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We examine the development and detectability of the m = 1 instability in the remnant of binary
neutron star mergers. The detection of the gravitational mode associated with the m = 1 degree
of freedom could potentially reveal details of the equation of state. We analyze the post-merger
epoch of simulations of both equal and non-equal mass neutron star mergers using three realistic,
microphysical equations of state and neutrino cooling. Our studies show such an instability develops
generically and within a short dynamical time to strengths that are comparable or stronger than the
m = 2 mode which is the strongest during the early post-merger stage. We estimate the signal to
noise ratio that might be obtained for the m = 1 mode and discuss the prospects for observing this
signal with available Earth-based detectors. Because the m = 1 occurs at roughly half the frequency
of the more powerful m = 2 signal and because it can potentially be long-lived, targeted searches
could be devised to observe it. We estimate that with constant amplitude direct detection of the
mode could occur up to a distance of roughly 14 Mpc whereas a search triggered by the inspiral
signal could extend this distance to roughly 100 Mpc.

I. INTRODUCTION

The era of gravitational wave astronomy has begun
with the spectacular detection of gravitational waves
from event GW150914 [1]. This detection not only es-
tablished that advanced interferometers can indeed de-
tect the tiny effect of gravitational waves reaching the
detectors, but it also demonstrated that data analysis us-
ing numerical relativity can extract physical parameters
of the underlying engine. Assuredly the various efforts
on the experimental hardware, data analysis, and source
modeling are now being pursued with even more ardor.

Although a black hole binary produced the first di-
rect detection of gravitational waves, the merger of two
neutron stars had long been a primary target for Ad-
vanced LIGO (aLIGO), and indeed a detection of a bi-
nary neutron star system is eagerly anticipated. One
reason for this excitement is that neutron stars represent
a very extreme state of matter not accessible in the labo-
ratory, and gravitational waves may reveal the equation
of state (EoS) of matter at such extreme densities.

To understand what these gravitational waves tell us
about the equation of state requires modeling the merger
of these neutron stars, and such an effort spans a few
techniques. A Post-Newtonian expansion of the two body
problem is appropriate for the early orbiting stage of the
merger while numerical relativity is needed for the near-
merger, merger and post-merger phases [2]. Near coales-
cence (prior to the merger), numerical relativity is being
used to enhance perturbative approaches (e.g. the ef-
fective one-body approach) in order to account for tidal
effects—that depend on the EoS—in a concise and ana-
lytic manner [3].

The effects of the EoS become most significant as the
stars approach each other and tidal forces grow. How-

ever, this regime is characterized by frequencies higher
than those of the inspiral, and current detectors lose sen-
sitivity for these increasing frequencies. Therefore, the
extraction of the EoS from gravitational waves alone can
be a subtle and difficult enterprise (e.g. [4, 5]).

Consequently, exploring the various pathways to ex-
tract physical information during the coalescence and
post-merger stages is critical. These pathways include
the search for gravitational wave features highly sensitive
to the EoS. In addition, combining the complementary
information provided by possible electromagnetic coun-
terparts [6–8] may greatly increase the information we
can extract from the gravitational wave signal alone.

One example of a gravitational wave feature that may
lead to better understanding of the EoS concerns the fre-
quency spectrum of the post-merger l = 2,m = 2 mode.
Several studies have found that this post-merger signal is
characterized by a peak frequency that is related to the
underlying EoS [6, 9–11].

Beyond this dominant mode, recent work has also
shown that a weaker but longer lived mode, the l =
2,m = 1 mode, develops in the post-merger epoch of
binary neutron star mergers. This possibility was first
described in Refs. [12, 13] using Newtonian gravity, and
more recently the growth of this mode has been found
within full, general relativity simulations [14–17].

Although initially weaker than the l = 2,m = 2, the
l = 2,m = 1 has a couple compensating effects working
for it. First, the m = 1 mode occurs at roughly half
the frequency of the dominant mode, and at this lower
frequency the noise level is reduced with respect to that
at higher frequencies[49]. Second, because the m = 1
mode is less radiative and because it has hydrodynamic
and magnetic instabilities helping support it, the mode
is generally less damped than the m = 2 mode, and its
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longer life yields more signal to detect. Furthermore,
both these characteristic m = 1 and m = 2 modes are
amenable to searches triggered by the strong inspiral de-
tection. Moreover, the 2:1 frequency ratio of these two
modes allows for an analysis of the correlation between
the frequencies that may improve detectability.

In this note, we go extend the studies provided in [15,
17] on the development and detectability prospects of the
m = 1 mode. In particular we illustrate the behavior of
this mode in the mergers of both equal and unequal mass
binaries with different realistic, microphysical equations
of state. We examine the effects of neutrino cooling and
changes to the EoS, and find that even when accounting
for the cooling due to neutrinos –which take away signifi-
cant from the resulting object– the m = 1 mode develops
and grows to relevant strengths to impact the character-
istics of the gravitational waves emitted by the system.
By varying the mass ratio, we estimate the strength of
this m = 1 signal, and conclude that, as one would ex-
pect, the m = 1 is much stronger for the unequal mass
cases in the early stages after-merger. We also estimate
the expected SNR and discuss detectability prospects.
In particular we argue that such mode can be targeted
following a triggered-search strategy. We summarize de-
tails of our implementation in section II, present results
in section III, and conclude in section IV.

II. NUMERICAL IMPLEMENTATION

The evolution equations for the spacetime and the fluid
are described in our previous paper [9], while full details
of our implementation are described in Ref. [18]. Unless
otherwise specified, we adopt geometrized units where
G = c = M� = 1, except for some particular results
which are reported more naturally in physical cgs units.

Einstein equations in the presence of both matter and
radiation are,

Gab = 8π (Tab +Rab) , (1)

where Tab is the stress energy tensor of a perfect fluid and
Rab is the contribution from the radiation field. Our stars
consist of a fluid described by the stress energy tensor

Tab = huaub + Pgab , (2)

where h is the fluid’s total enthalpy h ≡ ρ(1+ε)+P , and
{ρ, ε, Ye, ua, P} are the rest mass energy density, specific
internal energy, electron fraction (describing the relative
abundance of electrons compared to the total number of
baryons), four-velocity, and pressure of the fluid, respec-
tively.

To track the composition of the fluid and the emission
of neutrinos we employ a leakage scheme. In particular,
the equations of motion consist of the following conser-

vation laws

∇aT
a
b = Gb , (3)

∇a(Tabn
b) = 0 , (4)

∇a(Yeρu
a) = ρRY , (5)

where na is a timelike vector orthonormal to constant
time surfaces employed to express Einstein equations as
an initial value problem (e.g. [19]). The sources Ga (≡
−∇cRc

a) and RY correspond to the radiation four-force
density and lepton source, respectively, and these quan-
tities are computed within the leakage scheme. These
equations are conservation laws for the stress-energy ten-
sor, matter, and lepton number, respectively. Notice
that, in the absence of lepton source terms (RY = 0),
Eq. (5) provides a conservation law for leptons and is
similar to the familiar baryon conservation law, i.e., Ye
is a mass scalar.

As mentioned, full details of our implementation can
be found in Ref. [18], but a summary of our numer-
ical techniques is included for completeness. We em-
ploy finite difference techniques on a regular, Cartesian
grid to discretize the system. The geometric fields are
discretized with a fourth order accurate scheme that
satisfies summation by parts [20, 21], while a High-
Resolution Shock-Capturing method based on the HLLE
flux formulae with PPM reconstruction is used to dis-
cretize the hydrodynamical variables. The fluid equa-
tions are discretized with finite differences (rather than
finite volume) as prescribed for the third-order ENO
method [22, 23]. This simplifies coupling the fluid equa-
tions to the Einstein equations. The time evolution
of the resulting equations adopts a third order accu-
rate Runge-Kutta scheme [23, 24]. To provide sufficient
resolution efficiently, we employ adaptive mesh refine-
ment (AMR) via the HAD computational infrastructure.
This infrastructure provides distributed, Berger-Oliger
style AMR [25, 26] with full sub-cycling in time, as well
as an improved treatment of artificial boundaries [27].

Importantly, we study these systems in 3D without
imposing any symmetry condition that might suppress
certain dynamics. For example, enforcing reflection sym-
metry in the equal mass, non-spinning case would neces-
sarily exclude any odd m mode.

III. RESULTS: DENSITY BEHAVIOR &
GRAVITATIONAL WAVES

This note studies the post-merger stage of binary neu-
tron star systems that have been the focus of our recent
work [6, 9]. We extend these studies with the goal of ex-
amining more closely the development of an m = 1 mode
as a result of the merger of both equal and unequal mass
cases.

The systems we study are consistent with current as-
trophysical observations (see e.g. Ref. [28]). Here, we
consider binaries with the same total gravitational mass



3

M = 2.70M� but with different mass ratios, q ≡M1/M2,
ranging from q = 1 (the equal mass case) to q = 0.76.

We concentrate on the three realistic EoS previously
considered [50] in Refs. [6, 9]. These three EoS span a
range of stiffnesses, from the softest (smallest neutron
stars) SFHo [29], to the intermediate DD2 [30], and fi-
nally to the stiffest NL3 [30].

The physical parameters of the binaries and of our
grid setup are summarized in Table I. Notice that for
the total mass considered here, the hypermassive neutron
star (HMNS) resulting from the SFHo merger collapses
to a black hole roughly ≈ 8ms after merger. Thus the
associated SNR for the gravitational waves emitted after
merger for this case will likely be lower than the other
cases.

As discussed elsewhere (see e.g. Ref. [32] and refer-
ences cited therein), the merger of neutron stars involves
a violent collision in which the individual stars move at a
large fraction of the speed of light (v ≈ 0.3c). The newly
formed massive neutron star rotates differentially with
a primarily quadrupolar structure that produces grav-
itational waves in the l = 2,m = 2 mode. However,
the one-armed spiral instability can develop so that the
gravitational radiation includes an l = 2,m = 1 compo-
nent. The development of this mode is apparent in Fig. 1
which displays the strength of the two l = 2 modes (as
measured by the Newman-Penrose radiative scalar Ψ4)
with the DD2 EoS for the three mass ratios considered
here.

The one-armed instability leads to the rapid rise of the
m = 1 mode on a short time scale: . 1.5 ms for the un-
equal mass cases and . 3 ms for the equal mass case.
The equal mass case demonstrates a longer timescale as
a result of the intrinsic symmetry of non-spinning, zero-
eccentricity, equal mass mergers. Indeed, for the insta-
bility to occur in the equal mass case, a mechanism is
required to break the symmetry to allow for odd modes.
Such a mechanism is naturally provided by the Kevin-
Helmholtz instability that arises in the contact region
and in the associated turbulence [17, 33]; as well a type
of magnetic (Tayler) instability can induce an m = 1
perturbation [33, 34].

Naturally, as the mass ratio departs from equality the
m = 1 mode becomes stronger and saturates earlier. This
qualitative behavior generally holds among all three EoS,
as is apparent in Fig. 2 that presents both the m = 2 and
m = 1 modes for q = 0.85 for the three different EoS. In
all three cases, the m = 1 reaches its saturation value
roughly ≈ 1.5 ms after the stars come into contact.

This observed behavior is driven by the dynamics of
the newly formed massive neutron star. Its fate will de-
pend on the detailed structure of the object and, for ex-
ample, its degree of differential rotation and continued
susceptibility to instabilities. One useful avenue to begin
the analysis of the global structure of the resulting hyper-
massive star is to construct cylindrical profiles of the star
and decompose these profiles into Fourier amplitudes as
was computed in Ref. [12], for example.
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FIG. 1: The norm of a given mode (l = 2,m) of the grav-
itational radiation described by Ψ0

4 as a function of time
for different mass ratios with the DD2 EoS. Overall, the
(l = 2,m = 1) mode achieves saturation earlier for un-
equal mass than equal mass binaries. Notice that the m = 1
modes decay more slowly with time than the corresponding
(l = 2,m = 2) modes. Here, the merger time is chosen when
the stars first come into contact.
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FIG. 2: Same as Fig. 1 for q=0.85 with three different EoS
(SFHo, DD2, NL3). Although the qualitative behavior is sim-
ilar for all the cases, the strength of the signal is stronger for
the softest EoS. Additionally, the decay rate of the m = 1
mode has a mild dependence on the EoS though this obser-
vation might be affected by other physics effects—such as the
Tayler instability. Notice that the remnant with the SFHo
EoS collapses to a black hole roughly 8ms after merger.

As an illustration of the density behavior and its qual-
itative change through time, Fig. 3 shows three such pro-
files extracted from the binary neutron star evolution
with q = 0.85 using the DD2 EoS. These profiles are ex-
tracted in three annuli in the equatorial plane, each with
a width of 290 m and centered on radial distances of:
4.4 km (red curve), 7.4 km (black curve), and 10.3 km
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EoS q ν m
(1)
b ,m

(1)
g m

(2)
b ,m

(2)
g R(1) R(2) C(1) C(2) Ω0

[M�] [M�] [km] [km] [rad/s]
NL3 0.85 0.248 1.34, 1.25 1.60, 1.47 14.75 14.8 0.125 0.147 1777
DD2 1.0 0.250 1.49, 1.36 1.49, 1.36 13.22 13.22 0.152 0.152 1776
DD2 0.85 0.248 1.36, 1.29 1.62, 1.47 13.20 13.25 0.144 0.164 1775
DD2 0.76 0.245 1.27, 1.18 1.71, 1.54 13.16 13.25 0.132 0.172 1775
SFHo 0.85 0.248 1.37, 1.25 1.63, 1.47 11.95 11.85 0.154 0.183 1773

TABLE I: Summary of the binary neutron star systems considered in this work. The initial data were computed using the
Bin star solver from the Lorene package [31], with the assumption that the stars have an initial constant temperature of
T = 0.02 MeV and are in beta-equilibrium. All the binaries have a total mass MADM

0 = 2.7M� and start from an initial
separation of 45 km. The outer boundary is located at 750 km and the highest resolution covering both stars is ∆xmin = 230m.
The table displays the mass ratio of the binary q ≡M1/M2 and ν = M1M2/M

2 = q/(q + 1)2, the baryon (gravitational) mass

of each star m
(i)
b (m

(i)
g ), its circumferential radius R(i) and its compactness C(i) (i.e., when the stars are at infinite separation),

the initial orbital angular frequency Ω0.

(blue curve) at times of 2.0 and 16.2 ms after merger
in this system. The profiles use annuli that are evenly
spaced in radius and use 32 evenly spaced azimuthal
zones. A nearest cell algorithm is used to construct the
average mass density profile. At the later point in the
simulation, the remnant’s structure is clearly dominated
by a m = 1 mode as the density profiles are well-matched
by a single sine wave, though there is also power at higher
m values as well, particularly at larger radii. One can
also note that the maximum value in the profile shifts to
slightly smaller azimuthal angle at increasing radius—
indicative of the trailing, one armed spiral wave of a
m = 1 mode.

To help quantify this impression we perform a Fourier
decomposition across the equatorial density distribution.
We extract average density profiles in 10 evenly spaced
annuli ranging in distance from 0.8 km to 4.8 km from
the instantaneous center of mass with a width of 370 m
across 32 evenly spaced azimuthal zones. These profiles
are then transformed to extract complex amplitudes, Cm.
The time evolution of these Fourier coefficients shows
similar behavior across the 10 annuli and, for simplic-
ity, we plot only the coefficients for one annulus in the
middle of the set at a radius of 3.3 km in Fig. 4. The
coefficients are normalized by the maximum value of the
DC (m = 0) coefficient in the annulus over the course of
the simulation.

The middle panel of Fig. 4 shows Fourier coefficients
for the simulation with q = 0.85 initially. After merger,
the m = 1 begins to dominate, as already indicated in
the plot of the density profiles in Fig. 3. The m = 2
mode decays indicating that the hypermassive star does
not form a bar (again, confirming the profiles in Fig. 3)
while both the m = 3 and the eventually numerically
dominated m = 4 mode show similar decaying behavior
(at a slightly higher rate than the m = 2 mode). The
bottom panel shows the analysis for the q = 0.76 case,
which are similar to that for the q = 0.85 case. For the
symmetric binary, shown in the top plot of Fig. 4, the
m = 2 bar mode dominates the post-merger evolution for
≈ 15ms, though an m = 1 has comparable power at the

end of the simulation. This behavior is expected because
it takes time for the turbulence to break the symmetry
allowing the m = 1 to develop. Hence, at first contact,
the m = 1 is essentially zero. In contrast, an m = 1
component is already present at first contact due to the
asymmetry of the unequal mass case. Nevertheless, as
mentioned, after about a few (≈ 5) rotation periods of the
merged object the mode has saturated, and it overtakes
the m = 2 mode in roughly 20 rotation periods.

Interestingly, the frequency of the m = 1 gravitational
wave mode appears insensitive to the mass ratio, q, but is
dependent on the EoS. We obtain the m = 1 frequencies
from Fourier decompositions Ψ4 (as shown in Fig. 5 for
the DD2 case), and obtain fm1 ≈ 1.0, 1.25, 1.7 kHz for
NL3, DD2, and SFHo, respectively. Importantly these
frequencies are half that of the dominant m = 2 mode for
the same EoS (fpeak ≈ 2, 2.5, 3.3kHz) and therefore fall
in a higher sensitivity band, albeit with (initially) a lower
strain. Furthermore, the measured values for fm1 agree
with the rotational frequencies of the remnant densities.

Before examining the detectability, we comment on the
decay rates of the m = 1 mode. In particular, while
initially stronger than the m = 1 mode, the m = 2 de-
cays at a faster rate. We estimate the decay rate to
be ≈ t−4±0.5 for the m = 2 mode of |Ψ4| while for the
m = 1 mode ≈ t−1.5±1. These exponents depend mildly
on the mass ratio q, as apparent in Fig. 2. A precise
estimate of the rates is beyond the scope of this note be-
cause of their dependence on a variety of physical effects
such as EoS, magnetohydrodynamics (requiring very high
numerical resolution), and, depending on the lifetime of
the remnant, transport effects that might become sig-
nificant. Nevertheless, the m = 1 mode is clearly more
weakly damped than the m = 2, indicating the latter will
overtake it (see also the discussion in [15, 17]).

IV. DETECTABILITY

As described above, the m = 1 mode grows rapidly and
saturates with a mostly constant frequency and with an
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FIG. 3: The panels show three profiles of the average mass
density in the equatorial plane, extracted from annuli of width
290m centered on the origin at radii of 4.4km (red curve),
7.4km (black curve), and 10.3km (blue curve) from the q =
0.85 simulation with DD2 EoS. The density profiles ≈ 2ms
after merger (top panel) indicate a strong, m = 2 bar mode
modulation; at ≈ 16ms (bottom panel) on the other hand,
the density variations a are dominated by a single m = 1
mode. The eigenmode can be seen to have a trailing spiral
character as the peak in the profile shifts to slightly smaller
azimuth as the radius increases.

amplitude that decays slowly. For sufficiently massive
systems, this mode ends when a black hole forms. For
cases that do not promptly collapse, the lifetime can eas-
ily be T & 20 ms. A precise value for T depends on
the details of the system such as the total mass and the
particular EoS. Also important are the dynamics of the
remnant that could transport angular momentum out-
ward and reduce thermal pressure support via cooling.
Although an estimate of the neutrino cooling is consid-

FIG. 4: Fourier decomposition of rest mass density extracted
from an annulus at 3.3 km and 370 m wide about the in-
stantaneous center of mass from simulations of a symmetric
binary (top panel), a binary with mass ratio of q = 0.85
(middle panel) and q = 0.76 (bottom panel). These three
simulations were evolved with the DD2 EoS. The amplitude of
modes with m from 1 to 4 are shown normalized by the largest
value of the 0th component of the Fourier decomposition in
the annulus.

ered in these simulations with a leakage scheme, we are
not accounting for magnetic and radiation transport ef-
fects, which could potentially affect the m = 1 mode over
timescales of order ≈ 100 ms. Thus, in the following we
adopt a conservative baseline lifetime of T = 10 ms.

To estimate the SNR that such a mode would pro-
duce, we make use of the analysis described in Ref. [35].
The SNR ρ of a monochromatic gravitational wave with
strain h = |Ψ0

4|/(LM�ω
2) [recall, asymptotically Ψ4 =
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FIG. 5: Fourier transform of the Ψ0
4-modes (l = 2,m) shown

in Fig. 1 for the DD2 EoS. For this EoS, the dominant radia-
tive mode after merger is the (l = 2,m = 2) mode, peaking at
a frequency fpeak = 2.3−2.6 kHz. Notice that, in contrast, the
(l = 2,m = 1) mode peaks around fm1 ≈ fpeak/2 ≈ 1.3 kHz.
This peak becomes more prominent for small mass ratios.

Ψ0
4/r +O(r−2)], at a fixed gravitational wave frequency

f = ω/(2π) (from a source at a distance L) in a time
window [Ti, Tf ], can be estimated by

ρ2 ' 2

Sn(f)

∫ Tf

Ti

h2 dt . (6)

The noise strain of the detector is denoted by
√
Sn(f)

and given in units of
√

Hz−1.
In all our examined cases corresponding to the DD2

EoS, the frequencies fm1 of m = 1 modes agree with
those measured from the orbital rotation rates. Addition-
ally, we will assume a typical value |Ψ0

4m=1
| ≈ 5 × 10−5

as observed in our simulations. With the exception of
the SFHo case which collapses to a black hole roughly
8 ms after merger, the other cases result in a long-lived
remnant that we have evolved for at least 15 ms post-
merger (Ref. [36] has followed the equal-mass DD2 case
for ≈ 30 ms after merger).

Using Eq. 6 and assuming a constant strain, we arrive
at an estimate of the SNR for the m = 1 mode for a
source at a horizon distance L as,

ρm=1 ≈ 11×

[
6 × 10−24Hz−1/2√

Sn(fm1)

] [ |Ψ0
4m=1
|

5× 10−5

]
[

1.3kHz

fm1

]2 [
T

10ms

]1/2 [
10Mpc

L

]
(7)

where we have used for aLIGO
√
Sn(f = 1.3kHz) ≈

6 × 10−24Hz−1/2 (as per the zero-detuned, high laser
power (no signal-recycling mirror) noise curve estimated
in [37]).

Longer times will increase the SNR, and for scenar-
ios with constant strain, the SNR would increase as√
T/10ms. The evolutions of Ref. [17] suggested that

the strain can indeed be fairly constant for resolutions
equal or better than ∆x ≈ 222m (while they see de-
cay for ∆x = 295m). Our resolution, ∆x = 230m, is
comparable though it could be possible that the rates of
decay measured would decrease further with higher res-
olution. We caution however that for long-time scales
other physics will come into play—for example cooling
and angular momentum transfer—thus at this point it
is difficult to draw firm conclusions on timescales longer
than ≈ 20ms. At a conservative level, however, we can
employ the decay rate we observe here for the m = 1
mode, ∝ t−1.5, and estimate the SNR for t ∈ [3, 20] ms
as

ρm=1 ≈ 2×

[
6 × 10−24Hz−1/2√

Sn(fm1)

] [ |Ψ0
4m=1

(3ms)|
5× 10−5

]
[

1.3kHz

fm1

]2 [
10Mpc

L

]
. (8)

This value is certainly lower (at a given distance) than
the one assuming a constant magnitude for the mode (7)
but is nevertheless non-trivial.

As a figure of merit, we can compare the SNR of the
m = 1 mode to the m = 2 mode using the same assump-
tions. In particular, assuming the m = 1 and m = 2
modes emit at a constant frequency and with decay rates
given by ∝ {t−1.5, t−4} respectively, and also making use
of the fact that the noise curve of aLIGO grows approx-
imately linearly with increasing frequency. The ratio of
the corresponding SNRs in a time window [Ti, Tf ], results
in

ρm=1

ρm=2
=

√
Sn(2f0)√
Sn(f0)

|hm=1(Ti)|
|hm=2(Ti)|

√
14

4

√
(1− (Ti/Tf )2)

(1− (Ti/Tf )7)

≈ 13
|Ψ0

4m=1
(Ti)|

|Ψ0
4m=2

(Ti)|
. (9)

Therefore, if at t = Ti, the m = 1 mode strength of
Ψ0

4 is at least a thirteenth of the strength of the m = 2
mode, it will become more relevant than the m = 2 as a
contributor to the post-merger gravitational wave signal
(a condition that would be even less strict if the m = 1
mode decays at a slower rate).

The estimate obtained in Eq. 7 is not, at first sight,
encouraging for possible detection in a single event.
However, close binaries with a very long lived m = 1
mode would be the most promising for this task, and of
course future detectors and upgrades of current detectors
will naturally improve prospects for detecting this post-
merger signal. However, we argue here that approaching
the detection of the m = 1 mode using triggered search
strategies significantly enhances the prospects. The de-
tection of the inspiral signal from a distant neutron star
binary would provide timing estimates and physical pa-
rameters. In particular knowledge of the total mass, in
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turn, will inform whether a long lived remnant is prob-
able. This information would allow for the same sort of
aggressive data analysis and reduced detection thresholds
as occur in follow-ups of electromagnetic triggers [38–
40]. The inspiral would serve as the trigger for both the
post-merger m = 1 and m = 2 analysis, which can be
correlated, and this trigger would allow for a decreased
threshold in SNR for detection. In particular assuming
a detection threshold in SNR of ≈ 1, then Eq. 7 yields a

horizon distance as high as 100 Mpc
[√

T/10ms
]

(again,

assuming that the mode maintains a constant strain for
that time period).

The detection of both modes will provide information
about the EoS. The observation that the m = 1 mode
frequency is half that of the m = 2 mode means that
the peak frequencies of both modes encode information
about the EoS as has been demonstrated for the m = 2
modes in recent work [6, 41, 42]. For instance, Ref. [6]
finds a fit for this peak frequency

fpeak[kHz] = −1.61 + 2.96fc

[
2.7M�

M

]
[kHz] (10)

in terms of the “contact” frequency fc. This frequency
is strongly dependent on the EoS and is defined in terms

of the gravitational masses involved, m
(1)
g (Mg = m

(1)
g +

m
(2)
g ) and their compaction ratio Ci

fc =
1

πMg

(
m

(1)
g

MgC1
+

m
(2)
g

MgC2

)−3/2

. (11)

Data analysis can be directed to look for a correlated sig-
nal in these two modes that may improve the extraction
of the encoded EoS information.

V. CONCLUSIONS

The evolutions presented here, as well as those in
Refs. [15, 17], indicate that the one-armed spiral instabil-
ity develops generically in the merger of binary neutron
stars (that do not promptly collapse to a black hole). Our
analysis includes both (non spinning) equal and unequal
mass binaries described by realistic equations of state.
We find that this instability develops for a broad range
of EoS ranging from soft to stiff, though its strength is
weaker for stiff EoS than for soft ones. For the equal
mass cases, the instability is seeded by turbulence while
in the unequal mass cases the m = 1 mode is seeded
strongly from the onset because of the inherent asymme-
try of the system. In agreement with Refs. [15, 17] we
find that the mode grows quickly and saturates in just a
few rotational periods of the newly formed object. For

unequal mass mergers within . 14Mpc
[√

T/10ms
]
, the

strength of the mode is sufficient for a direct detection
(i.e. with SNR≥ 8) by aLIGO with planned sensitivi-
ties (in particular with the so-called “zero-detuned, high

laser power (no signal-recycling mirror)” configuration)
provided the mode stays roughly constant in strength.
If this mode decays as estimated in this work ∝ t−1.5,
the horizon distance for detection is reduced to ' 3Mpc
though this decay could be reduced in higher resolution
studies (see [17]).

The time for the m = 1 mode to reach saturation natu-
rally depends on the asymmetry of the merger which, for
non-spinning binary neutron stars, is determined by the
mass ratio of the binary. Even in equal mass, symmetric
encounters this time is observed to be at most 4 ms. Al-
though the strain of the m = 1 mode in all cases roughly
4 ms after merger is weaker than the dominant, m = 2
mode, its strain can be as large as ≈ 50% of the main
l = 2,m = 2 mode. Furthermore the ratio of strain in
the m = 1 to m = 2 modes grows with time and becomes
larger than unity after ≈ 20− 30ms (for systems that do
not collapse to a black hole within this timeframe). The
m = 1 mode also benefits from having a frequency half
that of the m = 2 mode where aLIGO has less noise (the
noise curve grows roughly quadratically in frequency in
this region frequency region). Because of the slower de-
cay time and smaller frequency, the SNRs of both modes
become roughly comparable and that of them = 1 should
dominate at late enough times.

We have also presented a more hopeful prospect for
detection than in Ref. [17]. Because gravitational waves
from the inspiral of a binary neutron star system would
be detectable by aLIGO/VIRGO at distances of a few
100s of megaparsecs, the search for the post-merger
m = 1, 2 modes would proceed as in a triggered-search.
In particular, because we have a good estimate both of
the mode frequencies and of their timescales, such an
analysis would be quite well targeted. A Bayesian anal-
ysis may be able to extract characteristic features from
the post-merger signal as long as differences of O(1) arise
from the assumption of various priors motivated by the
dynamics discussed here. Thus a targeted analysis may
significantly extend the reach of the modest distance as-
sumed in Eq. 7. Finally, the 2:1 connection of the peak
frequencies of these two modes with the EoS could enable
stacking different signals and enhance the possibility of
extracting these modes.

The detection of these modes would complement a de-
tection of the pre-merger inspiral, providing more infor-
mation about the EoS. As recent work has shown, the
post-merger remnant demonstrates a characteristic fre-
quency peak that is intimately related to the underlying
EoS [6, 41–45].

We have studied the m = 1 spiral arm instability that,
along with the m = 2 mode, encodes important infor-
mation about the post-merger remnant and its EoS. The
dynamics of the m = 1 mode are important for its ulti-
mate detection by both current and future detectors, and
it is therefore important to better understand the impact
of various effects including cooling, transport of angular
momentum, and magnetic instabilities. Further work on
these fronts is ongoing [46].



8

Acknowledgments

It is a pleasure to thank William East, Gabriela Gon-
zalez, Chad Hanna, Sascha Husa, Francisco Jimenez,
Vasileos Paschalidis, and Frans Pretorius for interesting
discussions as well as our collaborators Eric Hirschmann,
David Neilsen, and Marcelo Ponce. This work was sup-

ported by NSF grant PHY-1308621 (LIU), NASA’s ATP
program through grant NNX13AH01G, NSERC through
a Discovery Grant (to LL) and CIFAR (to LL). CP ac-
knowledges support from the Spanish Ministry of Edu-
cation and Science through a Ramon y Cajal grant and
from the Spanish Ministry of Economy and Competitive-
ness grant FPA2013-41042-P. Research at Perimeter In-
stitute is supported through Industry Canada and by the
Province of Ontario through the Ministry of Research &
Innovation. Computations were performed at XSEDE
and Scinet.

[1] Virgo, LIGO Scientific Collaboration, B. . Abbott
et al., “Observation of Gravitational Waves from a
Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6,
(2016) 061102, arXiv:1602.03837 [gr-qc].

[2] J. A. Faber and F. A. Rasio, “Binary Neutron Star
Mergers,” Living Rev. Rel. 15 (2012) 8,
arXiv:1204.3858 [gr-qc].

[3] T. Hinderer et al., “Effects of neutron-star dynamic
tides on gravitational waveforms within the
effective-one-body approach,” arXiv:1602.00599

[gr-qc].
[4] B. D. Lackey and L. Wade, “Reconstructing the

neutron-star equation of state with gravitational-wave
detectors from a realistic population of inspiralling
binary neutron stars,” Phys. Rev. D91 no. 4, (2015)
043002, arXiv:1410.8866 [gr-qc].

[5] M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li,
M. Tompitak, J. Veitch, S. Vitale, and C. V. D. Broeck,
“Constraining the neutron star equation of state with
gravitational wave signals from coalescing binary
neutron stars,” Phys. Rev. D92 no. 2, (2015) 023012,
arXiv:1503.05405 [gr-qc].

[6] L. Lehner, S. L. Liebling, C. Palenzuela, O. L.
Caballero, E. O’Connor, M. Anderson, and D. Neilsen,
“Unequal mass binary neutron star mergers and
multimessenger signals,” arXiv:1603.00501 [gr-qc].

[7] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata,
“Dynamical mass ejection from binary neutron star
mergers: Radiation-hydrodynamics study in general
relativity,” Phys. Rev. D91 no. 6, (2015) 064059,
arXiv:1502.06660 [astro-ph.HE].

[8] S. Rosswog, “The multi-messenger picture of compact
binary mergers,” Int. J. Mod. Phys. D24 no. 05, (2015)
1530012, arXiv:1501.02081 [astro-ph.HE].

[9] C. Palenzuela, S. L. Liebling, D. Neilsen, L. Lehner,
O. L. Caballero, E. O’Connor, and M. Anderson,
“Effects of the microphysical equation of state in the
mergers of magnetized neutron stars with neutrino
cooling,” Phys. Rev. D 92 no. 4, (Aug., 2015) 044045,
arXiv:1505.01607 [gr-qc].

[10] W. Kastaun and F. Galeazzi, “Properties of
hypermassive neutron stars formed in mergers of
spinning binaries,” Phys. Rev. D 91 no. 6, (Mar., 2015)
064027, arXiv:1411.7975 [gr-qc].

[11] F. Foucart, R. Haas, M. D. Duez, E. O’Connor, C. D.
Ott, L. Roberts, L. E. Kidder, J. Lippuner, H. P.
Pfeiffer, and M. A. Scheel, “Low mass binary neutron

star mergers : gravitational waves and neutrino
emission,” arXiv:1510.06398 [astro-ph.HE].

[12] S. Ou and J. Tohline, “Unexpected dynamical
instabilities in differentially rotating neutron stars,”
Astrophys. J. 651 (2006) 1068–1078,
arXiv:astro-ph/0604099 [astro-ph].

[13] G. Corvino, L. Rezzolla, S. Bernuzzi, R. De Pietri, and
B. Giacomazzo, “On the Shear Instability in
Relativistic Neutron Stars,” Class. Quant. Grav. 27
no. 11, (2010) 114104, arXiv:1001.5281 [gr-qc].

[14] M. Anderson, E. W. Hirschmann, L. Lehner, S. L.
Liebling, P. M. Motl, D. Neilsen, C. Palenzuela, and
J. E. Tohline, “Magnetized Neutron-Star Mergers and
Gravitational-Wave Signals,” Physical Review Letters
100 no. 19, (May, 2008) 191101, arXiv:0801.4387
[gr-qc].

[15] W. E. East, V. Paschalidis, F. Pretorius, and S. L.
Shapiro, “Relativistic Simulations of Eccentric Binary
Neutron Star Mergers: One-arm Spiral Instability and
Effects of Neutron Star Spin,” Phys. Rev. D93 no. 2,
(2016) 024011, arXiv:1511.01093 [astro-ph.HE].

[16] T. Dietrich, N. Moldenhauer, N. K. Johnson-McDaniel,
S. Bernuzzi, C. M. Markakis, B. Brgmann, and
W. Tichy, “Binary Neutron Stars with Generic Spin,
Eccentricity, Mass ratio, and Compactness -
Quasi-equilibrium Sequences and First Evolutions,”
Phys. Rev. D92 no. 12, (2015) 124007,
arXiv:1507.07100 [gr-qc].

[17] D. Radice, S. Bernuzzi, and C. D. Ott, “The
One-Armed Spiral Instability in Neutron Star Mergers
and its Detectability in Gravitational Waves,”
arXiv:1603.05726 [gr-qc].

[18] D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner,
E. OConnor, et al., “Magnetized Neutron Stars With
Realistic Equations of State and Neutrino Cooling,”
Phys.Rev. D89 no. 10, (2014) 104029, arXiv:1403.3680
[gr-qc].

[19] L. Lehner, “Numerical relativity: A Review,” Class.
Quant. Grav. 18 (2001) R25–R86,
arXiv:gr-qc/0106072 [gr-qc].

[20] G. Calabrese et al., “Novel finite-differencing techniques
for numerical relativity: Application to black hole
excision,” Class. Quant. Grav. 20 (2003) L245–L252,
gr-qc/0302072.

[21] G. Calabrese, L. Lehner, O. Reula, O. Sarbach, and
M. Tiglio, “Summation by parts and dissipation for
domains with excised regions,” Class. Quant. Grav. 21

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.12942/lrr-2012-8
http://arxiv.org/abs/1204.3858
http://arxiv.org/abs/1602.00599
http://arxiv.org/abs/1602.00599
http://dx.doi.org/10.1103/PhysRevD.91.043002
http://dx.doi.org/10.1103/PhysRevD.91.043002
http://arxiv.org/abs/1410.8866
http://dx.doi.org/10.1103/PhysRevD.92.023012
http://arxiv.org/abs/1503.05405
http://arxiv.org/abs/1603.00501
http://dx.doi.org/10.1103/PhysRevD.91.064059
http://arxiv.org/abs/1502.06660
http://dx.doi.org/10.1142/S0218271815300128
http://dx.doi.org/10.1142/S0218271815300128
http://arxiv.org/abs/1501.02081
http://dx.doi.org/10.1103/PhysRevD.92.044045
http://arxiv.org/abs/1505.01607
http://dx.doi.org/10.1103/PhysRevD.91.064027
http://dx.doi.org/10.1103/PhysRevD.91.064027
http://arxiv.org/abs/1411.7975
http://arxiv.org/abs/1510.06398
http://dx.doi.org/10.1086/507597
http://arxiv.org/abs/astro-ph/0604099
http://dx.doi.org/10.1088/0264-9381/27/11/114104
http://dx.doi.org/10.1088/0264-9381/27/11/114104
http://arxiv.org/abs/1001.5281
http://dx.doi.org/10.1103/PhysRevLett.100.191101
http://dx.doi.org/10.1103/PhysRevLett.100.191101
http://arxiv.org/abs/0801.4387
http://arxiv.org/abs/0801.4387
http://dx.doi.org/10.1103/PhysRevD.93.024011
http://dx.doi.org/10.1103/PhysRevD.93.024011
http://arxiv.org/abs/1511.01093
http://dx.doi.org/10.1103/PhysRevD.92.124007
http://arxiv.org/abs/1507.07100
http://arxiv.org/abs/1603.05726
http://dx.doi.org/10.1103/PhysRevD.89.104029
http://arxiv.org/abs/1403.3680
http://arxiv.org/abs/1403.3680
http://dx.doi.org/10.1088/0264-9381/18/17/202
http://dx.doi.org/10.1088/0264-9381/18/17/202
http://arxiv.org/abs/gr-qc/0106072
http://arxiv.org/abs/gr-qc/0302072


9

(2004) 5735–5758, gr-qc/0308007.
[22] C.-W. Shu and S. Osher, “Efficient implementation of

essentially non-oscillatory shock-capturing schemes,” J.
Comput. Phys. 77 no. 2, (1988) 439–471.

[23] M. Anderson, E. Hirschmann, S. L. Liebling, and
D. Neilsen, “Relativistic MHD with adaptive mesh
refinement,” Class. Quant. Grav. 23 (2006) 6503–6524,
gr-qc/0605102.

[24] M. Anderson et al., “Simulating binary neutron stars:
dynamics and gravitational waves,” Phys. Rev. D77
(2008) 024006, arXiv:0708.2720 [gr-qc].

[25] had home page http://had.liu.edu, 2010.
[26] S. L. Liebling, “The singularity threshold of the

nonlinear sigma model using 3d adaptive mesh
refinement,” Phys. Rev. D 66 (2002) 041703.

[27] L. Lehner, S. L. Liebling, and O. Reula, “AMR,
stability and higher accuracy,” Class. Quant. Grav. 23
(2006) S421–S446, arXiv:gr-qc/0510111.

[28] J. M. Lattimer, “The nuclear equation of state and
neutron star masses,” Annual Review
of Nuclear and Particle Science 62 no. 1, (2012) 485–515,
http://dx.doi.org/10.1146/annurev-nucl-102711-095018.
http:

//dx.doi.org/10.1146/annurev-nucl-102711-095018.
[29] A. W. Steiner, M. Hempel, and T. Fischer,

“Core-collapse Supernova Equations of State Based on
Neutron Star Observations,” ApJ 774 (Sept., 2013) 17,
arXiv:1207.2184 [astro-ph.SR].

[30] M. Hempel, T. Fischer, J. Schaffner-Bielich, and
M. Liebendörfer, “New Equations of State in
Simulations of Core-collapse Supernovae,” ApJ 748
(Mar., 2012) 70, arXiv:1108.0848 [astro-ph.HE].

[31] Lorene. home page http://www.lorene.obspm.fr/,
2010.

[32] L. Lehner and F. Pretorius, “Numerical Relativity and
Astrophysics,” Ann.Rev.Astron.Astrophys. 52 (2014)
661–694, arXiv:1405.4840 [astro-ph.HE].

[33] M. Anderson et al., “Magnetized Neutron Star Mergers
and Gravitational Wave Signals,” Phys. Rev. Lett. 100
(2008) 191101, arXiv:0801.4387 [gr-qc].

[34] H. C. Spruit, “Differential rotation and magnetic fields
in stellar interiors,” A&A 349 (Sept., 1999) 189–202,
astro-ph/9907138.

[35] P. Jaranowski, A. Krolak, and B. F. Schutz, “Data
analysis of gravitational - wave signals from spinning
neutron stars. 1. The Signal and its detection,” Phys.
Rev. D58 (1998) 063001, arXiv:gr-qc/9804014
[gr-qc].

[36] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, and
K. Taniguchi, “Dynamical mass ejection from the
merger of asymmetric binary neutron stars:
Radiation-hydrodynamics study in general relativity,”
arXiv:1603.01918 [astro-ph.HE].

[37] “Ligo document t0900288-v3.” https://dcc.ligo.org/

cgi-bin/DocDB/ShowDocument?docid=2974.
[38] VIRGO, LIGO Scientific Collaboration, B. Abbott

et al., “Astrophysically Triggered Searches for
Gravitational Waves: Status and Prospects,” Class.
Quant. Grav. 25 (2008) 114051, arXiv:0802.4320
[gr-qc].

[39] A. Dietz, N. Fotopoulos, L. Singer, and C. Cutler,
“Outlook for detection of GW inspirals by
GRB-triggered searches in the advanced detector era,”
Phys. Rev. D87 no. 6, (2013) 064033, arXiv:1210.3095
[gr-qc].

[40] VIRGO, LIGO Scientific Collaboration, J. Aasi
et al., “Search for long-lived gravitational-wave
transients coincident with long gamma-ray bursts,”
Phys. Rev. D88 no. 12, (2013) 122004,
arXiv:1309.6160 [astro-ph.HE].

[41] A. Bauswein and N. Stergioulas, “A unified picture of
the post-merger dynamics and gravitational wave
emission in neutron-star mergers,” ArXiv e-prints (Feb.,
2015) , arXiv:1502.03176 [astro-ph.SR].

[42] S. Bernuzzi, T. Dietrich, and A. Nagar, “Modeling the
Complete Gravitational Wave Spectrum of Neutron
Star Mergers,” Physical Review Letters 115 no. 9,
(Aug., 2015) 091101, arXiv:1504.01764 [gr-qc].

[43] T. Dietrich, S. Bernuzzi, M. Ujevic, and B. Brgmann,
“Numerical relativity simulations of neutron star
merger remnants using conservative mesh refinement,”
Phys. Rev. D91 no. 12, (2015) 124041,
arXiv:1504.01266 [gr-qc].

[44] A. Bauswein, N. Stergioulas, and H.-T. Janka,
“Exploring properties of high-density matter through
remnants of neutron-star mergers,” Eur. Phys. J. A52
no. 3, (2016) 56, arXiv:1508.05493 [astro-ph.HE].

[45] L. Rezzolla and K. Takami, “Gravitational-wave signal
from binary neutron stars: a systematic analysis of the
spectral properties,” arXiv:1604.00246 [gr-qc].

[46] E. W. Hirschmann, P. Motl, and et.al., “m = 1
instabilities in binary neutron star mergers,”.

[47] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and
J. Hessels, “Shapiro Delay Measurement of A Two Solar
Mass Neutron Star,” Nature 467 (2010) 1081–1083,
arXiv:1010.5788 [astro-ph.HE].

[48] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S.
Lynch, et al., “A Massive Pulsar in a Compact
Relativistic Binary,” Science 340 (2013) 6131,
arXiv:1304.6875 [astro-ph.HE].

[49] At frequencies beyond ≈kHz the detector noise
increases quadratically with frequency.

[50] These three EoS are capable of producing neutron stars
with masses of at least 2M�, and they are thus
consistent with current observations of NS
masses [47, 48].

http://arxiv.org/abs/gr-qc/0308007
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://arxiv.org/abs/gr-qc/0605102
http://dx.doi.org/10.1103/PhysRevD.77.024006
http://dx.doi.org/10.1103/PhysRevD.77.024006
http://arxiv.org/abs/0708.2720
http://had.liu.edu
http://arxiv.org/abs/gr-qc/0510111
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://arxiv.org/abs/http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://arxiv.org/abs/1207.2184
http://dx.doi.org/10.1088/0004-637X/748/1/70
http://dx.doi.org/10.1088/0004-637X/748/1/70
http://arxiv.org/abs/1108.0848
http://www.lorene.obspm.fr/
http://dx.doi.org/10.1146/annurev-astro-081913-040031
http://dx.doi.org/10.1146/annurev-astro-081913-040031
http://arxiv.org/abs/1405.4840
http://dx.doi.org/10.1103/PhysRevLett.100.191101
http://dx.doi.org/10.1103/PhysRevLett.100.191101
http://arxiv.org/abs/0801.4387
http://arxiv.org/abs/astro-ph/9907138
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://arxiv.org/abs/gr-qc/9804014
http://arxiv.org/abs/gr-qc/9804014
http://arxiv.org/abs/1603.01918
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
http://dx.doi.org/10.1088/0264-9381/25/11/114051
http://dx.doi.org/10.1088/0264-9381/25/11/114051
http://arxiv.org/abs/0802.4320
http://arxiv.org/abs/0802.4320
http://dx.doi.org/10.1103/PhysRevD.87.064033
http://arxiv.org/abs/1210.3095
http://arxiv.org/abs/1210.3095
http://dx.doi.org/10.1103/PhysRevD.88.122004
http://arxiv.org/abs/1309.6160
http://arxiv.org/abs/1502.03176
http://dx.doi.org/10.1103/PhysRevLett.115.091101
http://dx.doi.org/10.1103/PhysRevLett.115.091101
http://arxiv.org/abs/1504.01764
http://dx.doi.org/10.1103/PhysRevD.91.124041
http://arxiv.org/abs/1504.01266
http://dx.doi.org/10.1140/epja/i2016-16056-7
http://dx.doi.org/10.1140/epja/i2016-16056-7
http://arxiv.org/abs/1508.05493
http://arxiv.org/abs/1604.00246
http://dx.doi.org/10.1038/nature09466
http://arxiv.org/abs/1010.5788
http://dx.doi.org/10.1126/science.1233232
http://arxiv.org/abs/1304.6875

	Introduction
	Numerical Implementation
	Results: Density behavior & gravitational waves
	Detectability
	Conclusions
	Acknowledgments
	References

