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One of the striking features of general relativity is that the Einstein equation is implied by the
Clausius relation imposed on a small patch of locally constructed causal horizon. Extension of
this thermodynamic derivation of the field equation to more general theories of gravity has been
attempted many times in the last two decades. In particular, equations of motion for minimally
coupled higher curvature theories of gravity, but without the derivatives of curvature, have previously
been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed
with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and
was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely
related to the Noetheresque form, such that the field equation of any diffeomorphism invariant
metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local
causal horizon.

I. INTRODUCTION

General relativity, and other diffeomorphism invariant
theories of gravity, admit special states called black holes
whose mechanics is governed by the laws that are in ex-
act correspondence to the laws of thermodynamics [1–3].
The expression for the energy and entropy of these states
depend upon the theory under consideration and their
temperature is given by a geometric quantity, namely
the surface gravity associated to the black hole horizon.
The latter is identified as the temperature by studying
quantum field theory on the gravitational background
of the black hole [4]. Classical and quantum dynamics
of black holes is widely believed to provide important
lessons for understanding the underlying quantum the-
ory of gravity. However, the underlying quantum the-
ory should describe all gravitational macrostates and not
merely the black holes. Thus it seems plausible that if
we restrict our attention to a region of spacetime small
enough (with respect to the curvature scale) such that
the spacetime is “close to” Minkowski, and we assume
the validity of the Einstein Equivalence Principle [5], then
locally the state should look like an equilibrium one and
a coarse-grained/thermodynamic description of the de-
grees of freedom contained in that region of spacetime
should be possible.

About twenty years ago, this chain of reasoning led
Jacobson to derive the Einstein equation as the equa-
tion of state of these underlying degrees of freedom [6].
Assuming that the heat flow corresponds to the energy-
momentum flux of matter across the Rindler horizon of
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a local observer, the entropy corresponds to the area of
the horizon, and the temperature has the Unruh value
(= ~/2π), Jacobson showed that the horizon must be
dynamical in order for the Clausius relation dS = δQ/T
to hold true, and that its evolution is governed by the
Einstein equation.

Jacobson’s approach of deriving the gravitational field
equation from the Clausius relation has been applied to
other theories of gravity [7–13]. In particular, it was ap-
plied to f(R) theory [14, 15] after deforming the Clau-
sius relation to account for the internal entropy produc-
tion terms, dS = diS + δQ/T . All these approaches
have been critically reviewed by Guedens, Jacobson and
Sarkar [16] whose work has inspired our study. The au-
thors of ref. [16] used a careful construction of the geom-
etry of local causal horizon (LCH) and the approximate
Killing vector field constructed in ref. [17]. Horizon slices
were then assumed to have an entropy density whose form
resembles the form of Noether charge conjugate to diffeo-
morphisms. This was called the Noetheresque entropy.
By imposing the Clausius relation on a small patch of
the horizon enclosed between two slices sharing a com-
mon boundary, it was shown that the field equations for
a wide class of higher curvature theories of gravity can be
derived if a given consistency condition holds. Unfortu-
nately, this consistency condition is not satisfied for gen-
eral theories of gravity containing derivatives of Riemann
tensor. Therefore the thermodynamic derivation of field
equation is expected to fail in general higher derivative
theories of gravity. Can it be salvaged?

One might wonder why should the entropy density be
of the Noetheresque form at all. Could one come up with
another definition of entropy of the local causal horizon
such that the field equation can be derived from the Clau-
sius relation? Or could one use the ambiguities in the
construction of diffeomorphism Noether charge in order
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to get an entropy that does the job? Even in theories
without the derivatives of curvature there is a lingering
question: how does one define the heat-flux when the
matter is non-minimally coupled to the metric? For in
that case, there is no canonical splitting of the total La-
grangian between the gravitational part and the matter
part. Therefore there is no canonically defined stress ten-
sor that can be used to define the energy flow across the
horizon appearing on the right hand side of the Clausius
relation.

Our goal in this paper is to propose an entropy den-
sity that would lead to the derivation of the field equation
as an equation of state for any diffeomorphism invariant
metric theory of gravity.1 More precisely, we assume that
we have a Lagrangian description of a diffeomorphism
invariant theory, and we construct an entropy density
associated to slices of the local causal horizon such that
imposing the Clausius relation yields the equation of mo-
tion of the theory. We will define the heat flux on the
right hand side of the Clausius relation by using the stress
tensor for a probe field minimally coupled to the metric
that we put to zero at the end. This will allow us to work
with the total Lagrangian of the theory irrespective of the
minimal/non-minimal nature of the matter coupling thus
evading the lingering question mentioned above.

This paper is organized as follows: in sec. (II) we re-
view the geometry of local causal horizon and the con-
struction of the approximate Killing vector as given in
ref. [17]. In sec. (III) we review the logical steps leading
to the derivation of equation of motion as the equation
of state via the Clausius relation. In sec. (IV) we re-
view the Wald-Iyer derivation of the equation of motion
for the most general diffeomorphism invariant theory of
gravity. In sec. (V) we review the Noetheresque entropy
proposal of ref. [16]. In sec. (VI) we propose our entropy
density and we show that that it leads to the equation
of motion, via Clausius relation, for any diffeomorphism
invariant metric theory of gravity. Some examples are
discussed in sec. (VII). We conclude by presenting the
summary and outlook in sec. (VIII).

Our conventions are that of ref. [18]. In particular,
metric signature is mostly plus and Riemann tensor is
defined as 2∇[a∇b]ωc = Rabc

dωd. After section

II. GEOMETRY OF LOCAL CAUSAL HORIZON

There are three essential ingredients involved in the
construction of local spacetime thermodynamics. First,
definition of the co-dimension three surface, called the
local causal horizon (LCH), which plays the role of the
local Rindler horizon. Second, specification of a special
observer that measures the entropy and the energy flux.

1 The kind of theories of our interest are those discussed by Iyer
and Wald in ref. [3].

Since a general spacetime has no symmetries there is no
Killing vector playing the role of the Rindler observer.
Therefore one needs to construct a vector field ξ that is
“approximately” Killing and plays the role of local ob-
servers in whose frame one formulates the local thermo-
dynamics. The third and the final ingredient is the spec-
ification of the entropy functional associated with the
slices of the LCH. In this section we provide a review of
the first two ingredients based on refs. [16, 17]. The third
ingredient, which is also the focus of this paper, will be
reviewed in section (V).

Let us start with the definition of LCH. Consider a
spacelike codimension-two surface Σp passing through a
spacetime point p. This surface has four congruences
of null geodesics emanating orthogonally from it: future-
pointing and outgoing, future-pointing and ingoing, past-
pointing and outgoing, past-pointing and ingoing. The
boundary of the past of Σp has two components generated
by the latter two congruences. Pick one of those past
boundary components, for concreteness, say, the ingoing
one, then our LCH is defined as a small patch of this
ingoing past boundary component centered at the point
p.

In order to construct the approximate vector field ξ we
choose a coordinate system adapted to LCH (see fig. 1).
On Σp we pick the Riemann-normal-coordinates (RNCs)
based at p. The tangent space orthogonal to the tan-
gent plane of Σp is spanned by two future-pointing null
normals, `a and ka, with the normalization chosen as
`aka = −1. The points off Σp can then be coordinatized
in terms of geodesics orthogonal to Σp and the points
on Σp where the geodesics emanate from. To be more

FIG. 1. The point p lies on a D − 2 dimensional surface Σ
which is coordinatized by Riemann Normal Coordinates based
upon p. Two null vectors la = (∂/∂U)a and ka = (∂/∂V )a

form the basis of the plane normal to Σ. The points off the
surface Σ, say r, is coordinatized in terms of the geodesic from
r to the surface Σ that meets Σ orthogonally at the point q.
If q has coordinates {0, 0, ~xq} and the tangent to the geodesic
at q is V ka + Ula, then the coordinates of r are {U, V, ~xq}.

precise, for the point r in the neighborhood of p that
lies at the unit affine parameter of the unique geodesic
emanating from point q lying on Σp is assigned the coor-
dinates (U, V, ~xq). Here ~xq are the RNCs of q and U, V
are such that the geodesic running from q reaching r em-
anates q in the direction V ka +U`a orthogonal to Σp. It
was shown in ref. [17] that ka and `a can be chosen such
that the coordinates as defined above are inertial at p.
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The coordinates thus defined are called as Null Normal
Coordinates (NNCs). In these coordinates, LCH is at
U = 0, V ≤ 0.

Next, the approximate Killing vector, called the local
Killing vector in ref. [16], is constructed such that it has
a bifurcation point p0 lying on the bifurcation surface Σ0

to the past of p where it vanishes and where its action is
that of a boost in the plane orthogonal to the bifurcation
surface. The null generator connecting p to p0 will be
called the central generator and will be denoted by Γ.
In the NNC system p0 has coordinates (0, V0, 0). It was
shown in ref. [17] that an approximate Killing vector ξ
with the following properties can be constructed:

ξµ|Γ = (V − V0) δµV , (1)

∇(µξν) = O(x2), (2)

∇µ∇ν ξρ|Γ = (Rρνµ
η ξη)|Γ . (3)

On the central generator Γ local Killing vector is pro-
portional to the generator, ξa = (V − V0)ka. We also
have that on Γ, ξa satisfies the geodesic equation with
the coefficient of non-affinity given by κ = 1, i.e.,

ξb∇bξa
∣∣
Γ

= κξa, (4)

with κ = 1.
Equations (1) (2) (3) were used in the approach of

ref. [16] for the derviation of equation of motion as the
equation of state by associating a Noetheresque entropy
to the slices of LCH. In our approach, we will add an
extra term to this entropy and eq. (4) will play a crucial
role for the equation of state derivation for any diffeo-
morphism invariant theory of gravity.

Before moving on to the third and the final ingredient
–the entropy functional– we pause to review the equation
of state derivation of the equation of motion. This deriva-
tion is at the heart of local spacetime thermodynamics
and would also serve to clarify the role of the aforemen-
tioned three ingredients. It also gives us an opportunity
to introduce a conceptual difference from the previous
studies: we will view the stress tensor Tab as that of a
probe field minimally coupled to the metric that we will
put to zero at the end.

III. EQUATION OF MOTION AS THE
EQUATION OF STATE

The equation of state derivation of the field equation
of a theory of gravity proceeds by imposing the Clausius
relation,

dS =
δQ

T
, (5)

on a thin patch of the LCH, denoted as H, centered on
the central generator Γ (see fig. 2). The left hand side of
eq. (5) is the change in entropy as one evolves the slice
of the LCH from Σ0 to Σ such that they have a common
boundary. The right hand side of eq. (5) contains the

FIG. 2. The thin narrow patch of LCH surrounding the cen-
tral generator Γ on which the Clausius relation is imposed.

temperature, which we choose to have the Unruh value
T = ~/2π, and the heat flux across the patch as measured
by the local Killing observer ξa,

δQ =

∫
H

(−Tab ξa) kbdV dA, (6)

where Tab is matter energy-momentum tensor, and the
integral is over the thin patch of LCH (see fig. 2) with the
integration measure kadV dA, and dA being the volume
element on the cut of H. The integrand of the heat flux
is of O(x) since the approximate Killing vector ξ is of
O(x).

In the literature related to the equation of state deriva-
tion of the field equation, the stress tensor above is taken
to be that of the matter fields in the theory. This im-
plicitly assumes that the matter is minimally coupled
to the metric, for only then can one separate the to-
tal Lagrangian into a gravitational part and the matter
part, and use the latter to define the canonical stress
energy tensor. However, in general theories of gravity
non-minimal couplings are allowed and there is no nat-
ural split between gravity and matter Lagrangian, and
thus no natural stress tensor providing the heat flux. We
will overcome this problem by deforming the theory with
a probe action. We will introduce a probe field minimally
coupled to the metric whose flow drives the evolution of
LCH. In the end, we will put this probe field to zero.
Therefore, in our derivation of the equation of state we
will take Tab above to be the stress energy tensor of this

probe field, Tab = −2 1√
−g

δSprobe

δgab , where Sprobe is the ac-

tion for the probe field minimally coupled to the metric.
To proceed further one needs to specify the change

in entropy on the right hand side of eq. (5). Intuition
from the thermodynamics of black holes suggests that we
associate entropy to the slices of LCH. Following ref. [16],
let sab denote the entropy density (in the dualized form)
associated to an arbitrary slice of LCH. Total entropy of
a slice Σ is then given by the integral

S =

∫
Σ

sabnab dA, (7)

where nab is binormal to the cut Σ. Hence, the change
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in entropy between two slices Σ and Σ0 of LCH is given
by

dS =

∫
Σ∪Σ0

sabnabdA

= −2

∫
H
∇bsabkadV dA, (8)

where the Stokes’ theorem was used in the second step.
It is at this step that we used that Σ0 and Σ have the
same boundary. Now imposing the Clausius relation (5)
in the limit p0 → p, we get from eqns. (6) and (8)

−(~/π)∇bsab ka = T abξb ka +O(x2). (9)

By equating the O(x) terms on both sides of eq. (9) at all
points p and for all null vectors ka, if we recover the field
equation of the theory of gravity under consideration (af-
ter putting T ab = 0 because our T ab is that of the probe
field) then we deem the program to derive the equation
of motion as the equation of state to be successful. Now

it is clear that the last ingredient in this program is the
specification of the entropy density sab such that eq. (9)
gives the field equation of the theory.

Before moving on to the entropy density we should
discuss the actual equation of motion for a general dif-
feomorphism invariant theory of gravity that we intend
to recover from the Clausius relation. In the rest of this
paper we will put ~/2π to be equal to 1, i.e., the Un-
ruh temperature is scaled to unity, which is equivalent to
choosing a convenient unit for the entropy density

IV. EQUATION OF MOTION FOR A GENERAL
THEORY OF GRAVITY

In this section we review the equation of motion of a
general diffeomorphism invariant metric theory of gravity
following ref. [3]. Lagrangian n-form is denoted in bold
as L = εL. The most general diffeomorphism invariant
Lagrangian is of the form

L = L
[
gab, Rabcd,∇a1Rabcd, ...,∇(a1 ...∇am)Rabcd, ψ,∇a1ψ, ...,∇(a1 ...∇al)ψ

]
,

(10)

where ψ denote the matter fields.
The equation of motion for gab following from the

above Lagrangian is given by,

Aab + EpqraRpqr
b + 2∇p∇qEpabq = 0,

(11)

where Eabcd would be the equation of motion for Rabcd
if we were to treat it as an independent field,

Eabcd =
∂L

∂Rabcd
−∇a1

∂L

∂∇a1Rabcd
+ ...+ (−1)m∇(a1 ...∇am)

∂L

∂∇(a1 ...∇am)Rabcd
, (12)

and Aab is

Aab =
∂L

∂gab
+

1

2
gabL+Bab. (13)

The origin of the last term Bab is as follows: a typical
term in the variation of the Lagrangian due to the deriva-
tives of Riemann is of the form

ε
∂L

∂∇(a1 ...∇ai)Rabcd
δ∇(a1 ...∇ai)Rabcd, (14)

and this can be calculated as

= ε
∂L

∂∇(a1 ...∇ai)Rabcd
∇a1δ∇(a2 ...∇ai)Rabcd

+ ε · (terms proportional to ∇δg)

= exact differential

+ terms contributing to Eabcd

+ ε · (terms proportional to δg), (15)

where integration by parts was used in both the terms in
going from the first equality to the second equality. It is
the last term of eq. (15), which is proportional to δgab,
that we denoted as Bab appearing as the last term in
eq. (13). We direct the reader to ref. [3] for the details.
Let us note here that the equation of motion (11) can
not in general be split in the form “geometry = matter”
because the total Lagrangian in general does not allow
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such a split unambiguously. This is the reason why in
our equation of state derivation we have to resort to a
probe field stress tensor.

In the next section we will review the Noetheresque
entropy proposal of ref. [16] for sab. We will see that while
this entropy is able to derive the equation of motion for
theories containing no derivatives of the Riemann tensor,
it does not work for theories containing derivatives of
Riemann. In sec. (VI) we propose a new entropy density
that we will use to derive the equation of motion as the
equation of state for any diffeomorphism invariant metric
theory of gravity.

V. REVIEW OF THE NOETHERESQUE
ENTROPY DENSITY

A specific proposal for the entropy density sab was
made in ref. [16] (see also, refs. [9, 10]). Taking clue
from the Noether charge entropy in black hole thermo-
dynamics ref. [16] proposed a Noetheresque form for the
entropy density,

sab = W abcξc +Xabcd∇[cξd], (16)

where the tensors W and X are theory dependent quan-
tities and X is antisymmetric in the last two indices.
One could also add a term proportional to the symmet-
ric derivative of ξ but it can be shown using the proper-
ties (2) and (3) of the approximate Killing vector that
such a term contributes at O(xA) (where xA is transverse
coordinate in NNC system) to the divergence of entropy
density and hence does not contribute to δS when inte-
grated over small and narrow horizon patches [16].

Calculating the divergence of entropy density (16) we
get,

∇bsab = (∇pW aps +XapqrRrqp
s) ξs

+ Xapqr (∇p∇qξr −Rrqps ξs)
+ (W apq +∇rXarpq)∇pξq. (17)

In this equation the first term is O(x), the second term is
O(xA) due to the Killing identity of eq. (3), and the third
term has an O(x2) term due to the approximate Killing
equation (2) and an O(1) term due to the antisymmetric
part of the derivative of ξ. Since the heat-flux in eq. (6)
is of O(x) the latter should vanish. Thus we are forced
to impose

W a[pq] +∇rXar[pq] = 0. (18)

Since W is antisymmetric in the first two indices, this
equation can be solved for W in terms of X [16] as

W apq = ∇r (Xrapq +Xrqpa +Xrpqa) . (19)

Putting this back in the eq. (17), then substituting ∇bsab
in eq. (9), and imposing Clausius relation for all ka we
get,

Xpqr(aRpqr
b) − 2∇p∇qXp(ab)q + Φgab = −1

2
T ab,

(20)

where Φ is a scalar that is a function of metric and cur-
vature. Origin of the factor 1/2 on the right hand side
is the convention we adopted at the end of sec. (III)
that ~/2π = 1. Comparing eq. (20) with the equation
of motion for a general diffeomorphism invariant theory
eq. (11) we see that in general there is no choice of X
that would make them identical.

We now recall that in refs. [9, 10, 16] matter was as-
sumed to be minimally coupled, i.e., total Lagrangian L
was the the sum of gravitational part and the minimally
coupled matter part L = L(gr) + L(m), and the gravi-
tational part L(gr) was assumed to depend only on the
metric and its curvature but not on the derivatives of
curvature. Furthermore, the heat flux in the Clausius
relation was sourced by the matter stress energy tensor,

1

2
T ab(m) =

∂L(m)

∂gab
+

1

2
L(m)g

ab. (21)

Now choosing −Xabcd = ∂L(gr)/∂Rabcd ≡ P abcd, and
Φ = 1/2L(gr) in eq. (20) we get,

−P pqr(aRpqrb) + 2∇p∇qP p(ab)q +
1

2
L(gr)g

ab = −1

2
T ab(m).

(22)

If the gravity Lagrangian L(gr) does not contain the
derivatives of Riemann then there exists an interesting
identity,

∂L(gr)

∂gab
= −2P pqr(aRpqr

b). (23)

This identity, first derived in ref. [12], is reviewed in
app. (A) where we slightly generalize by considering the
gravity Lagrangians containing upto one derivative of
curvature. Substituting the identity (23) in eq. (22),
plugging in the expression for T ab(m) from eq. (21) and

bringing it to the left hand side, we get

∂L

∂gab
+ P pqr(aRpqr

b) + 2∇p∇qP p(ab)q +
1

2
Lgab = 0,

(24)

where we have combined the contributions of L(m) and
L(gr) into that of the total Lagrangian L. Now notic-

ing that ∂L(gr)/∂Rabcd ≡ P abcd = ∂L/∂Rabcd since the
matter is minimally coupled, we find that eq. (24) is iden-
tical to eq. (11) since for higher curvature theories with-
out the derivatives of curvature we have that Bab = 0,
Aab = ∂L/∂gab + 1/2Lgab and Eabcd = P abcd.

Therefore we see that for higher curvature gravity the
Noetheresque entropy (16) of ref. [16] reproduces the
equation of motion via the Clausius relation. However,
for the theories containing derivatives of curvature the
equation of motion (20) obtained from the Clausius rela-
tion, assuming the Noetheresque entropy as in eq. (16),
is not the same as the equation of motion of the the-
ory (11). The difference can be traced back as due to
the presence of two terms in Aab (13) appearing in the
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equation of motion: first is ∂L/∂gab, and the second is
that arising from the variation δ∇ . . .∇(Riem) of deriva-
tive(s) of curvature terms in the Lagrangian that we have
collectively denoted as Bab.

In the next section we propose a new definition of en-
tropy that takes care of the uncompensated terms and
yields the equation of motion via the Clausius relation.
We will view the heat flux on the right hand side of the
Clausius relation as due to the T ab of a probe field that
we will put to zero at the end of the calculation.

VI. NEW PROPOSAL FOR THE ENTROPY
DENSITY

In this section we finally present the key finding of this
paper. We modify the Noetheresque entropy of eq. (16)
by adding a term quadratic in the approximate Killing
vector. Let us introduce a symmetric tensor Mab, which
will be fixed later depending upon the theory, and con-
sider the following entropy density,

sab = W abcξc +Xabcd∇[cξd] + 2M c[aξb]ξc. (25)

The M term we have added is of O(x2) but it contributes
at O(x) to the left hand side in eq. (9). Let us calculate
the divergence of the M term,

∇b(2M c[aξb]ξc)

= 2(∇bM c[a)ξb]ξc + 2M c[a(∇bξb])ξc + 2M c[aξb]∇bξc.

Here, the first term on the right hand side is of O(x2).
The second term, upon opening the antisymmetrization,
has two sub-terms: the first containing ∇bξb is of O(x3),
while the second containing ∇bξa will give zero when
contracted with ka. This is so because the approximate
Killing vector ξ is proportional to k on the central genera-
tor Γ. The third term in eq. (26) again has two sub-terms:
the first one with the free index a on M gives M caξc after
using eq. (4), while the second with free index a on ξ will
give zero after contracting with k. Therefore, the only
contribution of the M term is to add the tensor Mab to
the first line of eq. (17). The relation between X and
W as determined in eq. (19) remains the same. Thus
the equation of motion obtained by imposing Clausius
relation with the entropy (25) is

Xpqr(aRpqr
b) − 2∇p∇qXp(ab)q + Φgab +Mab = −1

2
T ab,

(26)

where T ab is the stress tensor of the probe field. Now,
for a given theory of gravity we can simply choose Mab

such that eq. (26) is the equation of motion for the theory
(after putting the probe stress tensor on the right hand
side to zero). Comparing with the equation of motion of
a general theory of gravity eq. (11) we see that we could

choose

Xabcd = −Eabcd, (27)

Mab =
∂L

∂gab
+ 2Epqr(aRpqr

b) +Bab, (28)

Φ =
1

2
L. (29)

Actually, the equation of motion only determines the
combination Φgab + Mab. Once we have specified Mab

then Φ can be determined by the Bianchi identity. For
the choice of Mab that we have made above, by compar-
ing with the actual equation of motion we already know
that Φ should be equal to 1/2L up to a constant. Since
Mab is what appears in the expression of horizon entropy
we see that the entropy is not unique, for the terms pro-
portional to gab in Mab could equally well be lumped into
Φ.

VII. EXAMPLES

Our approach so far has been very general. The use
of probe field and the addition of a term quadratic in
the local Killing vector to entropy density allowed us to
give a thermodynamic derivation of the field equation for
a general theory of gravity. In this section we illustrate
our approach in several examples.

A. General relativity

As the simplest illustration of our approach let us con-
sider the Einstein-Hilbert Lagrangian with the matter
minimally coupled to the metric. The total Lagrangian
is L = L(EH) + L(m), where L(EH) = R and L(m) is
the minimally coupled matter Lagrangian. The coeffi-
cients appearing in the entropy density (25), as defined
in eqns. (27 28 29), can be calculated to be,

Xabcd = −1

2
(gacgbd − gadgbc),

Mab =
∂L

∂gab
+ 2Rab =

∂L(m)

∂gab
,

Φ =
1

2
L =

1

2
R+

1

2
L(m),

and W abc = 0, and where in second equality of the M
term we used that ∂R/∂gab = −2Rab. The equation
implied by the Clausius relation (26) is then

−Rab +
1

2
(R+ L(m))g

ab +
∂L(m)

∂gab
= −1

2
T ab, (30)

where T ab on the right hand side is the stress tensor
of the probe. For vanishing probe, recognizing that
∂L(m)/∂gab+ 1/2L(m)g

ab = 1/2T ab(m) is the matter stress

energy tensor, we get the Einstein field equation (in the
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units such that 16πG = 1),

Rab − 1

2
Rgab =

1

2
T ab(m).

This example illustrates explicitly that the matter La-
grangian, even if minimally coupled, makes a contribu-
tion to the entropy associated with the slices of LCH
because of the M term. Therefore our entropy is differ-
ent from that of ref. [16] even for the simplest possible
case of general relativity.

B. Dilaton gravity

The second example that we consider is a model in two
dimensions: a non-minimally coupled dilaton ϕ with cou-
pling constant λ and a Tachyon T , given by the action,

S =

∫
d2x
√
−g eϕ(R+ (∇ϕ)2 − (∇T )2 + µ2T 2 + λ).

(31)

The black hole solutions in this model were studied in
ref. [19] and it was shown that black hole physics in gen-
eral relativity have counterparts in these two-dimensional
models. In particular, black hole entropy of charged
black holes in this theory was shown to be proporional
to eϕH , where ϕH is the value of dilaton on the horizon.
This result can also be obtained from the Noether charge
method (see ref. [3]). The field equation obtained from
the action (31) is

∇a∇bϕ+∇aT∇bT + gab
(
− 1

2
(∇ϕ)2 −�ϕ− 1

2
(∇T )2

+
µ2T 2

2
+
λ

2

)
= 0. (32)

There does not seem to be a natural way to write this
equation in terms of separate contributions from geome-
try and matter. That is, it is not clear how to decompose
the action (31) into gravitation and matter piece. There-
fore, we do not know what stress tensor should be used to
calculate the heat flux. We could use the Tachyon stress
tensor for this purpose but there does not seem to be a
good justification for doing that.

According to the idea pursued in this paper, we use
the whole Lagrangian to contribute to the entropy while
the heat flux is to be determined by a probe field that we
put to zero at the end. Then the field equation (32) can
be obtained by assigning entropy density (25) to LCHs
with the coefficient tensors given by:

Xabcd = −1

2
eϕ(gacgbd − gadgbc),

Mab = eϕ
(
−∇aϕ∇bϕ+∇aT∇bT

)
,

Φ =
1

2
L,

where L is the total Lagrangian for the dilaton the-
ory (31). Notice that Xabcd corresponds to the black

hole entropy. In this example we have a non-zero Mab not
because of the higher derivative terms (there are none)
but because of the non-minimal coupling of the matter.
Even if we were to define the heat flux not by our probe
field but by using the stress tensor of the Tachyon T ,
there would still be non-trivial contributions to Mab and
therefore this term is needed in the entropy density to
get the field equation from local thermodynamics.

C. Higher curvature gravity

Let us now consider higher curvature gravity with min-
imally coupled matter field for which the Noetheresque
entropy of ref. [16] also gives the field equation via the
Clausius relation. For the total Lagrangian given by

L = L(gab, Rabcd, ψ,∇aψ), (33)

the field equation is

∂L

∂gab
+

1

2
gabL+ P pqraRpqr

b + 2∇p∇qP pabq = 0,

(34)

where P abcd = ∂L/∂Rabcd. The coefficient tensors in our
entropy density (25) are given by

Xabcd = −P abcd,

Mab =
∂L

∂gab
+ 2P pqr(aRpqr

b),

Φ =
1

2
L,

and W abc is given by eq. (19). This should be contrasted
with the entropy density of ref. [16] that we reviewed
in sec. (V) where X and Φ were defined by only the
gravitational part of the Lagrangian and there was no M
term. If we allow for the non-minimal coupling in the
higher derivative gravity then our approach of using the
probe stress tensor to define the heat flux and the new
entopy density will continue to yield the field equation
via the Clausius relation.

D. S =
∫ √
−gf(�R) + Smatter

As a final example we consider a higher derivative the-
ory with matter minimally coupled to the metric. The
gravitational part of the Lagrangian is a general func-
tion of �R that we denote by f(�R). Some special cases
of these theories were studied in ref. [20] to show their
equivalence to general relativity coupled to matter fields
with exotic potentials. The equation of motion of this
theory is

∇a∇b�f ′ −�f ′Rab +∇af ′∇bR− 1

2
gab∇cf ′∇cR

−gab�2f ′ + 1/2fgab =
1

2
T ab(m), (35)
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where f ′ = ∂f(�R)/∂�R and T ab(m) is the canonical

stress energy tensor determined by the matter action,√
−g T ab(m) = 2δSmatter/δgab. Since the matter is mini-

mally coupled we could in principle use it to define the
heat flux in the Clausius relation. From the point of
view of this paper though we will treat the whole action
to contribute to the entropy while the heat flux would be
given by the stress tensor of the probe field.

For this theory the coefficients appearing in the en-
tropy density (25), as defined in eqns. (27 28 29), can be
calculated to be,

Xabcd = −1

2
(gacgbd − gadgbc)�f ′,

Mab = −1

2
T ab(m) +∇af ′∇bR− gab�2f ′ − 1

2
gab∇cf ′∇cR,

Φ =
1

2
f,

and W abc is given by eq. (19). Had we considered the
heat flux to be sourced by the matter instead of the probe
field then T ab(m) would have appeared on the right hand

side of the Clausius relation and would not have app-
peared in Mab. As we mentioned at the end of sec. VI the
terms proportional to gab in Mab could be absorbed in Φ.
But there would still be left the second term ∇af ′∇bR in
Mab. This is precisely the type of term whose origin lies
in the derivatives of curvature in the action (as shown
in sec. IV) and could not be produced by the entropy
density of ref. [16]. Therefore, even in the minimally
coupled case and without the use of probe fields, the M
term would be needed in the entropy density to yield the
correct field equation.

VIII. SUMMARY AND OUTLOOK

In this paper we have proposed a new expression for
the entropy associated to the slices of local causal hori-
zon, eq. (25), such that the Clausius relation imposed
on a patch of the horizon implies the field equation of
the theory under consideration. The theory in question
could be any diffeomorphism invariant metric theory of
gravity. In order to achieve this result we introduced two
new ingredients: first, the heat flux in the Clausius rela-
tion is provided by a minimally coupled probe field that
we put to zero in the end, and second, the entropy has
a new term quadratic in the approximate Killing vector.
Let us discuss these two inputs one by one.

The reason to introduce the probe matter providing
the heat flux is to be able to work with the most general
diffeomorphism invariant theory. This was done because
a general diffeomorphism covariant Lagrangian does not
admit a canonical split between a gravitational part and
a matter part. For example, consider a scalar field φ in
the Lagrangian whose coupling to metric is non-minimal
of the form Rab∇aφ∇bφ. If we consider this term as con-
tributing to the matter stress tensor and use it to define

the heat flux, then on the left hand side of the equa-
tion of motion (11) we will not include its contribution
to Eabcd. The resulting entropy density will however not
match with the black hole entropy in the theory which
is determined by the Eabcd of the total Lagrangian by
the Walds’ formula. Alternatively, we could count this
term as “gravitational” and use only the canonical ki-
netic term of φ to define the heat flux. This would be a
viable option, but it does not appear to be a very natural
thing to do. On the other hand, the approach of charac-
terising a system completely by perturbing it with probe
fields and observing its response is ubiquitous in physics.
In short, the need to work with complete generality, and
the compatibility with black hole thermodynamics led us
to define the heat flux in Clausius relation by a probe,
minimally coupled matter field that we put to zero in
the end. If we were not to use the probe fields to define
the heat flux, then we would have to restrict to only the
theories with minimally coupled matter field. But even
then the new M term in the entropy density would still
be needed to derive the field equation of higher derivative
gravity.

We explained the need for extra term(s) in the en-
tropy explicitly in sec. (V). In ref. [16] an integrabil-
ity condition was derived and it was argued that these
extra terms cannot be Noetheresque in a general the-
ory. Does this mean that our proposed entropy is non-
Noetheresque? To answer this, we recall that the effect
of adding an exact form dµ to the Lagrangian n-form
is to shift the Noether charge from Q to Q + ξ · µ (see
ref. [3]). It is easy to check that if we choose the (n− 1)-
form µa1...an−1

= εa1...an−1pM
pqξq then the Noether pro-

cedure will reproduce our proposed additional term in
the entropy.2 Therefore, our entropy is obtained through
the Noether procedure. This is consistent with the re-
sult in ref. [16] because the surface term we added is not
constructed from just the dynamical fields in the theory
but it also contains ξ. If one insists on adding only co-
variant boundary terms then indeed one cannot obtain
a term quadratic in ξ in the Noether charge. However,
the argument for deriving the local field equation rests
on the integral Clausius relation to be true for every lo-
cal causal horizon. The addition of ξ dependent surface
term to the Lagrangian implies that the algorithm that
constructs the Noether charge entropy has to start from
a new Lagrangian (with the new boundary term corre-
sponding to the new ξ) for each local causal horizon.
Therefore, the term Noetheresque is perhaps not appro-
priate for our proposed entropy.3 Leaving the issue of
mere nomenclature aside, the important point is that, as
in ref. [16], since our entropy depends on the arbitrary
choice of the bifurcation point its physical significance
remains obscure. This dependence on the approximate

2 We thank Ted Jacobson for making this suggestion and the re-
lated discussion.

3 We thank Raf Guedens for stressing this point.
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Killing vector is also the reason why we have evaded the
physical arguments of ref. [21] that concluded that the
corrections to Einstein gravity can not be obtained by a
thermodynamic reasoning.

The new term in the entropy that we have proposed
does not alter the black hole entropy because the Killing
vector vanishes on the bifurcation surface. Compatibility
with black hole thermodynamics is a stringent require-
ment. Without it, we could have simply taken the whole
entropy as given by the quadratic term and chosen Mab

to be the equation of motion. But then the black hole
entropy in the theory would be zero. The X term in
eq. (25) is thus dictated by the black hole entropy. The
W term is necessary for the equation of state argument to
go through for the higher curvature theories. For higher
derivative theories the M term in eq. (25) is needed to
get the equation of motion via the Clausius relation.

The generality of our approach seems to suggest that
there is no obstacle for the equation of state derivation for
any diffeo-invariant metric theory of gravity, irrespective
of whether it is Lorentz invariant or not. In particular,
one could then derive local thermodynamics in Lorentz
violating theories, e.g., the Einstein-Æther theory. How-
ever, this expectation faces two challenges. First of all,
local Lorentz invariance is crucial to associate the Unruh
temperature with the local causal horizon. Second, the
existence of black hole thermodynamics in such theories
is not well-settled yet, and is under active investigation
[22–30]. Finding a thermodynamic route to the equation
of motion in such theories thus appears to be a premature
enterprise at the moment.

We would like to mention in passing that some authors
[10, 31] have taken the converse route to the one taken
in this paper. That is, their goal is to understand if the
field equation implies the Clausius relation for an appro-
priately defined entropy density. It is not too difficult to
show that given our entropy one can follow this program
of running the argument backwards to its completion for
any diffeomorphism invariant theory of gravity.

Finally, we should point out that the entropy density
is highly non-unique. This non-uniqueness is beyond the
non-uniqueness pointed out at the end of sec. (VI). It is
easy to write down higher order terms in ξ and its deriva-
tives such that their contribution to the change in entropy
of the patch of LCH is just Mabξb for some effective Mab.
We think that the underlying problem is our completely
classical treatment of the fields. We believe that the cor-
rect notion of entropy to be used in any thermodynamic
derivation of field equation has to be quantum mechani-
cal one. This is exemplified by a recent derivation of the
semiclassical Einstein equation by Jacobson that involves
an ansatz on the nature of entanglement entropy of the
vacuum [32]. It has recently been pointed out in ref. [33]
that relative entropy is not the right quantity to use on
the left hand side of the Clausius relation in the geo-
metric framework used here. It remains to be seen what
quantum mechanical measure of entropy is rich enough
to encode the dynamics of gravity. Until that is found,

our entropy expression (25) seems to serve as a plausible
place-holder.
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Appendix A: Derivation of the identity in eq. (23)

In this appendix we derive the identity in eq. (23).
This identity was first derived in ref. [12] whose treatment
we follow here. A slight generalization here is that we
consider the Lagrangians containing upto one derivative
of curvature, L = L(gab, Rabcd,∇a1Rabcd). In this section
L will stand for pure gravitational Lagrangian that we
denoted as L(gr) in the main text.

Let us consider an infinitesimal diffeomorphism xa →
xa + ξa generated by a vector field ξ. The infinitesimal
change in L is given by the Lie derivative of L that can
be calculated in two different ways. In the first way, by
considering the dependence of L on xa through gab, Rabcd
and ∇a1Rabcd, we can write

£ξL= ξm∇mL = P abcdξm∇mRabcd
+Za1abcdξm∇m∇a1Rabcd +Aabξm∇mgab,

(A1)

where Aab = ∂L
∂gab

, P abcd = ∂L
∂Rabcd

, and Za1abcd =
∂L

∂∇a1
Rabcd

. The abcd indices of P and Z are taken to

have the symmetries of Riemann.

The second way is to consider the infinitesimal vari-
ation δL in L as due to the variation in gab, Rabcd and
∇a1Rabcd due to the diffeomorphism. The latter are given
by the corresponding Lie derivatives. Thus we have,

£ξL = Aab£ξgab + P abcd£ξRabcd + Za1abcd£ξ∇a1Rabcd.
(A2)

Taking into consideration the symmetries of Rabcd and
P abcd, the second term can be calculated as

P abcd£ξRabcd = P abcd
[
ξm∇mRabcd + 4∇aξmRmbcd

]
.

(A3)

Similarly, the third term can be calculated as

Za1abcd£ξ∇a1Rabcd = Za1abcd
[
ξm∇m∇a1Rabcd

+4∇a1Rmbcd∇aξm +∇mRabcd∇a1ξm
]
. (A4)
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Plugging these expressions in eq. (A2), and using
£ξgab = ∇aξb +∇bξa, we get

£ξL = P abcdξm∇mRabcd + Za1abcdξm∇m∇a1Rabcd

+ 2∇pξq
[ ∂L
∂gpq

+ 2P pabcRqabc

+ 2Za1pabc∇a1Rqabc +
1

2
Zpabcd∇qRabcd

]
. (A5)

Now, we see from eq. (A1) that the first two terms on
the right hand side are already equal to £ξL. This im-
plies, since ξ is arbitrary, that the expression within the
brackets must vanish. We thus get the identity

∂L

∂gpq
= −2P pabcRqabc − 2Za1pabc∇a1Rqabc −

1

2
Zpabcd∇qRabcd.

(A6)

For theories containing no derivatives of curvature, we have that Zpabcd = 0 and eq. (A6) reduces to the iden-
tity (23).
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