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Extracting astrophysical information from gravitational wave detections is a well-posed problem
and thoroughly studied when detailed models for the waveforms are available. However, one moti-
vation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing
and characterizing unanticipated signals requires data analysis techniques which do not depend on
theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled
gravitational wave signals have been hampered by transient noise artifacts, or “glitches,” in the
detectors. We have put forth the BayesWave algorithm to differentiate between generic gravitational
wave transients and glitches, and to provide robust waveform reconstruction and characterization
of the astrophysical signals. Here we study BayesWave’s capabilities for rejecting glitches while as-
signing high confidence to detection candidates through analytic approximations to the Bayesian
evidence. Analytic results are tested with numerical experiments by adding simulated gravitational
wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good

agreement.

I. INTRODUCTION

Among the most intriguing promises of the nascent
field of gravitational wave (GW) astronomy is the discov-
ery of never-before anticipated sources. As the LIGO [1]
and Virgo [2] observatories continue to improve their
detection sensitivity, so too must the methods used to
search through the data looking for the unexpected.
Making a claim of a significant discovery requires excep-
tional evidence. In the field of particle physics, a com-
mon practice for declaring detection of a new particle
is a “b-sigma” level of confidence, meaning that there is
probability of less than 3 x 10~7 of the observation arising
from sources other than the claimed discovery.

Having detailed theoretical predictions for the gravita-
tional wave signal helps reduce the false alarm (or false
positive) rate due [3-6] but searches for generic signals,
known as GW bursts, have to confront non-Gaussian
noise artifacts, or “glitches,” in order to indentify astro-
physical signals at high confidence (e.g. Ref. [7]). Back-
ground distributions for burst searches, determined by
time-shifting the data from multiple detectors so that
no coherent gravitational signals are in the data, show
a long tail to high signal to noise ratio (SNR), meaning
that even a very strong gravitational wave signal would
be consistent with having arisen from a glitch.

In preparation for the advanced detector era several
new approaches to the burst detection problem have
been developed. Thrane and Coughlin [10] have demon-
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strated the capability to make high-confidence detec-
tions of long-duration (O(10)s) burst signals in non-
stationary, non-Gaussian noise by searching for excess
power found along parameterized curves through a time-
frequency representation of the data. In an independent
effort, the Bayesian parameter estimation analysis library
LALInference [11], originally designed for the character-
ization of compact binary signals, has been adapted for
burst analyses by using a sine-Gaussian waveform as the
gravitational wave template [12, 13]. LALInference dif-
ferentiates between signals and glitches using a “coher-
ence test” where the “coherent” signal hypothesis uses a
template-based analysis assuming the data streams from
multiple detectors contain a coherent gravitational wave
signal while the “incoherent” glitch hypothesis treats
each data stream independently. The incoherent model
uses the same template waveform as the signal model
but optimizes its parameters independently for each de-
tectors’ data [14].

Recently we proposed BayesWave-a Bayesian algo-
rithm to follow-up short duration (S 1 s) candidate
gravitational wave transient events, separate signals
from glitches, and provide robust signal characterization
for arbitrary burst waveforms [15]. BayesWave uses a
variable-dimension model for signals and/or glitches en-
abling the analyses to adapt the complexity of the wave-
form model to match what is present in the data instead
of imposing a template waveform and searching for best
fit parameters. For a detection candidate BayesWave
computes the relative evidence of the event being pro-
duced by a GW signal, an instrument artifact, or sta-
tistical fluctuations of the detector’s Gaussian noise. In
the event that the candidate is of astrophysical origin,



BayesWave also produces posterior distributions for the
source sky-location and orientation, accurate waveform
reconstruction, and metrics to characterize the signal
such as duration, bandwidth, signal energy, etc. In all
instances, BayesWave characterizes the instrument be-
havior including spectral estimation for the background
Gaussian noise and glitch reconstructions which can then
be used to feedback into the never-ending effort to im-
prove the interferometers’ performance. Analysis of the
Gaussian component of the instrument noise is handled
by BayesWave’s sibling algorithm, BayesLine [16]. Dur-
ing the first Advanced LIGO observing run BayesWave
is being utilized as a follow-up analysis to candidate and
background events found by the coherent WaveBurst al-
gorithm [17].

In this paper we will demonstrate BayesWave’s poten-
tial by analyzing data from the sixth LIGO science run
(S6) which took place from 2009-2010. Our results are
achieved by analyzing data known to contain glitches
which contributed to the long-tailed background distribu-
tion for the burst search, and by adding simulated grav-
itational wave signals to detector noise. In addition to
this study using archived data, we present an analyti-
cal framework for understanding the performance of the
pipeline. A companion paper uses BayesWave and the
flagship burst search algorithm, coherent WaveBurst [17],
in an end-to-end demonstration of how burst detection
efficiency is improved by the joint analysis [18].

In section II we briefly describe the BayesWave algo-
rithm, Bayesian model selection, and our model for the
data. In section IIT we go through a simple analytic
calculation to give insight into how BayesWave is able
to distinguish signals and glitches, and use BayesWave’s
performance on simulated signals added to real data to
support the analytic approximations. Section IV uses the
intuition built from the analytics to estimate background
rates for glitches to be considered signals by BayesWave,
and connects the Bayes factor to false alarm rates for
detections. We summarize the work in section V. The
appendix contains a more detailed derivation of the ana-
lytic approximation to the evidence.

II. METHOD

Searches for Burst signals have been based on frame-
works that employ detection statistics to measure the
likelihood that Gaussian noise could produce the data
[17, 19-22]. While stationary Gaussian noise is often
a good description for LIGO/Virgo data, the approxi-
mation breaks down with much higher regularity than
the arrival of detectable gravitational waves. Any data
analysis method must account for the possibility of non-
stationary non-Gaussian noise. Most existing analysis
strategies apply various selection cuts to separate glitches
from astrophysical signals which are tuned by adjusting
thresholds to minimize the estimated background rate of
transient noise glitches [7-9].

Bayesian hypothesis testing has been used in searches
for GWs from a timing glitch in the Vela pulsar [23]
using a damped sinusoid that abruptly starts at times
associated with the pulsar timing glitch as the signal
model. A recently developed search pipeline [13] uses
excess power to identify interesting data segments and
a matched-filtering follow-up with a sine-Gaussian tem-
plate for signal characterization [12]. The “coherent vs.
incoherent” Bayes factor is used to distinguish between
noise and signal [14].

BayesWave employs a different approach by using a pa-
rameterized model for the LIGO/Virgo data, noise and
signal included, and forward modeling, i.e. predicting,
the detector output. The data model has three distinct
components: A gravitational wave signal h that is ellipti-
cally polarized and is coherent across the network of de-
tectors; glitches that are independent in each interferom-
eter; and stationary Gaussian noise which is fully char-
acterized by its power spectral density S, (f) as modeled
by BayesLine [16]. At its core, BayesWave is a Markov
chain Monte Carlo (MCMC) algorithm [24]. BayesWave
uses parallel tempering [25] and thermodynamic integra-
tion [26] to compute the evidence for each model. The
MCMC implementation and evidence calculation is de-
scribed in detail in Refs. [15, 16]. For results in this work
we utilize an adaptive temperature scheme as suggested
in [27].

Because we do not know a priori the functional form
of glitch or GW burst waveforms, our model for both
must be flexible. We use a linear combination of Morlet-
Gabor wavelets as our waveform model where the number
of wavelets included in the linear combination, N, is it-
self a model parameter. Each basis function (wavelet)
is described by parameter vector A — {fo,t0, 4, Q, w0}
with components for central frequency fy ; central time
to ; amplitude A; quality factor @); and phase offset .
A wavelet is expressed in the time domain as:

U(t: A, fo, Quto, do) = Ae™ 31/ cos(2m foAt + o) (1)

where 7 = Q/(2nfp) and At = t — ty. BayesWave
uses a reversible jump Markov chain Monte Carlo [28]
to marginalize over the number of wavelets needed for
the model to be consistent with the data.

A. Bayesian hypothesis testing or model selection

This work will rely on Bayes’ rule for conditional prob-
abilities to make inferences about the measured data d.
The conditional probabilities p(A|B, C') are to be under-
stood as the probability density of A given B and C.
Quantities with the data d appearing to the left of the
vertical bar p(d| B, C') are likelihoods of observing data d
given B and C'. When the data d appears to the right of
the bar p(A|d, C') the quantity is a posterior probability
for measuring A given the data and C. If the data d do
not appear in p(A|B) the quantity is prior probability
density of A given B.



The likelihood that hypothesis H, parameterized by 6,
would have produced the data d is calculated by

p(d|H) = / (|8, H)p(6[H)de. ()

Directly integrating Eq 2 is seldom practical and a wide
variety of alternative means for arriving at p(d|H) have
been devised. Our method of choice for computing the
integral in Eq. 2 is thermodynamic integration [26].

Once the evidence has been computed it provides a
relative measure of how well one hypothesis is supported
by the data over another through the “odds ratio”

p(Ho) p(d|Ho)  p(Ho)
p(H1) p(dH1) — p(Ha1)

where p(H) is the prior probability for the hypothesis
and By ; is the likelihood ratio, or “Bayes factor,” for the
two hypotheses.

In what follows, we will explicitly write out the model
evidence, and ultimately the Bayes factor, for compar-
ing the signal and glitch hypotheses. Throughout this
derivation we will use 8 as the vector of all model pa-
rameters. For the glitch hypothesis, 6 is separated into
independent sets of intrinsic parameters )\f which encode
the shape of the sine-Gaussian waveform. Superscripts
on 6 identify which detectors data the wavelet is applied
while subscripts identify the different wavelets in the lin-
ear combination. For the signal hypothesis, there is a
common set of intrinsic parameters A% applied at the
earth geocenter and projected on to the network, where
again the subscripts indicate which wavelet in the series.
Encoding the projection are the extrinsic parameters 2.

0071 =

Bo1 (3)

B. DModeling signals versus glitches

Consider a GW network consisting of the two LIGO
detectors in Hanford, WA (H) and Livingston, LA (L).
For a candidate event BayesWave calculates the Bayesian
evidence for each of three models: signal, glitch, or Gaus-
sian noise. We can then use the Bayes factor between
any two models to quantify the degree of supporting ev-
idence for one model over the other. Within each model
the likelihood is computed by

p(d|6,H) 0<H

where 7' is the residual of the data

tor I minus the signal or glitch model,

2 ra(f) b(f)+a(f )b ()
7/ S D df i

167 (0)1r7(9)) (1)

I in detec-

(ald) =

is the noise weighted inner prod-

uct, Sy, (f) is the noise power spectral density estimated
from the data by BayesLine, and T is the duration of the
data. This work will focus only on examples where we
need to distinguish between the signal and glitch mod-
els. We assume either will be preferred over the Gaussian
noise model.

1. Ho: The glitch model (G):

The data d' = n! + g’ contain Gaussian noise n and
glitches g independent in each detector I. The parame-
ters @ — (A U "] are comprised of independent sets of
intrinsic parameters

A S AoUA U Uy
which determine the shape of each wavelet. The glitch

model is computed for each detector as an independent
linear combination of wavelets

ny (f: A1

where W(f) is the Fourier transform of W(t), N is the
number of wavelets used in the sum and can take on
any value between [0, Npax] with the caveat that at
least one wavelet must be used in the model for the
whole network. Ny .x is typically 20. The glitch-model
likelihood is computed using Eq. 4 with the residual
() = d' — g(A',NT)

gAML, NT) =

2. Hi: The signal model (S):

The data d! = n!+h! contain Gaussian noise n and an
elliptically polarized gravitational wave signal h coherent
across the network of detectors. The parameters 8 —
[A® U Q] are a common set of intrinsic parameters

AP S AoUX U---Udys]
referenced at the center of the Earth and four “extrinsic
parameters”

= [0, 0,9, €]

which define the sky-location 6, ¢, the polarization angle
1 and an ellipticity parameter € relating the two gravita-
tional wave polarizations hy and hy. The signal-model
likelihood is computed using Eq. 4 with the residual
r(8) = d' — W (F;A%, N®, Q)

The geocenter signal wavelets are projected onto the
network using each detector’s unique time delay opera-
tors At(f, ¢), and antenna beam pattern response func-

tions F1(6, ¢,v), F*(0,¢,1) [29]:

R(fi XD NP Q) = (Ff b () + Ff hx (f)) 27080

()= B(5AP)

hy(f) = ey (f)e™2. (5)



IITI. DISTINGUISHING SIGNALS FROM
GLITCHES

While BayesWave uses a computationally expensive
numerical integration to compute the evidence for each
model, we will build intuition for how BayesWave suc-
cessfully distinguishes signals from glitches using the
Laplace approximation to the evidence and several sim-
plifying assumptions about the model and the data. As
our results will show, the simple analytic treatment de-
rived here leads to useful approximations for when sig-
nals and glitches are distinguishable and in forecasting
the most significant background event. A more detailed
derivation and discussion of the Laplace approximation
to BayesWave’s signal and glitch model evidence can be
found in the appendix.

A. Laplace-Fisher approximation to the evidence

If an event has enough SNR to be a strong candidate
for detection (SNR = +/(hlh) 2 10) the integrand of
Equation (2) will be sharply peaked around the maxi-
mum a posteriori (MAP) parameter values of the model
Oviap. The evidence can be estimated as

p(d|Oniap, H)p(Oriap|H)(27)P/2\/det Cg (6)

which is the product of the MAP likelihood
p(d|Onap, H), the prior p(Omap|H) evaluated at
the MAP parameters, and the determinant of the full
parameter covariance matrix Cg which is a measure of
the posterior volume. D is the dimension of the model.
The covariance matrix Cy can be approximated by the
inverse of the Fisher information matrix I'g, and we
replace v/det Cp with 1/+/det T'g.

The p(Omap|H)(27)P/2\/det Cp term is the “Occam
factor” that penalizes the likelihood by the model’s size.
If two models achieve the same likelihood the Occam fac-
tor, and therefore the evidence, will be smaller for the
model that requires more (constrained) parameters to
achieve that fit. Consider a simple model with a sin-
gle parameter z and uniform prior over an interval V.
The covariance matrix is simply the variance of the like-
lihood o2. In this case the Occam factor is proportional
to 0,/V, which leads to a simple, intuitive, interpreta-
tion: The Occam factor is the fraction of the prior taken
up by the posterior. We will return to this interpretation
when predicting the most significant background event
for BayesWave.

For the glitch or signal model, the expectation value
for the intrinsic parameter log likelihood is proportional
to [30]

pdH) ~

SNR?2 D

+ = (7)

In p(Amap|H) ~ 5 5

For uniform priors p(Amap|H) = 1/Vx where Vy is the
volume of the intrinsic parameter space. BayesWave uses
uniform priors for all but the amplitude parameter, with
p(A) a function of the wavelet’s SNR [15]. For simplicity
we will neglect the parameter-dependence of the ampli-
tude prior in favor of the simpler 1/V scaling. A similar
but more detailed derivation including the true ampli-
tude used by BayesWave can be found in the appendix.

The determinant of the intrinsic parameter Fisher ma-
trix for a single wavelet is

m2SNR

det'y = 202

(8)

If we assume little overlap between wavelets in the pa-
rameter space the correlations between wavelet parame-
ters are negligible and the Fisher matrix is block diago-
nal. The determinant for the full covariance matrix with
N wavelets is then [15]

Vdet Cy ~ H V2Qn . (9)

mSNR?

Neglecting the extrinsic parameters for the signal
model, and the BayesLine parameters which are com-
mon to all models, the dimension D = 5N where N is
the number of wavelets used in the fit. To simplify the

expression we define Q,, = (27‘1’)5/2@ to absorb the

(2m)P/2 and additional factors of 2 and 7. Now the log
evidence becomes

SNR? 5N

log p(d|H) ~ 5 +——N10g (Va)

Z SNR5

From this expression we see that the Bayes factor for
either the glitch or signal model versus the Gaussian noise
model goes as O (SNRQ).

For the glitch model, the prior and posterior volume
terms are summed over the number of detectors (IFO)
in the network. The signal model, on the other hand,
picks up an additional Dg/2 and Occam factor term
log v/det Cq/Vq for the extrinsic parameters which gov-
ern the projection of the signal onto the network. Dg
is the extrinsic parameter dimension, Cq is the signal
parameter covariance matrix, and Vg is the extrinsic pa-
rameter prior volume. Including these details into Eq. 10
we find the log evidence for the glitch and signal models
is



gNR2 O gni  [FO
log p(d|G) ~ 5 Z

SNR? 5N
log p(d|S) ~ 5 + - Nlog(Vx) +

respectively, where SNR? = ZEFO SNR? and the extrin-
sic parameter dimension Dg = 4 while the prior volume
for extrinsic parameters is 472.

B. Two detector network

Consider a fairly loud gravitational wave signal in
the two detector LIGO network. The optimal extrin-
sic parameters for detection will result in similar sig-
nal strength in each of the interferometers such that

5N
log Bs,g ~ - + Nlog Vi + 5N log(SNR) — Z log Q. + [2 + log

and immediately see that log Bs g ~ O (N logSNR). As
a consequence, at fixed SNR, waveform morphologies
that require more wavelets to reconstruct have a higher
likelihood of being classified as signals. This is an im-
portant departure from traditional SNR-based ranking
statistics. The Bayes factor computed by BayesWave is
more sensitive to signal complexity than signal strength.
Heuristically, the log Bs g naturally encodes how increas-
ingly unlikely it is for the detectors to simultaneously
and coherently produce glitches with non-trivial time-
frequency structure. This is a significant difference from
existing Burst pipelines which put greater emphasis on
signal strength in forming their detection statistic, and
are thus hamstrung by the detectors’ tendency to pro-
duce loud noise transients at a higher rate than the uni-
verse supplies gravitational wave signals. We find this
fundamental difference allows BayesWave to assign de-
tection candidates high confidence in data prone to loud
glitches while existing pipelines have not.

C. Single wavelet examples in simulated noise

To verify the predictions from the Laplace approxima-
tion we used BayesWave to recover simulated sine Gaus-
sian gravitational wave signals in Gaussian noise, draw-
ing waveform parameters from our prior distributions:
f €[16,512] Hz, t € [-0.5,0.5] s, Q € [3,40], ¢ € [0, 27]
rad, cosf € [—1,1], ¢ € [0,2n] rad, ¢ € [0,7/2] rad,

IFO N*

—ZNzlog Vi) +ZZ SNRZ

N —
Qn {DQ Vdet Cq
+ | == +log —— 11
ZSNRS; 2 Va (1)

SNR. ~ SNR,,/v/2 where the index n is for each wavelet
and the index I is for each detector. For such events the
different hypotheses will use similar wavelets, so each Q%
for the glitch model will correspond to a @,, for the sig-
nal mode, but because it treats each detector indepen-
dently, the glitch model will need two copies of the linear
combination—one for each interferometer. One final sim-
plifying assumption is that the signal to noise ratio of
each wavelet is the same: SNR,, ~ SNR = SNR/v/N.

Substituting these simplifications into Eq. 11 we arrive
at a simple expression for the log Bayes factor log Bs g =
log p(d|S) — log p(d|9):

vdet Cq
42

€ [-1,1], and amplitude drawn from the distribution
described in the appendix and Ref. [15]. For this study we
analyze segments of LIGO data collected during the sixth
science run which took place from 2009-2010 in which we
have purposefully added GW signals. The priors used for
this analysis reflect what is being used for low-frequency
triggers in the first advanced LIGO observing run (O1)
during which BayesWave relies on the coherent Wave-
Burst pipeline to provide the segments of data which
warrant follow-up analysis (for details see Refs. [17, 18]).

BayesWave calculates Bayes factors for each combina-
tion of models along with an estimate of the error in
that calculation, using thermodynamic integration. We
do not anticipate the agreement between numerical sim-
ulations and the analytic approximations to be perfect.
Many of the approximations we have made along the way
to arrive at Egs. 10 and 12 are known to be inadequate
for the gravitational wave detection problem [31], partic-
ularly our use of the covariance matrix to estimate the
posterior volume and, even more egregiously, our use of
the Fisher matrix as the inverse covariance matrix [32].

Fisher matrix approximations are particularly bad for
det Cq. The extrinsic parameter space is rife with de-
generacies between parameters and non-Gaussian, mul-
timodal likelihood distributions which often span the full
extent of the prior range. Fisher matrix arguments would
predict a SNR™Pe scaling for the determinant of Cg
which is much too strong for any burst source in a two
detector network. Using numerical experiments to get



a rough understanding of the extrinsic parameter poste-
rior volume, we find an SNR™" with v ranging from ~ 1
at low SNRs to ~ 2.5 at SNR ~ 100 (See Fig. 6 in the
appendix).

In Figure 1 the left panel shows the glitch to noise
(red) and signal to glitch (blue) log Bayes factors as a
function of the simulated signals’ SNR along with the
Laplace approximation predictions. The predicted scal-
ing laws for N = 1 signals log Bjs/g).x» ~ O (SNR2) and
log Bs.g ~ O (log SNR) are generally obeyed by the nu-
merical results. The observed agreement reinforces the
intuition developed from considering the analytic expres-
sions, and we can be confident that the numerical in-
tegration is performing well. The right panel demon-
strates BayesWave’s glitch rejection capabilities by com-
paring log Bs ¢ for simulated sine-Gaussian glitches (gray
crosses) and signals (blue circles). The glitches were sim-
ulated by adding sine-Gaussians to each detector with
parameters drawn independently from the prior. Nega-
tive log Bs,g corresponds to data with higher likelihood
for the glitch model.

D. Multiple wavelet examples in real noise

Equation 12 predicts that the Bayes factor grows with
SNR more rapidly for waveforms that have more time-
frequency structure, thus requiring more wavelets to ac-
count for all of the excess power in the data. For as-
trophysical signals the number of wavelets necessary will
not be known a priori, and furthermore will not be con-
stant, depending on the SNR. As the signal strength in-
creases, more detailed structure in the waveforms will
be detectable, and more wavelets will be favored by the
model selection. Through numerical experiments we find
simple relationships for the number of basis functions and
the average SNR per wavelet in terms of the true SNR:

N ~ 1+ 8SNR
SNE ~ aSNR® (13)

where the coefficients 5, a and index a are different for
different kinds of signals with {8~0,a~1,a~1} corre-
sponding to sine Gaussian waveforms and § and « in-
creasing while a decreases with increasing signal com-
plexity (see Fig. 5 in the appendix).

To demonstrate this important feature of BayesWave
we add simulated gravitational wave signals from differ-
ent waveform families into real detector data. Figure 2
shows logBs g as a function of SNR for the different
simulations. Red points are sine Gaussian waveforms,
blue points correspond to signals from the merger of two
50 Mg black holes modeled using non-spinning Effective
One Body (EOB) waveforms [33], and the black points
are results from “white noise bursts”—unpolarized, band-
limited, white noise signals used to test LIGO/Virgo
burst detection pipelines. We can empirically determine
that (3 is larger for more complicated signal morphologies.
Results agree well enough with the analytic predictions

that the insight gained in the analytic study is applicable,
but the Laplace approximation is clearly no substitute
for the numerical integration. The large scatter in Bayes
factors is due to failings in the Laplace approximation,
signals that violate our assumption about roughly equal
SNR in each detector, and segments of data that contain
both signals and glitches.

It is important to note that the high degree of scatter
in the white noise burst results is also to be expected
because these signals are unpolarized, while BayesWave
assumes hy and hy are related by Eq. 5. In a two de-
tector network we generally cannot reliably measure the
GW polarizations independently. Introducing the addi-
tional degrees of freedom to independently solve for h
and hy will hinder our ability to reject glitches because
the number of signal model and glitch model parame-
ters will be comparable for a wider variety of waveform
morphologies. While there is no reason to expect a priori
that GW bursts will be elliptically polarized, selection ef-
fects by the detection pipelines which identify segments
of data for BayesWave to follow-up in a real analysis,
and the similar orientation of the LIGO detectors, favor
signals which are well approximated by a single polariza-
tion (causing many of the degeneracies between extrinsic
parameters discussed in the previous section). This as-
sumption will need to be relaxed when more detectors
are added to the network, and in future studies we will
investigate strategies for optimizing BayesWave’s perfor-
mance on unpolarized detection candidates even in the
two detector case.

IV. BACKGROUND ESTIMATION

We have shown that BayesWave predictably favors the
signal model over the glitch model for simulated GW
events, i.e. BayesWave is robust against false dismissal of
gravitational wave signals. This is only half of the battle:
Any useful data analysis procedure must also be robust
against false alarms, i.e. misidentifying noise events as
being astrophysical signals, and be able to assign signif-
icance to a detection. While the right panel of Figure 1
demonstrates how BayesWave can reject glitches in the
trivial case of random sine-Gaussian waveforms, how it
will fair against real glitches, and how to assign signif-
icance to candidate events, requires more careful atten-
tion.

To understand BayesWave’s glitch rejection capabil-
ities, imagine that a glitch waveform in LIGO Han-
ford (H) is well represented by a linear combination
of wavelets with parameters A and a coincident (i.e.
within the light travel time between detectors) collection
of wavelets is found in LIGO Livingston (L). If the sig-
nal is astrophysical in nature, the waveform in L must
have parameters A% that are consistent with A, within
the measurement uncertainties /det C'yz up to the ap-
propriate time, phase, and amplitude shifts due to the
geometry of the detector locations and orientations. On
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FIG. 1. Left panel: Comparing the numerical results for log Bg ar (red squares) and log Bs,¢ (blue circles) to the relevant
analytic predictions in Egs. 10 and 12 (dark red dashed and dark blue dotted lines, respectively) showing good agreement at
high SNRs where the Laplace approximation is more valid. Right panel: The log Bs ¢ results from the left panel (blue circles)
with log Bs,g from a set of glitches simulated by adding independent sine-Gaussian waveforms to each detector (gray crosses).
The log Bayes factor shows a clear separation between the simulated signals and glitches. Cases with log Bs,g < 0 correspond

to the glitch model having a higher likelihood.
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FIG. 2. Bayes factors between the signal and glitch model
grow more rapidly with SNR for more complicated wave-
form morphologies. Sine Gaussian injections (red) only re-
quire a single wavelet and thus never achieve particularly
high log Bs,g. Intermediate mass black hole (IMBH) merg-
ers need N < 10 resulting in stronger separation between
models (blue), while the white noise burst waveforms (black)
have rich time frequency structure, often saturating the prior
on N and show the strongest SNR dependence (highest ).

the other hand, if the data represent coincident glitches,
then a priori there is no reason for the glitch in Liv-
ingston to match the parameters in Hanford. Instead,
the wavelet in Livingston is chosen at random. One can
consider glitches to be random draws from X\ space and
false alarms (glitches that appear as signals) are draws

that overlap within the size /det C'yz. If the posteriors
do not overlap the data is not consistent with the sig-
nal model, i.e. the signal model likelihood will be lower
than the glitch model likelihood, and the Bayes Factor
will favor the glitch model (c.f. Figure 1).

We can use the same logic to estimate the background
rate of glitches that are consistent with the signal model.
Assume, in a given two detector data set, there are Ny
coincident glitches. If we assume our signal/glitch model
can achieve a perfect match to glitches in the data, the
recovered SNR of the signal and the glitch model will be
equal when the glitches overlap in the X space and the
Bayes factor will be again well approximated by Eq. 12.

Recall the Occam factor is interpreted as the fraction of
the prior covered by the posterior ~ v/det C/V, i.e. the
Occam factor is the size of the “target” the second glitch
must hit to be misidentified as a signal. Put another
way, a glitch has probability ~ v/det C'/V to be consis-
tent with the signal model. Therefore finding a back-
ground event with a Bayes factor consistent with Eq 12
will require analysis of something like (V)" /v/det Cx
coincident glitches. In our application the Occam factor
thus takes on an additional interpretation as the expected
number of trials (coincident noise transients) needed for
two random glitches to have sufficient overlap in param-
eter space to look like a signal.

We can loosely turn this into an argument for the max-
imum Bayes factor-the one that occurs only once in a
span of LIGO data—as having an Occam factor of N,
i.e. the maximum Bayes factor for a background noise
event is

<BS,Q>background Sz Ngl~ (14)



This limit is not robust. The loudest noise event is
obviously in the extreme tail of the background distri-
bution and will therefore fluctuate wildly for different
realizations of the data. Nor is this a statement about
the population of glitches beyond the assumption that
the parameters A are chosen at random for glitches in
each detector. It is also important to point out this is
may be a conservative estimate. Most glitches are at low
SNR in any realistic glitch population, and so low values
of the Occam Factor will likely be much more common
than high values.

We use our estimate of the most significant background
event to approximate the false alarm rate. To do so we
need to know the rate of coincident glitches, R,1, which is
a carefully studied quantity within LIGO. The single de-
tector glitch rate was known during S6 to typically have
values between 1 and 0.1 Hz [34]. The light travel time
between LIGO detectors is 10 ms, leading to a coincident
glitch rate of Ry ~ 1 Hz x 1 Hz x 0.01 s = 0.01 Hz.

False alarm rates are estimated by analyzing time-
shifted data, or “time slides.” If the data from one detec-
tor is shifted by more than the light travel time to another
detector, there will be no coincident gravitational wave
signals. Because the rate of glitches completely domi-
nates the rate of GW signals, analyzing time-shifted data
all but guarantees that any coincidences are due to noise
artifacts.

Consider the last quarter of LIGO’s sixth science run
(S6D) which lasted for ~ 50 days. A so-called “three
sigma” detection requires an event more significant than
any background coincidences found in ~ 300 time slides.
The background estimate from 300 time slides corre-
sponds to 40 years of data, and Ny ~ 1 x 107. Equation
14 predicts that events with InBs g 2 16 would be de-
tected with better than three-sigma confidence.

To test this prediction we compute the Bayes factors
for the coincident events in time slides of the S6D data
found by the coherent WaveBurst algorithm [17]. Fig-
ure 3 shows the cumulative glitch rate as a function
of InBs g i.e. the y-axis is the rate at which coinci-
dent glitches were found with Bayes factors greater than
the corresponding value on the x-axis. The distribution
steeply decreases with increasing Bayes factor, and does
not show evidence of leveling-off with a broad “tail” in
the background that has limited previous searches. See
Ref. [18] for a detailed study of how BayesWave can
improve detection confidence of existing burst searches.
Furthermore, the distribution ends at In Bs g ~ 15 which
is consistent with our analytic prediction for the back-
ground. Ultimately we should be able to turn arguments
about the expected background rate into a prior odds ra-
tio between the glitch and signal model. For the immedi-
ate future we elect to take a more conservative approach
and continue using background studies to estimate the
false alarm rate and therefore the detection significance.
There is no guarantee that the non-Gaussian noise in fu-
ture GW data will bear any resemblance to what was
found during S6.
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FIG. 3. The cumulative rate of glitches as a function of Bayes
factor from time-slide studies using BayesWave and the S6D
data set. The black, vertical line shows the expected value
for the most significant event using the limit in Equation 14.
Because this represents 300 time-slides of the data set, we
see that the sine-gaussian injections above network SNR 10
are detected with marginal significance, whereas many WNB
signals above network SNR 25 were “gold-plated” detections.
Our findings are in excellent agreement with the analytic ap-
proximations in this work.

Comparing our inferred background rate to Figure 2
we find that sine-Gaussian waveforms in a two detector
network will be detected at false alarm rates that suggest
marginal significance at any reasonable SNR, similar to
performance seen in past burst searches. However, unlike
previous burst searches, we find that IMBH and white
noise bursts are detectable with very high significance.
Figure 5 in the Appendix shows the number of wavelets
used to recover each waveform morphology as a function
of injected SNR and provides supporting evidence that
waveforms that require more wavelets typically provide
higher Bayes factors.

What is required for a high confidence, or “five-sigma,”
detection? For this case, we seek a p-value of less than 3 x
10~7, and so demand our event be louder than the loudest
event in 3 x 10° time slides. For S6D this leads to Ngj ~
10!, and an expected loudest event (In Bs,g)background ~
25. We have already seen that single wavelet events can
not reach this level at any reasonable SNR but applying
the scaling law in Equation 12, we find that such a “gold-
plated” detection could be achieved at reasonable SNR
with as few as two or three wavelets. For example, the
IMBH and white noise burst signals in Figure 2 added
to the same data we used to estimate the background by
far exceed the Bayes factor which corresponds to a false
alarm probability of ~ 3 x 10~7. This is an important
feature of the BayesWave pipeline: Gold-plated detections
of short-duration signals are possible even in the presence
of a significant glitch population.
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FIG. 4. Reconstructed whitened, time-domain signal- and glitch-model waveforms for S6D background events. Solid (red/blue)
line is the median (glitch/signal) waveform. Dashed lines of corresponding color show the 20 errors on the reconstructed
waveforms. Each row shows one of the three most significant background events. Left column is the waveform in Hanford.
Right column is Livingston. From top to bottom In Bs,g was [15,12,12]. The overlap between the glitch model and the signal

model was [91%, 93%, and 86%], respectively.

V. DISCUSSION

In this paper we have demonstrated BayesWave’s util-
ity as a follow-up analysis for GW burst searches. By an-
alyzing data from the sixth LIGO science run (S6) which
took place from 2009-2010 we have shown that high con-
fidence detections are achievable using BayesWave as a
follow-up analysis despite the high rate of noise tran-
sients in the data. When used to follow-up short-duration
gravitational wave triggers, BayesWave has been shown
to significantly reduce the rate of false-alarms while re-
maining sensitive to a wide range of signals [18]. For
insight into how BayesWave takes advantage of Bayesian
model selection to separate signals and glitches we pre-
sented an analytical framework and found simple expres-
sions which provide approximations to our full numerical
analysis on real data. The results show that BayesWave
has several novel features, when compared with other

Burst pipelines:

e The detection statistic directly compares the ev-
idence for an astrophysical signal with a glitch
model, as opposed to calculating a likelihood de-
rived from Gaussian noise.

e BayesWave places emphasis on the time-frequency
complexity and network coherence of an event,
rather than just its strength, to distinguish signals
from glitches

e The background distribution shows no evidence of
“tails” at high values.

In order to emphasize the importance of including the
glitch model in a statistical framework, best fit waveforms
for the signal and glitch models for the most “signal-
like” background events in S6D are shown in Figure 4.
For these examples of real glitches, the signal and glitch



model are shown to very nearly agree. Because glitches
can be so successful in imitating real gravitational wave
signals, pipelines which attempt to reject these events
with tunings and cuts face a major challenge. Instead,
BayesWave attempts to accurately assess the probability
of such coincident glitches arising from chance. This ap-
proach places a lower weight to events with simple time-
frequency structure that could plausibly arise simulta-
neously in two or more instruments, regardless of their
SNR.

The detection statistic described in this work, Bs,g,
represents the likelihood ratio for two competing models:
the data contains a glitch, or the data contains an astro-
physical signal. The purist may object to this application
of the Bayes factor, instead favoring the Bayesian odds
ratio between the signal and glitch model. The prior odds
ratio between these models is the ratio of the expected
coincident and coherent glitch rate to the expected rate
of GW signals. While the rate of GW signals is unknown,
we have shown that the measured background distribu-
tion is consistent with our analytic predictions using the
LIGO glitch rate. This consistency suggests that the
BayesWave model is a good fit to actual LIGO data and
Bayes factors calculated by BayesWave will serve as a ro-
bust means for correctly identifying signals and glitches.
In principle, glitches with non-flat distributions in f and
Q, especially if similarly distributed in multiple detec-
tors, could invalidate this agreement. Should that be the
case, the posterior distribution of background events can
easily be folded in to our analysis as a prior on the glitch
model. Because the glitch population in earlier LIGO
data will likely differ from that of the advanced detec-
tors, we will continue to rely on the brute-force approach
of using time slides to estimate the significance of a can-
didate event and use what is learned to further improve
our priors for subsequently collected data.

As the capabilities of ground based detectors continues
to improve so too must our analysis. The work presented
here represents a snap shot of BayesWave’s capabilities
as the algorithm continues to advance. Further develop-
ment is underway to relax the requirement of elliptical
polarization for the signal model (improving the detec-
tion efficiency for unpolarized signals) and to account for
glitches and signals appearing in the same segment of
data (reducing false dismissals due to near-coincidence
with glitches). Nonetheless, based on the thorough per-
formance studies in real LIGO data reported in this work
we conclude that BayesWave is prepared to decisively aid
in the detection and characterization of GW bursts in the
advanced detector era.
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Appendix: Bayes Factors

The Laplace approximation for the evidence is given
by

Z = p(d|@uiap, H)p(Onar|H) (27)P/2\/det Cg (A1)

where Oyap are the maximum a posteriori parameters,
D is the model dimensions, and Cy is the full parameter
covariance matrix, which we can estimate from the in-
verse of the Fisher information matrix I'g. If the prior is
uniform for all parameters, the prior density is equal to
the inverse of the prior volume: p(@nap) = 1/Vprior. We
recognize the collection of terms (27)”/2,/det Cp as the
posterior volume. Thus, for uniform priors, the evidence
is given by the product of the MAP likelihood times the
ratio of the posterior to prior volume, which is referred
to as the Occam penalty. In the case of BayesWave the
priors on most parameters are flat, with the important
exception of the amplitude or the signal-to-noise ratio
(which depends of the amplitude, quality factor, central
frequency and noise spectral density).

Dropping terms down by factors of e~ @ relative to
leading order, the Fisher matrix for a single wavelet using
the parameters {to, fo, @,In 4, ¢o} is given by

HRLGY g 0 0 —2nf
0 3+Q22 3 1 0
4 4 2
T'y — SNR? O S R L
46%]‘0 4?2 2Q
0 —57 36 1 0
—27 fo 0 0 0 1
(A.2)
The determinant of I'y is
1 72 SNR'?
det'y = = A3
CAT G0 T 202 (A:3)

The expectation value of the MAP log likelihood is
given by (see page 31 of Ref. [30] and references therein)

D
E[lnp(d|0MAp)] = const. + 5 (A4)

The constant is independent of the signal model. The
D/2 term comes from more complicated models being
able to better fit features in the Gaussian noise.



Each wavelet is described by 5 parameters, and has

V20Q;
7 SNR?

\/det OAi =

(A.5)

where SNR; is the signal-to-noise ratio for wavelet 7. As-
suming that the N wavelets used in the reconstruction
have little overlap with each other, the total posterior
volume for the wavelet model is

(A.6)

N
vdetCy = H \/iQZ

=1 mSNR]

BayesWave has a non-trivial amplitude prior which
needs to be taken into account. One choice would be a
uniform in volume prior on the source distribution, which
is equivalent to a prior on the distance D that scales as
p(D) D?. Since amplitude and distance are inversely re-
lated, we have D?dD ~ A=%dA ~ A=3dIn A. Here we
have made the change of variables to In A since this is
the parameter used to compute the Fisher matrix. This
prior is improper, and to make it proper a minimum am-
plitude cut-off A, (maximum distance) has to be intro-
duced. The properly normalized uniform-in-volume prior

i)'

An alternative approach, used by BayesWave in this
work, is to adopt different physically motivated priors

(A7)

SNR? 5N
2

InBg n =

Here SNR? is the signal-to-noise ratio of the signal or
glitch in that detector. Later when considering a network
of detectors the SNR? will refer to the network signal-to-
noise ratio of the signal.

If the wavelet model in one detector uses N wavelets,
and assuming little overlap between wavelets, then

N
SNR? = " SNR? = NSNR” (A.13)
n=1
Based on simulations, we find that the average number
of wavelets used by BayesWave increases linearly with
the total SNR, and that the average per wavelet SNR
increases with the total SNR as a waveform-dependent
power law. Writing N = 1 + 8SNR and SNR = o SNR?,
we find that the values of 8, «, and a depend on the
waveform morphology, with o and 3 increasing, and a de-
creasing, as the time-frequency structure of the waveform

+ 7 (1 + 111(27'()) + P
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on the signals and glitches that are given as functions of
the SNR. For glitches the SNR is given by

AVQ

\/2V27 foSn(fo) 7

while for signals the SNR is given by the same expression,
but with the individual detector noise spectral density
replaced by the network average

) F2,+F2,\
Sn(fo) = <Z W)

SNR ~

(A.8)

(A.9)
Thus the signal-model SNR depends on A, Q, fo, 2. The
priors on the signal model and glitch model are given in

terms of a prior on the SNR, p(SNR). Making the change
of variables from SNR to In A yields

SNR ) * —SNR/SNR.
p(ln A|G) = (SNR*) e (A.10)
for the glitch model and
3 ( SNR \? 1
In A|S) = - ATl
pnAlS) =7 (SNR*) drssr/sNm s A

for the signal model.

If we further assume little correlation between the
wavelet model and the Gaussian noise model, then the
expected value for the log Bayes Factor between the glitch
plus noise model and the noise model in a single detector
is

(A.12)

N
Z In <F\g§NQ];5 ) + 1np()\MAp|g) .

becomes more complicated. In the case of a constrained
model using a fixed number of wavelets the average SNR
per wavelet always increases linearly with the total SNR,
though with a proportionality less than one for anything
other than sine-gaussians.

Fig. 5 shows the average number of wavelets (left
panel) and SNR per wavelet (right panel) as a function of
SNR for the three different waveform morphologies stud-
ied in this paper—sine Gaussians, binary black hole merg-
ers, and white noise bursts—added to simulated Gaussian
noise from a single detector at Advanced LIGO sensitiv-
ity. Each simulation was repeated for several Gaussian
noise realizations. Plotted are the average and one stan-
dard deviations of the mean, plus lines that show the
scaling relations using the best fit values for {«, 5, a}.

Starting with a simplified model of two aligned col-
located detectors, the signal model does not need any
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FIG. 5. Number of wavelets (left) and SNR per wavelet (right) found for simulated GWs as a function of the signal’s SNR.
Simulated waveforms include sine Gaussians (red), intermediate mass binary black holes (blue), and white noise bursts (black).
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over several Gaussian noise realizations. Error bars represent one standard deviation of the mean. Over-plotted are SNR scalings

found in the text using the best fit values 3, «, and a.

NS

5NS 5NY V2Q,
hlBS_]g = (T — T) (1"’111(271'))"‘; hl <T1\IP¢Z

If we assume that all the wavelets have the same quality
factor @ and individual signal-to-noise ratios SNR,;, then
the individual SNRs in each detector are SNR/ V2. Thus
for the glitch model SNR? = o SNR/v/2, while for the

47T1/2Q
TF AQ(aSNR")?

Here TF is the time frequency volume, and AQ is the
prior range for Q. Note that the contributions from
the amplitude prior introduce important SNR scalings
into the Bayes factor. For a single sine-Gaussian model
the posterior volume terms introduce a In(SNR) scal-
ing to the log Bayes factor. For BayesWave the scal-
ing with SNR is far more complicated. On complex
waveforms both NS and N9 scale linearly with the
SNR, so the posterior volume introduces terms that
scale as SNRIn(SNR). The amplitude prior for the
signal model introduces a similar SNRIn(SNR) scal-
ing, along with a more complicated scaling of the form
SNRIn(1 + SNR/4SNR.). The amplitude prior for the

_N9In Ar'2Q
) N <TFAQ(aSNR"/\/§))

extrinsic parameters and the log Bayes factors are

T SNR?

NG
)-Zm < V20, )+1np(>\MAp|S)—lnp(>\MAp|g). (A.14)
n=1

signal model SNR; = aSNR®. Then the Bayes Factor
between the signal and glitch models for two collocated
detectors is

- > +N¥1Inp(ln A|S)—NY Inp(ln A|G)
(A.15)

glitch model introduces SNR In(SNR) terms, in addition
to a term that scales as SNR?, though this term does not
start to dominate until very high SNRs (SNR > 50 for
typical choices of SNR,.). In the fixed dimension case the
BayesWave scaling is dominantly of the form In(SNR) for
moderate SNRs. At very high SNRs the quadratic de-
pendence of the full BayesWave scaling is replaced by a
linear scaling in SNR.

There are several assumptions that went into the
derivation of the signal-to-glitch Bayes Factor for
BayesWave that are rather crude. The worst approxi-
mations are that the wavelets used in the reconstruction
all have roughly the same @ and signal-to-noise ratio.



While on average the scaling SNR; = aSNR® is quite
robust, the SNR; for individual wavelets never go much
below the value set by the peak of the SNR prior, SNR.,
so that SNR; 2 SNR,. This means that the linear scal-
ing typically only holds for network SNRs greater than
around 10 or 12. Rather than assuming the same quality
factor for each wavelet we could use the average value.
For @ distributed uniformly in the range @ € [Q1, Q2]
we have

E [m (%)} 14 @ IH(AQ/QQ)A—QQl In(AQ/Q1)

(A.16)

e ()

1. Extrinsic Parameters

Q1Q2(In(AQ/Q2) —In(AQ/Q1))?

AQ? -1

(A.17)

Implicit in the preceding derivation was the assump-
tion that the overlap of any two wavelets (¥;|¥,;)~0 and,
as a consequence, the parameter correlation matrix for
the wavelets was block-diagonal. This assumption is rea-
sonable since each wavelet collects the power in a cer-
tain time-frequency volume disfavoring highly overlap-
ping wavelets. For mis-aligned detectors we can write
the parameter correlation matrix for the signal model in

5NS
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block-form as

Co = (g)%{ gi) (A.18)
where C is the 5N x 5N correlation matrix for the intrin-
sic wavelet parameters, Cq is the 4 X 4 correlation matrix
for the extrinsic parameters and C'x is the 5V x 4 cross-
correlation matrix that mixes the extrinsic and intrinsic
parameters. The Fisher matrix I'g = Cy ! can similarly

be decomposed:
([ I'x T'x
o= (17 1)

Now, for partitioned symmetric matrices we have (see
page 46 of the Matrix Cookbook [35])

(A.19)

(A.20)

which implies that the volume of the posterior factors
into extrinsic and intrinsic pieces, where the intrinsic part
has exactly the same form as for the glitch model:

Vs = (27T)D/2\/det Co
(27)PN°/2+2, [det Cq H< V20: ) (A.21)

SNR?

Putting all the pieces together we have

g
InBsg = <T+2_ 5];[ ) (1+1n(27)) —i—Zl < V20, ) — Inp(Amar|9)

472

+In (@) —Zln( V20n

n=1

From here we can insert the SNR scalings for N¢, N9
and the SNR,, and include the explicit expression for the
intrinsic parameter volumes in an effort to make quanti-
tative predictions. While the expressions are more com-
plicated than the aligned collocated case the scalings with
SNR are the same.

We are unable to derive an analytic expression for
Vdet Cq. Additionally, there is the problem that some
of the extrinsic parameters, most notably the elliptic-
ity and polarization angle, are poorly constrained and
Fisher matrix estimates are unreliable. As a result the
posterior volume does not scale as SNR™* as we naively
expect from the Fisher matrix, but as some lower power
such as SNR™2 or SNR™®. One way to incorporate the
restriction that the posterior not exceed the prior is to
elevate the extrinsic parameters from their fundamen-
tal domain (with periodic boundary conditions) to the

7w SNR?

7 SNR?

n

) + Inp(Amap|S) (A.22)

universal cover, and introduce a Gaussian prior on the
parameters that restricts the posterior volume to be no
larger than the prior volume. The negative Hessian of
second derivatives of the log of this prior is added to the
Fisher matrix (so that the Fisher matrix describes the
curvature of the posterior, not just the likelihood). Nu-
merically computing the posterior volume as a function
of SNR using this approach shows that the posterior vol-
ume scales as SNR™7, where the exponent ~ is weakly
dependent on the SNR, varying between roughly 2 and
3 across the range of SNRs we expects to encounter, as
shown in Fig. 5.

The end result is that including the intrinsic parame-
ters increases the dimension of the signal model by be-
tween 2 and 3 degrees of freedom, not 4 as we would
naively expect. Thus, the overall scaling for the single
sine-Gaussian Bayes factor should scales as InBsg ~



10°

=
o
N
T T

s

pQd) ——
p(Q)

10-6 Ll

10° 10t 102

SNR

14

5 T T T

o Loyl
10° 10t 102
SNR

FIG. 6. The panel on the left shows the scaling of the extrinsic posterior volume with SNR for ten randomly chosen single
sine-Gaussians in a two detector network. The panel on the right shows the SNR dependence of the slope parameter ~.

(5 — 6)InSNR. The scaling for more elaborate wave-
forms is far more complicated. Ultimately it is this

added complexity that enables BayesWave to assign high-
confidence to detection candidates of non-trivial GW sig-
nals.
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