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Using AdS/CFT correspondence, we find that a massless quark moving at the speed of light v = 1,
in arbitrary direction, through a strongly coupled N = 4 super Yang-Mills (SYM) vacuum at T = 0,
in the presence of strong magnetic field B, loses its energy at a rate linearly dependent on B, i.e.,
dE

dt
= −

√
λ

6π
B. We also show that a heavy quark of mass M 6= 0 moving at near the speed of light

v
2 = v

2

∗ = 1 − 4π
2
T

2

B ≃ 1, in arbitrary direction, through a strongly coupled N = 4 SYM plasma

at finite temperature T 6= 0, in the presence of strong magnetic field B ≫ T
2, loses its energy at a

rate linearly dependent on B, i.e., dE

dt
= −

√
λ

6π
Bv2∗ ≃ −

√
λ

6π
B. Moreover, we argue that, in the strong

magnetic field B ≫ T
2 (IR) regime, N = 4 SYM and adjoint QCD theories (when the adjoint QCD

theory has four flavors of Weyl fermions and is at its conformal IR fixed point λ = λ
∗) have the

same microscopic degrees of freedom (i.e., gluons and lowest Landau levels of Weyl fermions) even
though they have quite different microscopic degrees of freedom in the UV when we consider higher
Landau levels. Therefore, in the strong magnetic field B ≫ T

2 (IR) regime, the thermodynamic and
hydrodynamic properties of N = 4 SYM and adjoint QCD plasmas, as well as the rates of energy
loss of a quark moving through the plasmas, should be the same.

PACS numbers: 11.25.Tq

Introduction. The quark-gluon plasma (QGP) created
in ultra-relativistic heavy-ion collisions may be subject to
a strong magnetic field produced by many spectator nu-
cleons [1], and recently, the effect of this strong magnetic
field on several dynamical [2–8] and topological [11–13]
properties of QGP, including its thermalization [9, 10],
has been explored. In addition, the effect of the strong
magnetic field on the heavy quark and jet quenching pa-
rameter has been studied both at weak coupling using
QCD [14–16] and at strong coupling using N=4 super
Yang-Mills (SYM) theory [16] .
The field content of N=4 SYM theory, including their

U(1) ⊂ SU(4) R-symmetry charge, is as follows (all of
them are in adjoint representation of the gauge group
SU(Nc)), see for example [17]: there are four flavors of
Weyl fermions (1 Weyl fermion of charge 1 and 3 Weyl
fermions of charge − 1

3
); 3 complex scalar field of charge

2

3
; and 1 vector field of charge 0 (the gauge field). And,

the spectrum of single particle excitations of N=4 SYM
theory in the presence of a magnetic field pointing in the
z direction are given by relativistic Landau levels which
are the following [17]: for a charge qφ scalar field

En =
√

|qφB|(2n+ 1) + p2z, n = 0, 1, 2, ... ; (1)

for a charge qψ Weyl fermion (with sz = ± 1

2
)

En =

√

2|qψB|(n+
1

2
− sz) + p2z, n = 0, 1, 2, ... . (2)

From (1) and (2) it is clear that in the lowest Landau level
(LLL) with zero energy (at vanishing momentum pz) we
only have Weyl fermions but no scalars. Hence, in the
strong magnetic field B ≫ T 2 regime the whole dynamics
of N = 4 SYM theory is entirely dominated by the lowest

Landau levels (LLLs) of Weyl fermions with four flavors
(in the adjoint representation) since the scalar particles
(and higher Landau levels of Weyl fermions) are inte-
grated out in this regime resulting in a (1+1)-dimensional
low energy effective field theory of LLLs and the gauge
field.
In contrast, the field content of adjoint QCD with four

flavors, including their U(1) ⊂ SU(4) flavor-symmetry
charge, is as follows (all of them are in adjoint represen-
tation of the gauge group SU(Nc)), see for example [18]:
there are four flavors of Weyl fermions (1 Weyl fermion of
charge 1 and 3 Weyl fermions of charge− 1

3
); and 1 vector

field of charge 0 (the gauge field). And, the spectrum of
single particle excitations of adjoint QCD in the presence
of a magnetic field pointing in the z direction are given
by the relativistic Landau levels which for a charge qψ
Weyl fermion (with sz = ± 1

2
) are given by

En =

√

2|qψB|(n+
1

2
− sz) + p2z, n = 0, 1, 2, ... . (3)

Hence, in the strong magnetic field B ≫ T 2 regime the
whole dynamics of adjoint QCD is entirely dominated
by the lowest Landau levels (LLLs) of Weyl fermions
with four flavors (in the adjoint representation) since the
higher Landau levels of Weyl fermions are integrated out
in this regime resulting in a (1+1)-dimensional low en-
ergy effective field theory of LLLs and the gauge field.
Note that the beta function for adjoint QCD with four
flavors is given by [18], see also [19, 20],

β = µ
∂

∂µ
λ(µ) ≡ −1

2

λ2

(2π)2
+

5

4

λ3

(2π)4
, (4)

which has vanishing beta function or IR fixed point at
g2YMNc ≡ λ = λ∗ = 8

5
π2. Since, the beta function of
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N=4 SYM vanishes for any ’t Hooft coupling λ, we can
claim that

N = 4 SYM in strong magnetic field B ≫ T 2 at λ = λ∗

≡ adjoint QCD with four flavors in strong magnetic
field B ≫ T 2 at λ = λ∗,

where λ∗ is defined as the coupling at which the beta
function of adjoint QCD with four flavors vanishes. Note
that in this article whenever we refer to adjoint QCD we
are specifically referring to the adjoint QCD with four
flavors and at its conformal IR fixed point λ = λ∗.
Due to the above equivalence, using the AdS/CFT cor-

respondence in order to study the effect of the strong
magnetic field B ≫ T 2 on a strongly coupled N=4 SYM
plasma or vacuum is particularly interesting, since the re-
sults found for N = 4 SYM (at strong coupling and large
Nc limit) also apply for adjoint QCD (at strong coupling
and large Nc limit). Therefore, we can conclude that the
entropy density [17]

s =
1

3
√
3
N2

c BT , (5)

conductivity [21]

σ‖ =
1

32
√
3π3

B
T

, (6)

shear viscosity to entropy density ratio [22]

η‖

s
= π

T 2

B , (7)

and Chern-Simons diffusion rate [23]

Γ =
λ2

384
√
3π5

BT 2 , (8)

of N = 4 SYM plasma, in the strong magnetic field
B ≫ T 2 regime, are also the entropy density, conductiv-
ity, shear viscosity to entropy density ratio, and Chern-
Simons diffusion rate of adjoint QCD plasma in strong
magnetic field B ≫ T 2 at λ = λ∗.
It would be very interesting to check the above claim

numerically using the lattice adjoint QCD [41] in strong
magnetic field B ≫ T 2 regime (for lattice QCD in mag-
netic field see [2, 42]) which would also be a nice nu-
merical verification of the AdS/CFT correspondence in a
set up where supersymmetry is totally broken unlike the
previous numerical tests of the AdS/CFT correspondence
which rely on supersymmetry [43].
Energy and momentum loss. It is well known that

a quark moving at a constant velocity v, for example,
through a strongly coupled N=4 SYM vacuum, doesn’t
loss its energy, even though it does in a plasma at finite
temperature T . The rates of energy and momentum loss
of a heavy quark moving at constant velocity v through
a strongly coupled N=4 SYM plasma, with no magnetic
field, were first computed in [24, 25] using the AdS/CFT

correspondence [33–35]. And, the rates of energy and
momentum loss of an accelerating quark moving through
a strongly coupled N=4 SYM vacuum, with no magnetic
field, was found in [26–28], see also [29–32].
In this article, using the AdS/CFT correspondence, we

show that in the presence of a strong magnetic field B,
even a nonaccelerating quark moving at a constant ve-
locity v, through a strongly coupled N=4 SYM vacuum
at T = 0, loses its energy at a rate linearly dependent on
B.
We will study the rates of energy and momentum loss

of a heavy quark of massM moving with velocity v, in ar-
bitrary direction, through a strongly magnetized plasma
in the strong coupling regime. The effect of the magnetic
field directly on the heavy quark moving through a non-
magnetized plasma (ignoring the effect of the magnetic
field on the plasma) was studied in [37, 38]. In this article,
we rather ignore the effect of the magnetic field B directly
on the heavy quark of relativistic mass γM ≫

√
B, where

the Lorentz factor γ = 1√
1−v2 , and only consider the ef-

fect of the strong magnetic field B ≫ T 2 on the plasma.
In other words, we will work on the more physical limit
γM ≫

√
B ≫ T .

Specifically, we will study the rates of energy and mo-
mentum loss of a heavy quark of mass M moving at con-
stant velocity v through a strongly coupled N = 4 SYM
plasma in the presence of strong magnetic field B ≫ T 2

using its 5-dimensional gravity dual.
The 5-dimensional background metric in the presence

of strong magnetic field B ≫ T 2 is given by [17],

ds2 = gMNdxMdxN =
R2

u2

(

−f(u)dt2 + dz2
)

+ R2B(dx2 + dy2) +
R2

u2f(u)
du2 , (9)

where f(u) = 1− u2

u2

h

, the horizon corresponds to u = uh,

the boundary to u = 0, the Hawking temperature T of
the BTZ black hole is T = 1

2πuh

, we identify R = R√
3

as the radius of the AdS3 spacetime or BTZ black hole,
and B =

√
3eB =

√
3Fxy as the physical magnetic field

at the boundary. Also, note that (9) is valid only near
the horizon, i.e., in the regime u ≫ u0 = 1√

B . And,

for an arbitrary strength of B, the metric numerically
interpolates between the AdS3 spacetime or BTZ black
hole (9) near the horizon (IR) and AdS5 spacetime near
the boundary (UV)[17].
We will further rewrite the metric (9) as

ds2 =
R2

u2

(

−F dt2 + dz2 +H(dx2 + dy2) +
du2

F
)

, (10)

where F = f(u) = 1 − u2

u2

h

, and H = u2B, so that, it

resembles the anisotropic metric used in [39], which we
will follow closely in the following derivation of the energy
and momentum loses of a heavy quark.
On the gravity side the rates of energy and momentum

loss of a heavy quark are described by a string propagat-
ing in the background (10) governed by the equation of
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motion for the string which is derived from the Nambu-
Goto action

S = − 1

2πα′

∫

dτdσ
√

−det hab =

∫

dτdσ L , (11)

where hab = gMN∂aX
M (τ, σ)∂bX

N(τ, σ) is the induced
worldsheet metric. In the following expressions, we set
R2/2πα′ =

√
λ/6π to one, and reinstate it at the end.

From the action (11), we determine the spacetime mo-
mentum flow ΠM along the string to be

ΠM =
∂L

∂(∂σXM )
. (12)

Since, we have rotational symmetry in the xy-
directions, we can set y = 0. Then, identifying (t, u) =
(τ, σ) and considering a string embedding of the form

x(t, u) →
(

vt+ x(u)
)

cosϕ , (13)

z(t, u) →
(

vt+ z(u)
)

sinϕ , (14)

which corresponds to a quark moving with velocity v
in the xz-plane at an angle ϕ with the x-axis, the La-
grangian takes the form

L = − 1

u2
√
F

[

F + sin2 ϕ (F2z′2 − v2)

+ H cos2 ϕ
[

F2x′2 − v2 − Fv2(z′ − x′)2 sin2 ϕ
]

]1/2

,(15)

and, the rates at which energy and momentum flow from
the boundary to the horizon along the string become

−Πt =
1

Lu4
Fv
[

x′ sin2 ϕ+Hz′ cos2 ϕ
]

,

Πx =
1

Lu4
H
[

F x′ + v2(z′ − x′) sin2 ϕ
]

cosϕ ,

Πz =
1

Lu4

[

F z′ +Hv2(x′ − z′) cos2 ϕ
]

sinϕ , (16)

where ′ denotes differentiation with respect to u. Note
that

−Πt = Πx v cosϕ+Πz v sinϕ = ~Π · ~v . (17)

Moreover, from the equation of motion ∂uΠM = 0
(which is valid only when the end of the string or the
heavy quark is nonaccelerating), we find that ΠM is
a constant independent of u or the mass of the quark

M =
√
λ

2π

(

1

u − 1

uc

)

[25] where u is the radial location
at which the end of the string is attached to, say, a D7
brane. And, uc is the radius of the worldsheet horizon
with uc = uh for v = 0, and constrained by u ≤ uc
which is determined by requiring the time-time compo-
nent of the worldsheet metric to always be negative or
zero. Therefore, we are free to fix M to any value as long
as it satisfies the bound

√
λ
√
B ≫ M ≫

√
λT which is

the result of the geometrical bound u0 ≪ u ≪ uh, on
the gravity side, and the physical requirement that the
mass of the heavy quarkM must be much larger than the
temperature T of the plasma, i.e., M ≫

√
λT or u ≪ uh,

so that the heavy quark can be considered a legitimate
external probe of the plasma.
In addition, we should note that, since requiring the

time-time component of the worldsheet metric at T = 0
and B = 0 (for the pure AdS5 bulk metric) to always be
negative or zero would result in the constraint 1−v2 ≥ 0,
we could conclude that the u = uc or M = 0 limit must
be accompanied by the v = 1 limit. So, in the vacuum
at T = 0, the bound on M becomes

√
λ
√
B ≫ M ≥ 0,

hence we are free to set the mass of the quark M = 0, if
we would like to, as long as we also set its velocity v = 1.
In order to find the background solution of the string,

we invert the relations (16) to find

x′ = ± v

F
√
H

Nx√
NzNx −D

, z′ = ± Hv

F
√
H

Nz√
NzNx −D

,

(18)
where

Nx = −Πx(F secϕ−Hv2 cosϕ) + ΠzHv2 sinϕ , (19)

Nz = −Πz(F cscϕ− v2 sinϕ) + Πxv
2 cosϕ , (20)

D =
F cscϕ secϕ

u4

[

ΠzΠxu
4 −Hv2 cosϕ sinϕ

]

×
[

F − v2
(

H cos2 ϕ+ sin2 ϕ
)]

. (21)

Since, F (H) is monotonically decreasing (increasing)
from the boundary to the horizon, the last factor in
square brackets in (21) is positive at the boundary and
negative at the horizon. Therefore, there exists a critical
value uc in between such that

Fc − v2
(

Hc cos
2 ϕ+ sin2 ϕ

)

= 0 , (22)

where Hc = H(uc), and Fc = F(uc). Note that at u =
uc, D = 0, and

NzNx|uc
= −v4 (HcΠz cosϕ−Πx sinϕ)

2
, (23)

is negative unless the momenta are related through

Πz
Πx

=
tanϕ

Hc
, (24)

in which case it vanishes.
Then, requiring the first square bracket in (21) also

vanishes at u = uc, and using (24), we find

Πx = Hc
v cosϕ

u2
c

, Πz =
v sinϕ

u2
c

. (25)

Therefore, the drag force or the rate of momentum loss

of a heavy quark, defined as ~Fdrag = d~p
dt ≡ (−Πx,−Πz)

is (after reinstating the factor R2/2πα′ =
√
λ/6π)

~Fdrag = −
√
λ

6π

v

u2
c

(Hc cosϕ, sinϕ) , (26)
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which is exactly Eq. 3.22 in [39], up to an overall minus
sign, once we exchange the x and z components of the
drag force.
Solving (22) for uc, we find

u2

c =
1

B

(

1− v2 sin2 ϕ
4π2T 2

B + v2 cos2 ϕ

)

, (27)

which can be used in (26), to find

~Fdrag = −
√
λBv
6π

(

cosϕ, sinϕ

(

4π2T 2

B + v2 cos2 ϕ

1− v2 sin2 ϕ

))

.

(28)
Note that (28), exactly reduces to Eq. 3.113 and Eq. 3.95
of [16], by the current author, Li, and Yee, when ϕ = 0
(which corresponds to a heavy quark moving in the x-
direction or perpendicular to the magnetic field) and ϕ =
π/2 (which corresponds to a heavy quark moving in the
z-direction or parallel to the magnetic field), respectively.
In the vacuum at T = 0, the rate of momentum loss

d~p
dt (28) reduces to

d~p

dt
= −

√
λBv
6π

(

cosϕ, sinϕ

(

v2 cos2 ϕ

1− v2 sin2 ϕ

))

, (29)

which for v = 1 (and M = 0) becomes

d~p

dt
= −

√
λB
6π

(

cosϕ, sinϕ
)

. (30)

Therefore, the rate of energy loss dE
dt = Πt =

d~p
dt · ~v, for

a massless quark moving at the speed of light v = 1 in
N=4 SYM vacuum at T = 0, is

dE

dt
= −

√
λB
6π

. (31)

Similarly, for T 6= 0 but B ≫ T 2 and v2 = v2∗ =

1− 4π2T 2

B , the drag force (28) reduces to

~Fdrag =
d~p

dt
= −

√
λBv∗
6π

(

cosϕ, sinϕ
)

= −
√
λB
6π

~v∗ .

(32)

Therefore, the rate of energy loss dE
dt = Πt = ~Fdrag · ~v,

for a heavy quark of mass M moving at near the speed

of light v2 = v2∗ = 1 − 4π2T 2

B ≃ 1 in N=4 SYM plasma

at T ≪
√
B, becomes

dE

dt
= −

√
λB
6π

v2∗ ≃ −
√
λB
6π

. (33)

Summary. We have found that a massless quark mov-
ing at the speed of light v = 1, in arbitrary direction,
through a strongly coupled and magnetized N=4 SYM
vacuum at T = 0 loses its energy at a rate linearly de-
pendent on B (31)

dE

dt
= −

√
λ

6π
B . (34)

We have also found that a heavy quark moving at near
the speed of light v ≃ 1, in arbitrary direction, through
a strongly coupled and magnetized N=4 SYM plasma at
T 6= 0 loses its energy at a rate linearly dependent on B
(33)

dE

dt
≃ −

√
λ

6π
B . (35)

We should also note that the results found in this ar-
ticle for N = 4 SYM (34) and (35) are also the results
one would find for adjoint QCD with four flavors and at
IR fixed point λ = λ∗.
From the phenomenological point of view the results

found in this article (34) and (35) are also very interest-
ing since knowing the rate of energy loss in the presence
of a strong magnetic field B is crucial for a complete
understanding and numerical simulations of the energy
loss mechanisms of the hard probes of the quark-gluon
plasma (QGP) produced in heavy ion collisions.
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