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ABSTRACT

We study a class of non-local, action-based, and purely gravitational mod-
els. These models seek to describe a cosmology in which inflation is driven
by a large, bare cosmological constant that is screened by the self-gravitation
between the soft gravitons that inflation rips from the vacuum. Inflation ends
with the universe poised on the verge of gravitational collapse, in an oscillat-
ing phase of expansion and contraction that should lead to rapid reheating
when matter is included. After the attainment of a hot, dense universe the
nonlocal screening terms become constant as the universe evolves through a
conventional phase of radiation domination. The onset of matter domination
triggers a much smaller anti-screening effect that could explain the current
phase of acceleration.
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1 Introduction

On scales larger than about 100Mpc the universe is well described by the
geometry:

ds2 = −dt2 + a2(t) dx · dx . (1)

The time variation of the scale factor a(t) gives the instantaneous values of the
Hubble parameter H(t) and the deceleration parameter q(t) or, equivalently,
the first slow-roll parameter ǫ:

H(t) ≡ ȧ(t)

a(t)
=

d

dt
ln a(t) , (2)

q(t) ≡ − ȧ(t) ä(t)

ȧ2(t)
= −1− Ḣ(t)

H2(t)
≡ −1 + ǫ(t) . (3)

Their current values are: H0 ≃ (67.8±0.9)km/secMpc and ǫ0 ≃ 0.462±0.017
[1]. 1

There is overwhelming evidence that the history of the universe included
a period of very early (t ∼ 10−33sec) accelerated expansion known as infla-
tion and defined by H > 0 with ǫ < 1 [3, 4]. During the inflationary era
infrared gravitons are produced out of the vacuum because of the accelerated
expansion of spacetime [5]. The interaction stress among the gravitons pro-
duced – an inherently non-local effect – can lead to a non-trivial quantum
gravitational back-reaction on inflation [6]. General counting rules give the
following leading infrared behaviour for the Hubble parameter H(t) at late
times in de Sitter spacetime [7]:

H(t) = Hin

{

1−GΛ
(

c2GΛ ln[a(t)] + c3(GΛ)2 ln2[a(t)] + . . .
)}

. (4)

It becomes evident from (4) that perturbation theory breaks down when
ln[a(t)] ∼ (GΛ)−1 and that evolving beyond this point requires non-perturbative
techniques.

In the absence of non-perturbative results, it is perhaps desirable to pro-
pose phenomenological models that can provide calculable evolution beyond
perturbation theory [8]. This can be accomplished by modifying the field
equations:

Gµν +∆Gµν [g] = −Λ gµν , (5)

1In quoting these numbers we have used fits from cosmic ray microwave data which
effectively exploits the ΛCDM model for z ∼ 1000. Larger and significantly different values
for H0 arise from Hubble plots which exploit ΛCDM for z ∼ 1 [2].
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where ∆Gµν [g] encodes the full effect of the quantum-induced gravitational
back-reaction. 2

Any such model should:
• Be consistent with the perturbative expectation (4).
• Reflect the non-local nature of the back-reaction effect in a causal way.
• Respect stress-energy conservation.
• Not disturb the basic ability of the gravitational equations to evolve from
the initial spacelike surface with knowledge of the metric and its first time
derivative only.
The hope is that the actual construction of the model will contain the most
cosmologically significant part of the full effective quantum gravitational
equations.

Previously [9, 10] we proposed a phenomenological model based on an
effective conserved stress-energy tensor Tµν [g]:

∆Gµν [g] = −8πGTµν [g] , (6)

which takes the perfect fluid form:

Tµν [g] =
(

ρ[g] + p[g]
)

uµ[g] uν[g] + p[g] gµν , gµνuµ[g] uν[g] = −1 , (7)

where the ansatz for the pressure p[g] is:

p[g] = Λ2 f(Y ) , Y ≡ −GΛ
1
R . (8)

It can be shown [9] that all models of this generic type where the function
f(Y ) grows monotonically and without bound:
• Experience a long phase of inflation.
• The end of inflation leads to a short phase of oscillations.
• The participation of all super-horizon modes to the oscillations furnishes
a natural and very fast reheating mechanism for the cosmos using only the
universal gravitational coupling to matter.
• If matter couplings that allow energy dissipation are added it is plausible

2Hellenic indices take on spacetime values while Latin indices take on space values.
Our metric tensor gµν has spacelike signature and our curvature tensor equals: Rα

βµν ≡
Γα

νβ,µ + Γα
µρ Γρ

νβ − (µ ↔ ν). The initial Hubble constant is 3H2

in
≡ Λ. We restrict

our analysis to scales M ≡ ( Λ/8πG )
1

4 below the Planck mass MPl ≡ G−

1

2 so that the
dimensionless coupling constant GΛ of the theory is small.

2



that the epoch of oscillations ends in a radiation domination epoch.
However, these models have negative attributes as well:
• There is a “sign problem” because their post-inflationary evolution even-
tually makes the pressure positive and thus in conflict with the observed late
time acceleration [11, 12].
• There is a “magnitude problem” because the magnitude of the total pres-
sure produced by the source is unacceptably large relative to the current
pressure.

There is another generic class of models where the source of ∆Gµν [g] is a
quantum-induced non-local effective action term ∆S[g]:

∆Gµν [g] =
16πG√−g

δ∆S[g]

δgµν
, ∆S ≡

∫

d4x ∆L[g] , (9)

where we parametrize ∆L[g] as follows:
∆L[g] = Λ2 h(X [g])

√−g . (10)

The purpose of this paper is to present a phenomenological model of the
latter kind that does not suffer from the sign and magnitude problems de-
scribed above. Section 2 describes the construction of the model and derives
the dynamical equations it satisfies. Section 3 presents numerical and semi-
analytical results for the cosmology predicted. Our conclusions comprise
Section 4.

2 The Model

Simple tools to construct a reasonable ansatz for the most cosmologically
significant part of the full effective action are:
• Curvature invariants whose specialization to the geometry (1) gives:

R = 6(2− ǫ)H2 , R2 = 36(2− ǫ)2H4 , (11)

RµνR
µν = 12(3− 3ǫ+ ǫ2)H4 , (12)

RµνρσR
µνρσ = 12(2− 2ǫ+ ǫ2)H4 , (13)

• Invariant differential operators whose inverses can plausibly introduce non-
locality and whose specialization to the geometry (1) gives:

=
1√−g

∂µ
(√−g gµν ∂ν

)

= −∂2

t − 3H∂t , (14)

c = − 1

6
R = −∂2

t − 3H∂t − 2H2 − Ḣ , (15)
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when acting on a function of co-moving time. Their inverses:

1
=
∫ t

tin

dt′
1

a3(t′)

∫ t′

tin

dt′′ a3(t′′) , (16)

1

c

=
1

a(t)

∫ t

tin

dt′
1

a(t′)

∫ t′

tin

dt′′ a2(t′′) , (17)

are defined with retarded boundary conditions to avoid the appearance of
new degrees of freedom [13].

A way of achieving the desired properties for the induced source X [g] in
(10) is as follows:
• To address the “magnitude problem”, we must move the very high scale
factor of Λ = 3H2

in which appears in (8) to the right and have it re-appear
essentially as H2(t), a factor that decreases in magnitude like t−2 after infla-
tion:

Y = −3GH2

in

1
R → −3G

1
H2R . (18)

An immediate consequence is that our ansatz now requires an extra curvature
invariant – see (11-13) – to account for the extra factor of H2.
• To address the “sign problem”, X [g] must change sign as we exit the
inflationary epoch (ǫ < 1) and enter the post-inflationary epoch (ǫ > 1). By
inspecting expressions (11-13) we conclude that the combination:

1

3
R2 − RµνR

µν = 12(1− ǫ)H4 , (19)

indeed changes sign as ǫ passes through 1.
• The requirement for the effect to become quiescent during radiation dom-
ination (ǫ = 2) is most easily satisfied by having the curvature scalar R
present in the ansatz.
• The ansatz must contain an overall factor of −1 to account for the secular
nature of the effect which implies the need for an operator with memory for
the behaviour of the source by not extinguishing its effect as the universe
evolves. Furthermore, −1 provides the single infrared logarithm dictated
by the de Sitter correspondence limit (4) to order (GΛ)2.
• The dimensionality of the ansatz for X [g] requires the presence of a second
inverse differential operator. To preserve the correspondence limit (4) this
operator must not give an additional infrared logarithm to order (GΛ)2 and
it is −1

c that has this property.
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Therefore, the proposed ansatz consists of the following quantum-induced
source X [g]: 3

X [g] ≡ G
1
R

1

c

(

1

3
R2 −RµνR

µν

)

. (20)

The function h(X [g]) must have the ability to end inflation which implies
that it must have the ability to become singular. 4 The contribution ∆Gµν

to the gravitational field equations (5) is quite complicated and is most eas-
ily derived by going to the equivalent scalar representation [14, 15]. We
introduce two auxiliary scalar fields A and C which we require to obey the
following equations of motion:

cA =
1

3
R2 − RµνR

µν , (21)

C = RA . (22)

This can be achieved by introducing two Lagrange multipliers B and D this
way:

∆L = Λ2 h(GC)
√−g + B

[

cA−
(1

3
R2 −RµνR

µν
)

]√−g

+D
[

C − RA
]√−g , (23)

so that the desired equations of motion (21-22) emerge:

1√−g

δ(∆S)

δB
= cA−

(1

3
R2 −RµνR

µν
)

= 0 , (24)

1√−g

δ(∆S)

δD
= C − RA = 0 , (25)

as well as those for the Lagrange multipliers:

1√−g

δ(∆S)

δA
= cB −RD = 0 ⇒ B =

1

c

RD , (26)

1√−g

δ(∆S)

δC
= D +GΛ2h′(GC) = 0 ⇒ D = − 1

GΛ2h′(GC) . (27)

3An alternate choice would have been: X [g] = G −1 −1
c R

(

1

3
R2 −RµνR

µν
)

. It is
equally well-motivated and may have interesting comological evolution.

4In the models defined by (8) the end of inflation was achieved by the source monoton-
ically increasing without bound leading, unfortunately, to the magnitude problem.
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The resulting quantum induced stress tensor should be covariantly con-
served:

Tµν [g] ≡
2√−g

δ(∆S)

δgµν
⇒ DµTµν = 0 , (28)

and a tedious but straightforward computation confirms this.
For the spacetimes of cosmological interest (1), besides (11-13), we have:

R00 = −3(H2 + 6Ḣ) , Rij = (3H2 + Ḣ)gij , (29)

D0 D0 = ∂2

t , DiDj = −gijH∂t . (30)

Using all these relations, the specialization to (1) of the equations of motion
for the auxiliary scalar fields (21-22) and the Lagrange multipliers (26-27)
take the form:

Ä = −3HȦ− (2− ǫ)H2A− 12(1− ǫ)H4 , (31)

B̈ = −3HḂ − (2− ǫ)H2B − 6(2− ǫ)H2D , (32)

C̈ = −3HĊ − 6(2− ǫ)H2A , (33)

D̈ = −3HḊ +GΛ2h′(GC) . (34)

The full cosmological equations (5) become for the (00) component:

3H2

16πG
+

1

2
Λ2h(GC) − 1

2

(

ȦḂ + ĊḊ
)

− 6H3Ḃ

− 3(H∂t +H2)
(1

6
AB + AD

)

=
Λ

16πG
, (35)

and for the (ij) component:

− (3− 2ǫ)
H2

16πG
− 1

2
Λ2h(GC) +GΛ2Ah′(GC)− 1

6
ȦḂ − 1

2
ĊḊ + 2ȦḊ

−2(1 + 2ǫ)H3Ḃ − 2(3− 2ǫ)4
(

B + 6D
)

− (H∂t +H2)
(1

6
AB + AD

)

= − Λ

16πG
, (36)

where we have used (31-34) to reach (36). Moreover, it is useful to record
the sum (00) + (ij) of these two equations: 5

2ǫH2

16πG
+ GΛ2Ah′(GC)− 2

3
ȦḂ − ĊḊ + 2ȦḊ − 4(2− ǫ)H3Ḃ

5For instance, one can again check and verify stress-energy conservation:
∂t[(00)] = −3H [(00) + (ij)].
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−2(3− 2ǫ)H4
(

B + 6D
)

− 4(H∂t +H2)
(1

6
AB + AD

)

= 0 . (37)

To describe the evolution of the model it would have been very convenient
to use the number of e-foldings n as the time evolution parameter. However,
evolution with increasing n is good only as long as the universe expands; if
at some point the universe stops expanding or contracts, n cannot describe
the evolution because the scale factor a(n) = exp(n) always increases with
increasing n.

We shall therefore use the time variable t as our evolution parameter at
the cost of a more complicated system of dynamical equations. 6 Because
these equations will be analyzed numerically it makes sense to use dimension-
less variables. If the initial value of the Hubble parameter is H(tin) ≡ Hin,
we first define the dimensionless time τ :

τ ≡ Hin t ⇒ ∂t = Hin ∂τ , ′ ≡ d

dτ
, (38)

and then the remaining dimensionless variables:

H2 ≡ χ2

G
⇒ H2

in ≡ χ2
in

G
, Λ ≡ 3H2

in ≡ 3χ2
in

G
, (39)

A ≡ −3α

G
, B ≡ −3β , C ≡ 9γ

G
, D ≡ δ , (40)

h(GC) = h(9γ) ≡ f(γ) , (41)

h′(GC) ≡ ∂

∂(GC)
h(GC) =

1

9

∂

∂γ
f(γ) ≡ 1

9
f ′(γ) . (42)

The set of dimensionless variables we wish to solve for is {α, β, γ, δ, χ, ǫ} and
the initial conditions at τ = τin are: 7

α = α′ = β = β ′ = γ = γ′ = δ = δ′ = 0 , (43)

χ = χin , ǫ = 0 . (44)

The time evolution of {α, β, γ, δ} is obtained from the dimensionless form of
equations (31-34):

α′′ + 3
χ

χin

α′ + (2− ǫ)
χ2

χ2
in

α = 4(1− ǫ)
χ4

χ2
in

, (45)

6Also, to economize on writing we drop the 16π in front of G. Note that there should
have been a 16π in the various factors of G that appear in the quantum source X [g] (20).

7The initial value data (43) – which follow because {α, β, γ, δ} all equal to expressions
with overall −1 or −1

c in front – ensure that no additional degrees of freedom are
introduced by these four fields.
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β ′′ + 3
χ

χin

β ′ + (2− ǫ)
χ2

χ2
in

β = 2(2− ǫ)
χ2

χ2
in

δ , (46)

γ′′ + 3
χ

χin

γ′ = 2(2− ǫ)
χ2

χ2
in

α , (47)

δ̈ + 3
χ

χin

δ̇ = χ2

in f
′(γ) . (48)

Furthermore, the variable χ is solved from the dimensionless form of the (00)
equation (35):

[

2χin β
′
]

χ3 +

[

1

3
− 1

2
αβ + αδ

]

χ2 + χin ∂τ
[

− 1

2
αβ + αδ

]

χ

− χ2

in

[

1

3
− 1

2
χ2

in f(γ) +
1

2
(α′β ′ + γ′δ′)

]

= 0 . (49)

This is a cubic algebraic equation which always has a real solution. 8 The
real solution of (49) which is consistent with the correspondence limit of small
values for the coefficients of χ3 and χ is rather complicated:

χ =
1

3M

{

− 1 +
√
1− 3MN 2 cos

[π

3
− 1

3
arctanQ

]}

, (50)

where we have defined:

M =
2χin β

′

1

3
− αβ

2
+ αδ

, (51)

N =
χin

(

− α′β

2
− αβ′

2
+ α′δ + αδ′

)

1

3
− αβ

2
+ αδ

, (52)

P = −
χ2
in

[

1

3
− 1

2
χ2
in f(γ) +

1

2
(α′β ′ + γ′δ′)

]

1

3
− αβ

2
+ αδ

, (53)

Q =
3
√
3M

√

−P + N2

4
+ 9

2
MNP −MN3 − 27

4
M2P 2

1− 9

2
MN + 27

2
M2P

. (54)

Moreover, we solve for ǫ from the dimesionless form of the (00)+(ij) equation
(37):

[

2χ2 + 12χin χ
3β ′ + 12χ4(−β + 2δ)

]

ǫ = 3
{

χ4

in αf
′(γ)

8Had we been able to use n as the evolution parameter, the resulting equation analogous
to (49) would have been quadratic in χ2.
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+χ2

in( 2α
′β ′ + 3γ′δ′ + 2α′δ′ )− 8χin χ

3β ′ − 6χ4(β − 2δ)

+4(χin χ ∂τ + χ2)
(1

2
αβ − αδ

)}

. (55)

Finally, it will be useful for the analysis to follow to combine the equations
(49, 55) for χ and ǫ and make the simplifications that arise:

ǫχ2 =
3

2 + β ′χin χ + 12(−β + 2δ)χ2
× (56)

{

[αf ′(γ) + 2f(γ)]χ4

in −
4

3
χ2

in + (2α′ + γ′) δ′χ2

in +
4

3
χ2 + 6(−β + 2δ)χ4

}

.

Finally, we must make a choice for the function f(X). The perturbative
result (4) indicates that the effect gets strong when GΛHin t ∼ 1, and this
corresponds to X ∼ 1. A simple appropriate singular algebraic function is:

f(X [g]) =
X [g]

1−X [g]
=

1

1−X [g]
− 1 , (57)

which also has the property that the small X limit of f(X) is X .

3 The Resulting Cosmology

The purpose of this section is to describe the sort of background cosmology
this model produces. We begin with a discussion of inflation and how it ends,
then we describe the immediate post-inflationary phase. These portions of
the treatment are supported by substantial numerical analysis, reported in
the form of graphs. Subsequent evolution involves matter in an essential way,
so we limit the discussion to some general comments.

3.1 The Inflationary Regime

For a long period the scale factor remains at nearly its de Sitter value of
a(τ) = eτ . During this phase the four scalars experience some minor tran-
sients which decay like powers of e−τ to reveal forms which persist until
screening becomes significant:

α(τ) = 2χ2

in

(

1−e−τ
)2 −→ 2χ2

in , (58)

β(τ) =
2

3
χ2

in

(

τ−11

6
+3e−τ−3

2
e−2τ+

1

3
e−3τ

)

−→ 2

3
χ2

in

(

τ−11

6

)

, (59)
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Figure 1: Numerical simulation of the auxiliary scalar functions α(τ) and γ(τ) for
χin = 1

100
and f(X) = X

1−X
. Note the quantitative agreement with expressions (58) and

(60) during the full epoch of de Sitter expansion.

γ(τ) =
8

3
χ2

in

(

τ−11

6
+3e−τ−3

2
e−2τ+

1

3
e−3τ

)

−→ 8

3
χ2

in

(

τ−11

6

)

, (60)

δ(τ) =
1

3
χ2

in

(

τ−1

3
+
1

3
e−3τ

)

−→ 1

3
χ2

in

(

τ−1

3

)

. (61)

These behaviours are evident in Figures 1 and 2, which were generated for
χin = 1

100
and f(X) = X

1−X
.

From relations (58-61) we see that derivatives during the de Sitter epoch
take the form:

α′(τ) −→ 0 , β ′(τ) −→ 2

3
χ2

in , γ′(τ) −→ 8

3
χ2

in , δ′(τ) −→ 1

3
χ2

in . (62)

We can also see −1

2
β(τ) + δ(τ) → 1

2
χ2
in. Using these relations in the expres-

sions for the Hubble parameter and the first slow roll parameter imply:

χ(τ) −→ χin

(

1−2χ4

inτ
)

, ǫ(τ) −→ 2χ4

in . (63)

Figure 3 shows that expressions (63) are in rough agreement with numerical
simulation.

Figure 1 extends to τ = 3500, and shows essentially perfect agreement
with expressions (58) and (60). However, Figure 2 extends only to τ = 1000,
and shows a small curvature in addition to the linear behaviour predicted
by expressions (59) and (61). This curvature becomes more pronounced for
larger values of τ , as is evident in Figure 4. The curvature derives from two
couplings between the auxiliary scalars which are small but not negligible
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Figure 2: Numerical simulation of the auxiliary scalar functions β(τ) and δ(τ) for
χin = 1

100
and f(X) = X

1−X
. Note the rough agreement with expressions (59) and (61)

during the early epoch of de Sitter expansion.

during the de Sitter epoch. The first is of δ(τ) to γ(τ) (we are assuming
f(X) = X

1−X
):

δ′′ = −3
χ

χin

δ′ + χ2

in f(γ) −→ −3δ′ + χ2

in

(

1+2γ
)

. (64)

The order χ4
in correction to δ(τ) comes from the linear growth of γ(τ) in (60):

δ(τ) −→ 1

3
χ2

in τ +
8

9
χ4

in τ
2 . (65)

The curvature of β(τ) descends from this growth, as reflected in the coupling
between β and δ:

β ′′ = −3
χ

χin

β ′ − (2−ǫ)
χ2

χ2
in

β + 2(2−ǫ)
χ2

χ2
in

δ −→ −3β ′ − 2β + 4δ . (66)

It follows that the order χ4
in correction to β(τ) is:

β(τ) −→ 2

3
χ2

in τ +
16

9
χ4

in τ
2 . (67)

The first effect of the curvature of β(τ) and δ(τ) is to make ǫ(τ) grow
slightly. That can be seen in the right hand graph of Figure 3. Curvature
also causes the Hubble parameter to decline faster than linearly, as can be
seen in the left hand graph of Figure 5. From expression (60), and the fact
that f(X) = X

1−X
becomes singular at X = 1, one can estimate that inflation

comes to an end at about τ ≃ 3

8
χ−2

in = 3750. The right hand graph of Figure 5
reveals that the actual point where ǫ = 1 is about τ ≃ 3757.3. Figure 6 shows
the Hubble parameter during this period.
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Figure 3: Numerical simulation of the geometrical quantities χin − χ(τ) and ǫ(τ) for
χin = 1

100
and f(X) = X

1−X
. Note the rough agreement with (3) during the early epoch

of nearly de Sitter expansion.

3.2 Reheating and Radiation Domination

Figure 6 shows that screening becomes effective quite suddenly and brings
inflation to an end at about τ ≃ 3757.3. The first slow roll parameter goes
from ǫ = 0.3 to ǫ = 1 over a period of only ∆τ ≃ 2. Thereafter, we see from
Figure 7 that the Hubble parameter oscillates with a decreasing amplitude.
Of course |χ(τ)| ≫ χin, and Hubble friction ceases to be effective. Close
examination of Figure 7 also reveals that the magnitude of χ′ = −ǫχ2 is
about 50 times larger than χ2. All of this justifies simplifying the auxiliary
scalar equations accordingly:

α′′ ≃ +
ǫχ2

χ2
in

α , γ′′ ≃ −2ǫχ2

χ2
in

α , (68)

δ′′ ≃ χ2

inf
′(γ) , β ′′ ≃ ǫχ2

χ2
in

(β−2δ) . (69)

Figure 8 shows that α(τ) and γ(τ) experience oscillations of decreasing
amplitude about central values of α0 ≃ 0.0001015 and γ0 ≃ 0.99981, respec-
tively. This means one can carry the simplifications of the equations (68) a
step further:

(

α′′ ≃ α0

ǫχ2

χ2
in

& γ′′ ≃ −2α0

ǫχ2

χ2
in

)

=⇒

∆α(τ) ≡ α(τ)−α0 ≃ −1

2

[

γ(τ)−γ0
]

≡ −1

2
∆γ(τ) . (70)
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Figure 4: Numerical simulation of the auxiliary scalar functions β(τ) and δ(τ) for
χin = 1

100
and f(X) = X

1−X
. Note the curvature quantitative agreement with expressions

(59) and (61) during the early epoch of de Sitter expansion.
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Figure 5: Numerical simulation of the Hubble parameter and the first slow roll param-
eter for χin = 1

100
and f(X) = X

1−X
.

At this stage we can gain a rough understanding of what is driving the
oscillations. Recall expression (56) for ǫχ2 and use χ2 ≪ χ2

in as well as
2α′ + γ′ ≃ 0 to simplify the numerator of (56):

[

αf ′(γ)+2f(γ)
]

χ4

in−
4

3
χ2

in+(2α′+γ′)δ′χ2

in+
4

3
χ2+6(−β+2δ)χ4

≃
[

αf ′(γ)+2f(γ)
]

χ4

in−
4

3
χ2

in , (71)

≃
[

α0f
′(γ0)+2f(γ0)

]

χ4

in−
4

3
χ2

in +
[3

2
f ′(γ0)+α0f

′′(γ0)
]

χ4

in×∆γ , (72)

≃ 0.711×∆γ . (73)
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Figure 6: Numerical simulation of the Hubble parameter for χin = 1

100
and f(X) =

X
1−X

.
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Figure 7: Numerical simulation for χin = 1

100
and f(X) = X

1−X
of the Hubble parameter

and its first time derivative in the period after the end of inflation.

Substituting (73) into (56), and then into (70) gives what is a recognizable
oscillator equation for ∆γ(τ):

∆γ′′ ≃ − 4.333×∆γ

2+12β ′ χin χ+12(−β+2δ)χ2
. (74)

Of course this also implies oscillations for ∆α ≃ −1

2
∆γ, and for ǫχ2. The

decreasing amplitude of oscillation is presumably due to the residual effect
of Hubble friction.

Figure 9 shows the auxiliary scalars δ(τ) and β(τ). We can understand
the growth of δ(τ) by making a further simplification of its equation (69):

δ′′ ≃ χ2

in f
′(γ0) ≃ 2770 . (75)
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Figure 8: Numerical simulation of auxiliary scalars α(τ) and γ(τ) after the end of
inflation for χin = 1

100
and f(X) = X

1−X
. The scalar α(τ) (on the left) oscillates around

α0 ≃ 0.0001015. The scalar γ(τ) (on the right) oscillates around γ0 ≃ 0.99981.

That would give quadratic growth. What Figure 9 actually shows is some-
what slower growth, δ(τ) ≃ 2770

2
× (τ − 2760)1.82. The reduction seems to

be due to the residual effect of Hubble friction. We can understand the
behaviour of β(τ) by making a similar simplification of its equation (69):

β ′′ ≃ −2ǫχ2

χ2
in

δ . (76)

The source on the right hand side oscillates and grows linearly, so the response
of β(τ) in Figure 9 can be understood by stripping away all the constants:

{

f ′′(x) = −x cos(x)

f(0) = 0 = f ′(0)

}

=⇒ f(x) = x
[

cos(x)+1
]

− 2 sin(x) . (77)

The preceding analysis and numerical results have dealt with the period
immediately after the end of inflation. A point of great significance is that
the Hubble parameter becomes negative. This is evident in Figure 7. Of course
negative H means that the universe is contracting, which must concentrate
whatever matter particles are produced by the fluctuating geometry. There
will be a similar concentration of the last graviton and inflaton perturbations
to have been generated during inflation. We are not now in a position to
analyze this process in detail but it seems obvious that rapid reheating will
occur. And note that the onset of radiation domination, with ǫ = 2, turns off
the source for further evolution of the key auxiliary scalar γ(τ). Assuming
that this point is reached, the screening effect goes quiescent with γ = γ∗,
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Figure 9: Numerical simulation of auxiliary scalars δ(τ) and β(τ) after the end of
inflation for χin = 1

100
and f(X) = X

1−X
. The scalar δ(τ) (on the left) grows, roughly like

(τ − 2760)1.82. The scalar β(τ) (on the right) oscillates with a linearly increasing central
value and a linearly increasing amplitude.

and the universe experiences the usual phase of radiation domination with
essentially zero cosmological constant.

3.3 Late Time Acceleration

We turn now to the time t = tm, long after reheating, when the universe
makes the transition to matter domination. At that point γ begins to evolve
again. This will induce a corresponding change in our non-local source (10):

Λ2 h(GC) = Λ2f(γ) = Λ2 f

(

G
1

9

1
R

1

c

[1

3
R2 −RµνR

µν
]

)

≃ Λ2f(γ∗) + Λ2f ′(γ∗)×
[

γ−γ∗
]

. (78)

Let us first examine the change in [γ − γ∗](t), returning to co-moving time
as an evolution variable:
[

γ−γ∗
]

(t) =
G

9

∫ t

tm

dt′

a3(t′)

∫ t′

tm

dt′′a3(t′′)×6[2−ǫ(t′′)]H2(t′′)

× 1

a(t′′)

∫ t′′

tm

dt′′′

a(t′′′)

∫ t′′′

tm

dt′′′′a2(t′′′′)×12[1−ǫ]H4(t′′′′) . (79)

To simplify the discussion, we assume that the universe is perfectly matter
dominated after t = tm:

t > tm =⇒ a(t) = am
( t

tm

)
2

3 , H(t) =
2

3t
, ǫ(t) =

3

2
. (80)

16



Substituting (80) into (79) and performing the trivial integrations gives:

[

γ−γ∗
]

(t) = − 27G

33 5 t2m

{

5

6
−3

( t

tm

)
1

3 +
15

4

(tm
t

)
2

3 −5

3

tm
t
+

1

12

(tm
t

)2

}

. (81)

It is more useful to express this in terms of the Hubble parameter at the time
of matter domination Hm ≡ H(tm), and to take the late time limit:

lim
t≫tm

[

γ−γ∗
]

(t) = −16

9
GH2

m . (82)

Let us now turn to the question of what sort of function f(X) would give
a late time cosmological constant of the right size. The two terms on the
right hand side of (78) have different roles:
• The first cancels the large, bare cosmological constant:

6H2
in

16πG
= Λ2f(γ∗) ; (83)

• The second supplies the small, positive cosmological constant needed to
cause the observed late time acceleration:

6H2
0

16πG
= Λ2f ′(γ∗)×

16

9
GH2

m . (84)

Taking the ratio of (84) to (83) implies f(X) must obey:

f ′(γ∗)

f(γ∗)
=

9

16

(H0

Hin

)2 1

GH2
m

. (85)

Some of the numbers in expression (85) are known:

GH2

m ≃ 1010×GH2

0 ≃ 10−112 . (86)

If we assume Hin ≃ 1055H0, the result is:

f ′(γ∗)

f(γ∗)
≃ 102 . (87)

Conditions (83) and (87) are certainly not obeyed for the simple ansatz
f(X) = X

1−X
that was used for our numerical simulations. We therefore

consider a 1-parameter family of more singular models:

f(X) =
1

(1−X)ω
− 1 =⇒ f ′(X) =

ω

(1−X)ω+1
. (88)
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Because γ∗ is very close to unity we can express conditions (83) and (87) as:

1

(1−γ∗)ω
≃ 1010 ,

ω

1−γ∗
≃ 102 . (89)

An approximate solution is clearly ω ≃ 5. Different assumptions about Hi

can be accommodated with only small changes in the exponent ω. Note also
that because the actual expansion history is not (80), the current phase of
acceleration will eventually end, although after a very long time.

4 Epilogue

The model presented in this paper was ultimately motivated by the fact
that gravitation is the dominant force responsible for the evolution of the
universe. It is therefore reasonable to seek a model exclusively using grav-
itational degrees of freedom. Its construction was dictated by consistency
with perturbative results as well as with satisfaction of basic cosmological
requirements. Alternatively, its construction can be viewed as simply an
ansatz whose implications should be studied.

These implications include an end by gravitational means of an infla-
tionary era of adequate duration, an oscillatory era that follows and can
lead a naturally reheated universe to the epoch of radiation domination and,
thereafter, to matter domination. The analysis is based on numerical and
semi-analytical methods.

Finally, the several conjectures we have had to make in this analysis
should not be allowed to obscure the fact that this model provides natural
explanations both for why the current phase of acceleration happens so late in
cosmological history, and for why its source appears to be an absurdly small,
positive cosmological constant. Our key point is that late time acceleration is
not the result of a small bare cosmological constant but rather of a very small
fractional change in quantum gravitational screening which was triggered by
the transition from radiation domination to matter domination.
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