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The bulk properties of spherically symmetric stars in general relativity can be obtained by in-
tegrating the Tolman-Oppenheimer-Volkoff (TOV) equations. In previous work [1] we developed
a “post-TOV” formalism – inspired by parametrized post-Newtonian theory – which allows us to
classify in a parametrized, phenomenological form all possible perturbative deviations from the
structure of compact stars in general relativity that may be induced by modified gravity at second
post-Newtonian order. In this paper we extend the formalism to deal with the stellar exterior, and
we compute several potential astrophysical observables within the post-TOV formalism: the sur-
face redshift zs, the apparent radius Rapp, the Eddington luminosity at infinity L∞

E and the orbital
frequencies. We show that, at leading order, all of these quantities depend on just two post-TOV
parameters µ1 and χ, and we discuss the possibility to measure (or set upper bounds on) these
parameters.

PACS numbers: 04.40.Dg, 04.50.Kd, 04.80.Cc, 04.25.Nx, 97.60.Jd

I. INTRODUCTION

Compact stars are ideal astrophysical environments
to probe the coupling between matter and gravity in a
high-density, strong gravity regime not accessible in the
laboratory. Cosmological observations and high-energy
physics considerations have spurred extensive research
on the properties of neutron stars, whether isolated or
in binary systems, in modified theories of gravity (see
e.g. [2, 3] for reviews). Different extensions of general rel-
ativity (GR) affect the bulk properties of the star (such
as the mass M and radius R) in similar ways for given as-
sumptions on the equation of state (EOS) of high-density
matter. Therefore it is interesting to understand whether
these deviations from the predictions of GR can be un-
derstood within a simple parametrized formalism. The
development of such a generic framework to understand
how neutron star properties are affected in modified grav-
ity is even more pressing now that gravitational-wave ob-
servations are finally a reality [4], since the observation of
neutron star mergers could allow us to probe the dynam-
ical behavior of these objects in extreme environments.
In previous work we developed a post-Tolman-

Oppenheimer-Volkoff (henceforth, post-TOV) formalism
valid for spherical stars [1]. The basic idea is quite sim-
ple. The structure of nonrotating, relativistic stars can
be determined by integrating two ordinary differential
equations: one of these equations gives the “mass func-
tion” and the other equation – a generalization of the
hydrostatic equilibrium condition in Newtonian gravity –
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determines the pressure profile and the stellar radius, de-
fined as the point where the pressure vanishes. The post-
TOV formalism, reviewed in Section II below, adds a
relatively small number of parametrized corrections with
parameters µi (i = 1, . . . , 5) and πi (i = 1, . . . , 4) to the
mass and pressure equations. These corrections have two
properties: (i) they are of second post-Newtonian (PN)
order, because first-order deviations are already tightly
constrained by observations; and (ii) they are general
enough to capture in a phenomenological way all possi-
ble deviations from the mass-radius relation in GR. Other
parametrizations were explored in [5, 6] by modifying ad
hoc the TOV equations.

In this paper we turn to the investigation of astro-
physical applications of the formalism. Part of our anal-
ysis is inspired by previous work by Psaltis [7], who
showed that, under the assumption of spherical symme-
try, many properties of neutron stars in metric theories
of gravity can be calculated using only conservation laws,
Killing symmetries, and the Einstein equivalence princi-
ple, without requiring the validity of the GR field equa-
tions. Psaltis computed the gravitational redshift of a
surface atomic line zs, the Eddington luminosity at infin-
ity L∞

E (thought to be equal to the touchdown luminosity
of a radius-expansion burst), and the apparent surface
area of a neutron star (which is potentially measurable
during the cooling tails of bursts).

We first extend our previous work to study the exterior
of neutron stars. Then we compute the surface redshift
zs, the apparent radius Rapp and the Eddington lumi-
nosity at infinity L∞

E . In addition, we study geodesic
motion in the neutron star spacetime within the post-
TOV formalism. We focus on the orbital and epicyclic
frequencies, that according to some models – such as the
relativistic precession model [8, 9] and the epicyclic reso-
nance model [10] – may be related with the quasi-periodic
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oscillations (QPOs) observed in the X-ray spectra of ac-
creting neutron stars.
Our main result is that, at leading order, all of these

quantities depend on just two post-TOV parameters: µ1

and the combination

χ ≡ π2 − µ2 − 2πµ1 . (1)

We also express the leading multipoles in a multipolar
expansion of the neutron star spacetime in terms of µ1

and χ, and we discuss the possibility to measure (or set
upper bounds on) these parameters with astrophysical
observations.
The plan of the paper is as follows. In Section II

we present a short review of the post-TOV formalism
developed in [1]. In Section III we extend the formal-
ism to deal with the stellar exterior, computing a “post-
Schwarzschild” exterior metric. In Section IV we com-
pute the surface redshift zs and relate it to the stellar
compactness M/R. In Section V, following [7], we study
the properties of bursting neutron stars in the post-TOV
framework. In Section VI we calculate the orbital fre-
quencies. In Section VII we look at the leading-order
multipoles of post-TOV stars. Then we present some
conclusions and possible directions for future work.

II. OVERVIEW OF THE POST-TOV

FORMALISM

Let us begin with a review of the post-TOV formalism
introduced in [1]. The core of this formalism consists
of the following set of “post-TOV” structure equations
for static spherically symmetric stars (we use geometrical
units G = c = 1):

dp

dr
=

(

dp

dr

)

GR

−
ρm

r2
(P1 + P2 ) , (2a)

dm

dr
=

(

dm

dr

)

GR

+ 4πr2ρ (M1 +M2) , (2b)

where

P1 ≡ δ1
m

r
+ 4πδ2

r3p

m
, M1 ≡ δ3

m

r
+ δ4Π, (3a)

P2 ≡ π1
m3

r5ρ
+ π2

m2

r2
+ π3r

2p+ π4
Πp

ρ
, (3b)

M2 ≡ µ1
m3

r5ρ
+ µ2

m2

r2
+ µ3r

2p+ µ4
Πp

ρ
+ µ5Π

3 r

m
.

(3c)

Here r is the circumferential radius, m is the mass func-
tion, p is the fluid pressure, ρ is the baryonic rest mass
density, ǫ is the total energy density and Π ≡ (ǫ − ρ)/ρ

is the internal energy per unit baryonic mass. A “GR”
subscript denotes the standard TOV equations in GR,
i.e.

(

dp

dr

)

GR

= −
(ǫ+ p)

r2
(mT + 4πr3p)

(1− 2mT/r)
, (4a)

(

dm

dr

)

GR

=
dmT

dr
= 4πr2ǫ, (4b)

where mT is the GR mass function.
The dimensionless combinations P1,M1 and P2,M2

represent a parametrized departure from the GR stellar
structure and are linear combinations of 1PN- and 2PN-
order terms, respectively. These terms feature the phe-
nomenological post-TOV parameters δi (i = 1, . . . , 4),
πi (i = 1, . . . , 4) and µi (i = 1, . . . , 5). In particular,
the coefficients δi attached to the 1PN terms are sim-
ple algebraic combinations of the traditional PPN pa-
rameters δ1 ≡ 3(1 + γ) − 6β + ζ2, δ2 ≡ γ − 1 + ζ4,
δ3 ≡ − 1

2 (11 + γ − 12β + ζ2 − 2ζ4), δ4 ≡ ζ3. As such,
they are constrained to be very close to zero by existing
Solar System and binary pulsar observations1: |δi| ≪ 1.
This result translates to negligibly small 1PN terms in
Eq. (2): P1 ≪ 1, M1 ≪ 1. On the other hand, πi and
µi are presently unconstrained, and consequently P2,M2

should be viewed as describing the dominant (significant)
departure from GR. The GR limit of the formalism cor-
responds to setting all of these parameters to zero, i.e.
δi, πi, µi → 0.
Alternatively, the stellar structure equations (2) can be

formally derived – if we neglect the small terms P1,M1

– from a covariantly conserved perfect fluid stress energy
tensor [1]:

∇νT
µν = 0, T µν = (ǫeff + p)uµuν + pgµν , (5)

where the effective, gravity-modified energy density is

ǫeff = ǫ+ ρM2, (6)

and the covariant derivative is compatible with the effec-
tive post-TOV metric

gµν = diag[−eν(r), (1− 2m(r)/r)−1, r2, r2 sin2 θ ], (7)

with

dν

dr
=

2

r2

[

(1−M2)
m+ 4πr3p

1− 2m/r
+mP2

]

. (8)

This post-TOV metric is valid in the interior of the star.
In the following section we discuss how an exterior post-
TOV metric can be constructed within our framework.

1 Using the latest constraints on the PPN parameters [11] we
obtain the following upper limits: |δ1| . 6 × 10−4, |δ2| .
7× 10−3, |δ3| . 7× 10−3, |δ4| . 10−8.
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III. THE EXTERIOR

“POST-SCHWARZSCHILD” METRIC

For the applications of the post-TOV formalism con-
sidered in this work, we must specify how the gtt and
grr metric elements are calculated in the interior and
exterior regions of the fluid distribution. In this sec-
tion we will construct an exterior spacetime in a “post-
Schwarzschild” form.
From the effective post-TOV metric, we have that in-

side the fluid body gtt = − exp[ν(r)], where ν(r) is de-
termined in terms of the fluid variables and post-TOV
parameters from Eq. (8). We will assume that outside

the fluid distribution the same effective metric expres-
sion holds2. Then we get the equations

dν

dr
=

(

dν

dr

)

GR

+
2

r2

[

−µ2
m2

r2
m

1− 2m/r
+ π2

m3

r2

]

,

(9)

dm

dr
= 4πµ1

m3

r3
, (10)

where
(

dν

dr

)

GR

≡
2

r2
m

1− 2m/r
. (11)

These equations originate from the general expressions
(8) and (2b) after setting all fluid parameters to zero, i.e
p = ǫ = ρ = Π = 0, and keeping the surviving terms in
M2 and P2. It is not difficult to see that, in the nomen-
clature of [1], the only 2PN post-TOV terms that can
appear in the exterior equations are those of “family F1”
and “family F2”. The F1 term (coefficient π1) should not
appear in the P2 correction of the interior dν/dr equa-
tion because it is divergent at the surface. This implies
that the F1 term should not appear in the dp/dr equation
either.
As it stands, Eq. (9) contains higher than 2PN order

terms. It should therefore be PN-expanded with respect
to the post-TOV terms:

dν

dr
=

(

dν

dr

)

GR

+ 2(π2 − µ2)
m3

r4
. (12)

Thus (12) and (10) are our “final” post-TOV equations
for the stellar exterior.
The mass equation is decoupled and can be directly

integrated. The result is

m(r) =
r

√

4πµ1 +Kr2
, (13)

2 This assumption is based on simplicity. While we keep an ag-
nostic view on the validity of Birkhoff’s theorem within our for-
malism (and in modified gravity theories in general), the interior
post-TOV metric is arguably the best guide towards the con-
struction of the exterior metric.

where K is an integration constant. The fact that
dm/dr 6= 0 outside the star implies the presence of an
“atmosphere” due to the non-GR degree of freedom. This
is reminiscent of the exterior structure of neutron stars
in scalar-tensor theories [12]. The constant K is fixed by
setting m(r → ∞) equal to the system’s ADM mass M∞.
Then,

m(r) = M∞

(

1 + 4πµ1
M2

∞

r2

)−1/2

. (14)

Thus the ADM mass is related to the Schwarzschild mass
M ≡ m(R) by

M = M∞

(

1 + 4πµ1
M2

∞

R2

)−1/2

. (15)

As expected, in the GR limit the two masses coincide

m(r > R) = M∞ = M. (16)

Assuming a post-TOV correction F ≡
4π|µ1|(M∞/R)2 ≪ 1 we can re-expand our result (15),

M = M∞

(

1− 2πµ1
M2

∞

R2

)

. (17)

The inverse relation M∞ = M∞(M) reads3

M∞ = M

(

1 + 2πµ1
M2

R2

)

. (18)

The three mass relations (15), (17) and (18) are equiv-
alent in the F ≪ 1 limit. Equations (15) and (14) are
“exact” post-TOV results and do not require F or µ1 to
be much smaller than unity, although Eq. (15) does place
a lower limit on µ1 because the argument of the square
root must be nonnegative. Unfortunately, the use of (14)
in the calculation of the metric components leads to very
cumbersome expressions.
To make progress (while also keeping up with the post-

TOV spirit), we hereafter use the F ≪ 1 approximations
(17)-(18). This step, however, introduces a certain de-
gree of error. This is quantified in Fig. 1 (left panel),
where we show the relative percent error in calculating
M∞ using the post-TOV expanded Eqs. (17) and (18)
rather than Eq. (15). Using EOS Sly4 [13], we consid-
ered values of µ1 for which Eqs. (15) and (17) admit a
positive solution for M∞. As test beds, we consider neu-
tron stars with central energy densities which result in
a canonical 1.4M⊙ and the maximum allowed mass in

3 At first glance, obtaining M∞(M) entails solving a cubic equa-
tion. However, the procedure is greatly simplified if we recall that
the post-TOV formalism must reduce to GR for {µi, πi} → 0.
Having that in mind we can treat µ1 as a small parameter
and solve (17) perturbatively. The only regular solution in the
µ1 → 0 limit is Eq. (18).
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GR, i.e. 2.05M⊙. As evident from Fig. 1, the error can
become significant as we increase the value of |µ1|. By
demanding that the errors remain within 5% we can nar-
row down the admissible values of µ1 to [−1.0, 0.1]. We
observe that while M∞ can deviate greatly from the GR
value (e.g. M∞ reduces by ≈ 21% when µ1 = −1.0 with
respect to a 1.4M⊙ neutron star), F remains below unity
(see right panel of Fig. 1). This is because large negative
values of the parameter µ1 make the star less compact
(i.e. Newtonian), as evidenced in Fig. 1 of [1].

We emphasize that the larger errors for some values
of µ1 are not an issue with the post-TOV formalism it-
self, but serve to constrain the values of µ1 for which the
perturbative expansion is valid. From a practical point
of view, excluding large values of |µ1| is a sensible strat-
egy, since the resulting stellar parameters are so different
with respect to their GR values that these cannot be con-
sidered as meaningful post-TOV corrections. Hereafter,
whenever we refer to M∞ we mean the mass calculated
using Eq. (18) with µ1 ∈ [−1.0, 0.1].
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FIG. 1. Errors in M∞. We show the percent error [% error ≡
100 × (xvalue − xref)/xref ] in calculating M∞ using Eqs. (17)
and (18) with respect to (15) for various values of µ1 using
EOS SLy4. The range of µ1 is chosen such that using any of
Eqs. (15), (17) or (18) one can obtain a real root correspond-
ing to M∞. The post-TOV models are constructed using
a fixed central value of the energy density, which results in
either a canonical (1.4M⊙) or a maximum-mass (2.05M⊙)
neutron star in GR. Top panel: errors for a maximum-mass
GR star. Bottom panel: errors for a canonical-mass GR star.
Right panel: the absolute value of the post-TOV correction
F = 4πµ1(M∞/R)2 as a function of µ1. The condition F ≪ 1
bounds the range of acceptable values of µ1 for which the ex-
pansions leading to Eqs. (17) and (18) are valid. Errors are
below 5 % when µ1 ∈ [−1.0, 0.1].

Within this approximation we are free to use the
Taylor-expanded form of (14), i.e.

m(r) = M∞

(

1− 2πµ1M
2
∞/r2

)

. (19)

This expression leads to the exterior grr metric

grr(r) =

(

1−
2M∞

r

)−1

− 4πµ1
M3

∞

r3
+O

(

µ1M
4
∞

r4

)

.

(20)

This expression allows us to identify M∞ as the space-
time’s gravitating mass (see also the result for gtt below).
The next step is to use our result for m(r) in (12) and

integrate to obtain ν(r). After expanding to 2PN post-
TOV order we obtain:

dν

dr
=

2M∞

r2

(

1−
2M∞

r

)−1

+ 2χ
M3

∞

r4
. (21)

where the parameter χ, defined in Eq. (1), quantifies the
departure from the Schwarzschild metric. Integrating,

ν(r) = log

(

1−
2M∞

r

)

−
2χ

3

M3
∞

r3
, (22)

where the integration constant has been eliminated by
requiring asymptotic flatness. The resulting exterior gtt
metric component is

gtt(r) = −

(

1−
2M∞

r

)

+
2χ

3

M3
∞

r3
+O

(

χM4
∞

r4

)

. (23)

Eqs. (23) and (20) represent our final results for the
2PN-accurate exterior post-Schwarzschild metric. From
this construction it follows that post-TOV stars for which
µ1 = µ2 = π2 = 0 have the Schwarzschild metric as the
exterior spacetime. The following sections describe how
the exterior metric can be used to compute observables
of relevance for neutron star astrophysics.

IV. SURFACE REDSHIFT & STELLAR

COMPACTNESS

The surface redshift is among the most basic neutron
star observables that could be affected by a change in
the gravity theory. The surface redshift is defined in the
usual way as

zs ≡
λ∞ − λs

λs
=

fs
f∞

− 1, (24)

where λ and f are the wavelength and frequency of a
photon, respectively. Here and below, the subscripts s
and ∞ will denote the value of various quantities at the
stellar surface r = R and at spatial infinity. The familiar
redshift formula

f∞
fs

=

[

gtt(R)

gtt(∞)

]1/2

(25)

is valid for any static spacetime, regardless of the form
of the field equations. Using the metric (23), we easily
obtain (at first post-TOV order)

fs
f∞

=

(

1−
2M∞

R

)−1/2

+
χ

3

M3
∞

R3
. (26)
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Given that the frequency shift depends only on the ratio
M∞/R, it is more convenient to work in terms of the
stellar compactness

C = M∞/R. (27)

Then from the definition of the surface redshift we obtain

zs = zGR +
χ

3
C3, (28)

where

zGR ≡ ( 1− 2C )
−1/2

− 1, (29)

is the standard redshift formula in GR, while the sec-
ond term represents the post-TOV correction. Observe
that zs can be smaller or larger than zGR depending
on the sign of the parameter χ. This is shown in
Fig. 2 (left panel), where we plot the percent difference
δzs/zs ≡ 100× (zs− zGR)/zGR as a function of C for two
representative cases (χ = ±0.1).
A characteristic property of the redshift is that it is

a function of C, and as such it cannot be used to dis-
entangle mass and radius individually. A given observed

surface redshift zobs can be experimentally interpreted
either as zobs = zGR(C) or zobs = zs(C, χ), and there-
fore lead to different estimates for C (for a given χ).
Fig. 2 (right panel), where we plot the percent difference
δC/C ≡ 100× (C−CGR)/CGR as a function of zs, shows
how much the inferred compactness would differ in the
two cases where χ = ±0.1. A positive (negative) χ leads
to a lower (higher) inferred compactness with respect to
GR. The figure suggests that the “error” in C becomes
significant for redshifts zs & 1.
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FIG. 2. Surface redshift and stellar compactness. Relative
percent changes with respect to GR for both zs and C for
different values of χ.

It is a straightforward exercise to invert the redshift
formula and obtain a post-TOV expression C = C(zs).
We first write

1 + zs =
1

√

−gtt(R)
⇒ gtt(R) = −

1

(1 + zs)2
. (30)

Upon inserting the post-Schwarzschild metric (23) we get
a cubic equation for the compactness,

− 1 +
1

(1 + zs)2
+ 2C +

2

3
χC3 = 0. (31)

In solving this equation we take into account that the
small parameters are C and zs ∼ O(C) and that the
χ → 0 limit should be smooth. We find,

C = CGR

(

1−
1

3
χz2s

)

, (32)

where

CGR =
1

2

[

1− (1 + zs)
−2

]

, (33)

is the corresponding solution in GR.
As was the case for the post-TOV redshift formula, the

compactness of a post-TOV star can be pushed above
(below) the GR value by choosing a negative (positive)
parameter χ.
The two main results of this section, Eqs. (28) and (32),

are also interesting from a different prespective, namely,
their dependence on the single post-TOV parameter χ.
This dependence entails a degeneracy with respect to the
coefficient triad {µ1, µ2, π2} when (for example) a neu-
tron star redshift observation is used as a gravity theory
discriminator. The redshift/compactness χ-degeneracy
is another reminder of the intrinsic difficulty in distin-
guishing non-GR theories of gravity from neutron star
physics (see e.g. discussion around Fig. 1 in [1]).

V. BURSTING NEUTRON STARS

A potential testbed for measuring deviations from GR
with a parametrized scheme like our post-TOV formalism
is provided by accreting neutron stars exhibiting the so-
called type I bursts. These are X-ray flashes powered by
the nuclear detonation of accreted matter on the stellar
surface layers [14]. The luminosity associated with these
events can reach the Eddington limit and may cause a
photospheric radius expansion (see e.g. [15, 16]), thus of-
fering a number of observational “handles” to the system
(see below for more details).
A paper by Psaltis [7] proposed type I bursting neutron

stars as a means to constrain possible deviations from
GR. Psaltis’ analysis, based on a static and spherically
symmetric model for describing the spacetime outside a
non-rotating neutron star, is general enough to allow a
direct adaptation to the post-TOV scheme. For that rea-
son we can omit most of the technical details discussed
in [7] and instead focus on the key results derived in that
paper.
There is a number of observable quantities associated

with type I bursting neutron stars that can be used to
set up a test of GR. The first one is the surface redshift
zs; in Section IV we have derived post-TOV formulae for
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zs and the stellar compactness C, which are used below
in the derivation of a constraint equation between the
post-Schwarzschild metric and the various observables.

The luminosity (as measured at infinity) of a source
located at a (luminosity) distance D is

L∞ = 4πD2F∞, (34)

where F∞ is the (observable) flux. This luminosity can be
written in a black-body form with the help of an apparent
surface area Sapp and a color temperature (as measured
at infinity) T̄∞:

4πD2F∞ = σSBSappT̄
4
∞, (35)

where σSB is the Stefan-Boltzmann constant. We then
define the second observable parameter used in this anal-
ysis, i.e. the apparent radius

Rapp ≡

(

Sapp

4π

)1/2

= D

(

F∞

σSBT̄ 4
∞

)1/2

. (36)

As evident from its form, Rapp is independent of the un-
derpinning gravitational theory, at least to the extent
that the theory does not appreciably modify the (lumi-
nosity) distance to the source.

The surface color temperature is related to the intrinsic
effective temperature Teff via the standard color correc-
tion factor fc [17, 18],

T̄s = fcTeff . (37)

The observed temperature at infinity picks up a redshift
factor with respect to its local surface value, that is,

T̄∞ = fc
√

−gtt(R)Teff . (38)

The effective temperature is the one related to the
source’s intrinsic luminosity,

Ls = 4πR2σSBT
4
eff . (39)

As shown in [7],

L∞ = −gtt(R)Ls = 4πR2σSB

(

T̄∞

fc

)4

[−gtt(R)]−1.

(40)
Combining this with the preceding formulae leads to,

Rapp

R
=

1 + zs
f2
c

. (41)

The third relevant observable is the Eddington luminos-
ity/flux at infinity. This is given by [7],

L∞
E = 4πD2F∞

E =
4π

κ

R2

(1 + zs)2
geff , (42)

where κ is the opacity of the matter interacting with the
radiation field4 and geff is an effective surface gravita-
tional acceleration, defined as:

geff =
1

2
√

grr(R)

g′tt(R)

gtt(R)
. (43)

This parameter is key to the present analysis as it encodes
the departure from the general relativistic Schwarzschild
metric.

−4 −3 −2 −1 0 1 2 3 4

χ
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0.5
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0
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0
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0
.7

0
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0
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0
.9

1
.0

1
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FIG. 3. Bursting neutron star constraints. The surfaces are
contours of constant

[

1 + (2/3)χz2s
]

zs(2 + zs)/(1 + zs)
4 in

the (zs, χ) plane. This quantity is a combination of observ-
ables – cf. the right-hand side of Eq. (48) – and therefore
it is potentially measurable; a measurement will single out a
specific contour in this plot. A further measurement of (say)
the redshift zs corresponds to the intersection between one
such contour and a line with zs = const., so it can lead to a
determination of χ.

Having at our disposal the above three observable com-
binations, the strategy is to combine them and derive
a constraint equation between the observables and the
spacetime metric. To this end, we first need to eliminate
the not directly observable stellar radius R between (41)
and (42) and subsequently solve with respect to geff . We
obtain

geff = κσSB
F∞
E

F∞

(

T̄∞

fc

)4

(1 + zs)
4. (44)

The remaining task is to express geff in terms of zs. Using
the post-Schwarzschild metric, Eqs. (20) and (23), in

4 Typically, this interaction manifests itself as Thomson scattering
in a hydrogen-helium plasma, in which case the opacity is κ ≈
0.2(1 +X) cm2/gr where X is the hydrogen mass fraction [16].
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(44) we obtain the post-TOV result

geff =
C

R
(1 + zs)

(

1 + χC2
)

. (45)

Making use of Eq. (32) for the compactness leads to the
desired result [cf. Eq. (39) in [7]]:

geff =
zs
2R

(2 + zs)

(1 + zs)

(

1 +
2

3
χz2s

)

, (46)

where, as evident, the prefactor represents the GR result.
Finally, after eliminating R with the help of (41) and
(36), we obtain the “observable” effective gravity:

geff =
zs(2 + zs)

2Df2
c

(

1 +
2

3
χz2s

)(

σSBT̄
4
∞

F∞

)1/2

. (47)

This can then be combined with (44) to give

zs(2 + zs)

(1 + zs)4

(

1 +
2

3
χz2s

)

= 2Dκ
F∞
E

f2
c

(

σSBT̄
4
∞

F∞

)1/2

,

(48)
and consequently

χ =
3

2z2s

[

2Dκ
(1 + zs)

4

zs(2 + zs)

F∞
E

f2
c

(

σSBT̄
4
∞

F∞

)1/2

− 1

]

.

(49)
This equation is the main result of this section and pro-
vides, at least as a proof of principle, a quantitative con-
nection between the post-Schwarzschild correction to the
exterior metric [in the form of the χ coefficient defined
in Eq. (1)] and observable quantities in a type I bursting
neutron star. Ref. [7] arrives at a similar result [their
Eq. (49)] which has the same physical meaning, but is
not identical to Eq. (48) due to the different assumed
form of the exterior metric.
Our results are illustrated in Fig. 3, where we show the

left-hand side of Eq. (48) as a contour plot in the (zs, χ)
plane. Each contour represents a specific measurement
of this observable quantity. An additional surface red-
shift measurement can lead, at least in principle, to the
determination of the post-TOV parameter χ, as given by
Eq. (49).

VI. QUASI-PERIODIC OSCILLATIONS

The post-Schwarzschild metric allows us to compute
the geodesic motion of particles in the exterior spacetime
of post-TOV neutron stars. Geodesics in neutron star
spacetimes play a key role in the theoretical modelling
of the QPOs observed in the X-ray spectra of accreting
neutron stars. The detailed physical mechanism(s) re-
sponsible for the QPO-like time variability in the flux
of these systems is still a matter of debate, but some of
the most popular models are based on the notion of a
radiating hot “blob” of matter moving in nearly circu-
lar geodesic orbits. The QPO frequencies are identified

either with the orbital frequencies, or with simple com-
binations of the orbital frequencies. The most popular
models are variants of the relativistic precession [8, 9]
and epicyclic resonance [10] models.
In this section we discuss the relevant orbital frequen-

cies within the post-TOV formalism and derive formulae
that could easily be used in the aforementioned QPO
models. In principle, matching the orbital frequencies
to the QPO data would allow one to extract post-TOV
parameters such as χ and µ1 (see [19–21] for a similar
exercise in the context of GR and scalar-tensor theory).
For nearly circular orbits in a spherically symmetric

spacetime, the only perturbations of interest are the ra-
dial ones (i.e., there is periastron precession but no Lense-
Thirring nodal precession) and therefore we can associate
two frequencies to every circular orbit: the orbital az-
imuthal frequency of the circular orbit Ωϕ and the radial
epicyclic frequency Ωr.
Geodesics in a static, spherically symmetric spacetime

are characterized by the two usual conserved quanti-
ties, the energy E = −gttṫ and the angular momentum
L = gφφφ̇. Here both constants are defined per unit par-
ticle mass, and the dots stand for differentiation with
respect to proper time. The four-velocity normalization
condition uaua = −1 yields an effective potential equa-
tion for the particle’s radial motion,

grrṙ
2 = −

E2

gtt
−

L2

gφφ
− 1 ≡ Veff(r). (50)

The conditions for circular orbits are Veff(r) = V ′
eff(r) =

0, where the prime denotes differentiation with respect to
the radial coordinate. Hereafter r will denote the circular
orbit radius. From these conditions we can determine the
orbital frequency Ωϕ ≡ φ̇/ṫ measured by an observer at
infinity.5 The square of the orbital frequency is then
given as

Ω2
ϕ = −

g′tt
g′φφ

=
M∞

r3

(

1 + χ
M2

∞

r2

)

. (51)

The Schwarzschild frequency is recovered for χ = 0.
The radial epicyclic frequency can be calculated from

the equation for radially perturbed circular orbits, which
follows from Eq. (50):

Ω2
r = −

grr

2ṫ2
V ′′
eff(r) ≈

M∞

r3

[

1−
6M∞

r
−

χM2
∞

r2
+O(r−3)

]

(52a)

= Ω2
ϕ

[

1−
6M∞

r
−

2χM2
∞

r2
+O(r−3)

]

, (52b)

5 Apart from its implications for the QPOs, the post-TOV cor-
rected orbital frequency would imply a shift in the corotation
radius rco in an accreting system. This radius is defined as
Ω∗ = Ωϕ(rco), where Ω∗ is the stellar angular frequency, and
plays a key role in determining the torque-spin equilibrium in
magnetic field-disk coupling models. Using the above definition
we find the following result for the post-TOV corotation radius:
rco = M∞(M∞Ω∗)−2/3

[

1 + (χ/3)(M∞Ω∗)4/3
]

.
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where again the frequency is calculated with respect to
observers at infinity. From the post-TOV expanded re-
sult we can see that the first two terms correspond to the
Schwarzschild epicyclic frequency. The additional post-
TOV terms in these formulae produce a shift in the fre-
quency and radius of the innermost stable circular orbit
(ISCO) with respect to their GR values – the latter quan-
tity is determined by the condition Ω2

r = 0, which in GR
leads to the well-known result risco = 6M∞. The corre-
sponding post-TOV ISCO is obtained from (52a), up to
linear order in χ, as:

risco ≈ 6M∞

(

1 +
19

324
χ

)

. (53)

The post-TOV ISCO parameters risco and (Ωϕ)isco are
plotted in Fig. 4 as functions of the parameter χ. As
evident from Eq. (53), a positive (negative) χ implies
risco > 6M∞ (risco < 6M∞). If one takes Eq. (52a) at
face value for the given post-Schwarzschild metric, for
negative enough values of χ there is no ISCO solution,
but this occurs well beyond the point where it is safe to
use our perturbative formalism. The orbital frequency
profile remains rather simple, with (Ωϕ)isco exceeding the
GR value when risco < 6M∞ (and vice versa).

−1.0 −0.5 0.0 0.5 1.0

χ

−10

−5

0

5

10

δrisco/risco δΩϕ/Ωϕ

FIG. 4. ISCO quantities. ISCO quantities as functions of
χ. The solid curve corresponds to the relative difference (in
percent) of risco with respect to GR, while the dashed curve
corresponds to the relative difference of the orbital frequency
at the ISCO, (Ωϕ)isco.

Besides the frequency pair {Ωϕ,Ωr}, a third prominent
quantity in the QPO models is the frequency

Ωper = Ωϕ − Ωr, (54)

associated with the orbital periastron precession (for ex-
ample, in the relativistic precession model [8, 9] this
frequency is typically associated with the low-frequency
QPO) .
Given our earlier results, it is straightforward to derive

a series expansion in powers of 1/r for Ωper. However,

it is usually more desirable to produce a series expan-
sion with respect to an observable quantity, such as the
circular orbital velocity U∞ = (M∞Ωϕ)

1/3. This can be
done by first expanding U∞ with respect to 1/r and then
inverting the expansion, thus producing a series in U∞.
The outcome of this recipe is

Ωper

Ωϕ
= 1−

Ωr

Ωϕ
= 3U2

∞ +

(

9

2
+ χ

)

U4
∞ +O(U6

∞). (55)

A similar “Keplerian” version of this expression can be
produced if we opt for using the velocity UK and massMK

that an observer would infer from the motion of (say) a
binary system under the assumption of exactly Keplerian
orbits. These are UK = (MKΩϕ)

1/3 and MK = r3Ω2
ϕ, so

that MK = M∞

(

1 + χM2
∞/r2

)

. The resulting series is

identical to Eq. (55) when truncated to U4
K order. Higher-

order terms, however, are different (see the following sec-
tion).
The above results for the frequencies {Ωϕ,Ωr,Ωper}

suggest that a QPO-based test of GR within the post-
TOV formalism could in principle allow the extraction of
the post-TOV parameter χ. In this sense these frequen-
cies probe the same kind of deviation from GR (and suffer
from the same degree of degeneracy) as the observations
of bursting neutron stars discussed in Section V.

0 2 4 6 8 10 12 14 16

M∞Ωϕ [M⊙× kHz]

0

1

2

3

4

5

M
∞
Ω

r
[M

⊙
×

k
H
z]

χ = 1.0

χ = −1.0

GR

χ > 0

χ < 0

FIG. 5. Orbital frequencies. Plots of Ωr against Ωϕ for dif-
ferent values of χ = ±0.1, ±0.5 and ±1. The black solid
curve corresponds to the GR case. The dashed curves cor-
respond to positive values of χ (and risco > 6M∞) while the
dashed-dotted curves correspond to negative values of χ (and
risco < 6M∞).

We conclude this section by sketching how this pro-
cedure works in practice in the context of the relativis-
tic precession model. The twin kHz QPO frequencies
{ν1, ν2} seen in the flux of bright low-mass X-ray bina-
ries are identified with the azimuthal and periastron pre-
cession orbital frequencies. More specifically, the high-
frequency member of the pair is identified with the az-
imuthal frequency (ν2 = νϕ = Ωϕ/2π), while the low-
frequency member is identified with the periastron pre-
cession (ν1 = νper = Ωper/2π). With this interpretation,
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the QPO separation is equal to the radial epicyclic fre-
quency: ∆ν = ν2 − ν1 = Ωr/2π.
We use our previous results [Eqs. (51), (52b), (55)] to

plot these orbital frequencies (clearly, ν1/ν2 = Ωper/Ωϕ

and ∆ν/ν2 = Ωr/Ωϕ) as functions of each other and
for varying χ. As it turns out, deviations from GR
are best illustrated by plotting Ωr(Ωϕ) (or equivalenty
∆ν(ν2)). In Fig. 5 we plot the dimensionless combina-
tions M∞Ωr, M∞Ωϕ (in units of kHz for the frequencies
and solar masses for M∞). As we can see, the post-TOV
models considered here (−1 < χ < 1) are qualitatively
similar to the GR result (black solid curve), all cases
showing the characteristic hump in Ωr as Ωϕ increases
(so that the orbital radius decreases). This feature is ev-
idently associated with the existence of an ISCO (where
Ωr → 0) and is consistent with a similar trend seen in
observations [9].

VII. MULTIPOLAR STRUCTURE OF THE

SPACETIME

Expansions like Eq. (55) contain information about
the multipolar structure of the background spacetime.
That expansion can be directly compared against a sim-
ilar expansion derived by Ryan [19] for an axisymmet-
ric, stationary spacetime in GR with an arbitrary set of
mass (M0 = M∞,M2,M4, ...) and current (S1, S3, S5, ...)
Geroch-Hansen multipole moments [22–24]:6

Ωper

Ωϕ
= 3U2 − 4

S1

M2
∞

U3 +

(

9

2
−

3

2

M2

M3
∞

)

U4 − 10
S1

M2
∞

U5

+

(

27

2
− 2

S2
1

M4
∞

−
21

2

M2

M3
∞

)

U6 +O(U7). (56)

where U = (M∞Ωϕ)
1/3 denotes the orbital velocity.

To understand the PN accuracy of the post-TOV ex-
pansion in this context, it is useful to consider the effect
of higher PN order terms in the metric. Imagine that
the gtt and grr metric components [see Eqs. (20), (23)]
included 3PN corrections of the schematic form,

gtt(r) = g2PN
tt + αtt

M3
∞

r3
, (57)

grr(r) = g2PN
rr + αrr

M3
∞

r3
. (58)

We can use the coefficients αtt and αrr as bookeeping
parameters in order to understand how these omitted
higher-order contributions affect the results of the previ-
ous section. The recalculation of the various expressions
reveals that the orbital frequency remains unchanged to

6 A multipolar expansion in scalar-tensor theory can be found
in [25]. Specific calculations were also carried out in other the-
ories: for example, the quadrupole moment was computed in
Einstein-dilaton-Gauss-Bonnet gravity [26].

2PN order; the 3PN term of Eq. (57) contributes at the
next order, as expected. The same applies to the epicyclic
frequency, as we can see for example from the modified
Eq. (52b), where the next-order correction is a mixture
of g2PN

rr and the 3PN term in gtt:

Ω2
r = Ω2

ϕ

[

1−
6M∞

r
−

2χM2
∞

r2

+
(4πµ1 − 6αtt)M

3
∞

r3
+O(r−4)

]

. (59)

Proceeding in a similar way we find the next-order cor-
rection to the Ryan-like expansion (55):

Ωper

Ωϕ
= 3U2

∞ +

(

9

2
+ χ

)

U4
∞

+

[

27

2
+ 2(χ− πµ1) + 3αtt

]

U6
∞ +O(U8

∞). (60)

We can see that the 3PN term “contaminates” the PN
correction that was omitted in Eq. (55). Repeating the
same exercise for the Keplerian version of the multipole
expansion (i.e. where the orbital velocity U∞ is replaced
by UK) we find:

Ωper

Ωϕ
= 3U2

K +

(

9

2
+ χ

)

U4
K

+

(

27

2
− 2πµ1 + 3αtt

)

U6
K +O(U8

K). (61)

At the PN order considered in the previous section the
two expressions were identical but, as we can see, they
differ at the next order.
We now have Ryan-type multipole expansions of the

post-Schwarzschild spacetime up to 3PN in the circular
orbital velocity, which we can compare against Eq. (56)
to draw (with some caution) analogies and differences
between GR and modified theories of gravity.
For instance, odd powers of U∞ are missing in Eq. (60)

because the nonrotating post-Schwarzschild spacetime
has vanishing current multipole moments. Furthermore,
we can see that the quadrupole momentM2, first appear-
ing in the coefficient of U4

∞ in Eq. (56), can be associated
with χ. The parameter χ is an effective quadrupole mo-
ment in the sense that

M eff
2 = −

2

3
χM3

∞. (62)

Indeed, this relation implies that a positive (negative) χ
could be associated with an oblate (prolate) source of the
gravitational field.
The identification (62) holds at O(U4

∞). The next-
order term U6

∞ would, in general, lead to a different ef-
fective M2. Hence, the comparison between the U4

∞ and
U6
∞ terms could provide a null test for the GR-predicted

quadrupole. However, there is a special case where these
two terms could be consistent with the same effective
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quadrupole (62): this occurs when the post-TOV param-
eters satisfy the condition 5χ = −2πµ1 + 3αtt, in which
case the expansion (60) behaves as a “GR mimicker”.
A different kind of “multipole” expansion in powers

of 1/r can be applied to the metric functions ν(r),m(r)
[see Eqs. (9)–(11)], leading to an alternative calculation
of the ADM mass M∞ of a post-TOV star. We consider
the expansions

ν(r) =

∞
∑

n=0

νn
rn

, m(r) =

∞
∑

n=0

mn

rn
, (63)

where νn and mn are constant coefficients. In addition,
we impose that ν0 = 0 and m0 = M∞. We subsequently
substitute these expansions into Eqs. (9)–(10), expand
for r/R ≫ 1, and then solve for the coefficients. The
outcome of this exercise in the vacuum exterior spacetime
is

m(r) = M∞ − 2πµ1
M3

∞

r2
+O(r−4) , (64)

ν(r) = −
2M∞

r
−

2M2
∞

r2
−

2

3

M3
∞

r3
(4 + χ) +O(r−4) .

(65)

As expected, the top equation is consistent with our
earlier result, Eq. (19). To get an agreement between
Eqs. (22) and (65) we must expand the logarithm ap-
pearing in the former equation in powers of M∞/r, thus
recovering Eq. (65).

VIII. CONCLUSIONS

In this paper we have demonstrated the applicability
of the post-TOV formalism to a number of facets of neu-
tron star astrophysics. Let us summarize our main re-
sults. The exterior post-Schwarzschild metric [Eqs. (20)
and (23)] depends only on the ADM mass M∞ (given by
Eq. (18)) and on just two post-TOV parameters µ1 and χ.
These are subsequently used to produce a post-TOV for-
mula for the surface redshift, Eq. (28), which is a function
of the stellar compactness and χ. Next, we have shown
how a basic post-TOV model for type I bursting neutron
stars can be constructed. The key equation here is (49),
which gives χ (the only post-TOV parameter appearing
in the model) in terms of observable quantities. We also
computed geodesic motion in the post-Schwarzschild ex-
terior of post-TOV neutron star models, finding expres-
sions for the orbital, epicyclic and periastron precession
frequencies of nearly circular orbits [Eqs. (51), (52b),
(55)] and for the ISCO radius [Eq. (53)]. These results
can be fed into models for QPOs from accreting neutron
stars, such as the relativistic precession model. Finally,
on a more theoretical level, we have sketched how the
post-TOV parameters enter in the spacetime’s multipo-
lar structure [Eq. (61)].

The meticulous reader may have noticed that, in spite
of the exterior metric being a function gtt(χ) and grr(µ1),
all other post-TOV results feature only χ, while µ1 is ei-
ther not present or enters at higher order. This is not a
coincidence: these quantities either depend solely on gtt
(e.g. the redshift) or receive their leading-order contri-
butions from gtt (e.g. the orbital frequencies).
The post-TOV formalism developed in [1] and in this

paper can be viewed as a basic “stage-one” version of
a more general framework. There are several directions
one can follow for taking the formalism to a more so-
phisticated level, and here we discuss just a couple of
possibilities.
An obvious improvement is the addition of stellar ro-

tation. This is necessary because all astrophysical com-
pact stars rotate, some of them quite rapidly, and the
influence of rotation is ubiquitous, affecting to some ex-
tent all of the effects discussed in this paper. As a first
stab at the problem, it would make sense to work in
the Hartle-Thorne slow rotation approximation [27, 28],
which should be accurate enough for all but the fastest
spinning neutron stars [29].
There are equally important possibilities for improve-

ment on the modified gravity sector of the formalism.
The present post-TOV theory is oblivious to the exis-
tence of dimensionful coupling constants, such as the ones
appearing in many modified theories of gravity (e.g. f(R)
theories or theories quadratic in the curvature). These
coupling parameters should be added to the existing set
of fluid parameters, and participate in the algorithmic
generation of “families” of post-TOV terms (see [1] for
details). The extended set of parameters will most likely
lead to a proliferation of post-TOV terms, and result
in more complicated stellar structure equations than the
ones used so far [i.e. Eqs. (2)]. Among other things, this
enhancement may allow one to study in more generality
to what extent other theories of gravity are mapped onto
the post-TOV formalism. Another limitation of the for-
malism is that it is intrinsically perturbative with respect
to GR solutions. It is important to generalize to theories
of gravity that present screening mechanisms; the viabil-
ity of perturbative expansions in these theories is a topic
of active research (see e.g. [30–33]).
We hope that the astrophysical applications outlined

in this work will stimulate more research to address these
issues.
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