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Abstract

We calculate the energy-differential rate for neutrino emission from electron-nucleus

bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic

correlations. We compare the energy-differential and the net rates, as well as the average ν̄e and

ν̄x (x = µ, τ) energies, for this process with those for e± pair annihilation, plasmon decay, and

photo-neutrino emission over a wide range of temperature and density. We also compare our up-

dated energy loss rates for the above thermal neutrino emission processes with the fitting formulae

widely used in stellar evolution models and determine the temperature and density domain in which

each process dominates. We discuss the implications of our results for detection of ν̄e from massive

stars during their pre-supernova evolution and find that pair annihilation makes the predominant

contribution to the signal from the thermal emission processes.
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I. INTRODUCTION

Stars are profuse sources of neutrinos. A prominent example is the solar neutrinos pro-

duced by weak nuclear reactions including electron capture and β decay. For stars like the

sun and those of higher masses, as temperature and density increase during later stages of

their evolution, νν̄ pair production by e± pair annihilation, plasmon decay, photo-neutrino

emission, and electron-nucleus bremsstrahlung becomes more and more important. Indeed,

for those stars that can ignite core carbon (C) burning, the energy loss subsequent to C

ignition is dominated by the above so-called thermal neutrino emission processes. For stars

of & 8M⊙ (M⊙ being the mass of the sun), neutrinos not only drive their evolution by

cooling their interiors, but also play dynamic roles in their core collapse and the ensuing

supernova explosion.

The thermal neutrino emission processes in stellar interiors have been studied extensively

[1–11]. As neutrinos free-stream out of massive stars during their pre-supernova evolution,

the pertinent quantity for stellar evolution is the energy loss rate of each process. Prac-

tically, fitting formulae for these rates given by Ref. [10] have been widely used in stellar

evolution models. As thermal neutrino emission depends on temperature and density and

evolves as stars age, these neutrinos would constitute a unique probe of the conditions in

stellar interiors, thereby providing a potential test of stellar evolution models [12–15]. Even

if there might not be sufficient statistics to probe the details of stellar evolution, unambigu-

ous detection of pre-supernova neutrinos from a nearby massive star would at least provide

advance warning for the subsequent supernova explosion [15–17]. For the above purposes,

it is important to calculate the detailed spectra of the thermal neutrino emission processes.

In addition, neutrino signals from massive stars during their pre-supernova evolution are

affected by flavor transformation through the Mikheyev-Smirnov-Wolfenstein (MSW) mech-

anism [18, 19]. A careful analysis of the MSW effect on these neutrino signals also requires

knowledge of the neutrino spectra.

The neutrino spectra for the thermal emission processes can be obtained from the corre-

sponding energy-differential rates. Previous works [13, 16, 20–24] have studied the neutrino

spectra for e± pair annihilation, plasmon decay, and photo-neutrino emission. The spectra

for electron-nucleus bremsstrahlung have not received as much attention. In particular, we

are not aware of a detailed comparison of the spectra for this and other thermal emission
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processes. In this paper we focus on neutrino emission from electron-nucleus bremsstrahlung

in massive stars and its importance relative to other processes. Following a detailed com-

parison of the energy-differential rates of all the thermal neutrino emission processes during

the pre-supernova evolution of a massive star, we find that e± pair annihilation makes the

predominant contribution to the ν̄e signal from these processes for detection through capture

on protons.

We present a detailed derivation of the energy-differential rate for neutrino emission from

electron-nucleus bremsstrahlung in Sec. II. We compare the energy-differential and the net

rates, as well as the average ν̄e and ν̄x (x = µ, τ) energies, for this and other thermal neutrino

emission processes over a wide range of temperature and density in Sec. III. We also compare

our updated energy loss rates for individual thermal neutrino emission processes with the

fitting formulae of Ref. [10] and determine the temperature and density domain in which

each process dominates in Sec. IV. We discuss the implications of our results for detection

of ν̄e from massive stars during their pre-supernova evolution and give conclusions in Sec. V.

II. ENERGY-DIFFERENTIAL RATES FOR BREMSSTRAHLUNG NEUTRINO

EMISSION

Neutrino emission from electron-nucleus bremsstrahlung is denoted by

(Z,A) + e− → (Z,A) + e− + να + ν̄α, (1)

where (Z,A) represents a nucleus of proton number Z and mass number A, and α = e, x.

As shown in Fig. 1, the leading-order Feynman diagrams for this process are very similar to

those for photo-neutrino emission, except that the photon here is linked to the nucleus and

thus off-shell (virtual). Both charged-current (CC, W -exchange) and neutral-current (NC,

Z0-exchange) interactions contribute to νeν̄e pair production, while only NC interactions

contribute to νxν̄x pair production.

In the hot and dense stellar interior, medium effects should be taken into account for

thermal processes. For electron-nucleus bremsstrahlung, an important effect is electron

screening that modifies the Coulomb interaction between the electron and the nucleus. The

effective screened potential for a single nucleus (Z,A) can be written in the momentum
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FIG. 1. Leading-order Feynman diagrams for neutrino emission from electron-nucleus

bremsstrahlung.

space as

Veff(|k|) =
Zef(|k|)
k2ǫ(|k|) , (2)

where k is the momentum transfer to the electron, e is the magnitude of the electron charge,

and ǫ(|k|) is the static dielectric function that accounts for electron screening. In Eq. (2),

f(|k|) = 3[sin(|k|rc)− (|k|rc) cos(|k|rc)]
(|k|rc)3

(3)

is the form factor corresponding to a uniform charge distribution within the charge radius rc

for the nucleus (Z,A). We consider ρ < 4.3× 1011 g cm−3, for which medium effects on the

charge distribution within a nucleus can be ignored, and take rc = 1.15A1/3 fm. In general,

the effective potential in Eq. (2) cannot be simply applied to all nuclei in the medium. This

is because ionic correlations can be important and a structure factor SΓ(|k|) is required to

account for these. Below we discuss ǫ(|k|) and SΓ(|k|) in some detail, and then derive the

matrix elements and the energy-differential rates for neutrino emission from electron-nucleus

bremsstrahlung. Throughout the paper, we use the natural units where the reduced Planck

constant ~ and the speed of light c are set to unity.

A. Static dielectric function ǫ(|k|)

The hot and dense stellar matter is composed of e± in a background of positive ions. For

the conditions of interest, these ions are simply the bare nuclei. As e± are much lighter and
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thus more mobile than ions, screening of the electron-nucleus Coulomb interaction is caused

by e±. To a good approximation, we can assume that ions are fixed and discuss how a static

electric field is screened by e±. We first calculate the screening effect by generalizing the

semiclassical approximation used in Ref. [25] to include both e− and e+.

In an ideal gas, the equilibrium e± number densities are

ne± =
2

(2π)3

∫ ∞

0

N±(E)d3p ≡ 1

4π3

∫ ∞

0

d3p

exp[(E ± µ)/(kBT )] + 1
, (4)

where N±(E) are the e± occupation numbers at energy E, p is the corresponding momentum,

µ is the chemical potential, kB is the Boltzmann constant, and T is the temperature. For

a specific T , µ can be obtained from the net electron number density ne ≡ ne− − ne+ =

ρ/(µemu), where ρ is the mass density of nuclei associated with the e± gas, mu is the atomic

mass unit, and µe is the molecular weight per net electron. For the simple case of a neutral

uniform one-component plasma (OCP), µe = A/Z. When a nucleus (Z,A) is introduced

into this OCP, its screened potential φ(r) shifts the equilibrium e± number densities at a

distance r to

n′

e±(r) =
1

4π3

∫ ∞

0

d3p

exp[(E ± eφ(r)± µ)/(kBT )] + 1
. (5)

Relative to the initial uniform OCP, the changes in the e± number densities to the leading

order are

δne±(r) ≡ n′

e±(r)− ne± ≈ ∓ eφ(r)

4π3kBT

∫

∞

0

exp[(E ± µ)/(kBT )]d
3p

{exp[(E ± µ)/(kBT )] + 1}2 . (6)

According to Poisson’s equation,

∇2φ = e(δne− − δne+)− Zeδ(r)

≈ 4αφ(r)

π

∫ ∞

0

[N−(E) +N+(E)]
p2

E

(

1 +
1

v2

)

d|p| − Zeδ(r), (7)

where α ≡ e2/(4π) and v = |p|/E. The approximate result in Eq. (7) is obtained by using

Eq. (6) and performing integration by parts. The solution to Eq. (7) in the momentum

space is

V (|k|) =
∫

φ(r) exp(−ik · r)d3r = Ze

k2ǫ(|k|) , (8)

where

ǫ(|k|) ≈ 1 +
4α

πk2

∫ ∞

0

[N−(E) +N+(E)]
p2

E

(

1 +
1

v2

)

d|p| (9)
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is the static dielectric function.

The electron screening effect also affects the propagation of photons in the e± plasma.

For a photon of energy ω and momentum k, the longitudinal component Πl(ω, |k|) of its

polarization tensor to the first order in α [26] is

Πl(ω, |k|) =
4α

π

∫ ∞

0

(

ω

v|k| ln
ω + v|k|
ω − v|k| − 1− ω2 − k2

ω2 − v2k2

)

[N−(E) +N+(E)]
p2

E
d|p|. (10)

The static dielectric function ǫ(|k|) is related to Πl(ω, |k|) for ω = 0 as ǫ(|k|) = 1 −
Πl(0, |k|)/k2, which gives the same result as Eq. (9) derived from the semiclassical ap-

proximation.

Note that Eq. (9) applies to all T and ρ/µe and is accurate to the first order in α [26].

The conditions in a massive star span a wide range of T and ρ/µe during its pre-supernova

evolution. Figure 2 shows the evolutionary tracks of T and ρ/µe at the center for two stars

of 15 and 25M⊙, respectively. The (T, ρ/µe) space can be approximately divided into four

regions: (1) T > 0.3me and T > 0.3TF , where the e
± gas is relativistic and non-degenerate or

moderately degenerate (R, N/MD), (2) 0.3TF < T < 0.3me, where the gas is non-relativistic

and non-degenerate or moderately degenerate (NR, N/MD), (3) T < 0.3TF and TF < me,

where the gas is non-relativistic and degenerate (NR, D), and (4) T < 0.3TF and TF > me,

where the gas is relativistic and degenerate (R, D). Here me is the electron mass and TF is

the electron Fermi temperature defined as

TF ≡
√

p2F +m2
e −me

kB
= 5.930× 109

{

[

1 + 1.018(ρ6/µe)
2/3
]1/2 − 1

}

K, (11)

where pF = (3π2ne)
1/3 is the electron Fermi momentum, and ρ6 is ρ in units of 106 g cm−3.

Figure 2 shows that massive stars undergoing core oxygen (O) burning encounter conditions

at the boundary of the above four regions, for which Eq. (9) should be used to evaluate the

static dielectric function ǫ(|k|). We have checked that the approximate expressions adopted

in Refs. [27, 28] give the same results as Eq. (9) only when positrons can be ignored [i.e.,

well within the (NR, ND), (NR, D), and (R,D) regions in Fig. 2]. We use Eq. (9) for ǫ(|k|)
in our calculations below.

B. Structure factor SΓ(|k|)

For the conditions of interest, e± can always be treated as in a gas state. They are

scattered by the total (screened) Coulomb potential generated by all ions. When the tem-
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FIG. 2. Regions of the (T, ρ/µe) space where electrons are (1) relativistic and non-degenerate or

moderately degenerate (R, N/MD), (2) non-relativistic and non-degenerate or moderately degener-

ate (NR, N/MD), (3) non-relativistic and degenerate (NR, D), and (4) relativistic and degenerate

(R, D), respectively. Also shown are the evolutionary tracks of T and ρ/µe at the center for two

stars of 15 and 25M⊙, respectively. The labels for the tracks indicate approximately stages of core

C, O, and Si burning and Fe core formation, respectively.

perature is high and/or the matter density is low, the ions are also in the gas state and

each ion can be treated independently. The total rate for electron-nucleus scattering is

simply the sum over each single ion. However, the dense stellar interiors can give rise to

condensed states with strong correlations among ions. Previous studies [27–30] showed that

these ionic correlations have substantial effects on neutrino emission from electron-nucleus

bremsstrahlung, and therefore, should be treated properly.

Correlation effects are described by the structure factor. Consider N ions located at Ri

(i = 1, 2, ..., N) in an OCP. The ionic number density is nI(r) =
∑N

i δ(r − Ri). In the

static case and by the Born approximation, the total electron-nucleus scattering amplitude

is proportional to

Vtot(k) = Veff(|k|)
∫

nI(r) exp(−ik · r)d3r = Veff(|k|)
N
∑

i

exp(−ik ·Ri). (12)

The total scattering rate is proportional to |Vtot(k)|2 = |Veff(|k|)|2
∑

ij exp[−ik·(Ri −Rj)].

Taking a time average of the OCP, we obtain

〈

|Vtot(k)|2
〉

= |Veff(|k|)|2
〈

∑

ij

exp[−ik·(Ri −Rj)]

〉

≡ |Veff(|k|)|2NS(k), (13)
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where S(k) is the static structure factor defined by the second equality. For an isotropic

system, S(k) = S(|k|). As a simple illustration, consider the gas state in which the correla-

tions among ions are weak due to random thermal motion at high temperature and/or the

feeble interaction between two distant ions at low density. For this case, S(|k|) ≈ 1 as only

those terms with i = j in the sum in Eq. (13) are not averaged out. Consequently, the total

rate for electron-nucleus scattering in this case is just N times the rate for a single nucleus.

In general, the ionic state of an OCP can be characterized by the parameter

Γ ≡ Z2e2

aIkBT
= 0.2275

Z2

T8

(ρ6
A

)1/3

, (14)

where T8 is T in units of 108 K, aI = [3/(4πn̄I)]
1/3 is the ion-sphere radius, and n̄I = ρ/(Amu)

is the mean ion number density. As can be seen from its definition, Γ measures the Coulomb

interaction energy between two nearby ions relative to their thermal energy. The gas, liquid,

and crystal lattice states correspond to Γ ≪ 1, 1 . Γ . 180, and Γ > 180, respectively. The

structure factor is rather complex for the liquid and crystal lattice states. To indicate its

dependence on Γ, we denote it as SΓ(|k|).
Figure 3 shows contours of Γ for an OCP composed of 12C or 56Fe along with the evolu-

tionary tracks of T and ρ/µe at the center for two stars of 15 and 25M⊙, respectively. It can

be seen that ions are in the gas or liquid state (Γ . 10) during the pre-supernova evolution

of massive stars. An analytic fit to the structure factor SΓ(|k|) for an OCP was provided

by Ref. [31] based on the results calculated from the modified hypernetted-chain equation

for 0.1 ≤ Γ ≤ 225 [32]. Although the fit was obtained for 1 ≤ Γ ≤ 225, we find that its

extension to Γ < 1 remains a good approximation to the results calculated in Ref. [32] even

for Γ = 0.1. It also has the correct asymptotic behavior SΓ(|k|) → 1 for Γ → 0. Therefore,

this fit is sufficient for our discussion on the spectra and rates for neutrino emission from

electron-nucleus bremsstrahlung during the pre-supernova evolution of massive stars.

The crystal lattice state may be reached for Γ & 210 during the cooling of dense stars

[33]. The structure factor in this regime is needed for a general discussion of the conditions

under which neutrino energy loss is dominated by electron-nucleus bremsstrahlung. Here

new effects associated with the thermal motion of ions, the band structure of electrons [34],

and multi-phonon processes [35] must be taken into account. We follow the discussion in

Ref. [35] to calculate SΓ(|k|) for the crystal lattice state and refer readers to that work for

details. The resulting prescription gives similar values for SΓ(|k|) to those from the fit in
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FIG. 3. Contours in the (T, ρ/µe) space corresponding to Γ = 0.25 for an OCP composed of 12C

and Γ = 10 for an OCP composed of 56Fe. Also shown are the same two stellar evolutionary tracks

as in Fig. 2.

Ref. [31] for 100 . Γ . 225 [35]. In our calculations, we adopt the fit in Ref. [31] for Γ ≤ 180

and the prescription in Ref. [35] for Γ > 180.

C. Matrix elements and energy-differential rates

We now calculate the matrix elements for νe and ν̄e emission from electron-nucleus

bremsstrahlung. We first ignore ionic correlations. The amplitude for the Z0-exchange

diagrams can be written in standard notation of the electroweak theory as

iMZ0 =− iZe2G2
F

2
√
2

f(|k|)
k2ǫ(|k|)

[

ūe(p
′)γα(a + bγ5)(/p+ /k −me)

−1γ0ue(p)ūν(q)γα(1− γ5)vν̄(q
′)

+ūe(p
′)γ0(/p

′ − /k −me)
−1γα(a+ bγ5)ue(p)ūν(q)γα(1− γ5)vν̄(q

′)
]

, (15)

where GF is the Fermi coupling constant, a = −1 + 4s2W , sW ≡ sin θW with θW being the

Weinberg angle, b = 1, γα (α = 0, 1, 2, 3) and γ5 refer to the Dirac gamma matrices, u and

v are spinors, and the four-momenta k, p, p′, q, and q′ are as labeled in Fig. 1. Note that

the four-momentum for the virtual photon is k = (0,k).

The amplitude for the W -exchange diagrams can be arranged to have a similar structure

to that for the Z0-exchange diagrams via Fierz transformations. The total amplitude for
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both types of diagrams is

iM =i(MZ0 +MW )

=− iZe2GF√
2

f(|k|)
k2ǫ(|k|)

[

ūe(p
′)γα(CV − CAγ

5)(/p+ /k −me)
−1γ0ue(p)ūν(q)γα(1− γ5)vν̄(q

′)

+ ūe(p
′)γ0(/p

′ − /k −me)
−1γα(CV − CAγ

5)ue(p)ūν(q)γα(1− γ5)vν̄(q
′)
]

, (16)

where CV = (1+4s2W )/2 and CA = 1/2. After averaging over the fermion spins in the initial

state and summing over those in the final state, we obtain the effective squared matrix

element

|M|2eff =
Z2e4G2

F

4

[f(|k|)]2
[k2ǫ(|k|)]2

× Tr

{

(/p
′ +me)

[

γα(CV − CAγ
5)

/Q1
+me

β1

/ǫB + /ǫB
/Q2

+me

β2

γα(CV − CAγ
5)

]

(/p+me)

×
[

(CV + CAγ
5)γβ /Q2 +me

β2

/ǫB + /ǫB
/Q1 +me

β1

(CV + CAγ
5)γβ

]}

× Tr
[

/qγα(1− γ5)/q
′(1 + γ5)γβ

]

, (17)

where Q1 ≡ p+ k, Q2 ≡ p′ − k, β1 ≡ 2k · p− k2, and β2 ≡ −2k · p′ − k2. Note that we have

defined an artificial polarization four-vector ǫB = (1, 0, 0, 0) to make the result similar to that

for photo-neutrino emission [2, 21]. With the definition of IBi (i = 1, 2, 3) in Appendix A,

Eq. (17) can be rewritten as

|M|2eff = 4Z2e4G2
F

[f(|k|)]2
[k2ǫ(|k|)]2

[

(C2
V + C2

A)I
B
1 + (C2

V − C2
A)I

B
2 + CVCAI

B
3

]

. (18)

1. OCP

Including the structure factor SΓ(|k|) to account for ionic correlations and integrating

over the phase space of the initial and final states, we obtain the energy-differential rate per

unit volume for νe emission from electron-nucleus bremsstrahlung in an OCP as

Fνe(Eν) =
ρ

Amu

∫

2d3p

2E(2π)3
N−(E)

∫

d3k

(2π)3
SΓ(|k|)

∫

d3p′

2E ′(2π)3
[1−N−(E

′)]

×
∫

d3q′

2E ′
ν(2π)

3

∫

E2
νdΩq

2Eν(2π)3
(2π)4δ(p+ k − p′ − q − q′)|M|2eff

=
ρ

Amu

∫

2d3p

2E(2π)3
N−(E)

∫

d3k

(2π)3
SΓ(|k|)

∫

d3p′

2E ′(2π)3
[1−N−(E

′)]

∫

dϕ|M|2eff
16π2|P| ,

(19)
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where P ≡ p + k − p′, and Ωq is the solid angle for the νe momentum q with ϕ being

the azimuth angle around P. Note that the δ function in the above equation is disposed of

by integration over the ν̄e momentum q′ and the polar angle of q with respect to P. For

νx, only Z0-exchange diagrams contribute and the corresponding differential rate Fνx(Eν)

is obtained by replacing CV and CA in |M|2eff [see Eq. (18)] with a and −b as defined for

Eq. (15), respectively.

Note that only the neutrino four-momentum q shows up explicitly in the expressions for

IBi (i = 1, 2, 3) [see Eqs. (A1–A4)] as the antineutrino four-momentum q′ has been evaluated

by applying conservation of energy and momentum. If q′ is kept instead of q, the new

expressions have the same form but with q′ replacing q and an opposite sign for IB3 . In

other words, IB1 and IB2 are symmetric while IB3 is antisymmetric under the exchange of q

and q′. Therefore, a simple way to obtain Fν̄α(Eν) is to change the sign of the contribution

from the IB3 term in Fνα(Eν). This sign change makes the neutrino and antineutrino spectra

somewhat different. However, when integrated over the να and ν̄α phase space to obtain the

total rates of emission Rνα (Rν̄α) and energy loss Qνα (Qν̄α) in να (ν̄α), the IB3 term does

not contribute. The contributions from the IB1 and IB2 terms always ensure that Rνα = Rν̄α

and Qνα = Qν̄α .

Finally, positrons can also scatter on nuclei to produce ναν̄α pairs. For the same incom-

ing and outgoing four-momenta p and p′, respectively, the amplitudes of positron-nucleus

bremsstrahlung can be obtained by interchanging p and−p′ in the results for electron-nucleus

bremsstrahlung. The terms IB1 and IB2 are symmetric while IB3 is antisymmetric under this

interchange. Therefore, the differential rates for positron-nucleus bremsstrahlung can be

obtained by replacing N−(E) [N−(E
′)] with N+(E) [N+(E

′)] and changing the sign of IB3 in

Eq. (19). We include the contributions from both electrons and positrons to bremsstrahlung

neutrino emission in our numerical results.

2. Multi-Component Plasma (MCP)

Stellar matter typically consists of more than one nuclear species, and thus corresponds

to an MCP. To extend our results to this case, we follow Ref. [36] and treat the different
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nuclear components independently. The state of nuclei (Zj, Aj) is determined by

Γj =
Z2

j e
2

ajkBT
= 0.2275

Z
5/3
j

T8

(

ρ6
∑

i

xiZi

Ai

)1/3

, (20)

where aj is defined by

4π

3
a3j
∑

i

xiρ

Aimu
Zi = Zj, (21)

and xi is the mass fraction of nuclei (Zi, Ai). For an OCP, Γj and aj reduce to Γ [see

Eq. (14)] and aI , respectively. For the jth component, the same structure factor SΓj
(|k|) as

for an OCP is used to account for ionic correlations. Summing the contributions from each

component incoherently, we can generalize the energy-differential rate in Eq. (19) as

Fνe(Eν) =
∑

j

xjρ

Ajmu

∫

2d3p

2E(2π)3
N−(E)

∫

d3k

(2π)3
SΓj

(|k|)
∫

d3p′

2E ′(2π)3
[1−N−(E

′)]

∫

dϕ|Mj|2eff
16π2|P| ,

(22)

where |Mj|2eff is given by Eq. (18) with Z replaced by Zj .

The above approximate method of treating an MCP has some limitation [37]. However,

for the neutrino energy range of interest, Eν & 0.1 MeV, the results based on this method are

consistent with those from simulations based on molecular dynamics [38]. The same method

has also been adopted to treat neutrino-nucleus scattering during stellar core collapse [39].

III. COMPARISON OF SPECTRA AND RATES FOR THERMAL NEUTRINO

EMISSION PROCESSES

The energy-differential rate in Eq. (19) is highly non-trivial to calculate. Our numerical

computation proceeds as follows. We pick p as the z-direction and define a coordinate

system. By specifying |p|, k, and p′, we fix P = p + k − p′ and the polar angle of q

with respect to P (through energy and momentum conservation). By further specifying the

azimuthal angle ϕ of q around P, all the vectors involved in the effective squared matrix

element |M|2eff are fixed. Therefore, the energy-differential rate is an eight-dimensional

integral over ϕ, p′, k, and |p|. We use the Vegas Monte Carlo algorithm encoded in the

CUBA library [40] to evaluate all the multidimensional integrals in this work.
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A. Effects of ionic correlations on bremsstrahlung neutrino emission

As discussed in Sec. II B, ionic correlations complicate the calculation of the energy-

differential rate for bremsstrahlung neutrino emission. Taking T = 4 × 109 K and ρ/µe =

108 g cm−3, we show in Fig. 4 the ratio of the rate Fν̄e with ionic correlations to the rate

F 0
ν̄e without such correlations as a function of ν̄e energy Eν for an OCP composed of 28Si

or 56Fe with Γ ≈ 2.2 or 6, respectively. It can be seen that ionic correlations reduce the

energy-differential rate by a factor of ∼ 2 at low energies and by a factor of ∼ 1.3 at high

energies. This result is not sensitive to the composition of the OCP and we have checked

that it holds true generally for Γ . 10, which is relevant for massive stars during their pre-

supernova evolution (see Fig. 3). At Eν ≥ 1.8 MeV, for which ν̄e can be detected through

capture on protons, Fν̄e/F
0
ν̄e varies very slowly and is close to 0.7.

 (MeV)νE
-110 1

eν0
/F eν

 F

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Si
Fe

-3 g cm8 = 10
e

µ/ρ K, 9 10×T = 4 

FIG. 4. Effects of ionic correlations on bremsstrahlung neutrino emission. The ratio of the rate

Fν̄e with ionic correlations to the rate F 0
ν̄e without such correlations is shown as a function of ν̄e

energy Eν for an OCP composed of 28Si or 56Fe, respectively.

B. Energy-differential rates

As mentioned in the introduction, energy-differential rates for e± pair annihilation, plas-

mon decay, and photo-neutrino emission have been studied in detail by previous works

[13, 16, 20–24]. We are not aware of a detailed discussion of the energy-differential rate for

bremsstrahlung neutrino emission in the literature. We now discuss this in comparison with

the other thermal emission processes listed above. We follow the standard procedures to

13



calculate the energy-differential rates for e± annihilation [16], plasmon decay [20, 23], and

photo-neutrino emission [21]. Although details are not presented here, we have used differ-

ent expressions for the squared amplitudes from those in the literature by enforcing energy

and momentum conservation in different ways and we have adopted different integration

procedures. Therefore, our results for these three processes provide an independent check

on the previous results.

For specific numerical examples, we consider four sets of temperature and density

(T9, ρ7/µe) = (0.87, 8.5 × 10−3), (2.3, 0.36), (3.9, 1.9), (7.1, 2.5 × 102), which are repre-

sentative of massive stellar cores during C burning, at O depletion, at silicon (Si) depletion,

and immediately prior to collapse, respectively [41]. Here T9 is T in units of 109 K and

ρ7 is ρ in units of 107 g cm−3. For calculating the rates for bremsstrahlung neutrino emis-

sion, we simply assume an OCP composed of 16O, 28Si, 56Fe, and 56Fe, respectively, which

approximately corresponds to the composition for the selected stages of stellar evolution.

Contributions from other coexisting nuclei can be included in a straightforward manner as

shown in Eq. (22). Because Γj does not vary much over the typical composition, SΓj
has

similar effects on neutrino emission for different components and the contribution from each

component is approximately proportional to xjZ
2
j /Aj. As the total mass fraction of the

subdominant nuclei is typically . 20%, we find that a simple OCP treatment based on the

dominant species introduces errors only at the level of ∼ 10%. The energy-differential rates

Fν̄e in units of cm−3 MeV−1 s−1 for ν̄e emission from the above four processes are shown

as functions of ν̄e energy Eν in Fig. 5. It can be seen that the differential rate for e± pair

annihilation always dominates at high energies, while at low energies, the rates for the other

processes become comparable or take over. Similar to plasmon decay and photo-neutrino

emission, bremsstrahlung mostly produces sub-MeV neutrinos during the pre-supernova

evolution of massive stars. It is interesting to note that bremsstrahlung and plasmon decay

have similar spectral shape, most likely due to similar phase space for the outgoing particles.

The comparison of Fνe for the thermal emission processes is very similar to that of Fν̄e, and

therefore, is not shown here.

Partly because of the conversion of e± rest mass into neutrino energy, pair annihilation

always produces the highest average neutrino energy. For example, the average ν̄e energy

from pair annihilation in a non-degenerate and non-relativistic gas of e± can be estimated as

〈Eν̄e〉 ∼ me +3kBT . In general, the average neutrino energies for different thermal emission

14
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FIG. 5. Comparison of energy-differential rates Fν̄e as functions of ν̄e energy Eν for e± pair anni-

hilation (“pair”), plasmon decay (“plas”), photo-neutrino emission (“phot”), and bremsstrahlung

neutrino emission (“brem”). The conditions indicated are representative of massive stellar cores

(a) during C burning, (b) at O depletion, (c) at Si depletion, and (d) immediately prior to collapse.

processes are nontrivial functions of both temperature and density. Table I gives the average

ν̄α energies 〈Eν̄α〉 for these processes along with the corresponding net emission rates Rν̄α

in units of cm−3 s−1 at the four selected stages of stellar evolution. It can be seen that

both Rν̄α and 〈Eν̄α〉 generally increase for all the processes as the star evolves. However, the

net emission rates for pair annihilation are severely suppressed immediately prior to core

collapse because of strong electron degeneracy. This allows other processes to compete for

energy loss. Table I shows that 〈Eν̄e〉 = 〈Eν̄x〉 for plasmon decay, but in general 〈Eν̄e〉 is

slightly lower than 〈Eν̄x〉 for the other processes. We note that 〈Eνα〉 = 〈Eν̄α〉 for all thermal

emission processes.

We now consider the potential detection of neutrinos from massive stars during their

pre-supernova evolution. As an example, we focus on the detection of ν̄e through capture
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TABLE I. Comparison of rates and characteristic energies for thermal neutrino emission processes.

Four sets of conditions representative of massive stellar cores during C burning, at O depletion,

at Si depletion, and immediately prior to collapse are chosen. For each case, results for e± pair

annihilation, plasmon decay, photo-neutrino emission, and bremsstrahlung neutrino emission are

given in four consecutive rows. Rν̄e,x and 〈Eν̄e,x〉 are the net emission rates and average energies of

ν̄e,x, respectively. R
>
ν̄e,x and Ē>

ν̄e,x are the net rates and average energies for those ν̄e,x with energy

above Eth ≈ 1.8 MeV. Ēdet
ν̄e,x is an effective energy for ν̄e detection, as defined in Eq. (23). R>

ν̄e,x are

in units of cm−3 s−1, and the characteristic energies 〈Eν̄e,x〉, Ē>
ν̄e,x , and Ēdet

ν̄e,x are in units of MeV.

(T9, ρ7/µe) log(Rν̄e,x) 〈Eν̄e,x〉 log(R>
ν̄e,x) Ē>

ν̄e,x Ēdet
ν̄e,x

(0.87, 8.5 × 10−3) 18.57, 17.22 0.648, 0.684 13.60, 12.58 1.892, 1.893 1.886, 1.888

15.05, 12.24 0.061, 0.061 4.59, 1.79 1.877, 1.877 1.872, 1.872

17.54, 17.15 0.227, 0.226 9.69, 9.29 1.885, 1.895 1.879, 1.879

15.44, 14.96 0.131, 0.136 5.78, 5.58 1.886, 1.898 1.876, 1.877

(2.3, 0.36) 23.79, 22.86 1.006, 1.089 22.45, 21.66 2.088, 2.092 2.118, 2.127

20.21, 17.40 0.176, 0.176 16.27, 13.46 1.993, 1.993 2.019, 2.019

21.64, 21.13 0.607, 0.620 19.49, 19.01 2.036, 2.032 2.072, 2.073

20.20, 19.69 0.348, 0.376 16.92, 16.67 2.025, 2.017 2.036, 2.046

(3.9, 1.9) 25.82, 25.04 1.524, 1.630 25.30, 24.58 2.372, 2.399 2.488, 2.510

22.35, 19.54 0.314, 0.314 20.03, 17.22 2.139, 2.139 2.199, 2.199

23.66, 23.08 1.040, 1.089 22.70, 22.18 2.281, 2.295 2.363, 2.373

22.54, 21.97 0.592, 0.661 20.77, 20.43 2.187, 2.201 2.234, 2.279

(7.1, 2.5 × 102) 26.24, 25.55 3.558, 4.150 26.17, 25.50 3.953, 4.472 4.387, 4.922

27.23, 24.42 0.765, 0.765 26.16, 23.35 2.457, 2.457 2.620, 2.620

25.91, 25.25 2.177, 2.404 25.65, 25.03 3.064, 3.231 3.379, 3.603

26.39, 25.73 1.322, 1.413 25.77, 25.17 2.610, 2.632 2.758, 2.848
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on protons, ν̄e + p → n + e+, which has a threshold of Eth ≈ 1.8 MeV. The net emission

rate R>
ν̄α and average energy Ē>

ν̄α for ν̄α with energy above Eth are given in Table I for each

thermal emission process at the four selected stages of stellar evolution. For consideration

of detection, we define an effective energy Ēdet
ν̄α through

σν̄ep(Ē
det
ν̄α ) ≡

∫∞

Eth
σν̄ep(Eν)Fν̄α(Eν)dEν
∫∞

Eth
Fν̄α(Eν)dEν

=
1

R>
ν̄α

∫ ∞

Eth

σν̄ep(Eν)Fν̄α(Eν)dEν , (23)

where σν̄ep(Eν) ∝ (Eν − ∆)
√

(Eν −∆)2 −m2
e , with ∆ = 1.293 MeV being the neutron-

proton mass difference, is the cross section for capture of ν̄e with energy Eν . Note that Ē
det
ν̄α

is also introduced for ν̄x in consideration of flavor oscillations between ν̄x and ν̄e. If flavor

oscillations are independent of energy, then the net emission rate R>
ν̄α above the detection

threshold contributes to the ν̄e + p → n + e+ event rate in proportion to the product of

R>
ν̄α and the detection cross section at a single energy Ēdet

ν̄α . This provides an efficient way

to estimate the event rate without referring to the detailed emission spectra. The value of

Ēdet
ν̄α for each thermal emission process is also given in Table I. It can be seen that Ēdet

ν̄α

for all thermal emission processes increase somewhat as the star ages and that Ēdet
ν̄α for pair

annihilation and photo-neutrino emission increase significantly immediately prior to core

collapse. These increases favor the detection of ν̄e from later stages of stellar evolution

because σν̄ep(Ē
det
ν̄α ) increases sharply for Ēdet

ν̄α close to Eth. Note that Ēdet
ν̄e ≈ Ēdet

ν̄x except for

the case of pair annihilation immediately prior to core collapse.

We have given the relevant information for both ν̄e and ν̄x in Table I in order to estimate

the effect of ν̄e ⇋ ν̄x flavor transformation caused by the MSW mechanism in massive

stars. When flavor evolution is adiabatic, the survival probability p of ν̄e is insensitive

to neutrino energy and can be estimated as pNH = cos2 θ12 cos
2 θ13 ≈ 0.7 for the normal

mass hierarchy (NH) and pIH = sin2 θ13 ≈ 0.025 for the inverted mass hierarchy (IH) [42],

where θ12 and θ13 are the vacuum mixing angles. The ν̄e event rate is proportional to

pR>
ν̄eσ(Ē

det
ν̄e ) + (1 − p)R>

ν̄xσ(Ē
det
ν̄x ). Table I shows that R>

ν̄α is comparable for all thermal

emission processes only for the stage immediately prior to core collapse, and R>
ν̄α for pair

annihilation is always the largest for all the previous stages. Taking into account that pair

annihilation also has the highest Ēdet
ν̄α (see Table I), we conclude that it is the dominant

source for the ν̄e signal from the thermal emission processes.
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IV. COMPARISON OF ENERGY LOSS RATES FOR THERMAL NEUTRINO

EMISSION PROCESSES

It is straightforward to calculate the total neutrino energy loss rate per unit volume

Q =
∑

α=e,µ,τ

∫

Eν [Fνα(Eν) + Fν̄α(Eν)]dEν (24)

for bremsstrahlung and other thermal emission processes. For simplicity, we assume an

OCP composed of 56Fe for calculating the rates for bremsstrahlung neutrino emission in this

section. As the effects of ionic correlations are not very sensitive to composition (see Fig. 4),

results for a different composition can be approximately obtained from those for 56Fe through

scaling with Z2/A [see Eq. (19)]. In Fig. 6, we compare our calculated total energy loss rates

for individual processes with the fitting formulae [10] widely used in stellar evolution models.

We show Q as a function of ρ/µe (between 10 and 1011 g cm−3) for T = 108, 109, 1010, and

1011 K, respectively. It can be seen that our results for bremsstrahlung neutrino emission

are in good agreement with the fitting formulae, which provides an indirect check on the

soundness of our energy-differential rates. The small differences come from the following

several factors. We have used a more recent and slightly different structure factor SΓ(|k|)
and a more general static dielectric function ǫ(|k|). We have also included the contributions

from positron-nucleus bremsstrahlung. In addition, the fitting formulae of Ref. [10] have

intrinsic uncertainties in reproducing the underlying numerical results.

In consideration of the total neutrino energy loss rates for pair annihilation, plasmon

decay, and photo-neutrino emission, we note that by design, the fitting formulae for a process

are generally only accurate in the region where this process dominates. This accounts for the

large discrepancies between our results and the fitting formulae in the regions where the latter

fail, especially for plasmon decay and photo-neutrino emission. However, when summed over

all thermal emission processes, our results are consistent with the fitting formulae within

5–10%. Our results are in good agreement with the more up-to-date studies [13, 20–23].

These and our calculations have used improved treatment of plasmon dispersion relations

and electrostatic screening for the relevant processes. The corresponding results are more

accurate and should be used instead of the fitting formulae when individual thermal emission

processes are of concern.

We define the domain of dominance for a process as the region in the (T, ρ/µe) space where
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FIG. 6. Comparison of energy loss rates Q as functions of ρ/µe at (a) T = 108, (b) 109, (c) 1010,

and (d) 1011 K for e± pair annihilation (“pair”, ©), plasmon decay (“plas”, △), photo-neutrino

emission (“phot”, �), and bremsstrahlung neutrino emission (“brem”, ♦). Solid curves are our

calculated results while dashed curves are from the fitting formulae of Ref. [10]. Note that e± pair

annihilation is highly suppressed at T = 108 K and the corresponding energy loss rate is not shown

in (a).

this process contributes at least 90% of the total neutrino energy loss rate summed over all

the thermal emission processes. These domains are shown in Fig. 7 based on our results

except for the recombination process, for which the fitting formulae [10] are used. The energy

loss rate for pair annihilation is very sensitive to temperature and density. It dominates when

the temperature is sufficiently high for producing e± pairs and the density is sufficiently low

that positrons are not suppressed by degeneracy. When electrons are strongly degenerate,

plasmon decay, photo-neutrino emission, and especially pair annihilation are suppressed. In

this case, bremsstrahlung neutrino emission becomes dominant. When this occurs, ionic

correlations are important and can reduce the energy loss rate by a factor of ∼ 2–10. We
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FIG. 7. Domain of dominance where a thermal neutrino emission process contributes at least

90% of the total energy loss rate. Our calculated rates are used for e± pair annihilation (“pair”),

plasmon decay (“plas”), photo-neutrino emission (“phot”), and bremsstrahlung neutrino emission

(“brem”) while the fitting formulae of Ref. [10] are used for the recombination process (“recom”).

An OCP composed of 56Fe is assumed for calculating the rate for bremsstrahlung neutrino emission.

Similarly to Figs. 2 and 3, also shown are the evolutionary track of the central temperature and

density for a 20M⊙ star, the curve for T = 0.3TF , and the contour for Γ = 250 for an OCP

composed of 56Fe.

note that plasmon decay dominates in two regions. The transverse decay modes play a key

role in the larger region while the longitudinal decay mode takes over in the much smaller

region.

V. DISCUSSION AND CONCLUSIONS

We have presented a detailed derivation of the energy-differential rate for neutrino emis-

sion from electron-nucleus bremsstrahlung (Sec. II), taking into account the effects of elec-

tron screening and ionic correlations. We have compared the energy-differential and the

net rates, as well as the average ν̄e and ν̄x energies, for this and other thermal neutrino

emission processes over a wide range of temperature and density (Sec. III). We have also

compared our updated energy loss rates for individual thermal neutrino emission processes

with the fitting formulae of Ref. [10] and determined the temperature and density domain

in which each process dominates (Sec. IV). We find that similar to plasmon decay and
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photo-neutrino emission, bremsstrahlung mostly produces sub-MeV neutrinos during the

pre-supernova evolution of massive stars. Our results on the neutrino energy loss rates are

in good agreement with previous studies.

As discussed by previous studies [12–17], neutrino emission during the pre-supernova

evolution of massive stars can provide a potential test of stellar models or at least give

advance warning for core-collapse supernovae. While neutrino emission from β± decay and

e± capture [24, 43] should be taken into account for a full study, we expect that ν̄e signals

from the thermal processes discussed here always dominate except for the last hour or so

prior to a supernova explosion. Figure 7 and Table I serve as approximate guides to the

relative importance of each thermal neutrino emission process during the pre-supernova

evolution of massive stars. With the largest Ēdet
ν̄ and R>

ν̄ , pair annihilation is always the

dominant source of pre-supernova ν̄e signals for massive stars during core C burning and

afterwards. For bremsstrahlung neutrino emission, we note that its domain of dominance

is far from the evolutionary track of the central temperature and density for a 20M⊙ star,

and therefore expect that it contributes only a small fraction of the ν̄e events. However,

this domain overlaps with the conditions encountered during the cooling of neutron stars

produced by core collapse of massive stars. We refer readers to Refs. [35, 44] for more

detailed discussion of bremsstrahlung neutrino emission relevant for neutron star cooling.

In general, significant thermal neutrino emission occurs throughout the hot and dense

interior of a massive star during core C burning and afterwards. A proper estimate of the

ν̄e signal from the pre-supernova evolution of the star requires a model that gives the radial

profiles of temperature, density, and composition as well as the corresponding time evolution.

We refer readers to Ref. [13] for a detailed study on the ν̄e signals from pair annihilation and

plasmon decay using models for three stars of 8.4, 12, and 15M⊙, respectively. We plan to

carry out a systematic study including more massive stars and taking into account neutrino

oscillations in the near future.
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Appendix A: Quantities in the effective squared matrix element

The quantities IBi (i = 1, 2, 3) in Eq. (18) for the effective squared matrix element |M|2eff
are defined as

IB1 =− 2

β1

(c1k
2 + 2c2c5 − 4c3c12) +

2

β2

[4(c3 − 4c5)c9 − c1k
2 − 2c2c5]−

k2 + 4c10
β2
1

(c1c3 + 8c26)

− k2 + 4c7
β2
2

[c1c3 + 8c26 + 4c5(2c5 − c3)] +
2

β1β2

{4c2c25 + 4c11[c3(2c5 − c1)− 8c26]

+ k2[c21 + 2c3c5 + c1(k
2 − 4m2

e − 4c6 + 2c7 + 4c8 + 4c9 + 2c10 − 4c12)

− 8c26 − 8m2
e(c8 + c9 − c12)]}+ c1

(

β2

β1

+
β1

β2

)

− 8c8, (A1)

IB2 =− 2m2
e

{

4c5

(

1

β1

+
1

β2

)

+
c1
β2
1

(k2 + 4c10) +
c1
β2
2

(k2 + 4c7)

− 2

β1β2

[k2(c1 + 4c8 + 4c9 − 4c12) + 4c25 − 4c1c11]

}

, (A2)

IB3 =− 4c1(c4 + 4c12)

β1

+
4c1
β2

(c4 − 4c9) +
2(k2 + 4c10)c1c3

β2
1

+
2c1(k

2 + 4c7)(c3 − 4c5)

β2
2

+
4c1
β1β2

[

4(c3 − 2c5)c11 + k2(−c3 + 2c5 + 2c7 − 2c10 + 4c9 + 4c12)
]

+ 2c1

(

β2

β1

− β1

β2

)

,

(A3)

where

c1 ≡ P 2 ≡ (p+ k − p′)2, c2 ≡ P 2 − 2m2
e, c3 ≡ P 2 + 4p′ · q,

c4 ≡ k2 + 2k · q, c5 ≡ k · q, c6 ≡ p′ · q,

c7 ≡ (p′ · ǫB)2, c8 ≡ (q · ǫB)2, c9 ≡ (p′ · ǫB)(q · ǫB),

c10 ≡ (p · ǫB)2, c11 ≡ (p · ǫB)(p′ · ǫB), c12 ≡ (p · ǫB)(q · ǫB). (A4)
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