2.3×10−5MPl at the 95% confidence level for n = 1 and

Λ = Λ0, based on the upper bound on the acceleration reported in [54]. Finally, we have performed

a preliminary analysis for upcoming experiments which can, in principle, sense the entire parameter

space M .MPl.

In the future it will be interesting to use the techniques described here to explore the effects

of different source mass geometries, as it may be possible to optimize experiments for greater sen-

sitivity. Additionally, as experimental results become more precise, so too should the theoretical

predictions. This may necessitate more accurate modeling of the vacuum chamber geometry. Our

method may also prove to be an invaluable tool for such a purpose.

5Long interaction times may also be achieved in ground-based experiments by dropping both the source mass and

the atoms, such as in an Einstein elevator [63] or in a zero-gravity flight [64].
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Appendix: Numerical Algorithm

In this Appendix we offer some details on the numerical approach used to integrate the chameleon

equation of motion (9). This equation is a non-linear Poisson-Boltzmann equation of the form:

∇2φ = ρ(x, φ) . (21)

Let us illustrate the method with the simplest case of one spatial dimension. In that case the

Laplacian operator on the left-hand side with a finite difference operator [62]

1

(∆x)2

(
φ(x+ ∆x)− 2φ(x) + φ(x−∆x)

)
= ρ(x, φ) . (22)

This approximation follows from the second-order Taylor expansion of φ, and becomes exact as

∆x→ 0 for smooth functions. Isolating φ(x) gives a relation that may be used to iteratively solve

for φ:

φ(x) =
1

2

(
φ(x+ ∆x) + φ(x−∆x)− (∆x)2ρ(x, φ)

)
. (23)

To use this equation, we begin with an initial guess for φ(x) and apply this equation at each point

successively from one edge of the integration to the other. This process is repeated iteratively until

φ(x) converges on a solution. If the neighboring φ values on the right-hand side come from the

previous iteration, this is known as the Jacobi method. Using the most recently computed value

of φ on the right-hand side converges more quickly and is known as the Gauss-Seidel method. We

follow the latter method in our numerical integration.

This process generalizes straightforwardly to three dimensions. Here the finite difference expres-

sion becomes

φ(x, y, z) =
1

6

(
φ(x+ h, y, z) + φ(x− h, y, z)

φ(x, y + h, z) + φ(x, y − h, z)

φ(x, y, z + h) + φ(x, y, z − h)− h2ρ(x, y, z, φ)

)
, (24)

where h is the grid spacing. Care must be taken at the edges. In this case we replace any occurrence

of the type φ(x,−h, z) with φ(x, h, z). This effectively imposes the boundary condition that the

normal derivative of φ vanish at the edge of the simulation.

Depending on the form of ρ, this algorithm may converge very slowly, or it may not converge at

all. We can cure such speed/stability issues by introducing an over/under correction scheme:

φ(n+1)(x) = φ(n) − α
(
φ∗ − φ(n)

)
. (25)
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Here, φ(i) represents the i-th iteration of φ, and φ∗ is predicted by Gauss-Seidel based on the

previous iteration. Meanwhile, α is the relaxation parameter and can take any value in the interval

0 < α < 2. For 0 < α < 1, the algorithm converges more slowly than Gauss-Seidel, but allows for

numerical instabilities to be tamed. For α = 1 the right-hand side reduces to φ∗, hence the method

reduces to Gauss-Seidel. If 1 < α < 2, the method will converge more quickly, but is also more

likely to be unstable. Due to the non-linear nature of the chameleon equation, we encountered

significant numerical instabilities, especially in the dense regions. This was cured by taking α < 1.
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