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We prove that the polynomial form of the scattering equations is a Macaulay H-basis. We demon-
strate that this H-basis facilitates integrand reduction and global residue computations in a way
very similar to using a Gröbner basis, but circumvents the heavy computation of the latter. As
an example, we apply the H-basis to prove the conjecture that the dual basis of the polynomial
scattering equations must contain one constant term.

I. INTRODUCTION

The Cachazo, He and Yuan (CHY) formulation [1–5] of
the perturbative S-matrix relies on a collection of ratio-
nal maps {fa} from the space of massless kinematic con-
figurations to the moduli spaceM0,n of Riemann spheres

with n marked points za ∈ CP1 associated with each
of the external particles. Particularly, the set S of the
(n− 3)! solutions to simultaneous constraints,

fa(z, k) =
∑
b6=a

ka · kb
za − zb

= 0 , ∀a ∈ A = {1, 2, . . . , n} .

(1)

dubbed as the scattering equations, provides a very in-
triguing basis for decomposing massless scattering pro-
cesses in generic quantum field theories. The external
particles have momenta ka and polarizations ǫa. Scatter-
ing amplitudes in arbitrary dimension are expressed as a
multidimensional integral of a certain rational function
on M0,n [1–5]. At the heart of the formalism lies the
principle that the integration is localized on the support
of the scattering equations. We write amplitudes as

Atree
n ({ka, ǫa}) =

∫
dΩCHYI({za}, {ka, ǫa}) , (2)

where dΩCHY is the integration measure,

dΩCHY ≡ dnz

vol SL(2,C)

∏
a

′
δ(fa) , (3)

and I is referred to as the CHY integrand. The latter is
a rational function of the marked points za and dΩCHY

is constructed from the fa’s. The philosophy is that
for a given theory in consideration, for example Yang-
Mills theory, there exists a compact integrand I such
that Eq. (2) reproduces the correct S-matrix.
In order to briefly explain the notation in Eq. (3), we

remark that SL(2,C) invariance implies that imposition
of merely any (n− 3) of the scattering equations suffices
to restrict the solution to Eq. (1). Evidently,

∏
a

′
δ(fa) ≡ zijzjkzki

∏
a∈A\{i,j,k}

δ(fa) , (4)

where the labels i, j, k specify the arbitrary choice of the
the three extraneous scattering equations to be disre-
garded. Throughout this paper zab ≡ za − zb. Moreover,
the SL(2,C) redundancy is explicitly quotiented out by
fixing the values of, say, zr, zs and zt.
For the purpose of investigating aspects of the CHY

formalism via algebraic geometry, it is essential to inter-
pret Eq. (2) as a multivariate global residue with respect
to the polynomial form of the scattering equations de-
rived by Dolan and Goddard [6]. Let hm be the multi-
linear homogeneous polynomial of degree m defined by

hm =
1

m!

∑
a1,a2,...,am∈A′

ai 6=aj

σa1a2···am
za1za2 · · · zam

, (5)

where, in our notation, we take A′ = {1, . . . , n− 2} and
σa1a2···am

≡ (ka1+· · ·+kam
+kn)

2. Then Eqs. (1) subject
to the partial gauge fixing zn−1 → 0 and zn → ∞ are
equivalent to the polynomial equations,

hm = 0 , 1 ≤ m ≤ n− 3 . (6)

In terms of the hm’s, Eq. (2) can be rewritten as a (n−3)-
fold integral over a contour O encircling all points in S,
with the replacements I → Ĩ and dΩCHY → dΩ̃CHY,

Ĩ ≡ I
∏
a∈A

(za − za+1)
2 , (7)

dΩ̃CHY ≡ z1
zn−2

n−3∏
m=1

1

hm
(8)

×
∏

1≤a<b≤n−2

(za − zb)

n−3∏
a=1

zadza+1

(za − za+1)2
.

The CHY literature is by now fairly extensive. We
suggest a partial list [6–15] of recent developments. The
loop-level generalization is addressed in ref. [16–23]. Al-
though Eqs. (1) look very simple, it is a formidable task
to solve them to actually compute amplitudes. This
problem has received considerable attention recently, and
it is now clear that the explicit solutions can be bypassed
completely. We mention the integration rules [24–28] and
various other approaches [29–32]. See also refs. [33, 34]
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for related progress. In ref. [35] two of the present authors
proposed an algebraic resolution offered by the Bezoutian
matrix method. We will revisit this part later.
The main result of this paper is that the polynomial

scattering equations (5) (strictly speaking, the polyno-
mials, not the equations) automatically form an H-basis
for the zero-dimensional ideal I = 〈h1, . . . , hn−3〉.

II. H AND G(RÖBNER) BASES

We consider the ring R = K[z1, . . . , zn] of polynomials
in n variables z1, . . . , zn over a field K. Typically, K = C

or K = Q. Here we follow refs. [40, 41].
Let Pd be the subset of all polynomials of degree d or

less, and Sd be the subset of homogeneous polynomials
of degree d. We have the direct sum decomposition,

Pd =

d⊕
i=0

Sd . (9)

Consider an ideal I generated by polynomials
f1, . . . , fk, I = 〈f1, . . . , fk〉. So for any f ∈ I,

f =
k∑

i=1

qifi , qi ∈ R . (10)

In practice, it is much easier to carry out polynomial
reduction if

k
max
i=1

deg(qifi) = deg f , (11)

since the quotients qi’s degrees are under control. How-
ever, the condition (11) in general may not be satisfied
for any set of generators for I. Hence F. Macaulay [42]
defined the H-basis of an ideal:

Definition 1. We say that {f1, . . . , fk} ⊂ I is an H-

basis of an ideal I ⊆ R, if ∀f ∈ I, ∃q1, . . . , qk ∈ R such

that f =
∑k

i=1 qifi, and

k
max
i=1

deg(qifi) = deg f . (12)

By this definition, the condition of being an H-basis is
equivalent to that Pd ∩ I is generated as

Pd ∩ I = spanK{afi} , ∀a ∈ R , deg a ≤ d− deg fi .
(13)

For any polynomial f ∈ R, define the initial form of
f , in(f), as the homogeneous part of f , with the degree
deg f . The condition of being an H-basis can be further
reformulated as [40],

〈in(I)〉 = 〈in(f1), . . . , in(fk)〉 , (14)

where in(I) is the collection of initial forms of all poly-
nomials in I.
When the number of generators equals the number of

variables, there is a simple way to check if the generator
set is an H-basis [40, 41]:

Theorem 2. {f1, . . . , fk} is an H-basis for the ideal

I = 〈f1, . . . , fk〉, provided that (0, . . . , 0) is the only si-

multaneous zero of the initial forms in(f1), . . . , in(fk).

With an H-basis, many problems in commutative al-
gebra can be translated to linear algebra problems by
Eq. (13). We remark that the H-basis, in many aspects,
resembles the Gröbner basis (G-basis). They both rely
on the order of monomials. An H-basis sorts monomials
by the degree, while a G-basis sorts monomials by a to-
tal monomial order ≻. The definition of a G-basis can be
rephrased in a similar form of Def. 1: {g1, . . . , gk} ⊂ I is
a G-basis of an ideal I ⊆ R with respect to ≻, if ∀f ∈ I,

∃q1, . . . , qk ∈ R such that f =
∑k

i=1 qigi, and

k
max
i=1

LT(qigi) = LT(f) , (15)

where LT stands for the highest monomial with respect
to ≻, and “max” and “=” are to be understood in the
context of this monomial order.
The G-basis concept can be considered as a refined

version of theH-basis, since roughly speaking, it converts
commutative algebra problems to one-dimensional linear
algebra problems. On the other hand, in many cases, like
the high-point scattering equations, the computation to
obtain a G-basis is heavy. Furthermore, for symmetric
ideals, the G-basis introduces an artificial order between
the variables which explicitly breaks the symmetry.

III. THE POLYNOMIAL FORM OF THE
SCATTERING EQUATIONS IS AN H-BASIS

We are now ready to prove our principal result.

Theorem 3. The polynomial scattering equations hm,

1 ≤ m ≤ n− 3, form an H-basis.

Proof. We show that Z(J) ≡ Z(〈in(h1), . . . , in(hn−3)〉),
the zero locus of the initial forms of the polynomial scat-
tering equations, consists of only the point (0, . . . , 0), af-
ter which the result follows from Theorem 2. Note that
since our field of interest K = C is algebraically closed,
Z(J) = Z(

√
J), so it suffices to consider the radical ideal√

J ⊃ J . From inspection of Eq. (5), after applying the
gauge fixing z1 → 1, we have

in(hm) =
1

m!

∑
a1,...,am∈A′′

ai 6=aj

σa1···am
za1 · · · zam

, (16)

where A′′ = {2, . . . , n− 2}. By iteratively considering

z2 · · · zn−2−i in(hn−3−i) ∈
√
J (17)

for i = 0, . . . , n − 4, we find that, after each step,
z22 · · · z2n−2−i ∈

√
J and hence z2 · · · zn−2−i ∈

√
J . As

the same works for permutations of the indices, we real-
ize that z2, . . . , zn−2 ∈

√
J and thus

Z(
√
J) = Z(〈z2, . . . , zn−2〉) = {(0, . . . , 0)} . (18)
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IV. INTEGRAND REDUCTION

One of the crucial features of an H-basis is that we
can perform polynomial reduction towards it, in a similar
way as the G-basis. Here we do not need the reduction
algorithm for a generic H-basis [40], but only the case of
our interest, i.e. the polynomial scattering equations as
anH-basis. The goal is to reduce an arbitrary polynomial
to a polynomial with degree low enough.
Let {f1, . . . fn} be an H-basis in n variables z1, . . . , zn

and let I = 〈f1, . . . , fn〉, so in(I) is the ideal of the initial
forms. As Z(in(I)) = {(0, . . . , 0)}, by Hilbert’s Nullstel-
lensatz [45], there exists a (minimal) positive integer d∗

such that

Sd ⊂ in(I), ∀d > d∗ . (19)

Now we estimate d∗, referred to as the critical degree, for
the scattering equations:

Theorem 4. For the n-point scattering equations, define
d∗ = (n− 3)(n− 4)/2. Then Sd ⊂ in(I), ∀d > d∗.

Proof. Homogeneity of the initial forms implies that
R/〈in(I)〉 =

⊕∞
i=0 Ad is a graded algebra. Then,

dimK Ad = 0 , if d >
k∑

i=1

deg fi − n , (20)

when V (in(I)) = {(0, . . . , 0)} [46]. The theorem follows
immediately from the degree counting of the scattering
equations.

The upshot of the above discussion is that we can
reduce any desired polynomial with degree larger than
d∗ = (n− 3)(n− 4)/2 to a polynomial with degree equal
or less than d∗ towards an H-basis. The algorithm is re-
cursive: given a polynomial f with deg f = d > d∗, since
in(f) ∈ 〈in(I)〉,

in(f) =
n−3∑
i=1

q
(d)
i in(fi) , (21)

where deg q
(d)
i = d−deg fi. Since the degrees are confined

by virtue of the H-basis, the q
(d)
i ’s can be obtained by

just solving a finite system of linear equations. Define

f̃ = f −
n−3∑
i=1

q
(d)
i fi . (22)

By construction, f̃ is polynomial with degree less than
d, because we subtracted off the leading part. Repeat at
most d−d∗ times and collect the intermediate coefficients,

f =

n−3∑
i=1

qifi + r , (23)

where r, the remainder, is a polynomial with degree less
than or equal to d∗ = (n − 3)(n − 4)/2. The reduction
result r is not unique, however, different results only dif-
fer by polynomials in I, hence will give the same residue,
in the following computations.

V. GLOBAL RESIDUES AND THE BEZOUTIAN

The H-basis property of the polynomial scattering
equations allows us to prove an exciting empirical obser-
vation [35]: the CHY formula produces a global residue
proportional to merely a single monomial coefficient, and
the constant of proportionality is universal.
For the benefit of the reader, we recall the notion of a

global residue for polynomials. We refer to the text books
[43, 44] and related applications [35] (see also refs. [36–
39]). An individual (local) residue may require algebraic

extensions such as
√
2. On the contrary, a global residue

is a manifestly rational quantity of the monomial co-
efficients. Let I = 〈f1, . . . , fn〉 be a zero-dimensional
polynomial ideal, so R/I is a finite-dimensional C-linear
space. The global residue is a linear map R/I → C that
computes the total sum of local residues,

Res{f1,...,fn}(N) ≡
∑

ξi∈Z(I)

Res{f1,...,fn},ξi(N) . (24)

Keep in mind that the residue only depends on the equiv-
alence class [N ] of N in R/I. We can make connection
with the CHY formalism by noting that

N(z) ≡ z2
zn−1

∏
2≤a<b≤n−1

(za − zb)
n−2∏
a=2

za
(za − za+1)2

× Ĩ ,

(25)

and therefore, Eq. (2) equals Res {h1,...,hn−3}(N). In par-
ticular, if N is not a polynomial, but a rational function
N = N1/N2 and N2 is nonvanishing on Z(I), then [35]

Res{f1,...,fn}(N1/N2) ≡ Res{f1,...,fn}(N1G2) . (26)

Here, G2 is the polynomial inverse of N2 modulo I.
Efficient algebraic evaluation of global residues without

computing the individual residues is facilitated by the
following theorem [43].

Theorem 5 (Global Duality). 〈•, •〉 : R/I ⊗ R/I → C

defined by

〈N1, N2〉 ≡ Res(N1 ·N2) (27)

is a nondegenerate inner product.

Let {ei} be a basis for R/I. The strength of this theo-
rem is that it requires the existence of a dual basis {∆i}
in R/I, defined by the orthonormality conditions,

〈ei,∆j〉 = δij . (28)

Indeed, if we decompose [N ] =
∑

i λiei and 1 =
∑

i µi∆i

with λi, µi ∈ C, a tractable expression emerges,

Res {f1,...,fn}(N) =
∑
i,j

λiµj〈ei,∆j〉 =
∑
i

λiµi . (29)
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The dual and canonical bases are obtained algorithmi-
cally by means of the Gröbner basis method and the Be-
zoutian matrix [35]. This method boils down the problem
to taking linear combinations of monomial coefficients of
the numerator in question. Henceforth we will restrict
attention to a special case. If we randomly write down
a zero-dimensional ideal, none of the entries of the dual
basis may be constant. But if ∆1 is a scalar, the decom-
position of unity over the dual basis becomes trivial and
the global residue (29) truncates to a single term,

Res{f1,...,fn}(N) = λ1/∆1 . (30)

We will momentarily show that an H-basis gives rise to
this particular result. Our starting point is the Euler-
Jacobi vanishing theorem.

Theorem 6 (Euler-Jacobi). Suppose I = 〈f1, . . . , fn〉 is
a zero-dimensional ideal whose generators form an H-

basis. Then, for any N ∈ R,

Res{f1,...,fn}(N) = 0 , if degN < d∗ , (31)

where d∗ ≡
∑n

i=1 deg fi − n is the critical degree.

Accordingly, for the n-point tree-level polynomial scat-
tering equations, if the degree of the numerator is strictly
less than d∗ = (n − 3)(n − 4)/2, the global residue van-
ishes identically. This observation leads us the following
theorem and corollary.

Theorem 7. Let I = 〈h1, . . . , hn−3〉 be the ideal gener-

ated by the polynomial scattering equations. The canoni-

cal linear basis for R/I must contain a monomial of de-

gree at least d∗.

Proof. If not, then all monomials in the canonical linear
basis have degree strictly less than d∗. By Euler-Jacobi’s
theorem, 〈1,m〉 = 0, for every monomial m in the canon-
ical basis. This is a contradiction of the non-degenerate
property of the inner product.

Corollary 7.1. Let I = 〈h1, . . . , hn−3〉 be the ideal gen-

erated by the polynomial scattering equations. Then, the

dual basis of R/I must contain a constant.

Proof. The kth row of the (n − 3) × (n − 3) Bezoutian
matrix B associated with the hm’s has degree k − 1, cf.
ref. [35]. Ergo we have the bound deg(detB) ≤ d∗. The
rest follows immediately from Theorem 7.

We have thus confirmed that the global residue with
respect to an H-basis of any polynomial N ∈ R is always
dictated entirely by the leading term of the Gröbner ba-
sis normal form of N . More specifically, Corollary 7.1
implies that

Res{h1,...,hn−3}(N) = [N ]zd∗

n−1
/∆1 , (32)

where the subscript indicates that only a single coefficient
is extracted.

VI. GLOBAL RESIDUES AND H-BASIS

Alternatively, besides the Bezoutian matrix and
Gröbner basis approach, we can also use the H-basis to
calculate global residues with respect to the scattering
equations for polynomial numerators. Given a degree d
polynomial N , if d > d∗ = (n − 3)(n − 4)/2, using the
integrand reduction algorithm,

N =
n−3∑
i=1

qihi + Ñ , (33)

where Ñ is a polynomial with degree at most d∗. From
the preceding H-basis discussion,

Res{h1,...,hn−3}(N) = Res{h1,...,hn−3}(in(Ñ)) , (34)

and in(N) consists of monomials with degree d∗. From
the proper map theorem [41] for H-bases,

Res{h1,...,hn−3}(N) = Res{in(h1),...,in(hn−3)}(in(Ñ)) .
(35)

Note that the in(hi)’s have only one common zero,
namely at (0, . . . , 0). Hence we just need to evaluate
the residue at one point. Furthermore from the H-basis
graded algebra [46],

dimC Sd∗ − dimC(Sd∗ ∩ 〈in(I)〉) = 1 . (36)

Consequently, if a degree-d∗ monomial’s residue is ob-
tained and nonzero, all other degree-d∗ monomial’s
residues are obtained from linear relations. Such a
residue can be found using the transformation law from
algebraic geometry.

Proposition 8. For the n-point scattering equations in

polynomial form, with the gauge fixing z1 → 1, zn−1 → 0
and zn → ∞,

Res{h1,...,hn−3}(z3z
2
4 . . . z

n−4
n−2) =

(−1)(n−3)(n−4)/2

∏n−2
j=2 σj,j+1,...,n−2

.

(37)

Proof. Since the polynomial scattering equations form an
H-basis, in(hi) ∈ 〈z2, . . . , zn−2〉, 1 ≤ i ≤ n− 3. That is,

in(hi) =

n−2∑
j=2

aijzj . (38)

Choosing the matrix A = (aij) to be upper triangular,
the determinant becomes,

detA = (−1)
(n−3)(n−4)

2 z3z
2
4 . . . z

n−4
n−2

n−2∏
j=2

σj,j+1,...,n−2 .

(39)
Hence, Eq. (37) follows from the transformation law [43].



5

Using this straightforward approach, we are able to get
the residue of any polynomial numerator in analytic form
using the H-basis. For example, for n = 8 we analytically
find the residues of all 1001 monomials with the critical
degree, in 3 minutes, on a laptop with 2.5 GHz Intel Core
i7 processor and 16 GB RAM.

VII. CONCLUSION

We have uncovered and proved that the polynomial
form of the scattering equations is an H-basis. We have
explored and emphasized several compelling implications
of this observation, and briefly compared with the pre-
sumably more familiar Gröbner basis, which can be com-
putationally expensive to obtain.
In particular, the H-basis enables us to perform reduc-

tions of high-degree multivariate polynomials without the
need for a Gröbner basis. More concretely, in connection
with the scattering equations we have shown that any
monomial with degree greater than d∗ = (n−3)(n−4)/2
can always be reduced to a polynomial of degree at most
d∗, modulo the H-basis. This procedure only involves
linear algebra. The H-basis greatly enhances our ability
to compute global residues and thus calculate scattering
amplitudes in the CHY framework.

In this direction we have also proved a conjecture re-
cently made in ref. [35], namely that the dual basis asso-
ciated with the polynomial scattering equations always
contains a constant and that hence any global residue is
just one rational monomial coefficient, multiplied by a
universal factor. In a forthcoming paper [47] we expect
to tabulate analytic expressions for many of the CHY
global residues, also at loop level.
It remains intriguing to gain a complete insight into

the algebraic geometry underlying the whole CHY for-
malism. We anticipate that the explicit identification of
the polynomial scattering equations as an H-basis paves
the way for new exciting advances in this direction.
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