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We show that if a spectator linear isocurvature dark matter field degree of freedom has

a constant mass through its entire evolution history, the maximum measurable isocurvature

spectral index that is consistent with the current tensor-to-scalar ratio bound of about r .

0.1 is about nI . 2.4, even if experiments can be sensitive to a 10−6 contamination of the

predominantly adiabatic power spectrum with an isocurvature power spectrum at the shortest

observable length scales. Hence, any foreseeable future measurement of a blue isocurvature

spectral index larger than ∼ 2.4 may provide nontrivial evidence for dynamical degrees of

freedom with time-dependent masses during inflation. The bound is not sensitive to the

details of the reheating scenario and can be made mildly smaller if r is better constrained in

the future.

1. INTRODUCTION

Although minimal single-field slow-roll inflationary scenarios [1–10] can successfully provide

a dynamical explanation for the currently known features of the initial conditions in classical cos-

mological physics (e.g. the cosmic microwave background (CMB) [11–25] and large scale struc-

ture [26–28]), it is natural to speculate that more than one single real field is dynamical during

inflation. For such extra dynamical degrees of freedom not to spoil the flatness of the inflaton

potential, it is also natural to assume that they are very weakly coupled to the inflaton (though this

is obviously not a requirement). With this assumption, these extra dynamical degrees of freedom

behave as spectators as far as the inflationary dynamics is concerned. If one of these dynami-

cal degrees of freedom is taken to be a weakly interacting cold dark matter (CDM) field, then
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there exists a well-known observable called the CDM-photon isocurvature perturbations which

becomes observable (e.g. [29–51]) if the CDM field is sufficiently weakly interacting and do not

to thermalize.

There are two broad categories of scalar spectator field scenarios that can produce observable

CDM-photon isocurvature perturbations: (i) linear spectators, such as axions [52–54], and (ii)

gravitationally produced superheavy dark matter scenarios, aka WIMPZILLAs [55–60] (for some

recent developments, see [61–64]). Linear spectator fields are characterized by having vacuum

expectation values (VEVs) that are much larger than the amplitudes of their quantum fluctuations.

The VEV oscillations generate the dark matter density in the universe today while the spatially

inhomogeneous distribution of their energy-momentum tensors are determined by the quantum

fluctuations. Such isocurvature fluctuations are called linear because the the energy-momentum

tensor inhomogeneity is approximately linear in the fluctuations, in contrast with the the case of

gravitationally produced superheavy dark matter scenarios. In this paper, we will focus on the

linear spectator scenarios and will drop the “linear” adjective.1

Scale-invariant isocurvature perturbations with negligible correlations with curvature perturba-

tions are well constrained to be less than 3% of the adiabatic power [12, 15, 19, 65–70]. However,

isocurvature spectra with very blue spectral indices can be unobservably small on long wave-

lengths, for which the measurements are strongly constraining, but have large amplitudes on short

wavelengths, where the measurements are less constraining [71–73]. The case of a blue spectrum

is qualitatively different from a “bump” in the spectrum because bumps usually involve a red part

as well as a blue part, and because the blue spectrum here is envisioned to have a qualitatively

extended k-space range over which an approximately constant blue spectral index persists.2

One of the most natural models that can produce large blue CDM-photon isocurvature scenarios

was given in [74]. This class of models is characterized by axions that have time-dependent

masses due to the out-of-equilibrium nature of the Peccei-Quinn (PQ) symmetry breaking field.

For constant mass linear spectator fields, large blue-spectral indices are difficult to produce in

observably large amplitudes because the energy density of the VEV dilutes away. An intuitive

perspective is that the closer the spectral index is to nI = 1 (scale invariant), the more the field

fluctuations behave like a frozen VEV, while the closer the spectral index is to nI = 4, the more

1 We briefly discuss what would happen with a quadratic isocurvature scenario in the conclusions.
2 Of course, from an observational point of view, this may not be easy to disentangle since observations have a finite

k range.
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the field fluctuations behave as particles which can be diluted away by inflation.

Hence, a natural question, which is the subject of this paper, is what is the maximal measurable

isocurvature spectral index that can be produced by a constant mass spectator field in the context

of slow-roll inflationary scenarios where the adiabatic perturbation spectrum originates from the

inflaton field fluctuations. For a linear spectator scenario, we find that the maximum measurable

spectral index in the foreseeable future is about nI = 2.4 (where nI = 1 corresponds to scale in-

variance). Although measurability depends on the sensitivity of any given experiment, inflationary

physics renders the dependence of the experimental sensitivity to be logarithmic (to obtain some

intuition, see e.g. Eq. (50)). The bulk of this number originates from the ratio of the log of the dark

matter density maximum enhancement due to the dark matter diluting as a−3 (compared to radia-

tion diluting as a−4) and the number of efoldings necessary for the inflationary scenario to explain

the observed homogeneity and isotropy of the universe. A better constraint on the inflationary

tensor perturbation amplitude r can decrease this number, but the sensitivity is only logarithmic.

If restrictions are placed on the maximum reheating temperature, then the maximum measurable

spectral index also decreases. We will illustrate this by assuming a perturbative reheating scenario

and assuming that the gravitationally suppressed nonrenormalizable operators of dimension 5 or 6

are unavoidable.

The number 2.4 is interesting because there are claims in the literature [72, 75–77] that future

experiments may be able to measure spectral indices of nI & 3. The results in this work demon-

strate that if any of these experiments detect a blue isocurvature spectrum, then they may have

uncovered evidence for a dynamical degree of freedom with a time-dependent mass.

Before proceeding, we note that the CDM-photon isocurvature observable that we focus on

in this paper is distinct from the ζ correlator in the context of “heavy” masses discussed e.g. in

[78–80] and the ζ -tensor correlators [81] which in some cases can also receive signatures from the

isocurvature degrees of freedom. On the other hand, these works all include the common theme of

secondary fields from inflation that can leave a blue spectral cosmological observable signature.

The order of presentation will be as follows. In Sec. 2, we discuss the constraints considered

in the spectral index maximization problem (there will turn out to be thirteen constraints). We

then estimate the solution to the maximization problem analytically in Sec. 3. Next, we solve the

maximization problem numerically in Sec. 4. We then in Sec. 5 give a brief review of why the

axionic models that naturally have time dependent masses can evade this bound and explain why

this may be the most natural scenario to turn to if measurements are made of the spectral index
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that are larger than ∼ 2.4. Finally, we summarize and discuss caveats in the conclusions.

2. MAXIMIZATION PROBLEM

In this section, we define our class of models and the maximization problem at hand. In par-

ticular, we provide a definition of a measurable blue isocurvature spectral index for a real scalar

field χ of constant mass that makes up a fraction ωχ of the total cold dark matter content through

its background VEV oscillations, reminiscent of misaligned axion scenarios. We will state a list

of constraints defining the mathematical problem. The mathematical constraints will involve a

combination of both model limitations and phenomenological considerations.

We consider effectively single-field slow-roll inflationary scenarios, in which adiabatic cosmo-

logical perturbations arise from the inflaton fluctuations. Here we define effectively single field

to mean that a single field direction is important for the adiabatic inflationary observables. For

example, hybrid inflation involves at least two fields, but during the slow-roll phase, only one field

is dynamical as far as the adiabatic perturbations are concerned.

In this context, consider a linear spectator isocurvature field χ (see [73] for a more precise

definition) that is governed by the potential

V (χ) =
m2

2
χ

2, (1)

in which m is a constant. Writing χ = χ0(t)+δ χ(t,~x), the background equation of motion on the

metric ds2 = dt2−a2(t)|d~x|2 is

∂
2
t χ0 +3H∂t χ0 +m2

χ0 = 0, (2)

in which as usual H ≡ ȧ/a. In accordance with the linear spectator definition, we assume that for

the wave vector k in the range of isocurvature observable of interest, we have

χ0(tk)�
H(tk)

2π
, (3)

in which tk is the time when the mode k left the horizon (i.e. k = a(tk)H(tk)). The energy density

in χ0 oscillations that remains today is assumed to be part of the total cold dark matter content. We

can then divide the δ χ (non-inflaton) perturbation into the adiabatic and non-adiabatic part in the

Newtonian gauge as δ χk = δ χad
k + δ χnad

k , in which the nonadiabatic classical isocurvature field

fluctuation mode δ χnad
k = hk(t) obeys the equation

ḧk +3Hḣk +(m2 +
k2

a2 )hk = 0 (4)
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at the linearized level during inflation. If the approximate Bessel function solution index√
9/4−m2/H2 is real while the modes are subhorizon, then the square root of the χ-photon

total isocurvature amplitude
√

∆2
s (k) is√

∆2
s (k)≈ ωχ

√
k3/(2π2)2|hk(t)|
|χ0(t)|

(5)

(we have assumed the usual Bunch-Davies normalization of hk → exp[−ik
´

dta−1]/(a
√

2k) in

the limit of k/(aH)→ ∞), which remains frozen upon the horizon exit, where ωχ is the cold dark

matter fraction constituted by χ , assuming all of dark matter is cold. More precisely, the gauge

invariant isocurvature spectrum is (in the notation of [73])√
∆2

s (k) = ωχ2

(
2ν− 1

2 |Γ(ν)|√
π

)(
H(tk0)/(2π)

χ0(tk0)

)(
k
k0

) 3
2−ν+O(εk0)

, (6)

in which

ν =
3
2

√
1− 4

9
m2

H2(tk0)
, (7)

in which H(tk0) is the expansion rate when the k0 mode leaves the horizon. Hence, for the blue

spectral indices that are of interest in this work, we have

nI−1≈ 3−2ν , (8)

in which ν is a function of mass that also controls the time dependence of the background field χ0.

This class of isocurvature perturbations will be uncorrelated with the curvature perturbations.

We will call nI− 1 ∼ O(1) > 0 a large blue spectral index, which corresponds to m/H(tk0) ∼

O(1). For the majority of this paper, we will take k0 = ki, which labels the longest wavelength

mode relevant for CMB observations (around 0.002 Mpc−1), and we will assume 50εki � 4−nI .

For brevity, we will also define Hi ≡ H(tki).

As ωχ ∝ χ2
0 (t) in Eq. (6), and χ0(t) decays exponentially during inflation whenever m/Hi ∼

O(1), ∆2
s can easily become unmeasurably small for large blue spectral index scenarios. This

suppression can be partially offset by (k/k0)
nI−1 enhancements as long as

constraint 1 :
√

∆2
s (kmax)/ωχ < 1 (9)

to maintain perturbativity.3 In addition, Hi cannot in general be made arbitrarily large to make

3 Note that this constraint is required by the class of scenarios being considered being linear. If δ χ/χ0� 1 fails, then
quadratic composite correlators must be accounted for. An estimate of the non-linear spectator scenario is given in
the conclusion section.
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∆2
s large due to model building constraints such as the minimum number of efolds, reheating, and

tensor perturbation limits.

Given these constraints, a natural question arises:

• Given an experimental sensitivity parameterized by Ekmax (which will be defined below),

what is the maximum measurable nI that can be attributed to a constant mass spectator

model in the context of effectively single-field inflation?

This is the main question that will be answered in this paper, and the rest of the constraints (to-

gether with Eq. (9)) associated with maximizing nI in Eq. (6) will be laid out in this section.

The main physics computation underlying this question is the determination of the time evo-

lution of χ0(t) until the time of reheating. The computation thus depends on the expansion rate

H(t) during and after inflation. More specifically, the χ0(t) time dependence is governed by the

time-coarse-grained amplitude of H because Eq. (2) does not contain any derivatives of H(t). To

cover a large class of slow-roll models economically (including both hybrid type and chaotic type),

we consider a coarse-grained model space parameterized by Hi (the expansion rate when the the

longest wavelength left the horizon), εki (the potential slow-roll parameter when the longest mode

left the horizon), and te− tki . More precisely, we parameterize the expansion rate as

H ≈

 Hi(1− εkiHi(t− tki)) tki < t < te
Hi(1−εkiHi(te−tki))

1+ 3
2 (t−te)Hi(1−Hiεki(te−tki))

t > te
(10)

which is continuous at te.4 We will consider εki values that are consistent with the single-field

adiabatic perturbation amplitude

constraint 2: εki(Hi) =
H2

i

8π2M2
p∆2

ζ
(ki)

, (11)

in accordance with the spectator isocurvature paradigm considered in this paper. In the above,

∆2
ζ
(ki) is the adiabatic spectral amplitude at the longest observable wavelengths, which we will

4 Since we will never take the derivative of this function at te in the computation, the discontinuity of the derivative at
t = te does not pose significant inaccuracies for the spectator field. This expansion rate fits the quadratic inflationary
model to better than 10% during most of the time except at the inflationary exit transition where the fit degrades
to 40% accuracy briefly at the transition point out of quasi-dS era. For inflationary models with smaller εki , the fit
is better, since this is a perturbative solution in εki . An alternative to this approach would be a numerical H time
evolution sampling in the space of single field slow-roll models [82–87]. We do not invest in the more numerically
intensive approach since even an order 40% uncertainty in H amounts to an order 1% uncertainty in nI−1 in most
of the parametric regime of interest. More discussion of this will be given later.
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take to be ∆2
ζ
(ki) ≈ 2.4× 10−9.5 As we seek a conservative upper bound on will not impose

the adiabatic scalar spectral index constraint.6 The set of models that this parameterization ex-

cludes are those for which the quantities {εki, Hi, te} do not control H(te), the expansion rate at

the end of inflation. Such excluded models are somewhat atypical among known set of explicit

effectively single-field models as they require new length scales (i.e. beyond Hi and te) to enter

the potential beyond those that are typically present in hybrid and chaotic inflationary scenarios.

Furthermore, new length scales require yet another degree of fine tuning to fit smoothly with the

t ∼ tki time region where Eq. (10) is guaranteed to be valid for effectively single-field slow-roll

models. As we will discuss later, the maximum spectral index constraint does not sensitively de-

pend on εkiHite, which is fortunate since this parameterization is only 40% accurate for quadratic

inflationary models near the time of the end of inflation. Note also that because we will impose

the tensor perturbation phenomenological upper bound on Hi, the εki contribution to the spectral

index will never be too big for phenomenological compatibility.

In addition to the adiabatic constraint Eq. (11), we impose the inflationary condition that the

number of efolds be larger than the minimum necessary for a successful cosmology:

constraint 3: Ne ≡ Hi∆te
[
1−

εki

2
Hi∆te

]
> Nmin ≈ 53+

1
3

ln
TRH

1010GeV
− 2

3
ln

He(Hi, te)
1010GeV

, (12)

in which

He ≡ Hi(1− εkiHi(∆te)), ∆te ≡ te− tki, (13)

and we have taken the largest length scale to be kmin ∼ 2πH0a0. Note that in writing Eq. (12),

we are neglecting contributions of order ln(chHi/(2He)), in which ch is an inflationary model

dependent function of order unity. This leads to a systematic uncertainty with approximately a 2%

error in the isocurvature spectral index bound. Note also Eq. (12) is a non-linear constraint on Hi.

We also impose the constraint that arises from assuming that there is at least one gravitational

strength operator that can reheat the universe. Such assumptions are well motivated within string-

motivated cosmologies (e.g. [88–95]) and the weak gravity conjecture [96] (for some recent devel-

opments, see e.g. [97–99]), as well as generic expectations of interpreting gravity as an effective

5 This is consistent with current Planck measurements [11]. A 10% change in this number only leads to less than a
1% change in our results, while we are aiming for a 10% accuracy in nI−1. Hence, the precision of this number is
not very important.

6 The imposition of the adiabatic spectral index constraint using a full chain of slow-roll parameter evolution sce-
narios will not give a severe constraint on te because of the large functional degree of freedom that exists in the
inflationary slow-roll potential space, and its inclusion will obscure the presentation needlessly.
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theory with the cutoff scale Mp. The minimum reheat temperature for a given He can be computed

assuming a coherent oscillation perturbative reheating. For the inflaton field degree of freedom ϕ

at the end of inflation to oscillate, we must have its mass mϕ satisfy the condition mϕ & He. If the

particle decay is through a dimension nO ≥ 5 operator, then

Γg ∼ S
m2(nO−4)+1

ϕ

M2(nO−4)
p

(14)

is the gravitational decay rate representing the “weakest” decay rate where S is a phase space

suppression factor. For 2-body decay, we expects S ∼ (8π)−1, and we will take S as small as

(0.1)2/(8π) to get a conservative bound. Since

TRH = 0.2
(

200
g∗(TRH)

)1/4√
ΓMp, (15)

in which Γ is the total decay rate, the bound Γ & Γg and mϕ & He lead to the following bound

constraint 4: He . He rh bound(TRH)≡


 TRH

0.2
(

200
g∗(TRH)

)1/4


2

M2(nO−4)−1
p

S


1

2(nO−4)+1

. (16)

As we will see, for the maximal spectral index bounds at the highest reheating temperatures, this

constraint is unimportant. A further constraint from reheating is that {Hi,εki, te} has to be chosen

for a fixed reheating temperature such that the energy at the end of inflation is large enough to give

the total radiation energy:

constraint 5: TRH <

(
10
g∗

)1/4√ 3
π

MPHe. (17)

Here we have implicitly assumed TRH and He are such that coherent oscillations of χ occurs during

the oscillation period of the inflaton. This condition can be written as

3
2

H(tRH)< m, (18)

which can be used to put a lower bound on the spectral index of

constraint 6: nI−1 > 3−

√√√√9−

[
π2

10
g∗(TRH)

(
T 2

RH
MpHi

)2
]
. (19)

Although imposing constraint 6 seems artificial since it is a simplification for calculational and pre-

sentation purposes, the parametric region where this bound is relevant is very similar to the para-

metric region where constraint 5 is relevant (i.e., it excludes the similar {Hi, te} region). Hence,
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there is no qualitative change in computing the maximum nI − 1. Furthermore, we find in the

explicit numerical work that nI−1 bound is lowered through constraint 6 by less than 1% which

is below the systematic uncertainty in the computation. Hence, constraint 6 is a posteriori not

important as long as constraint 5 is imposed.

The absence of observed tensor perturbations yield the following phenomenological bound:

constraint 7: Hi < Mp

√
rb

2
∆2

ζ
(ki) (20)

in which rb is the bound on the tensor-to-scalar ratio (i.e. the ratio r < rb ' 16εki). For the dark

matter fraction to not exceed unity, we impose another phenomenological bound of

constraint 8: ωχ ≤ 1. (21)

We see that constraints 2− 5 and 7 mainly arise from inflationary model-building consistency,

while constraint 8 deals with dark matter phenomenology.

We now turn to constraints on isocurvature perturbations in addition to constraints 1 and 6.

Let us suppose that future experiments can detect isocurvature amplitudes
√

∆2
so(kmax) above

Ekmax

√
∆2

ζ
(ki), in which Ekmax parameterizes the experimental sensitivity. Eq. (6) implies

constraint 9: ωχ2

(
2ν− 1

2 |Γ(ν)|√
π

)(
Hi/(2π)

χ0(tki)

)(
kmax

ki

) 3
2−ν

≥ Ekmax

√
∆2

ζ
(ki), (22)

in which we have assumed 3/2− ν � εki . We note that neglecting εki in the spectral index is

numerically valid to better than 2% level for the upper bound of interest.

To see that constraint 9 controls the bound on the isocurvature nI − 1 that we are seeking, we

note that if χ0 oscillations occur before reheating, we have

ωχ =
m2〈(χ0)

2〉t=tRH

(
a(tRH)
a(teq)

)3

ρR(Teq)(ΩDM/(Ωb +ΩDM))
, (23)

in which ΩDM is the total dark matter fraction of the critical density today, Ωb is the total baryonic

fraction today, and teq is the time of matter-radiation equality. The prediction from the coherent

oscillation perturbative reheating scenario takes the form

ωχ = R
2〈(χ0)

2〉t=tRH

M2
p

[
m

H(tRH)

]2(TRH

Teq

)
, (24)

in which

R≡ Ωb +ΩDM

ΩDM

1
6

g∗(TRH)

g∗(Teq)

g∗S(Teq)

g∗S(TRH)
≈ Ωb +ΩDM

ΩDM

3.94
3.38

1
6
≈ 0.23, (25)
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where g∗(T ) counts the degrees of freedom in the radiation energy density ρR, g∗S(T ) counts

the degrees of freedom in the entropy density, and Teq ≈ 0.8 eV is the matter-radiation equality

temperature.7 As the solution to Eq. (2) is approximately given by

(χ0(t)/χ0(tki))
2 ∼ e−(nI−1)Hi(t−tki) (26)

during inflation, while the next most important factor is(
k
ki

) 3
2−ν

= e
nI−1

2 ln
(

k
ki

)
(27)

with ln[k/ki]� (number of efolds of inflation), we see that the magnitude of the left hand side of

constraint 9 is controlled by ωχ and will be monotonically decreasing as (nI − 1)/2 increases in

the blue spectral parametric region of interest.8 Hence, we conclude that the maximum nI − 1 is

obtained when we saturate the inequality of constraint 9.

It is also necessary to check the current phenomenological bound on the isocurvature perturba-

tions: √
∆2

s (k1)

∆2
ζ
(k1)

< Ek1 , (28)

in which the current phenomenological bound on Ek1 for k1 ≈ 0.05 Mpc−1 is ∼ 0.2 at 95% confi-

dence level [12]. Since ∆2
s (k) ∝ knI−1, when constraint 9 is saturated Eq. (28) becomes

Ekmax

√
∆2

ζ
(ki)
(

k1
kmax

) nI−1
2√

∆2
ζ
(k1)

< Ek1. (29)

To simplify the approximate phenomenological constraint parameterization, we choose k1 = ki:

constraint 10 : Ekmax

(
ki

kmax

) nI−1
2

< Eki. (30)

Finally, we must also make sure we are in the linear spectator regime with our choice of kmax:

constraint 11: χ0(tkmax)>
H(tkmax)

2π
(31)

and χ0(tki) is not trans-Planckian:

constraint 12: χ0(tki)≤Mp. (32)

7 Here we used g∗S(Teq) = 3.94 and g∗(Teq) = 3.38.
8 We see that intuitively when nI − 1 = 0, the background field acts like a time independent constant while when

nI−1→ 3−, the field behaves as a diluting gas of non-relativistic particles.
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This constraint makes the standard assumption that the effective theory has suppressed non-

renormalizable operators (generated from integrating out Planck scale degrees of freedom) whose

coefficients are controlled by powers of χ0/Mp. There is another uncertainty in constraint 9 that

is associated with the fact that the Bessel function mode functions are not obviously accurate

solutions whenever the slow-roll parameter is not negligible. The limitations due to this issue

were spelled out in [73]. A more accurate power-law expansion should have a fiducial value of

k0 = kmax instead of ki. (The price that is paid for doing this is a complicated/numerical expression

for χ0(tkmax) in terms of χ0(tki) ≤ Mp.) This will turn out to be an issue only for values of Hi

that saturate constraint 7 with rb� 10−2 because m/H(t) evolves significantly in that case during

inflation. To address this issue, for such worrisome situations we therefore check the following

constraint numerically

constraint 9’: ωχ

√
k3/(2π2)2|hk(tki)|
|χ0(tki)|

≥ Ekmax

√
∆2

ζ
(ki) (33)

involving a more accurate set of numerical solutions only. Finally, we note that constraint 9 also

assumes that

constraint 13:
m

H(tkmax)
<

3
2
, (34)

since only the non-decaying mode has been kept. We will see that in practice this does not pose a

significant constraint.

In summary, the problem of finding the maximally observable constant mass isocurvature spec-

tral index nI for a given experimental sensitivity Ek is to find the maximum nI that satisfies the

constraints 1-13 given above.

3. ANALYTIC ESTIMATE

In this section, we provide an analytical estimate of the solution to the nI − 1 extremization

problem presented in Sec. 2. We begin in Section 3.1 by giving a crude estimate of the maxi-

mization problem that is obtained by neglecting the slow-roll parameter εki . In Section 3.2, we

then obtain an analytic perspective of the effect of turning on the slow-roll evolution of H and

the non-linearities of the problem. For example, we will see that the Hi may not quite saturate

constraint 7 for the largest spectral index, in contrast with the estimate given in Section 3.1, and

this turns out to be significant for the accuracy of the approximation of the spectral index used in
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constraint 9. Sec. 4 will involve a numerical solution to the constrained maximization problem

without resorting to the analytic arguments presented in this section.

3.1. Without Slow-roll Evolution

As previously discussed, the maximal spectral index results when constraint 9 is saturated. To

evaluate constraint 9, we need to determine 〈(χ0)
2〉t=tRH . In this section, we will estimate this

quantity to obtain a qualitative understanding of the parameters involved.

Let us neglect the slow-roll evolution of H and assume that χ0 coherently oscillates just at the

end of inflation. We can then estimate

〈(χ0)
2〉t=tRH ∼C

[
H(tRH)

H(te)

]2

(35)

C ≡ 1
2

χ
2
0 (tki)exp [−(nI−1)Ne] , (36)

in which Ne ≈ Hi(te− tki) is the number of efolds of inflation. Through standard cosmological

scaling, this yields the dark matter fraction to be

ωχ ∼ R
χ2

0 (tki)exp [−(nI−1)Ne]
[

m
Hi

]2

M2
p

(
TRH

Teq

)
. (37)

Now, noting that m/Hi ∼O(1), and that the greatest nI−1 sensitivity comes from the exponential,

we find (assuming constraint 1 is satisfied)

nI−1 .
55

Ne

(
1− 1

2Ne
ln
[

kmax
ki

])
1+

1
55

ln

10−52
(

2ν− 1
2 |Γ(ν)|√

π

)(
Hi/(2π)
χ0(tki)

)
Ekmax

√
∆2

ζ
(ki)

(
TRH

1010GeV

)
+

1
55

ln

(χ0)
2
tkmin

R

M2
p

 , (38)

in which we note that ν = (3− [nI − 1])/2. Hence, we see that increasing TRH , kmax/ki, and Hi

while decreasing Ne and Ekmax is what we want to maximize nI . Clearly, Ne cannot be decreased

beyond the minimal number of efolds Nmin that is necessary for a successful inflationary scenario

(constraint 3) for a fixed TRH . This will be one of the strongest constraints for bounding nI − 1.

Increasing Hi while keeping Ne (and TRH) fixed requires decreasing te, since Ne ∼ Hi(te− tki).

However, because Nmin also changes if Hi and te changes, it is not possible to keep Ne fixed right
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at the constraint boundary. As Hi keeps increasing, it eventually runs into the tensor perturbation

constraint 7. Also relevant for the case of low reheating temperatures is the fact that for sufficiently

large Hi/TRH , we run into constraint 4. For each TRH , nI−1 can be maximized through the Hi and

te variations subject to the constraints just described.

As TRH is increased towards the highest temperatures consistent with energy conservation,

constraints 5 and 6 become relevant. Even though constraint 6 is a tiny bit stronger of a constraint,

it is very similar in numerical value to constraint 5. This is fortunate because as described before,

constraint 6 is imposed for computational convenience and constraint 5 arises from fundamental

principle of energy conservation. In the {Hi, te} parametric region where constraints 5 and 6

compete, the reheating scenario is somewhat unrealistic in that the reheating time scale is very fast,

taking the system away from the coherent oscillation perturbative reheating regime. However, to

put a conservative upper bound, we account for this extreme parametric region as well. It is in this

sense that the bound that we will obtain for the maximum nI is reheating scenario independent.

We next note that for lower reheating temperatures satisfying constraint 7

He rh bound(TRH)< Mp

√
r
2

∆2
ζ

(39)

(with Hi maximized to maximize nI−1), Hi has to be brought down when TRH is brought down to

satisfy constraint 4:

Hi ∼


 TRH

0.2
(

200
g∗(TRH)

)1/4


2

M2(nO−4)−1
p

S


1

2(nO−4)+1

. (40)

Since we have saturated constraint 9, we see that

ωχ =
Ekmax

√
∆2

ζ
(ki)

2
(

2ν− 1
2 |Γ(ν)|√

π

)(
Hi/(2π)
χ0(tki)

)(
kmax

ki

) 3
2−ν

(41)

increases as Hi is lowered. Hence, depending in particular on the numerical values of Ekmax and

kmax/ki, the required ωχ can exceed unity, violating constraint 8.

Finally, if we choose ki/kmax . 10−5 and Eki/Ekmax & 3×10−3, we can always satisfy constraint

10 if nI−1∼ 1. The current scale invariant isocurvature perturbation bound is given by

∆2
s (100ki)

∆2
ζ
(100ki)

. 3×10−2. (42)
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If this scale invariant spectrum bound is assumed to bound the blue spectrum as well, we have

Eki ∼
√

3×10−2×10−2 ∼ 10−2 (43)

for nI − 1 ∼ 1. Hence, we see that if we choose Ekmax . 1 and ki/kmax . 10−5 , we can satisfy

constraint 10. Therefore, we will focus on this parametric regime and ignore constraint 10.

Let us now find an explicit estimate of the largest value of nI . First, we consider the case of

TRH > TnO (44)

TnO ≡ 2
5
2−

nO
2

(
∆

2
ζ

) nO
2 −

7
4

Mpr−
7
4+

nO
2

√
S

5
√

g∗(TRH)
≈

2×1010r3/4
√

S8πGeV nO = 5

6.8×105r5/4
√

S8πGeV nO = 6,
(45)

for which constraint 7 becomes relevant. Saturating constraints 3 and 7 in the current approxima-

tion scheme, we find

Ne ∼ 52.8+
1
3

ln
TRH

1010GeV
− 2

3
ln

Mp

√
r
2∆2

ζ

1010GeV
. (46)

Although TRH appears here suggesting TRH should be minimized to maximize the nI − 1 bound,

the TRH dependence shown explicitly in Eq. (38) dominates. As constraints 5 and 6 are similar in

magnitude, we use constraint 5 to maximize TRH for simplicity for this simplified analytic estimate.

In other words, here we estimate

max TRH ≈
(

10
g∗

)1/4

Mp

√
3
π

√
r
2

∆2
ζ

(47)

∼ 6.5×1015r1/4 GeV , (48)

in which we have taken g∗ = 200 and ∆2
ζ
(ki) = 2.4×10−9. From Eq. (38), we then find that

nI−1|TRH=maxTRH .
55

Nest
e

(
1− 1

2Nest
e

ln
[

kmax
ki

])
1+

1
55

ln

(χ0)
2
tkmin

R

M2
p


1

55
ln

4.2×103
(

2ν− 5
4 |Γ(ν)|
π2

)(
Mp

χ0(tki)

)
r3/4

Ekmax

(
10
g∗

∆
2
ζ
(ki)

)1/4


 (49)

≈
1.2×

(
1+ 1

54 ln
[

r3/4

Ekmax

])
1−5.5×10−3 lnr−1.1×10−2 ln

[
kmax

ki
10−5

] , (50)
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in which we have taken g∗ and ∆2
ζ
(ki) to have the same numerical values as above. We have also

taken χ0(tki) = Mp to satisfy constraint 12, approximated nI − 1 ≈ 1 on the right hand side, and

we used

Nest
e = 52.8+

1
3

ln

(
10
g∗

)1/4
Mp

√
3
π

√
r
2∆2

ζ
(ki)

1010GeV
− 2

3
ln

Mp

√
r
2∆2

ζ
(ki)

1010GeV
≈ 51.2

(
1− lnr

205

)
. (51)

on the phenomenological parameterizations used above. Hence, if a blue isocurvature spectral in-

dex nI & 3 is measured, this certainly cannot arise from a linear spectator with a time-independent

mass. We will sharpen this estimate with a numerical analysis in Sec. 4.

We next consider the case of

TnO . TRH .

(
10
g∗

)1/4

Mp

√
3
π

√
r
2

∆2
ζ
(ki)≈ 6.5×1015r1/4GeV (52)

but still with Hi saturating constraint 7:

nI−1 . 1.06
1−8×10−3 lnr+8×10−3 ln TRH

1011GeV
−1.2×10−2 ln

[
kmax

ki
10−5

]×(
1+ 1

44 ln
[ √

r
Ekmax

]
+ 1

44 ln TRH
1011GeV

) (53)

where we have used

Nest
e ≈ 47.5− 1

3
lnr+

1
3

ln
TRH

1011GeV
. (54)

We can continue to lower the temperature towards TnO unless constraint 8 is saturated. Constraint

8 is saturated before reaching TnO if nI−1 is smaller than the solution nc
I (T > TnO )−1 to

2
nc
I−1
2 −1χ0(tki)

√
∆2

ζ
(ki)Ekmax

(
kmax
kmin

)− (nc
I−1)
2

π3/2

κ
√

rΓ

(
3−(nc

I−1)
2

) = 1, (55)

which for {Ekmax = 1,kmax/kmin = 105,χ0(tki) = Mp,rb = 10−3} is approximately 0.7.

Let us now consider the lower reheating temperature TRH < TnO (and nI − 1 > nc
I − 1), which

means that we should set

Hi ≈ He rh bound(TRH) (56)

in Eq. (38) instead of using constraint 7. We find

nI−1 .


1.06

(
1−0.023ln[Ekmax]+0.038ln TRH

1011GeV
−7.6×10−3 ln[S8π]

)
1+5.4×10−3 ln[S8π]−2.7×10−3 ln TRH

1011GeV
−1.2×10−2 ln

[
kmax

ki
10−5

] nO = 5

1.2
(

1−0.021ln[Ekmax]+0.030ln TRH
1011GeV

−4.2×10−3 ln[S8π]
)

1+3.5×10−3 ln[S8π]+1.7×10−3 ln TRH
1011GeV

−1.3×10−2 ln
[

kmax
ki

10−5
] nO = 6

(57)
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At lower TRH , we have ωχ & 1 at

TDM2 =


4.6×107 GeV E3/2

kmax

√
8πS(

kmax/kmin
105

)3/4

(
1− (nI−2)

[
8.5+ 3

4 ln
(

kmax/kmin
105

)])
nO = 5

28 GeV E5/2
kmax

√
8πS(

kmax/kmin
105

)5/4

(
1− (nI−2)

[
14+ 5

4 ln
(

kmax/kmin
105

)])
nO = 6.

(58)

We have taken the minimum TRH in this paper to be at 100 GeV to simplify the presentation. This

means that ωχ . 1 constraint is more relevant for nO = 5 case than the nO = 6 case.

We should also estimate the effect of constraint 11 on kmax:

kmax

ki
.

(
χ0(tki)

Hi/2π

) 2
nI−1

, (59)

which becomes
kmax

ki
. 108 (60)

with χ0(tki) = Mp, nI−1 = 1.3, and Hi set at rb = 0.1.

Finally, constraint 13 can be shown to be generically satisfied in the nI − 1 and kmax/kmin
region of interest. This will be discussed more in the numerical section below.

3.2. Perturbative in Slow-roll Evolution

In this subsection, we examine the effect of turning on εki . We will see its most important

feature is to have nI maximized for |Hi−He|/He� 1, making the Bessel spectral formula accurate.

Instead of completely neglecting εki during inflation in computing 〈(χ0)
2〉t=tRH , we can use

linear perturbation theory in εki to solve Eq. (2) (for more details, see appendix A ):

〈(χ0)
2〉t≥tm,te ∼

A

2
χ

2
0 (tki)exp [−(3−2νki)Hi(te− tki)]

[
H(t)
H(te)

]2

(61)

A ≡

(
1−

6(3−2νki)F1εkiHiνki(te− tki)

16ν3
ki
−3(3−2νki)εki

)2 (
1+F2

2
)

(62)

F1 ≡ Hiνki(te− tki)−1 (63)

F2 ≡
32ν4

ki
+6εkiνki {3−2νki [1+Hi(te− tki)(3+νki[2+(3−2νki)Hi(te− tki)])]}+F3√

9−4ν2
ki

(
16ν3

ki
−3εki(3−2νki)(1+2F1Hiνki(te− tki)

) (64)

F3 ≡ 9(3−2νki)ε
2
ki

Hi(te− tki)[1+2F1Hiνki(te− tki)], (65)
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in which tm is the time after χ field starts to oscillate and te is the end of inflation:

m =
3
2

H(tm). (66)

This allows us to rewrite the analog of Eq. (38) as

nI−1 .
55

N′min

1+
1

55
ln
[

10−5

ωχ min(nI−1)

(
TRH

1010GeV

)]
+

1
55

ln

(χ0)
2
tkmin

r2
m(nI−1)R

M2
p

 ,

(67)

in which

N′min ≈
1−
√

1−2εkiNmin

εki

(68)

ωχ min(nI−1)≡max

Ekmax

√
∆2

ζ
(kmin),

Ekmax

√
∆2

ζ
(kmin)√

∆2
s (kmax)/ωχ

 (69)

rm(nI−1)≡ m
Hi(1− εkiN

′
min)

√
A , (70)

Nmin is given by Eq. (12) A is given by Eq. (62),
√

∆2
s (kmax)/ωχ is given by Eq. (6), and

m
Hi
≈ 1

2

√
(nI−1)(6− [nI−1]). (71)

Comparing with Eq. (38), we see a complicated function rm(nI−1) that depends on nI−1. Most

of this complicated function accounts for the εki dependence of the time evolution of χ0(t).

When accounting for εki and constraint 2, we note that a given pair He and Ne can originate

from two different values Hi:

Hi =

√
∆2

ζ
Mp
√

2π

√
π±

√
π2− H2

e Ne
M2

p∆2
ζ

√
Ne

. (72)

With H2
e Ne� π2M2

p∆2
ζ

, the hybrid inflation case corresponds to the minus sign branch while the

quadratic inflation case corresponds to the positive sign branch. One can also easily show that

for the parametric regime of interest, He never becomes close to zero even though there may be a

worry from the form of Eq. (10) that we may be unreasonably extrapolating the linear expansion

of the slow-roll that is valid near tki . On the other hand, the parametric regions where the hybrid

inflation and quadratic inflation branches merge are sensitive to the branchpoint singularity there.

The most important feature of turning on εki is that since now (with constraint 2 imposed)

Ne =
4π2∆2

ζ
M2

p

H2
i

(
H2

i
H2

e
−1
)
, (73)
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the minimization of Ne that is important for the extremization of nI−1 (e.g. see Eq. (38) which in

turn is related to constraint 9) gives a numerical pressure in the non-linear extremization problem

to make Hi close to He. This favors a smaller εki (in turn favoring small Hi) which competes with

the pressure to extremize He (favoring a large Hi) that arises from constraint 3. Hence, depending

on the size of r, Hi may not quite saturate constraint 7 as was done in the derivation of Eq. (50).

This means that with εki turned on, the sensitivity to the tensor-to-scalar ratio r entering constraint

7 is reduced for values of r that are “large”. As we will see in Sec. 4, this makes the approximate

spectral index Eq. (8) more accurate for rb = 0.1.

A figure of validity for the εki perturbations can be written as

Cpert ≡ εkiN
2
e , (74)

since the background field evolution equation during inflation

∂
2
t χ0 +3Hi(1− εkiHi(t− tki))∂t χ0 +m2

χ0 = 0 (75)

has a secular term εkHi(t − tki), and this term is integrated over a time period of te− tki ∝ Ne.

Since Ne ∼ 50, high Hi models where εi approaches the tensor-to-scalar ratio r bound have Cpert

approaching unity, and hence they cannot be addressed reliably using this perturbative approach.

In the next section, we will turn to a numerical analysis of this extremization problem, which will

allow us to get a handle on situations such as these when perturbative methods fail.

4. NUMERICAL RESULTS

In this section, we perform a numerical analysis to find the largest nI consistent with constraints

1 through 13. The results of this analysis will show that even with an extremely optimistic experi-

mental sensitivity of 10−6∆2
ζ

on length scales as small as 10 kpc scales, the theoretical prediction

from a constant mass isocurvature field scenario is that experiments will not measure spectral

indices nI greater than 2.4.9

We begin with Fig. 1, which shows the case in which {Ekmax = 1, kmax/kmin = 105; rb =

10−1,10−3; nO = 5,6; S = (8π)−1,10−2(8π)−1}. The results show that the maximum temper-

ature estimated in Eq. (48) agrees with the right end of each plot to better than 30% and the

9 The current experimental sensitivity is much less than this as can be seen for example in [72].
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Figure 1: The maximum measurable spectral index nI − 1 assuming {Ekmax = 1, kmax/kmin = 105; rb =

10−1,10−3; nO = 5,6; S = (8π)−1,10−2(8π)−1} is plotted as a function of TRH . (left) The bound on the

tensor to scalar ratio rb has been taken to be 10−1. The maximum spectral index with the amplitude pa-

rameterized by {Ekmax = 1, kmax/kmin = 105} is around nI = 2.11. For T . 109 GeV, the lower solid curve

corresponds to the reheating non-nonrenormalizable operator dimension of nO = 5 while the upper solid

curve corresponds to the case of the non-nonrenormalizable decay operator dimension of nO = 6. For

T & 109 GeV, the two curves merge. The dashed curve corresponds to weakening the coefficient of the

non-nonrenormalizable operator by a factor of 10. The vertical curve on the left portion of the boundary

curves occur because the expansion rate there is too small in that parametric regime to produce measurable

isocurvature perturbations (i.e. constraint 8). The dotted curve corresponds to evaluation of fiducial spec-

tral index at kmax instead of kmin. The correction is small (except at the highest TRH where the dip occurs)

because constraint 7 is not saturated for rb = 0.1. (right) Similar to the left plot except with a probably

possible future bound of rb = 10−3.

maximum nI− 1 agrees with Eq. (50) to better than 5%. For the rb = 0.1 plot (the left plot), the

reason why there is a drop of nI − 1 near TRH ∼ 5× 1015 GeV is due to constraint 5 (reheating

energy conservation at time te) pushing up Hi as TRH is raised.10 This upward push of Hi is al-

lowed because from the discussion around Eq. (73), constraint 7 may not be saturated depending

on the size of r. This non-saturation is indeed the case for most of the rb = 0.1 curve (which we

have also checked directly numerically) and makes the approximate spectral index Eq. (8) more

accurate. We see how the dotted curve matches the solid curve except at the highest tempera-

10 This increases εki , which in turn increases the split between Hi and He. This then increases Ne, as can be seen in
Eq. (73), under the assumption that the increase in the split is the most important effect.
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ture where the dip occurs, as we will discuss more below.11 For the rb = 10−3 case, constraint

7 does saturate at the highest allowed reheating temperature, which means that no upward push

of Hi ever arises from constraint 5 for these highest temperatures. The maximum nI − 1 for this

{Ekmax = 1, kmax/kmin = 105} experimental scenario is about 1.1. Any measurements of CDM-

photon blue isocurvature with a spectral index larger than nI = 2.1 with an amplitude larger than

equal to {Ekmax = 1, kmax/kmin = 105} imply the responsible dynamical degree of freedom during

inflation cannot be a constant mass linear spectator field.

Let us now consider some of the other features of these results. For all but one of the curves

shown in Fig. 1, when TRH from above to below TnO while nI − 1 > nc
I − 1 (see Eq. (55) for the

definition), there is a break in the bound curve as expected from Eq. (56) encoding the minimal

reheating constraint 4. The break in the curve does not exist for the case of {rb = 10−3, nO = 6}

because in that case nI−1 reaches nc
I (T > TnO=6)−1, in which

TnO=6(rb = 10−3,S = (8π)−1)≈ 120GeV, (76)

which means that the dark matter constraint 8 is saturated without saturating the reheating con-

straint 4. All of the curves terminate at a certain lower endpoint of reheating temperature because

of the dark matter constraint 8, which simply states that the expansion rate in that parameter regime

is too small to produce measurable isocurvature perturbations. We note that there is no vertical

line plotted for the right hand side of the curves in Fig. 1 (unlike the left vertical line) because we

did not want to obscure the drop in nI−1 for high TRH for rb = 0.1.

Fig. 2 shows the case with {Ekmax = 10−3, kmax/kmin = 105; rb = 10−1,10−3; nO = 5,6; S =

(8π)−1,10−2(8π)−1}. Decreasing Ekmax to 10−3 means increasing the experimental sensitivity

(i.e., ∆2
s/∆2

ζ
is resolved to 10−6 instead of order unity – an extremely optimistic view of the

foreseeable future that is chosen to illustrate the insensitivity of the bound to experimental pre-

cision). This changes the measurable maximal spectral index logarithmically to about nI = 2.25

(from nI = 2.1 when Ekmax = 1). Hence, although increasing experimental sensitivity changes the

measurable blue spectral index, the logarithmic nature of the increase makes these numbers exper-

imentally meaningful for at least a many decades time scale. As before, the maximum temperature

11 The bottom of the dip is where the mismatch of the accurate dotted curve and the approximate solid curve is the
largest. This does not affect our main result since it does not correspond to globally the largest spectral index.
Furthermore, this reheating sliver is where the reheating scenario is least realistic and has been considered only to
give a conservative bound on nI .



21

Figure 2: The maximum measurable spectral index nI − 1 as a function of TRH ∈ [100,5× 1015] GeV

assuming an experimental sensitivity of Ekmax = 10−3 corresponding to resolving ∆2
s/∆2

ζ
to O(10−4%) at

about 1 Mpc length scale. The rest of the parameters are set at {kmax/kmin = 105; rb = 10−1,10−3; nO =

5,6; S = (8π)−1,10−2(8π)−1}. (left) The bound on the tensor-to-scalar ratio r has been taken to be 10−1.

The lower solid curve for TRH . 109 GeV corresponds to the reheating non-nonrenormalizable operator

dimension of nO = 5 just as in Fig. 1. The dotted curve corresponds to evaluation of fiducial spectral index

at kmax instead of kmin. As in Fig. 1, the correction is small because constraint 7 is not saturated even

for rb = 0.1. As expected from increasing the experimental resolution by 103, the maximum measurable

spectral index has only gone up mildly to nI = 2.25 (from nI = 2.12). Note that unlike in Fig. 1, the bounds

for nO = 6 end at TRH = 102 GeV because we simply truncated the plot there (and not because ωχ > 1

there). The dashed curve corresponds to weakening the coefficient of the non-nonrenormalizable operator

by a factor of 10 just as in Fig. 1. (right) Similar to the left plot except that rb has been set to 10−3.

estimated in Eq. (48) agrees with the right end of the plot to better than 30% and the maximum

nI − 1 agrees with Eq. (50) to better than 10%. For the rb = 0.1 plot (left plot), the reason why

there is a drop of nI − 1 near TRH ∼ 5× 1015 GeV is the same reason as in the explanation for

Fig. 1. Note that unlike in Fig. 1, the bounds for nO = 6 end at TRH = 102 GeV because we simply

truncated the plot there (and not because ωχ > 1 there).

Finally, to be extremely optimistic regarding short distance scale probes of cosmology, in Fig. 3

we consider the nI−1 bound with an experimental probe length scale of kmax/kmin = 107 (i.e. kmax

is at the scale of 10 kpc) with the other parameters set at {Ekmax = 10−3, rb = 10−1,10−3; nO =

5,6; S = (8π)−1,10−2(8π)−1}. The maximum spectral index increases as expected in a mild

manner to nI = 2.35 (from nI = 2.25 with kmax/kmin = 105). Note that this kmax/kmin lies near the

edge of constraint 11 in accordance with Eq. (60).
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Figure 3: Similar to the left Fig. 2 except with kmax/kmin = 107 (i.e. kmax is at the scale of 10 kpc). The

bound on the maximum spectral index nI is only logarithmically sensitive to kmax/kmin as it is now about

2.35 instead of 2.25. The features of the plots are explained as in previous figures. As before, the dotted

curve corresponds to the evaluation of the spectral index with the fiducial k value of kmax instead of kmin.

Figure 4: m/H(tkmax) is plotted as a function of nI−1 defined according to Eq. (8) for the severest parametric

choices of rb = 0.1 and kmax/kmin = 107. This shows constraint 13 is satisfied for nI−1 . 1.6.

Also, constraint 13 can be shown to be generically satisfied in the nI−1 and kmax/kmin region

of our interest. For example, Fig. 4 shows m/H(tkmax) as a function of nI−1 defined according to

Eq. (8) for the parametric choices of rb = 0.1 and kmax/kmin = 107 (which is the most constrained

among the scenarios we are interested in). We see that since we have considered only nI−1 . 1.6,

constraint 13 will be satisfied.

Note that for the numerical computations discussed thus far, only the background fields are
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evolved fully numerically to determine ωχ while analytic approximations relying on H(t) being

constant have been used to compute ∆2
s/ω2

χ in accordance with [73]. For r� 0.1 we have εki� 1,

and H(t) evolution does not present much of a correction. However, for rb = 0.1 in the plots

above, there may be a worry that the numerical computation of ∆2
s/ω2

χ would deviate significantly

from the approximations. One symptom of the analytic mode functions destroying the accuracy

of ∆2
s/ω2

χ can be tested by comparing the answers for two different fiducial values of k0.

The parametric spectral indices nI−1 shown in Figs. 1 through 3 (except for the dotted curves)

correspond to the (k/k0)
nI−1 approximate parameterization with k0 chosen at k0 = ki which is

the longest observable wave vector. For Hi corresponding to saturating constraint 7 with r .

10−2, this is a good parameterization: i.e., in Figs. 1 through 3, plots with rb = 10−3 can be

taken to be accurate to better than 1%. However, if Hi saturates the limit of constraint 7 with

r ≈ 10−1, H(t) would evolve nontrivially during inflation. In that case, there is a worry as to

whether the (k/ki)
nI−1 parameterization is inaccurate for the rb = 0.1 cases. For example, if we

saturate constraint 7 with rb = 10−1, a more accurate approximation of the observed spectrum near

kmax should have the fiducial value k0 = kmax (at the expense of computing χ0(tk0) numerically).

Fortunately, we find numerically that constraint 7 is never saturated even with rb = 0.1 because of

the effects discussed in Eq. (73). The accuracy of the analytic spectrum calculation can also be

seen in the dotted curves of Figs. 1 through 3 which were computed numerically.12 By explicit

computation, we have checked that nI − 1 computed with mode function evolution evolved fully

numerically matches the nI−1 computed through the Bessel function with k0 shifted to kmax (and

χ0(tkmax) computed numerically) to better than a few percent.

Hence, we conclude from Fig. 4 that any measurement of nI > 2.4 for CDM-photon isocurva-

ture perturbations in the foreseeable future indicates the responsible dynamical degree of freedom

during inflation cannot be a constant mass linear spectator field.

5. MODELS: WHAT HAPPENS WITH A DYNAMICAL MASS?

In [73], it was shown that spectral indices as large as nI = 3.8 (but not nI = 4) can be achieved

in the context of a dynamical VEV breaking the Peccei-Quinn (PQ) symmetry. This is of interest

because nI = 3 is considered to be observable for example by the Square Kilometer Array [72].

12 The agreement between the dotted curve and the solid curve exists except at the highest TRH dipping sliver which
does not correspond to the globally maximum nI , as we discussed in footnote 11.
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Here, we discuss why a time-dependent mass during inflation can evade the bound discussed

around Fig. 3. Suppose the mass of the field χ responsible for the linear spectator isocurvature

makes a transition at time tc from value m to zero. According to corollary 2 of [73], the modes

k < kc that leave the horizon earlier than the time of the mass transition still have the form of

Eq. (6), where if the slow-roll evolution is neglected, the critical wave vector is given by

kc ∼ kmin exp[Nc], (77)

in which

Nc ≡ Hi(tc− tkmin) (78)

is the number of efolds from the beginning of inflation. For kc ∼ 107 kmin, the number of efolds

for which this occurs must be at least Nc ∼ 16 efolds. All of these modes are governed by massive

scalar field quantum fluctuations giving a blue spectrum. In addition, the background field χ0(t)

dilutes as

χ0(t) ∝ exp[−nI−1
2

Nc], (79)

which dilutes the total isocurvature by an important factor:

∆
2
s ∝ exp[−2(nI−1)Nc, ] (80)

which is analogous to Eq. (35). The field theory up to this point behaves just as in the constant

mass scenarios we have been discussing.

However, after the mass transition to masslessness completes, the background field χ0(t) be-

haves as a constant massless field until the end of inflation. Hence, compared to the constant mass

case, the isocurvature perturbations receive a boost of

∆2
s (time dependent mass)

∆2
s (constant mass)

∝ exp[2(nI−1)(Ne−Nc)] (81)

in which Ne is the total number of efolds as usual. Since Ne ∼ 50, the enhancement for Nc ∼ 16

scenario is enormous. This is the intuitive explanation with which time-dependent mass situations

can evade the blue spectral index bounds for the time-independent mass situation that has been the

main focus of this paper. One observational signature of the mass transition [74] is the existence

of a flat isocurvature spectrum (for k > kc) in addition to the blue spectrum (k < kc). On the other

hand, if there is a limited k-range accessible experimentally, it may not be easy to observe the

break in the spectrum.
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A natural question is then what class of models naturally produce these time dependent masses.

Note that the crucial ingredient in being able to generate the large enhancement Eq. (81) is the

transition from m/Hi ∼ O(1) to m/Hi � 1. If Hi is the natural minimum energy scale for the

masses of the scalar dynamical degrees of freedom (as is the case for example in supergravity

models), then a symmetry needs to naturally lead to m/Hi� 1. Hence, one crucial ingredient for

natural isocurvature models with nI larger than the bound presented for the constant mass case is a

symmetry X protecting the χ mass from Hubble scale corrections to its mass. A second ingredient

is a temporary (but lasting many efolds) mass generation mechanism. This second ingredient is

necessary to generate the blue spectrum.

In the supersymmetric axion scenario of [74], the symmetry X is the Peccei-Quinn (PQ) sym-

metry non-linearly realized as a shift symmetry of the axion field. The PQ symmetry breaking

fields Φ± are displaced from the minimum of the effective potential during inflation (in a way in

which PQ symmetry is always broken) such that the coset symmetry X is actually broken by ∂tΦ±

through the kinetic structure of the axion: i.e., the Nambu-Goldstone theorem does not apply be-

cause the system is not in vacuum. As Φ± fields roll toward the vacuum (where the PQ breaking

persists), the axions behave as a massive field with mass of the order of Hi due to the supergravity

structure of the Kähler potential. After Φ± reaches the vacuum and the kinetic energy dilutes to

the point of ∂tΦ± � HiΦ±, X is restored axions become massless, up to the small explicit PQ

breaking contribution.

Although it is possible to tune parameters and initial conditions to obtain almost flat potentials,

the Nambu-Goldstone models with out-of-equilibrium symmetry-breaking time-dependent VEVs

seem to be the simplest natural model. From this perspective, any experiment measuring a CDM-

photon isocurvature perturbations with nI & 2.4 may be finding evidence for a dynamical degree

of freedom during inflation that has a coset shift symmetry.

6. CONCLUSIONS

We have considered a constant mass spectator linear isocurvature degree of freedom during

inflation and answered the question of what is the largest measurable blue spectral index that can

be produced via such a mechanism. We have shown that the largest measurable spectral index is

less than 2.4 in the foreseeable future with only logarithmic sensitivity to experimental precision

characterized by {Ekmax, kmax/kmin} and experimental constraints such as the tensor-to-scalar ratio
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rb. This means that any future measurements of the isocurvature spectral index above this bound

would give weight to the hypothesis that there is a spectator field with a time-dependent mass

during inflation.

We have also considered how for reheating temperatures much smaller than the maximum

allowed by tensor perturbation bound, the maximum observable spectral index decreases. This

would be relevant if there were specific inflationary models under consideration with a fixed re-

heating scenario or model-dependent phenomenological bounds on the reheating temperature such

as those that arise from cosmologically dangerous gravitinos. For part of this smaller reheating

temperature dependent bound, we have used the assumption that there is at least a gravitationally

suppressed non-nonrenormalizable operator of dimension 5 or 6 that can contribute to reheating.

This assumption sets a bound on the maximum separation between the reheating temperature and

the expansion rate at the end of inflation in certain cases.

One has to keep in mind that the maximum derived in this paper has some obvious caveats.

First, since we have only considered linear spectator scenarios, we have not examined what the

maximum blue spectral index would be if we allowed δ χ to be of order χ0 . Since we have imposed

χ0 > H/(2π) and δ χ is at most of order H/(2π), one might think that the current estimate will

stand even after including the δ χ & χ0 scenarios. On the other hand, the nI − 1 of quadratic

isocurvature scenarios (i.e. scenarios in which the isocurvature perturbations are proportional to

∆2
s ∝ 〈δ χ2δ χ2〉) is twice that of the linear spectator scenario [100–102]. However, a preliminary

investigation shows that this factor of 2 in the power only gives an enhancement of the form

max[nI−1] ∝
1− 1

2Ne
ln[kmax/kmin]

1− 1
Ne

ln[kmax/kmin]
(82)

multiplying a difficult to compute suppression (originating from the quantum nature of the parti-

cle production in contrast with the classical VEV displacements of the linear spectator scenario),

resulting in a similar maximum spectral bound at best. However, given that the dependence of the

relic density and the spectral amplitude with nI− 1 is somewhat complicated due to their depen-

dence on the long time mode evolution [100], it would be worthwhile confirming the quadratic

isocurvature estimate more carefully.

Another caveat is that we have assumed a “standard” slow-roll, effectively single-field infla-

tionary scenario with only one reheating period. Most non-minimal extensions will dilute the

VEV energy density leading to a smaller upper bound. In that sense, most of the non-minimal

extensions are not likely to change this general picture. Even in the situation in which χ0 makes a
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phase transition after inflation (e.g. χ0 goes from v1 to v2) such that ωχ (now proportional to v2
2)

is generated after inflation (thereby evading the inflationary dilution), since it is really δ χ that is

diluting during inflation (even though we have been rewriting it as ωχδ χ/|χ0−v1| being constant

during inflation), this does not help us to evade the bound.

Finally, we have assumed a sampling of inflationary space characterized by {εi,Hi, te}, while

there are infinitely more ways to tune the inflationary models. On the other hand, even the addition

of εi (versus a non-evolving scenario of H(t) during inflation) produced only about a 10% change

in nI−1. Hence, we believe this limitation of sampling is not severely restrictive.

It is indeed intriguing that future cosmological inhomogeneity measurements of nI & 2.4 may

uncover the following new features of a dark matter component: (i) dark matter had to have a

time dependence in its mass in its evolution history in the context of an inflationary universe, and

(ii) dark matter mass was of order of the expansion rate during inflation. From our current model

building tool-kit, arguably the most appealing picture that would emerge is that there is a dark

matter field possessing a fundamental shift symmetry just like the axion.
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Appendix A: Background Solution

For this section, we set the time at which the observable longest wavelength mode leaves the

horizon to be time tki = 0. We can model a very large class of slow-roll inflationary models

with the Hubble expansion rate function parameterized (with three constants {εki,Hi, te}, where te

approximately replaces ηV in the usual slow-roll parameterization scheme) as

H ≈

 Hi(1− εkiHit) 0 < t < te
Hi(1−εkiHite)

1+ 3
2 (t−te)Hi(1−Hiεki te)

te < t < tRH

 , (A1)

in which ∆t ≡ t− ti and tRH is the time of reheating. This ansatz accurately (at the order of 10%

level) both quadratic inflation and hybrid inflation. Note also that as long as the number of efolds
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is fewer than

Nmax ≡
1

2εki

≈
4π2M2

p∆2
ζ
(ki)

H2
i

, (A2)

the quantity H will never go negative.

After the end of inflation, the solution of the field evolution equation

χ̈0(t)+3H χ̇0(t)+m2
χ χ0(t) = 0 (A3)

takes the simple form

χ0(t) =
e1 cos(mχ∆t)+ e2 sin(m∆t)

1− 3
2Hi∆t(εkiHite−1)

(A4)

where ∆t = t− te.

We could in principle solve the equation of motion (Eq. (A3)) exactly in this class of models in

terms of hypergeometric functions and Hermite polynomials

χ0 =C1 H m2

3εki
H2

i

(
−

√
3

2εki

+

√
3
2

εkiHit

)
+C2 1F1

 −m2

6εkiH
2
i

;
1
2

;

(√
3

2εki

−
√

3
2

εkiHit

)2
 . (A5)

However, because εki is small, these special functions must be evaluated in exponentially large and

small numerical regions and added together. Such a route seems numerically unstable, in addition

to being opaque. In practice, it is easier to handle numerically the solution to the equation of

motion subject to the boundary condition

χ̇0(0) =−
(

3
2
−νi

)
Hiχ0(0), (A6)

which embodies the assumptions that the spectral index is of order unity and the field is rolling in

a slow-roll fashion, initially.

We can match the solution before and after the end of inflation to write the solution after the

end of inflation as

χ0(t) = K1

[
H(t)
H(te)

]
cos(m∆t +K2) (A7)

K1 ≡
√

A χ0(0)exp
[
−1

2
(3−2νki)Hite

]
, (A8)

in which K2 is a phase. The amplitude is given by

√
A =

χ0(te)e
1
2 (3−2νi)Hite

χ0(0)

√√√√1+

[
1− εkiHite + 2

3 χ̇0(te)/(Hiχ0(te))
]2

1− 4
9ν2

i
, (A9)
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in which we note that χ0(te)exp
[1

2(3−2νi)Hite
]

is the initial value χ0(0) for εki = 0. Hence, it

is more convenient numerically to solve for χ0(t)exp
[1

2(3−2νi)Hit
]

than χ0(t). The exponential

suppression of χ0(te)exp
[1

2(3−2νi)Hite
]
/χ0(0) still occurs when 9−4m2/H2

i /(1−εkiHite)2 < 0.

In this notation, the dark matter fraction ωχ is

ωχ =
K2

1
M2

p

m2

H2(te)
TRH

Teq
R. (A10)

where R is defined in Eq. (25).
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