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Abstract

The “memory effect” is the permanent change in the relative separation of test particles resulting

from the passage of gravitational radiation. We investigate the memory effect for a general, spa-

tially flat FLRW cosmology by considering the radiation associated with emission events involving

particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector,

and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution

to memory depends only on the cosmological scale factor at the source and observation events, not

on the detailed expansion history of the universe. In particular, for sources at the same luminosity

distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski

case by a factor of (1 + z).
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I. INTRODUCTION

The passage of gravitational radiation through a configuration of test particles that make

up a gravitational wave detector can induce a permanent change in the relative separation

of the test particles, a phenomenon which has come to be known as the gravitational wave

memory effect. The memory effect on a flat background was first recognized in the linear

regime for sources in non-relativistic motion by Zel’dovich and Polnarev [1]. Afterwards,

Christodoulou [2] discovered that there could be additional contributions to memory arising

from the nonlinearity of the Einstein equation and associated with the Bondi flux of the

gravitational waves to null infinity. Shortly thereafter, it was argued that the nonlinear

memory of Christodoulou could be interpreted as corresponding to a linear memory caused

by the effective stress-energy associated with the primary gravitational radiation [3], [4].

More recently, it has been found to be useful to make a distinction between ordinary

and null memory in the linearized gravity context [5],[6]: Ordinary memory is caused by

massive matter sources and null memory is caused by null matter sources. The gravitational

radiation emitted from a source event involving both massive and null matter will induce

both ordinary and null memory [5],[6],[7]. Neither the ordinary nor null memory should

be viewed as a tidal effect with a Newtonian analogue but rather as a byproduct of the

gravitational radiation emitted from a burst-type event [7],[8].

The above work has concerned itself with memory on an asymptotically flat spacetime.

If a spacetime is not asymptotically flat, it is not clear what “memory” should mean, even if

we treat the gravitational radiation as a perturbation off of a background metric. Memory

has been defined in terms of the net change in the separation of test particles, but this could

include motion due to the background curvature rather than the radiation. For example,

in cosmological Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology, the proper sep-

aration of FLRW observers will change with time. Furthermore, if there is no notion of

null infinity, it is not clear where we should put our detector so that it will be exposed to

radiation but isolated from other non-radiative gravitational forces.

Recently, Bieri, Garfinkle and Yau [9], Kehagias and Riotto [10], and Chu [11],[12] have

considered the memory effect in FLRW spacetimes. However, their choice of methods for

resolving the above difficulties have so far limited the applicability of their results. Bieri

and Garfinkle consider Weyl tensor perturbations, so their analysis is greatly simplified by
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working in vacuo, and, consequently, they have considered only memory in a background

vacuum de Sitter universe. Meanwhile, Kehagias and Riotto’s use of BMS transformations

depends on the existence of a null infinity for the FLRW spacetime, so they restrict consider-

ation to a decelerating universe without a cosmological constant. Furthermore, both groups

consider only null memory. While Chu does not make either of these specific restrictions,

his preferred definition of memory does not distinguish test particle motion due to radiative

and non-radiative gravity.

In this paper, we will investigate the total memory effect—both ordinary and null—in

a general, spatially flat, FLRW spacetime. We will simplify the problem not by limiting

the cosmological models under consideration, but rather the kinds of radiation sources.

Specifically, we will consider—in the context of linear1 perturbation theory off of an FLRW

background—only point-particle sources, i.e., sources whose stress-energy is confined by

Dirac delta functions to worldlines that meet at a vertex, which we will call the source

event. We previously considered such sources in Minkowski spacetime [7], [8], and found

that the retarded solution gives rise to a contribution to the curvature tensor of the form

of the derivative of a delta function in retarded time. Upon integration of the geodesic

deviation equation, this derivative of a delta function in curvature gives rise to a well defined

memory effect—i.e., a change in the separation of test particles coincident in time with the

passage of the radiation from the source event—that includes both the ordinary and null

memory [7], [8]. Thus, for the idealized sources that we consider, the memory effect can be

associated with the presence of a derivative of a delta function in the Riemann curvature

of the retarded solution arising from the source event. This enables us to distinguish the

memory effect induced by the passage of radiation from non-radiative gravitational effects,

and it does not require us to take limits to null infinity. It thereby yields a well defined

notion of the memory effect that is applicable to linearized perturbations about arbitrary

background spacetimes.

Another advantage to considering the above idealized particle sources, where the radia-

tion emerges from a single “source event” in the background spacetime, is that—since all

spacetimes are “locally flat” on sufficiently small scales—there is a well defined notion of

having the “same source” in different spacetimes. Similarly, there is a well defined notion

1 Particle-like sources in Einstein’s equation do not make sense outside of the context of linear perturbation

theory [13].
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of having the “same detector”—i.e., geodesic test particles initially at rest and with small

separation—in different spacetimes. Thus, we can compare the memory effect in two dif-

ferent spacetimes provided only that we specify the location and “rest frame” of both the

source and the detector in the two spacetimes. Since any spatially flat FLRW spacetime is

conformal to Minkowski spacetime, it is particularly useful to state our results by compar-

ing the memory effect in FLRW spacetime to that in Minkowski spacetime. Stated in this

manner, the main result of our paper is as follows:

Consider a spatially flat FLRW solution to Einstein’s equation with arbitrary fluid matter,

and with a given particle source perturbation, as described above. Now place the same source

and detector in Minkowski spacetime such that the source and detector are at rest with

respect to each other and the source is at a distance, d, in Minkowski spacetime equal to

the luminosity distance, dL, in the FLRW spacetime. Then the memory effect in the FLRW

spacetime is enhanced over the Minkowski value by a factor of (1 + z), where z denotes the

redshift factor between the source and observer/detector.

This result applies to both ordinary and null memory. It is in agreement with the results

obtained for null memory in the special cases considered in [9] and [10]. Note that in

a spatially flat FLRW spacetime, the luminosity distance dL and the angular diameter

distance, dA, are related by

dA = dL/(1 + z)2 (1)

It follows that for a Minkowski source at d = dA, the memory effect in the FLRW spacetime

will be decreased from the Minkowski value by a factor of (1 + z)−1. Finally, it should be

noted that although the memory effect in a spatially flat FLRW spacetime is related to the

Minkowski memory effect in this simple way, the waveforms will be different; in particular,

there will be “tail effects” in the FLRW spacetime.

Although our analysis is restricted to the context of linear perturbation theory with ideal-

ized particle sources, we expect that our main result stated above should be valid completely

generally for any sources whose spatial and time variation scales are small compared with

the Hubble scale. Indeed, the main difficulty in generalizing our results to non-particle-like

sources and to the nonlinear regime would be to give a precise definition of “memory” out-

side of the context we consider. Thus, if one wishes to compute the memory effect resulting

from, say, the coalescence of two black holes in a distant galaxy in a spatially flat FLRW

spacetime, it should suffice to compute the memory effect arising from a similar coalescence
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in an asymptotically flat spacetime and then use the above correspondence. However, we

shall not attempt to formulate or prove such a generalization here.

We shall begin in section II by describing the particle sources that we shall consider

and characterizing the memory effect for perturbations of arbitrary curved spacetimes. In

section III, we analyze linearized perturbations off of spatially flat FLRW spacetimes with

such particle sources. In section IV, we consider the tensor mode contribution to memory.

We show that only the “light cone portion” of the retarded Green’s function will contribute

to memory, and that its contribution can be related in a simple way to the memory caused

by similar sources in a flat spacetime. In the Appendix, we show that the scalar modes do

not contribute to memory.

Latin indices from the early alphabet (a, b, . . . ) denote abstract spacetime indices. Greek

indices (µ, ν, . . . ) denote spacetime components of tensors, whereas Latin indices from the

mid-alphabet (i, j, . . . ) denote spatial components.

II. PARTICLE SOURCES

In asymptotically flat spacetimes, the memory effect can be characterized in a precise

manner by considering a detector composed of test particles near null infinity. Radiation

effects fall off as 1/r, whereas Newtonian tidal effects fall off as 1/r3, so by considering

only the O(1/r) effects on the test particles, we can distinguish between effects produced by

gravitational radiation and all other gravitational effects. However, in a non-asymptotically-

flat spacetime, it is not clear how even to define memory, since there is no obvious way to

make a clean distinction between effects due to “radiation” as compared with other tidal

gravitational effects.

In our previous investigation of the memory effect in linearized gravity [7],[8], we consid-

ered the idealized process of the instantaneous decay of a massive particle into two other

particles. We found that the retarded solution to the linearized Einstein equation with such

a source has the property that the O(1/r) part of the curvature has the form of a derivative of

a delta-function of retarded time at the retarded time of the decay event. Integration of the

geodesic deviation equation then shows that the O(1/r) effect on test particles is to produce

a sharp step function in their relative separation. Thus, for this kind of idealized source, the

memory effect can be characterized by the presence of a derivative of a delta-function in the
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linearized curvature and a corresponding step function behavior in the relative separation

of test particles2.

For our present purposes, the main advantage of considering sources consisting of parti-

cles undergoing instantaneous interactions is that the characterization of the memory effect

in terms of derivative of a delta-function behavior of the curvature holds at all distances

from the interaction event, i.e., one does not need to go to null infinity to extract this

characterization of the memory effect. This characterization may therefore be imported

straightforwardly to other spacetimes. Thus, in this paper, we shall restrict consideration

to linearized gravity off of a smooth background spacetime, with a linearized perturbation

sourced by (massive or massless) point particles. The interactions of the particles will be

modeled by having their worldlines intersect (and, possibly, begin or end) at a single event,

q, in spacetime as illustrated in figure 1. Conservation of stress-energy then requires that (i)

the particle worldlines are geodesics [14] away from q, and (ii) total 4-momentum is conserved

at q. “Memory” will then be characterized by the presence of a derivative of a delta-function

in the curvature of the retarded solution with this source. This characterization does not

require that the detector be placed near “infinity.”

FIG. 1. A spacetime diagram of the sort of gravitational wave source we will consider. Here 5

point particles enter a single “source event” q, and 3 emerge. The worldlines of the incoming and

outgoing particles must be timelike or null geodesics.

2 Of course, if one were to consider a less idealized source with a smoothed out energy-momentum tensor,

then the Riemann tensor also will be smoothed out, and the relative separation of the test particles will

not undergo a sharp, sudden change in separation; rather, separation of the particles that results in a

memory effect would occur continuously on the same timescale as that of the event itself.6



To specify more precisely the type of source we consider, we assume that local coordinates

(t,x) have been introduced in a neighborhood of q so that ∇t is past-directed timelike and

so that the event q is labeled by t = x = 0. The worldline, γ, of each incoming massive

particle must be a timelike geodesic [14] with endpoint at q. We can parametrize γ by t and

specify it by giving x(t) = z(t), where z(0) = 0. The stress-energy of each incoming massive

particle then takes the form

T
(M,in)
ab = muaub δ

(3) (x− z(t))
1√
−g

dτ

dt
Θ(−t) . (2)

Here ua is the unit tangent (4-velocity) to γ, τ is the proper time along γ, Θ is the Heaviside

step function, and δ(3) is the “coordinate delta-function,” i.e.,
∫
δ(3)(x− z(t))d3x = 1. Each

incoming massless particle moves on a null geodesic, α, given by x(t) = y(t), with y(0) = 0.

The stress-energy of each incoming massless particle takes the form

T
(N,in)
ab = kakb δ

(3) (x− y(t))
1√
−g

dλ

dt
Θ(−t) . (3)

Here, λ is an affine parameter of α and ka is the corresponding tangent, with the scaling of

λ chosen so that (3) holds.

The stress-energy of each of the outgoing massive and massless particles takes the form

of (2) and (3) except that Θ(−t) is replaced by Θ(t). The total stress-energy of the particle

sources we consider takes the form

T
(P )
ab =

∑
l,in

T
(M,l)
ab +

∑
n,in

T
(N,n)
ab +

∑
l′,out

T
(M,l′)
ab +

∑
n′,out

T
(N,n′)
ab , (4)

where each T
(M,l)
ab takes the form of (2), each T

(N,n)
ab takes the form of (3), and each T

(M,l′)
ab and

T
(N,n′)
ab also take these forms with Θ(t) replaced by Θ(−t). Conservation of stress-energy,

∇aTab = 0, holds in the distributional sense away from q by virtue of the fact that each

particle moves on a geodesic [14]. Conservation of stress-energy will hold at q if and only if

we have at q ∑
l,in

m(l)u(l)a +
∑
n,in

k(n)a =
∑
l′,out

m(l′)u(l
′)

a +
∑
n′,out

k(n
′)

a , (5)

Equation (4) with condition (5) defines the sources that we consider in this paper. We are

interested in the solution to the linearized Einstein equation “produced by such a source” in

an arbitrary background spacetime. For hyperbolic equations, what we mean by “produced

by a source” is the solution obtained by convolving the source with the retarded Green’s
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function. In general spacetimes, issues of convergence of the retarded solution will arise from

the contribution of the sources at arbitrarily early times3. However, we are not interested in

such issues of convergence here, but rather the effects arising from near the source event q.

Thus, we shall simply consider the contributions to the retarded Green’s function integral

arising from the above particle sources in a small neighborhood of q. The memory effect

will then be identified with the presence of a derivative of a delta-function in the curvature

“produced” by these particle sources near event q.

III. PERTURBATION THEORY IN COSMOLOGICAL SPACETIMES

We now wish to consider linearized perturbations off of a spatially flat FLRW background,

ds2 = −dτ 2 + a2(τ)(dx2 + dy2 + dz2). (6)

As usual, it is convenient to introduce conformal time dη = dτ/a so that the background

FLRW metric takes the manifestly conformally flat form

ds2 = a2(η)
(
−dη2 + dx2 + dy2 + dz2

)
. (7)

Throughout the rest of the paper, “0” and “i” (i.e., spatial) indices will denote components

of tenors with respect to these coordinates, and an overdot will denote a derivative with

respect to η. We will write ∂i = δij∂j and ∇2 = ∂i∂i = δij∂i∂j, i.e., ∇2 is the Laplacian with

respect to the spatial metric δij given by dx2 + dy2 + dz2.

We assume that Einstein’s equation holds (possibly with a cosmological constant Λ)

and that the matter stress-energy—apart from the particle matter that we will add as a

perturbation—is that of a perfect fluid

T
(F )
ab = (ρ+ p)uaub + pgab , (8)

with 4-velocity ua, density ρ and pressure p. The fluid is assumed to be described by a

one-parameter (“barotropic”) equation of state p = p(ρ). The density and pressure are per-

turbations away from homogeneous background values ρ̄ and p̄ which satisfy the Friedmann

3 Even in Minkowski spacetime, the contribution of null sources at arbitrarily early times does not converge

to a distribution [8].
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equations (
1

a

da

dτ

)2

=
1

3
(8πρ̄+ Λ) , (9)

1

a

d2a

dτ 2
=

1

3
(−4π(ρ̄+ 3p̄) + Λ) . (10)

We write the perturbed metric as

gab = ḡab + a2hab (11)

where ḡab denotes the background FLRW metric. The perturbed fluid is described by δuµ,

δρ, and δp = c2sδρ, where

c2s =
dp

dρ
. (12)

We wish to consider the metric perturbation resulting from the presence of a particle stress-

energy of the form (4). The particle sources are assumed to have no direct interaction with

the fluid present in the FLRW background; the particle stress-energy is separately conserved.

However, since the particles affect the perturbed metric, they automatically affect the fluid

(even at the linearized level), so the fluid perturbations cannot be ignored.

Analysis of the perturbations is most easily done using the gauge-invariant methods of

Bardeen [15] with modifications by Durrer [16],[17] allowing for additional forms of matter

perturbations4. These methods rely on decomposing the metric, fluid stress-energy, and

particle stress-energy perturbations into scalar, vector, and tensor parts, and working with

gauge invariant quantities in each sector. We can decompose a general symmetric tensor

field Xab on spacetime into its scalar, vector, and tensor parts by writing its coordinate

components as

Xµν =


ϕ ∂iχ + ξi

∂iχ

+

ξi

ψδij + (∂i∂j − 1
3
δij∇2)ω

+∂(iζj) + Xij

 , (13)

4 Both Bardeen and Durrer allow for general stress-energies with non-fluid properties like anisotropic pres-

sures. However, as we have discussed in section II, we want our perturbed fluid and particles to interact

only gravitationally, which means that the stress-energies of the fluid and the particles must be con-

served independently. Bardeen does not discuss this scenario, but it corresponds to Durrer’s notion of

cosmological seeds.
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where the scalar parts are given by5

ϕ = X00

∇2χ = ∂iX0i

ψ =
1

3
δijXij

∇2∇2ω =
3

2

(
∂i∂j − 1

3
δij∇2

)
Xij , (14)

the vector parts are given by

ξi = X0i − ∂iχ

∇2ζi = 2

(
∂jXij − ∂iψ −

2

3
∇2∂iω

)
, (15)

and the tensor part is

Xij = Xij − ψδij −
(
∂i∂j −

1

3
δij∇2

)
ω − ∂(iζj) . (16)

If the metric perturbation is written in this way,

hµν =


ϕ(h) ∂iχ

(h) + ξ
(h)
i

∂iχ
(h)

+

ξ
(h)
i

ψ(h)δij + (∂i∂j − 1
3
δij∇2)ω(h)

+∂(iζ
(h)
j) + hij

 , (17)

then

Φ = ϕ(h) + 2χ̇(h) + 2
ȧ

a
χ(h) + ω̈(h) +

ȧ

a
ω(h) (18)

Ψ = ψ(h) + 2
ȧ

a
χ(h) − 1

3
∇2ω(h) − ȧ

a
ω̇(h) (19)

are gauge-invariant scalar quantities, whereas

Ξi = ξ
(h)
i − ζ̇

(h)
i (20)

5 If the spatial slices have topology R3, we need to impose boundary conditions at infinity in order to get a

unique solution to the Poisson equations for χ and ω (and ζi below), which, in turn, may put restrictions

on the asymptotic behavior of Xab. However, as we are ultimately interested in singular behavior of the

perturbations, it does not matter what solutions of the Poisson equations we choose. For convenience,

we shall assume that the spatial slices have the topology of three-tori, with the dimensions of the tori

being much larger than the dimensions of the physical problem. The solutions are then unique up to the

addition of constants, which do not affect the decomposition.
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is a gauge-invariant vector quantity, and hij is a gauge-invariant tensor quantity. The above

two scalar fields, Φ and Ψ, one transverse three-vector field, Ξi, and one transverse-traceless

three-tensor field, hij, contain all of the physical (non-gauge) information concerning the

metric perturbation.

The stress-energy tensor of the particles (4) can also be decomposed in this way:

T (P )
µν =


ϕ(P ) ∂iχ

(P ) + ξ
(P )
i

∂iχ
(P )

+

ξ
(P )
i

ψ(P )δij + (∂i∂j − 1
3
δij∇2)ω(P )

+∂(iζ
(P )
j) + Tij

 . (21)

Because there is no “background” particle stress-energy, each of the individual component

fields ϕ(P ), χ(P ), etc. are already gauge invariant to first order. These quantities are related to

T
(P )
µν by eqs.(14)-(16). Since T

(P )
µν is distributional, these quantities will also be distributional.

We can also find gauge-invariant combinations of the perturbed stress-energy δT
(F )
µν of

the fluid, (8). We define

δρ =
ρ− ρ̄
ρ̄

. (22)

We decompose the perturbed 4-velocity as

δuµ =
1

a

 δu0

∂iv + vi

 (23)

with ∂iv
i = 0, and we remind the reader that ∂iv = δij∂jv. Note that the quantity δu0 is

not independent, since it is fixed by the normalization condition gabu
aub = −1. In terms of

these quantities and the perturbed metric, we can obtain the following gauge-invariant fluid

variables:

V = v +
1

2
ω̇(h) (24)

A = δρ + 3

(
1 +

p̄

ρ̄

)(
1

2

(
ψ(h) − 1

3
∇2ω(h)

)
− ȧ

a
V − Φ

)
(25)

Wi = δijv
j +

1

2
ξ̇
(h)
i . (26)

The fields V , A, andWi thus provide us, respectively, with gauge-invariant measures of fluid’s

peculiar velocity with respect to the Hubble flow, its perturbed density, and its vorticity.

The linearized Einstein equation decomposes into decoupled sets of equations involving

the scalar, vector, and tensor parts of the perturbations. These equations can be written
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entirely in terms of the gauge-invariant quantities introduced above. The scalar equations

are

∇2Ψ− 3
ȧ

a

(
Ψ̇ +

ȧ

a
Φ

)
= −8π

(
a2ρ̄A− 3aȧ(ρ̄+ p̄)V + ϕ(P )

)
(27)

∂i

(
Ψ̇ +

ȧ

a
Φ

)
= −8π

(
a2(ρ̄+ p̄)∂iV − ∂iχ(P )

)
(28)

∂i∂j (Ψ− Φ) = −16π∂i∂jω
(P ) (29)

Ψ̈ + 2
ȧ

a
Ψ̇ +

ȧ

a
Φ̇ +

(
2
ä

a
−
(
ȧ

a

)2
)

Φ +
2

3
∇2 (Ψ− Φ)

= −16π

(
a2c2s(ρ̄)A− 3(ρ̄+ φ̄)

ȧ

a
V + ψ(P )

)
. (30)

The vector equations are

∇2Ξi = −8π
(

2a2(ρ̄+ p̄)Wi − ξ(P )
i

)
(31)

∂(iΞ̇j) + 2
ȧ

a
∂(iΞj) = −8π∂(iζ

(P )
j) . (32)

Finally, the tensor equation is

−ḧij − 2
ȧ

a
ḣij +∇2hij = −16πTij . (33)

If the various perturbation fields do not grow in an unbounded fashion at large distances,

the unique solutions to (28) and (29) are

Ψ̇ +
ȧ

a
Φ = −8π

(
a2(ρ̄+ p̄)V − χ(P )

)
(34)

Ψ− Φ = −16πω(P ) . (35)

Equations (27) and (30) then simplify to

∇2Ψ = −8π
(
a2ρ̄A+ ϕ(P ) + 3χ(P )

)
(36)

Ψ̈ + 2
ȧ

a
Ψ̇ +

ȧ

a
Φ̇ +

(
2
ä

a
−
(
ȧ

a

)2
)

Φ

= −16π

(
a2c2s

(
ρ̄A− 3(ρ̄+ p̄)

ȧ

a
V

)
+ ψ(P ) − 2

3
∇2ω(P )

)
. (37)
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Similarly, (32) implies that

Ξ̇i + 2
ȧ

a
Ξi = −8πζ

(P )
i . (38)

The full set of Einstein’s equation thus reduces to (34)-(38) together with (31) and (33).

The perturbed conservation of stress energy for the fluid, δ[∇µT
(F )
µν ] = 0, yields the scalar

equations

V̇ +
ȧ

a
V = − c

2
sρ̄E

ρ̄+ p̄
− 1

2
Φ (39)

Ȧ− 3
p̄

ρ̄

ȧ

a
A = −

(
1 +

p̄

ρ̄

)(
∇2V − 3χ(P )

)
(40)

as well as the vector equation

Ẇi − 3
ȧ

a
c2sWi = 0 . (41)

Similarly, conservation of stress-energy for the particles can also be expressed in terms of

the fields (21) as

ϕ̇(P ) +
ȧ

a
ϕ(P ) −∇2χ(P ) + 3

ȧ

a
ψ(P ) = 0 (42)

χ̇(P ) + 2
ȧ

a
χ(P ) − ψ(P ) − 2

3
∇2ω(P ) = 0 (43)

ξ̇
(P )
i + 2

ȧ

a
ξ
(P )
i − 1

2
∇2ζ

(P )
i = 0. (44)

A very useful equation for A can be derived as follows [16]: We differentiate (40) with

respect to η, and substitute from (39) to eliminate V̇ . Then we use (40) to eliminate ∇2V ,

and we use (35) and (36) to eliminate ∇2Φ. Finally, we use (43) to eliminate χ̇(P ). We

thereby obtain a wave equation for A with particle sources,

− Ä− ȧ

a

(
1 + 3c2s − 6

p̄

ρ̄

)
Ȧ+ c2s∇2A+ 3

(
ä

a

p̄

ρ̄
− 3

(
ȧ

a

)2(
c2s −

p̄

ρ̄

)
+ a2

(
1 +

p̄

ρ̄

)
4π

3
ρ̄

)
A

= −4πa2
(

1 +
p̄

ρ̄

)(
ϕ(P ) + 3ψ(P )

)
. (45)

Physically, this equation describes the propagation of sound waves in the fluid. Although

there is no direct coupling between the particles and the fluid, there are “particle source

terms” in (45) resulting from the gravitational interactions between the particles and the

fluid.

As previously explained, the memory effect will be identified with the presence of a

derivative of a delta function in the curvature. The curvature is given by an expression
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involving at most 2 derivatives of the metric variables. In particular, in the Newtonian

gauge, the perturbation to the electric components of the Riemann tensor is [18]

δR j
i00 = −1

2

((
∂i∂k −

1

3
δik∇2

)
Φ +

(
Ψ̈ +

ȧ

a
(Ψ̇− Φ̇)

)
δik

− ∂(i
(

Ξ̇k) +
ȧ

a
Ξk)

)
+

(
ḧik +

ȧ

a
ḣik

))
δjk. (46)

Thus, a derivative of a delta function in the curvature requires a step function (or worse)

discontinuity in the gauge invariant metric variables.

We are now in a position to analyze how discontinuities could arise. First, it is important

to note that the equations (14)-(16) giving the scalar, vector, and tensor parts of a tensor

Xµν involve solving elliptic and/or algebraic equations, with “source” given by components

of Xµν and their derivatives. It follows immediately that the scalar, vector, and tensor parts

of Xµν are smooth wherever Xµν itself is smooth. In particular, the scalar, vector, and tensor

parts of the particle stress-energy (21) are smooth away from the worldlines of the particles.

Consider, now, the scalar perturbations. Eqs. (36) and (34) are elliptic in Φ and Ψ, so

these quantities—which fully characterize the scalar part of the metric perturbation—can

be singular only where the source terms in these equations are singular. These source terms

involve the scalar part of the particle source and the quantity A. The scalar part of the

particle source is smooth away from the particle world lines. The quantity A satisfies the

hyperbolic equation (45), which, in turn is sourced by the scalar parts of the particle stress-

energy. We shall analyze the possible singular behavior of A in the Appendix. We shall

show there that, although A can be discontinuous along the sound cone of the source event

q, there cannot be any discontinuities in Φ or Ψ. Thus, no memory effect can occur in the

scalar sector.

Consider, now, the vector perturbations. The quantity Ξi satisfies the elliptic equation

(31) and thus is smooth wherever the sources are smooth. However, the particle source

term ξ
(P )
i is smooth away from the worldlines of the particles and the fluid source term Wi

satisfies the source free evolution equation (41) and is thus nonsingular everywhere. Thus,

Ξi is smooth away from the particle worldlines and no memory effect can occur in the vector

sector.

In the next section, we calculate the memory effect occurring in the tensor sector.
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IV. THE RETARDED GRAVITATIONAL FIELD AND THE MEMORY EFFECT

The tensor perturbations are described by the quantity hij, which satisfies (see (33))

−ḧij − 2
ȧ

a
ḣij +∇2hij = −16πTij , (47)

where Tij is the tensor part of the particle stress energy. Thus, each component of hij in

the coordinates (7) satisfies a decoupled scalar wave equation and it suffices to analyze the

behavior of solutions to the scalar wave equation.

We are interested in the contribution to the retarded integral

hij(x) = 16π

∫ √
−g(x′)d4x′Gret(x, x′)Tij(x

′) (48)

arising from a small neighborhood of the source event q (see section II), where Gret(x, x′)

denotes the retarded Green’s function for the scalar wave equation

−φ̈− 2
ȧ

a
φ̇+∇2φ = −16πT . (49)

Specifically, we seek to determine whether a discontinuity can arise in hij and, if so, to

determine its magnitude. Such discontinuities will give rise to derivative of delta function

contributions to the curvature, which, in turn, will produce a memory effect.

To proceed, we need to know the form of Gret(x, x′). Consider an equation of the general

form

L[φ] = gµν∂µ∂νφ+ bµ∂µφ+ cφ = −16πT , (50)

where gµν is a metric of Lorentz signature. It is well known [19], [20] that, in 4 spacetime

dimensions, the retarded Green’s function for this equation takes the form

Gret(x, x′) = [U(x, x′)δ(σ) + V (x, x′)Θ(−σ)] Θ(t− t′) , (51)

where σ denotes the squared geodesic distance between x and x′ in the metric gµν and t is

a global time function. The quantities U (the Van Vleck-Morette determinant) and V are

smooth functions; we refer to U(x, x′)δ(σ) as the “direct part” and V (x, x′)Θ(−σ) as the

“tail part” of Gret(x, x′). In general, the form (51) for Gret(x, x′) will hold only locally in a

convex normal neighborhood, but in the case of (49), the spacetime metric corresponding

to (50) is flat, and this form of Gret(x, x′) holds globally, with

σ(x, x′) = −(η − η′)2 + (x− x′)2 + (y − y′)2 + (z − z′)2 . (52)
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The Van Vleck-Morette U is determined by integrating an ODE along a geodesic con-

necting x and x′ [19], [20]. The quantities appearing in this ODE depend on gµν and bµ but

do not depend on c. We could integrate this ODE directly, but we can greatly simplify the

calculation of U by working with the rescaled variable φ̃ = aφ (where φ denotes a component

of hij), which satisfies the equation

− ¨̃φ+∇2φ̃+
ä

a
φ̃ = −16πaT . (53)

This change of variables eliminates the term involving bµ in (50), so Ũ is determined by

exactly the same equation for the wave equation in flat spacetime. Thus we obtain the

unique solution Ũ(x, x′) = (4π)−1. However, the retarded Green’s function for φ is related

to the retarded Green’s function for φ̃ by [21]-[23]

Gret(x, x′) =
a(η′)

a(η)
G̃ret(x, x′) . (54)

Thus, we obtain

U(x, x′) =
1

4π

a(η′)

a(η)
. (55)

This holds for any FLRW universe, i.e., we have not assumed any particular equation of state

P̄ = P̄ (ρ̄) (and, thus, we have not assumed any particular expansion law) in the background

spacetime. By contrast, V (x, x′) will depend on the expansion history of the FLRW universe

between η′ and η. Note, however, that by spatial Euclidean invariance, V depends on (x, x′)

only via η, η′, and |x− x′|.

As previously stated, we are interested in the possible discontinuities in hij resulting from

the source behavior near q, where we take q to have coordinates x = t = 0. To analyze

this, let us first introduce a new toy mathematical problem, wherein we consider retarded

solutions to the equation

−Ḧij − 2
ȧ

a
Ḣij +∇2Hij = −16πT

(P )
ij . (56)

Eq. (56) differs from the equation of interest (47) in that we have not taken the tensor

part of the particle source and, correspondingly, we do not require Hij to be transverse

or traceless. By (4), T
(P )
ij consists of a sum of terms, each one of which has the form

δ(3) (x− z(t)) Θ(±t), where z(t) describes a timelike or null geodesic. The contribution of

the tail part, V (x, x′)Θ(−σ), of Gret(x, x′) to the retarded integral is thus a sum of terms of
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the form

Htail
ij (x) =

∫
d4x′fij(x

′)V (x, x′)Θ (−σ(x, x′)) δ(3) (x′ − z(t′)) Θ(±t′) , (57)

where fij is smooth. It is not difficult to see that Htail
ij is smooth whenever x does not

lie on the future light cone of q. On the other hand, if z(t) is a null geodesic and if x

lies on (the continuation of) this null geodesic—i.e., if one of the ingoing or outgoing null

particles is “aimed” directly at an observer at x—then the singularities of δ(3) (x′ − z(t′))

and Θ (−σ(x, x′)) will coincide and Htail
ij will, in general, be “highly singular” at x in the

sense that, in general, it will be defined only distributionally in a neighborhood of x. We

exclude such special points from consideration. The case of main interest is one where x

lies near the future light cone of q but does not lie on the special direction defined by z(t)

(if null). Then the δ(3) (x′ − z(t′)) singularity in the integral will be transverse to the step

function singularity of Θ (−σ(x, x′)) as well as to that of Θ(±t). One can then integrate

over x′, leaving one with an integral only over t′. The integrand will be proportional to

V (x; z(t′), t′)Θ(u− t′)Θ(±t′), where u = t−|x| denotes the retarded time of x. The integral

over t′ thus yields a result of the form Fij(x)uΘ(u), where Fij is smooth. Thus, we see that

Htail
ij is continuous (although not continuously differentiable) at x.

The analysis of the contribution, Hdir
ij , of the “direct part,” U(x, x′)δ(σ), of Gret(x, x′)

to Hij is similar, with U(x, x′)δ(σ) replacing V (x, x′)Θ(−σ) in (57). Again, Hdir
ij is smooth

whenever x does not lie on the future light cone of q, and is highly singular if z(t) is a

null geodesic and if x lies on (the continuation of) this null geodesic. If we exclude such

special points, then the integral over x′ can again be done, and we are again left with an

integral over t′. However, now the integrand is proportional to δ(u − t′)Θ(±t′), where u is

the retarded time of x. Consequently, Hdir
ij has the form F̃ij(x)Θ(u) for some smooth F̃ij,

and thus it has a discontinuity along the future light cone of q.

The above analysis is for the toy problem (56), where we did not take the tensor part, Tij,

of the source T
(P )
ij . It would be cumbersome to compute Tij and then perform a similar direct

analysis of the behavior of the retarded Green’s function integral involving Tij. Fortunately,

we can bypass this by noting that the operation of “taking the tensor part” commutes with

the wave operator appearing in (47) and (56). It follows that the desired quantity, hij, given

by (48), is related to Hij by

hij = [Hij]
T , (58)
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where “[Xij]
T” denotes the operation of taking the “tensor part” of Xij, as given by (16).

Thus, our analysis reduces to extracting information about how the operation of taking the

tensor part of a quantity affects the nature of its singularities. To analyze this, we note first

that since “taking the tensor part” consists of algebraic operations involving differentiations

and inversions of Laplacians (see (13)-(16)), the tensor part, Xij, of a distribution Xij must

be smooth wherever Xij is smooth. It then follows that the singular behavior of the tensor

part of Xij at x is the same as that of the tensor part of ψXij, where ψ is any smooth function

of compact support with ψ = 1 in a neighborhood of x. (Proof: Xij − ψXij vanishes in a

neighborhood of x and hence is smooth there, so the tensor part of this difference is smooth

in a neighborhood of x.) However, the singular behavior of ψXij is characterized by the

decay (or lack thereof) of its Fourier transform at large kµ. The key point is that in the

operation of “taking the tensor part,” there are exactly as many total “inverse derivatives”

from Laplacian inversions in (16) as there are differentiations. It follows that the Fourier

transform of the tensor part of ψXij is related to the Fourier transform of ψXij by a function

that is everywhere bounded in kµ. In particular, the decay of the Fourier transform of the

tensor part of ψXij at large kµ cannot be slower than that of ψXij.

The above argument can be applied to the present case as follows to get the key conclusion

that we need. It is easily seen from the explicit behavior of Htail
ij found above that the Fourier

transform of ψHtail
ij lies in L1 for any smooth function ψ of compact support. Therefore, the

Fourier transform of the tensor part of ψHtail
ij —which differs from the Fourier transform of

ψHtail
ij by a bounded function of kµ—also lies in L1. But that implies that the tensor part of

ψHtail
ij is continuous for all ψ, which implies that the tensor part of Htail

ij is continuous. Thus,

we have shown that the tail contribution to hij is continuous and thus cannot contribute to

the memory effect.

The above conclusion is all that is needed to derive our results on the memory effect,

because, as we have seen above, the direct contribution to the retarded solution is universal,

and does not depend on the expansion history. Furthermore, Minkowski spacetime lies within

the class of k = 0 FLRW spacetimes to which our analysis applies. Thus, we can relate the

memory effect in an arbitrary FLRW spacetime to that in Minkowski spacetime as follows.

Consider a source event at q in the FLRW spacetime that is observed at event p. Let ηs and

ηo denote the conformal times of the events q and p respectively. For convenience, rescale

the coordinates, if necessary, so that a(ηs) = 1. This corresponds to choosing the comoving
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coordinates to corrspond to proper distances at η = ηs. Now, identify the FLRW spacetime

with Minkowski spacetime by identifying the coordinates (7) of the FLRW spacetime with

global inertial coordinates of Minkowski spacetime. Place a source and observer at the events

q̄ and p̄ of Minkowski spacetime that are identified in this manner with events q and p in the

FLRW spacetime. Since a(ηs) = 1, the Minkowski source will physically correspond to the

FLRW source provided that the masses and 4-velocities of each of the particles agree (under

this identification) at q. It follows immediately from (55) that the direct part, hdir
ij , of hij(x)

near p will be a factor of 1/a(ηo) times the same function of xµ as it is in the Minkowski

case, i.e., near p,

hdir
ij (xµ) =

1

a(ηo)
h̄dir
ij (xµ) , (59)

which agrees with the results of a WKB analysis of Damour and Vilenkin [24] regarding the

propagation of high-frequency gravitational wave modes on FLRW backgrounds. It then

follows immediately from (46) that the direct parts of the linearized Riemann curvature

tensor are similarly related, i.e., near p

δRdir
i00

j
(xµ) =

1

a(ηo)
δR̄dir

i00
j(xµ) . (60)

Suppose, now, that we place a gravitational wave detector at p, composed of two nearby

particles initially at rest in the cosmic reference frame. By the geodesic deviation equation,

the deviation vector, Di, describing the displacement of the particles will satisfy

vb∇b(v
c∇cD

a) = R a
def D

dvevf , (61)

where va is the unit tangent to the geodesic. Since vµ ≈ 1/a(ηo)(∂/∂η)µ and the Hubble

expansion is negligible over the relevant timescale, we can rewrite this equation as

d2

dη2
Dj = Ri00

jDi . (62)

Let ∆Di denote the coordinate components of the “memory displacement,” obtained by

integrating (62) twice with respect to η. In view of (60) and the fact, proven above, that

the “direct part” of the Riemann tensor contains the full memory effect, we see that

∆Di =
1

a(ηo)
∆D

i
, (63)

where ∆D
i

denotes the corresponding memory displacement in Minkowski spacetime, as-

suming that the initial displacement was D
i

= Di. Thus, the relationship between ∆Di and
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Di in an arbitrary FLRW spacetime differs from the corresponding Minkowski result by a

factor of 1/a(ηo).

Thus, we have shown that if we identify the FLRW spacetime with Minkowski spacetime

via the coordinates (7) in such a way that a(ηs) = 1, and we place the same physical source

at q and the same physical detector at p in both spacetimes, then the memory effect in the

FLRW spacetime will be a factor of 1/a(ηo) = 1/(1 + z) smaller than the corresponding

memory effect in Minkowski spacetime. Note that placing the source at the same proper

distance at the time of emission corresponds to placing the source at the same angular

diameter distance in both spacetimes.

The above result compares the memory effect in FLRW and Minkowski spacetime when

the source and detector are at the same proper distance at the source emission time, i.e.,

when they are at the same location with a(ηs) = 1. Since the memory effect in Minkowski

spacetime falls off as 1/r, this result may be reformulated in numerous equivalent ways. In

particular, we have

• If the source and detector are placed so that they are at the same proper distance at

the time of detection (rather than emission), then the memory effect in the FLRW

spacetime is identical to the corresponding memory effect in Minkowski spacetime.

• If the source and detector are placed so that the source is at the same luminosity

distance in both cases, then the memory effect in the FLRW spacetime is larger by

a factor of (1 + z) as compared with the corresponding memory effect in Minkowski

spacetime.

The above result is in agreement with the results of [9], [10], [11], and [12] in the cases

where the results of those references apply.
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Appendix A: Acoustic Shock Waves and Metric Continuity

In this Appendix, we show that the the scalar sector does not contribute to the memory

effect. The gauge-invariant density perturbation A satisfies (45). Equation (45) is a hyper-

bolic wave equation of the general form (50), with the Lorentz metric gµν now being the

“acoustic metric,”

ds2 = −dη2 +
1

c2s
[dx2 + dy2 + dz2] , (A1)

and with the source term T proportional to the scalar particle fields ϕ(P ) and ψ(P ). Thus, the

retarded Green’s function for (45) takes the general Hadamard form (51), with σ replaced

by the squared geodesic distance, σs, in the acoustic metric (A1), i.e., we have

Gs(x, x
′) = [Us(x, x

′)δ(σs) + Vs(x, x
′)Θ(−σs)] Θ(η − η′) , (A2)

where Us and Vs are again smooth functions in both x and x′ Furthermore, it can be seen

from (21) that both ϕ(P ) and ψ(P ) are obtained from T
(P )
µν by algebraic operations (i.e., no

differentiations or Laplace inversions). It follows immediately that the source term appearing

in (45) takes the same form (namely, proportional to δ(3) (x− z(η)) Θ(±η)), as considered

in Section IV. We may therefore repeat the analysis of Section IV to draw the following

conclusion: Suppose that all of the particles in T
(P )
µν are moving with velocity smaller than

the speed of sound6. Then A is smooth except on the future sound cone of q. Furthermore,

on the sound cone, A will, in general, be discontinuous, but it cannot have “worse” singular

behavior.

The metric perturbation variables Φ and Ψ satisfy elliptic equations, with source terms

given by A and the scalar parts of the particle sources. It follows that Φ and Ψ must be

smooth everywhere apart from the worldlines of the particles and the points at which A fails

to be smooth, i.e., the future sound cone of q. We are not interested in the singularities

at the particle worldlines. However, on the future sound cone of q, ∇2Φ and ∇2Ψ are at

worst discontinuous, so Φ and Ψ themselves are at least C1. Thus, they cannot contribute

a derivative of delta-function to the Riemann curvature (46), and thus do not contribute to

6 If any of the particles are moving with velocity greater than the speed of sound, there will be additional

“Cherenkov radiation” singularities occurring at points x where the past sound cone of x intersects a

particle world line orthogonally (in the sound metric). These additional singularities are not of interest

for the memory effect.
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any memory effect.
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