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1 Introduction

One of the important phenomenon in MSSM is the observation that the CP even-CP odd
Higgs bosons can mix in the presence of an explicit CP violation [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13]. Such mixings give rise to effects which are observable at colliders. All of the
early analyses, however, were done in the era before the experimental observation of the light
Higgs boson at 125 GeV by ATLAS [14] and by CMS [15]. Tt turns out that the Higgs boson
mass constraint is rather stringent and severely limits the parameter space of supersymmetry
models. In this work we consider the effects of including a vectorlike multiplet in an MSSM
extension. In this case the loop correction to the Higgs boson arises from two contributions:
one from the MSSM sector and the other from the vectorlike multiplet. It is shown that
such an inclusion leads to a significant enhancement of the CP even-CP odd mixing. The
explicit CP violation in the Higgs sector can be in conformity with the current limits on
the EDM of quarks and the leptons due to either mass suppression [16, 17] in the sfermion
sector or via the cancellation mechanism [18, 19, 20, 18, 21, 22]. The neutral Higgs boson
mixing is of great import since the observation of such a mixing would be a direct indication
of the existence of a new source of CP violation beyond what is observed in the Kaon and
the B-meson system (for a review see [23]).

The outline of the rest of the paper is as follows: In section 2 we describe the model
and define notation. Inclusion of a vectorlike generation allowing for mixings between the
vectorlike and the regular generations increases the dimensionality of the quark mass matrices
from three to five and increases the dimensionality of the squark mass squared matrices from
six to ten. In section 3 the effect of the vectorlike generation on the induced CP violation
in the Higgs sector as a consequence of CP violation in the matter sector including the
vectorlike matter is discussed. In section 4 a detailed computation of the corrections to the
Higgs boson mass matrices is given. A numerical analysis of the mixing of the CP even-CP
odd sector is discussed in section 5. A discussion of the constraints arising from the EDM of
the quarks is also given in this section. Conclusions are given in section 6. Further details of

the squark mass squared matrices including the vectorlike squarks are given in the Appendix.

2 The Model and Notation

Here we briefly describe the model and further details are given in the appendix. The model

we consider is an extension of MSSM with an additional vectorlike multiplet. Like MSSM



the vectorlike extension is free of anomalies and vectorlike multiplets appear in a variety
of settings which include grand unified models, string and D brane models [24, 25, 26, 27].
Several analyses have recently appeared which utilize vectorlike multiplets [28, 29, 30, 31,
32, 33, 34, 35, 36]

Here we focus on the quark sector where the vectorlike multiplet consists of a fourth
generation of quarks and their mirror quarks. Thus the quark sector of the extended MSSM

model is given by

_ tiL 1 . c * 2 . c * 1 . s
qiL = ( sz) ~ (37 2a 6) ) tiL ~ (3 a17 _§> J biL ~ (3 a17 g y 1= 17 2a 374 (1)
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The numbers in the braces show the properties under SU(3)c x SU(2), x U(1)y where the
first two entries label the representations for SU(3)¢ and SU(2);, and the last one gives
the value of the hypercharge normalized so that Q = T35 + Y. We allow the mixing of
the vectorlike generation with the first three generations. Specifically we will focus on the
mixings of the mirrors in the vectorlike generation with the first three generations. Here we

display some relevant features. In the up quark sector we choose a basis as follows

§h=(r Tr tr ur tag), § =(tr To cr up ta) . (3)
and we write the mass term so that

—L" = E5(M)éL + hee., (4)

The superpotential of the theory (as shown in the appendix) leads to the up-quark mass

matrix M, which is given by

Yiva/V2  hs 0 0 0
—hs ?J2U1/\/§ —hy —hy —hg
M, = 0 Ry yhua/V2 0 0 (5)
0 hs 0 ?JﬁjUz/\/§ 0
0 hs 0 0 yhva/V2
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This mass matrix is not hermitian and a bi-unitary transformation is needed to diagonalize
it. Thus one has

DY (M) DY = diag(mu, , May, Mg, My, Moy )- (6)

Under the bi-unitary transformations the basis vectors transform so that

tr Ulp, tr, Uy,
Tr U p 17, Uz,

= D% = DY 7
CR — R U3R ) cr - L usy, . ( )
uR u4R uL U'4L
tar Usp, Lar, Us,

A similar analysis can be carried out for the down quarks. Here we choose the basis set

as
k= (br Br 5g dr big), n, = (br Bp sL dp bs) . (8)
In this basis the down quark mass terms are given by
—L5, = Mp(Ma)nz +hec., (9)

where the superpotential of the theory leads to the down-quark mass matrix M, of the

following form

no/vV2  ha 0 0 0
hs ?/évz/ﬁ hy hy hg
My = 0 ) y301/\/§ 0 0 : (10)
0 R} 0 yav1 / V2 0
0 h7 0 0 ysv1/V2

In general hs, hy, hs, b, By, hi, b5, b, b, he, hr, hs can be complex and we define their phases
so that

he = [hile™, by = [hle™s, by = |hi]e™ (11)

The squark sector of the model contains a variety of terms including F -type, D-type, soft
as well as mixings terms involving squarks and mirror squarks. The details of these contri-

butions to squark mass square matrices are discussed in the appendix.



3 Computation of correction to the Higgs boson mass

In MSSM the Higgs sector at the one loop level is described by the scalar potential
V(Hy, Hy) = Vo + AV
In our analysis we use the renormalization group improved effective potential where

Vo = m3|Hy|> + m3|Ho|? + (m3H,.Hy + H.C.)

2 2 2, 2 2 2 _ 2
+ + -

+(g2 gl)|H1’4+ (92 gl)|H2|4—g—2‘H1.H2|2—|— (92 gl)|H1|2’H2’2 (12)
8 8 2 4

where mi = m¥;, + |u[?,  m3 =mi, + |pu|*>, m3 = |uB| and mp,, and B are the soft

SUSY breaking parameters, and AV is the one loop correction to the effective potential and
is given by
1 M?(H,, H. 3
= M*(H,, Hy) _ 2)) (13)
6472 Q? 2
where Str = >, Ci(2J; + 1)(—1)*" where the sum runs over all particles with spin J; and
C;(2J; + 1) counts the degrees of freedom of the particle i, and @ is the running scale. In

AV Str(M*(H,, Hy)(log

the evaluation of AV one should include the contributions of all of the fields that enter
in MSSM. This includes the Standard Model fields and their superpartners, the sfermions,
the higgsinos and the gauginos. The one loop corrections to the effective potential make
significant contributions to the minimization conditions.

It is well known that the presence of CP violating effect in the one loop effective potential
induce CP violating phase in the Higgs VEV through the minimization of the effective
potential. One can parametrize this effect by the CP phase 6y where

() = (Iézzg) e (\/%(Uz +H<;Z + i%)) (15)

The non-vanishing of the phase 65 can be seen by looking at the minimization of the ef-
fective potential. For the present case with the inclusion of CP violating effects the variations
with respect to the fields ¢1, ¢o, 91, ¥y give the following
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2 2
1 (aaAgbv) = m? + 93 ‘;‘91 (U% — U%) + mg tan 3 cos 0y (16)
1
2 2
1 (88A¢V) = m% _ 9 48'91 (v% — v%) + mgcotﬁ cos Oz (17)
2
1 0AV 2 1 O0AV
U_l( a¢2 )0—m331H6H_U—( adjl )0 (18)

where the subscript 0 means that the quantities are evaluated at the point ¢ = ¢ = 11 =
ey = 0.

The masses M to be included in the AV analysis are the masses of three MSSM quark
and their squark partners along with the masses of the generations in the vectorlike sector

of the theory. In this case the phase 0y is determined by
mj3 sin 0y = ﬂhtluHAt\Sln’thl( u17M2)+ 5%’#“14 | siny, fi (Mg, M)
+—/3hclullf4 [ sine fi(Mz,, Mz,) + —5h4t|/~tl|A4t| sin ya f1(Mz,, M3,,)
g Brlill Al sinyr (M2, M2,) + B l| Asl sim fu (M2, M)

) 1 )
+§5hd|ﬂ| | Agl sin Vdfl(M§77 Mi) + §5h5 | Ag] sin %fl(Md%Sa MC%G)

1 ) 1 .
+§5h4b|u\|f44b|Sln74bf1(M2 M3 )+§5hB|M||AB|SanBfl(MiaMi) (19)

dio
where
fi(z,y) = =2 + log( y)+ y+x10gy
’ Q? T X
3h3
/th - 167]'27 /yqzeu—i_aAq (20)
To construct the mass squared matrix of the Higgs scalars we need to compute the quantities
0*V
M2 = (—— 21
ab ( aq)aaq)b )0 ( )
where ®, (a=1-4) are defined by
{q)a} = {¢1a ¢27 ¢17 7702} (22>

and as already specified the subscript 0 means that we set ¢; = ¢ = 1)1 = 15 = 0 after the

evaluation of the mass matrix. The tree and loop contributions to M? are given by
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M2 = MO + AME, (23)

where M ZEO) are the contributions at the tree level and AM? are the loop contributions

where

OM?OM?*  M? 0?M? M?
log— + M? ! 24

32 PS50, a0, e M 56,00,/ :07 (24)

where e=2.718. Computation of the 4 x 4 Higgs mass matrix in the basis of Eq.(22) gives

Str(

M%C%) + MI%S% + Au —(M% + M3)8505 + Alg Algsg Algcg
—(M3Z + M3)spcs + A1a Mzsh + M3ch + Aoy AVEER AURYSE
Al?)Sﬂ AQgSﬁ (Mi + Agg)S% (Mi + Ag3)8[305
Ajzcp Agzcp (M3 + Ass)sgeg (M3 + Ass)c

(25)
where (cg, sg) = (cos 3,sin ). In the above the explicit () dependence has been absorbed in
m? which is given by

9 1

1 1
my = m[—mg cos Oy + —ﬁht\u|\At|cos%f1(M2 M2 ) + éﬁhu’HHAu’ COS’yufl(MZ M2 )

u? ur?

1
+5 th\ul\A | cos Ye 1 (M Mg,) + 5 Bnacl el Auel cos yau fr (Mg, Mz,

1
by Burlill x| cos e (M2, M2) + 2 Bl Ay cos i (M2, M2)

1 1
+§5hd’MHAd| cosyafr(Mj, M3 ) + 55n. pl|As| cos ys fr (M3, M3)

1 1
+5Bnas 1| Ao cos vanfr(M5, M3 ) + 5Pnslul|Ap| cos vefi(M3, M3 ))(26)

The first term in the second brace on the right hand side of the above equation is the tree
term, while the rest ten terms are coming from the three generations of MSSM (six terms)
and four terms from the vectorlike multiplet. One may reduce the 4 x 4 matrix of the Higgs

matrix by introducing a new basis {¢1, ¢2, ¥1p, ap} where

Y p = sin By + cos B1)y
top = — cos 311 + sin B1)y (27)

In this basis the field ¥sp decouples from the other three fields as a Goldstone field with

a zero mass eigen value. The Higgs mass squared matrix of the remaining three fields are
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given by

M%C% + MiS% + An —(M% + Mi)SIgCB + Alg Alg
MIQJiggs = —(Mg -+ Mg)Sﬁc/g -+ A12 M%S% -+ M%C% -+ AQQ 2A23 (28)
Az Ags (M3 + Agzs)

4 Computation of Corrections A;; to the Higgs boson
mass squared matrix

We consider the exchange contribution from the quarks/mirror quarks and from the squarks/mirror

squarks in the susy standard model enriched with the vectorlike generation.

10
'y 1 M: 3 m2 3
AV(U,'LL, d7 d) = 6472 ( GMga(log Q; — 5) — 12 E mg(log—q — _>>
1

= q:’lL,C,t,t4,T

1 10 4 Mc% 3 4 m2 3
o q
+647r2 g 60 (log o 5) —12 E m,(log o 5) (29)

a=1 q=d,s,b,bs,B
Note that in the supersymmetric limit, quark masses would be equal to the squark masses
and the loop corrections vanish.

Using the above loop corrections we can calculate the corrections to the different Higgs
mass squared elements as

Aij = Ajg, + Dija, (30)

where

Aijg, = Dyji + Dije + Do + Dyji, + Dy
Ajjg, = Dyjp + Dijs + A+ Ayp, + Ay (31)

ijbg



For the up quarks/squarks we have the contributions

(1Ag] co57, — |l cot B’
o ey M M)

(|Aq| - |/~L| cot 3 cos '7q)2
(M3 — MZ)?

Ajg = —Qﬁhqm2|ﬂ|2

Agog = —2Bngmi;| Agl?

fQ(Mgﬂ Mfi) +

Mg, Mg, (|Aq] = || cot B cos 7,) 2

2ﬁhqm2 log(Té) -+ 4ﬁhqmz\Aq| q (Mfi - Mg]) q log<M5;)
(|44 cos vy — |l cot B) M,
Ajgg = _25hqm2|:u’ 1 (M?.q_ M?,) log<M?,> +
(| Aq| cos g — |p| cot B)(|Ag| — [p] cot B cosv,)

2thm2’ﬂ|’AQ‘ ! ! (Mg _ M% )2 . fQ(MgzﬂMfi)

_ 2012 . (|p]cot B —|A,| cos ) 2 2
A131} - _Qthmqylw ‘Aq, S g Sinﬁ(M;i_ _ ng)Q fQ(Maiv Mf&j)

(|Ag| — ] cot B cos,)
sin B(MZ, — MZ )

Dozg = —2Bngmi|ul| g sin v fo(MZ, MZ)

2

sin B(MZ — MZ) Og(ng)
me|ul*| Ag)? sin? 5,
sin® B(MZ — MZ )

Aszg = =28,

f2(Mﬁ2i7 M'gj)

(32)

where (Zm]) - (1a3> for q=t, (Zvj) = (778) for q=1u, (Za.]) = (576) for q =, (17]) = (97 10)

for ¢ = t4 and

y+x Yy
lo

y—x x

fo(z,y) = =2+

(33)



For the mirror ¢ = T" the contribution is given by

(|Ar| — |p| tan 3 cos yr)?
(Mg, — Mz,)?

A= _26hTm2T|AT|2 f2(M§2, Mfi) +

M2 M2 Ar| — |p| tan G cosyr) :
28 og(~ 2184+ 4 Az 4T S B
Ug Uy Ug
(|Ar| cosyr — |p| tan 3)?
Dooi = —2Brmiz|ul® (M2 — M2 )2 f2(M§2a M7124)
o g
(|Ar|cosyp — |p|tanB) . M2
) Uy Ug

(1 Az cosyr — || tan 8) (| Ag| — | tan B cos 17)
(M2, — MZ,)?
(A7 = [pa] tan 8 cos yr)

2By rm ||| Ar| fa(M3,, M)

uz’

2 2 . 2 2
A13T = _QﬁhTmTlluHAT‘ Sm yr COSB(M§2 . M§4)2 f2(Mﬁ2’ Mﬁ4)
mi| || Ap|sin yp M?
2 T u2
+ ﬁthos ﬂ(.MﬁQ2 — M34) Og(M§4)
. tan § — |Ar| cos
Aoz = ~ 20zl Ar| sin e L4 Arlcosnr) o v a2,

cos B(Mg2 — M§4)2

Ao — _25 m%|ﬂ|2|AT|2Sin2 T
o =~ o BONE, — ML)

f2(M’§27 M’fi;)

(34)



For the down quarks/squarks we have the contributions

A = _2thm2|Aq‘2 (14| (_]\J?Ea;ggj(;s %)2f2<M§i’ Mc%-) I
2 2
Zthmi 10g(Md7;1—];[dj) + 45hqm3|f4q| (14, (_]\ngia;éjos ) log(
(|Ag| cos g — |p| tan B8)?
(02— )
(1Al <057, = Jultan ) MG
ag gy R

(14,] <057, — |l tan B)(|4,] — |ul tan Bcos y,)
2ﬁhqm2|u||Aq| : : (M2 = M% )? :
d d

2
2
Mcij

ANgog = —2thm§ | N|2

f2<Mi7 Mi)

ANDY S _2/6hqm2|,u|

) +

f2<Mi7 Mi)

(’Aq| - |N| tan /3 cos ’Yq)

Arzg = —2Bpgmi| ]| A si
13G thmq|#|| Q‘ S111 7Y COSB(MEZ,_MEJ.P

f2(Mdgi7 MC%)

. 2
mZ|p||Ag| siny, M3

2 %
* thcosB(MC% - M3) Og(Mg)

(|2 tan 8 — A cos )
cos B(M3 — M2)?

Agzg = —Qthm2’#|2’Aq| sin vy, fg(Mi,ng)
my|puf*| Ay |? sin® v,

2 a2
Basg = =2nq cos? B(M?2 — M? )2f2<MJi’ MJJ) (35)
d; d;

where (i,7) = (1,3) for ¢ = b, (i,j) = (7,8) for ¢ = d, (i,7) = (5,6) for ¢ = s and
(Zaj) = (97 10) for q= by.
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Finally the contribution of the mirror B is given by

Ag|cosyp — || cot 3)?
Dy = 28,2 L T O g g2 g

2 2
(M7 — Mg )?
(IAB| — |u| cot B cos 7,)?
Doy = —2Bupmp|Apl” (M2 — M2)2 = fa(MG,, M7 +
do da
2 2 2
b d (|Ag| — |plcot Beosyp) . M3
2Bnpm% log(—294Y) 4 48, pm%| Ap| log(~—2)
b mk b (M3 — M?) M2
Ap|cosyp — |ulcot ) Mg
A R _2 2 (| B 1 2
12B /BthB|l’L| (Md22 . M§4> (M§4) +

(145 cos v — |ul cot ) (| As] — lu| cot B cos 1)
do dy

(|p| cot B —|Ay| cosvp) 2 2
snprz -z M Ma)

A13B = _QBthzB’:u’Q‘AB‘ SinﬂyB dy’ 7y

Agl| — |u| cot B cos
(| B| |lu| /6 /yB)f2(M32 M§4)

; 2 2

Agyp = _Qﬁth?B‘NHABF sinyp

mip|pl|Ap| sinvp (M

2
+206nB— 2)
sin 5(]\/[52 — Mdi) Md24
mi || Al sin® v

2 2 2
sin B(M622 _MJ4)2

Agsp = —20np fg(Mi, M§4)

The Yukawa couplings and quark masses in the A;; elements are defined as follows

ht4 :yéa ht:ylla hc:yéa thyZ»hsz
hb4 =Ys, hb =Y, hs = Y3, hd:y47hB :yé

m2 — v%|y2|2 m? — U%’%P 2 _ U%‘Z/QP
r— 9 7T o9 w9
v2]y’|2 UQ’Z/‘Q v2\y’]2
m?z 223 ,mf: 221 ’sz: 222
21,12 20, 12 21,12 2. 12
mli o v1’12/5‘ ’ m?i _ U1‘294’ ’ mg _ U1‘§3’ ’ mg _ U1‘§1’

(36)

(37)

The mass eigen values of the squark mass squared matrices M, (]2 are defined in the appendix.
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5 Numerical Analysis

We present now a numerical analysis of the CP even-CP odd mixings of the Higgs bosons.
The mixings arise from the Higgs boson mass squared matrix which as discussed above will
be 3 x 3. In the preceding section this mass squared matrix has been computed in the
basis ¢1, ¢2,191p as explained in the text of the previous section. The Higgs mass squared
matrix computed in section 4 is a real symmetric 3 x 3 matrix and can be diagonalized by

an orthogonal transformations so that

DM?D" = diag(MIQtH?MIQ{QvMJ%I?;) (38)

Here the H; is the lightest field and the remaining two fields Hs, H3 are typically significantly
heavier than H;. We can investigate the CP structure of the two heavy fields through the

estimate of the eigen vectors of the Higgs mass squared matrix.

Hy = Dyyp1 + Daapa + Dastiip
Hs = D311 + Dsapa + D3ssiiip (39)

The percentage of CP odd part of Hy is defined to be |Ds3|? x 100 and its CP even part
is defined to be (|Das|? + |D1|?) x 100. The same definitions apply to the other neutral
heavy Higgs H3. The CP even-CP odd Higgs mixing depends directly on CP phases. On the
other hand CP phases also generate EDM for the quarks and for the neutron. The current
experimental limit on the EDM of the neutron is [37] |d,| < 2.9 x 107*ecm(90%CL). We
note that the combinations of the phases that enter in the EDM of the quarks are not the
same that enter in the CP even-CP odd Higgs mixings. Thus significant CP even-CP odd

Higgs mixings can occur while at the same time the EDM constraint can be satisfied.

We give now an analysis of the C'P structure of the two heavy physical fields Hy and
Hj3. We order the eigen values so that in the limit of no mixing between the C'P even and
the C'P odd states one has that (Mpyq, Mya, Mys) tend to (my, myg, ma) where my, is the
mass of the light C'P even state, mpy the mass of the heavy C'P even and m,4 is the mass
of the C'P odd Higgs in MSSM when all C'P phases are set to zero. In the squark sector
we assume my = M7 = M} = M2 = M and m§ = M? = M = M? = M2 = M3, =

Mli = M:, = ]\/[523. and my = md = mg. Additionally the trilinear couplings are chosen so

12



that: A% = A, = Ap = A, = A, = Ay and A = A, = Ap = A, = Ay = Ay,

One expects the CP even-CP odd mixing to be a very sensitive function of the CP phases.
We study this sensitivity for the case of MSSM first. In Fig. 1 we exhibit this dependence
as a function of 6,. The left panel exhibits the CP even and CP odd components of the
Higgs boson H, while the right panel exhibits the CP even and CP odd components of
the Higgs boson Hjs. In figure 2 we exhibit this dependence for the case of a4, where
(4, = aaw = « Ag). Next let us suppose that not all the loop correction to the light
Higgs boson mass arises from the MSSM sector. Rather there are two components to this
correction, one that arises from MSSM while the other arises from exchange of a vectorlike
quark multiplet. In this case the vectorlike multiplet brings in new sources of CP violation
which can contribute to the CP even-CP odd Higgs mixings. We give an illustration of this
in table 1 and table 2. Table 1 gives the contribution to the Higgs mass from the MSSM
sector alone which is a few GeV smaller than the desired value. The deficit is made up by
exchange of a vectorlike multiplet. The contributions of the MSSM and of the vectorlike
multiplet together are exhibited in table 2 which gives the Higgs mass consistent with the
experimental value within a small error corridor of 2 GeV. A comparison of tables 1 and 2,
especially of the last three lines, shows that the CP even-CP odd mixing for the case of table
2 is very different from the case of table 1. Thus for Hy(H3), the CP odd (even) component
is as much as 10% for the case when the vector multiplet is included whereas without the
inclusion of the vector multiplet the even-odd mixing was vanishing. Thus inclusion of the

vectorlike multiplet in the analysis has a strong effect on the CP even-CP odd mixing.
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My, CPeven CPodd Mpygy CPeven CPodd Mpgs CPeven (CPodd

(1) 118.02  99.99 0.01  501.57  93.96 6.04  499.56 6.05 93.95
(2) 116.76 100 0.00  500.44  95.46 454  499.88 4.54 95.46
(3) 117.21 100 0.00  500.22  97.57 243 499.95 2.43 97.57
(4) 117.36 100 0.00  500.14 100 0.00 500 0.00 100
(5) 119.53 100 0.00  500.10 100 0.00 500 0.00 100
(6) 119.82 100 0.00  500.07 100 0.00 500 0.00 100

Table 1: An exhibition of the C'P structure of the H;, Hy and Hj fields for the case without
the contributions of the vectorlike generation. The analysis is for six benchmark points (1),
(2), (3), (4), (5) and (6). Benchmark (1): tan8 = 5, my = my = md = 2300, |u| = 800,
|A4| = 8500, |Ad] = 9500, 6, = 0.9, a4 = 0.5, aya = 1.5. Benchmark (2): tanj = 10,
mo = mij = mg = 2000, |u| = 380, |Af| = 7400, |AF| = 8300, 0, = 0.4, aay = 1.2, ayg = 1.3.
Benchmark (3): tan 3 = 15, mg = mg = md = 2300, |u| = 300, |AY| = 8600, |Ad| = 8000,
O, = 0.9, asy = 3.5, aye = 2.2. Benchmark (4): tanB = 20, mo = m¢ = md = 2100,
[l = 200, |Ag| = 7800, [AZ| = 7000, 6, = 1.7, axu = 1.4, aye = 1. Benchmark (5):
tan 3 = 25, my = my = md = 2500, |u| = 260, |Ay| = 9350, |Ad| = 3500, 6, = 2.2,
aqy = 1, aye = 3.2. Benchmark (6): tanf = 30, mo = mg = md = 2400, |u| = 200,
|A4| = 8950, |Af| = 1000, 6, = 2.37, aqe = 0.9, ayg = 2.8. The common parameters
are: ma = 500, |hs| = 1.58, || = 6.34 x 1072, || = 1.97 x 1072, |hy| = 4.42, |1}| = 5.07,
|hfj| = 12.87, |hs| = 6.6, |ht| = 2.67, |hZ| = 1.86 x 1071, |hg| = 1000, |h7| = 1000, |hg| = 1000,
X3 =2x1072 x5 = 1x1073, x4 =4x 1073, x4 = 7x 1073, X, = x{ = 1x1073, x5 = 9x 1073,
Xe =5x1073 x? =2x1073 x6 = xr = xg = b x 1073, All masses are in GeV and all
phases in rad.
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My, CPeven CPodd Mpygy CPeven CPodd Mpgs CPeven (CPodd

(1) 124.08  99.98 0.02  504.80  91.68 8.32  497.46 8.33 91.67
(2) 12454  99.98 0.02 52351  90.71 9.29  486.87 9.30 90.70
(3) 124.17  99.99 0.01  533.10  92.69 7.31  486.07 7.32 92.68
(4) 124.06 100 0.00  539.99  94.79 5.21 49494 5.21 94.79
(5) 123.99 100 0.00  514.14  89.28 10.72  492.61  10.72 89.28
(6) 124.71 100 0.00  539.94  94.35 5.65 49541 5.66 94.34

Table 2: An exhibition of the C'P structure of the H;, Hy and Hj fields for the case with
the contributions of the vectorlike generation. The analysis is for six benchmark points
corresponding to the parameter set of table 1. The Yukawa couplings are: (1): hy = 1.5,
hg = 0.4, hy, = 0.6, hy, = 1.5; (2): hy = 2.9, hg = 0.4, hy, = 0.5, hy, = 2.9; (3): hy = 4.3,
hg = 0.4, hy, = 0.5, hy, = 4.3; (4): hy = 5.8, hg = 0.4, hy, = 0.5, hy, = 5.8; (5): hy = 7.2,
hg =04, hy, = 0.5, hy, = 7.2; (6): hy = 8.6, hg = 0.4, hy, = 0.5, hy, = 8.6. Masses for
the vectorlike quarks are gotten by diagonalization of the matrices of Eqgs. (5) and (10) and
are given as follows: mirror up quark my = 980.14, mirror down quark mass my = 1062.63,
fourth generation up quark mass m;® = 1025.14, fourth generation down quark mass m4o"®
= 937.64. All masses are in GeV. The inputs from the MSSM sector are listed in table 3.

The MSSM sector inputs of the six benchmark points in table 1 and table 2.

case) tanB |ul_ O, mo [Agl |l auy oy
1) ) 800 0.9 2300 8500 9500 0.5 1.5
2) 10 380 0.4 2000 7400 8300 1.2 1.3
3) 15 300 0.9 2300 8600 8000 3.5 2.2
4) 20 200 1.7 2100 7800 7000 1.4 1
5)
6)

25 260 2.2 2500 9350 3500 1 3.2
30 200 2.37 2400 8950 1000 0.9 2.8

Table 3: The inputs of the six benchmark points of table 1.

We give now a more detailed analysis of CP even-CP odd mixing for the case with
inclusion of the vectorlike multiplet. Specifically we discuss three illustrative benchmark
points of table 2. In figure 3 we exhibit this dependence as a function of 6,. The left panel
exhibits the CP even and CP odd components of the Higgs boson Hs while the right panel
exhibits the CP even and CP odd components of the Higgs boson Hs. One finds that the
mixing can be very substantial for a significant parameter range of 8,. A similar analysis is

presented in figure 4 for the case of a4y dependence. The a Ad dependence is very similar
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to that for a4y and is not exhibited. Figure 5 exhibits the dependence of the CP even-CP
mixing for Hy and Hj as a function of mg. In Fig. 6 we give an analysis of the sensitivity of
the masses for the boson H;, Hy, H3 as a function of 6, and a similar analysis as a function
of agy is given in Fig. 7. One finds only a mild sensitivity of the light Higgs H; mass but
much larger sensitivity of the masses of Hy and Hs on the CP phases. This is consistent

with the significant CP even -CP odd mixing among the two heavy neutral Higgs.

o -
.5 90f 8 90
< 8ot < 8ot
&0 &0t
;E;eo— Eeo—
= =
IS 501 IS 501
L) L)
A 401 A 401
9] 9]
5 30} 5 30}
® ©
220r 201
= =
g 100 8 10
= =
0 1 3 4 5 0 1 2 3 4 5 6
0, (rad) 0, (rad)

Figure 1: Left panel: Variation of the C'P even component of Hy (upper curve) and the
C'P odd component of Hy (lower curve) without including the contributions of the vectorlike
generation versus ¢,. The input parameters are: tan 3 = 20,m4 = 500, my = my = mg =
2400, |p| = 300, |AY| = |Ad| = 8750, oy = e = 1.3, |hs| = 1.58, |hy] = 6.34 x 1072, |hy] =
1.97 x 1072, |hy| = 4.42, |h}| = 5.07, |1]| = 12.87, |hs| = 6.6, |h%| = 2.67, || = 1.86 x 107,
|hg| = 1000, |hy| = 1000, |hg| = 1000, x3 = 2 x 1072, x4 = 1 x 1073, x4 = 4 x 1073,
Xa=Tx1073, Xy, = xf = 1x1073% x5 = 9x 1073, xt = 5 x 1073, x¥ = 2 x 1073,
X6 = X7 = Xs = 5 x 1073, Right panel: Variation of the C'P even component of Hz (lower
curve) and the C'P odd component of H3 (upper curve) without including the contributions
of the vectorlike generation versus 60, for the same inputs as left panel. All masses are in

GeV and all phases in rad.
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Figure 2: Left panel: Variation of the C'P even component of Hs (upper curve) and the
C'P odd component of Hy (lower curve) without including the contributions of the vectorlike
generation versus aa, (a4, = Qan = ozAg).The input parameters are: tan 8 = 30,m4 = 500,
mo = my = md = 2200, |u| = 180, |Ay| = |Ad] = 8000, 6, = 1.75, |hs| = 1.58, |hf| =
6.34 x 1072, |hy| = 1.97 x 1072, |hy| = 4.42, |By| = 5.07, |h]]| = 12.87, |hs| = 6.6, |h%| = 2.67,
|hZ| = 1.86 x 107!, |hg| = 1000, |h7| = 1000, |hg| = 1000, x3 = 2 x 1072, x4 = 1 x 1073,
Xa=4x1073, x4 =7x1073 X, = x] =1x1073, x5 = 9% 1073, xt =5x 1073, x¥ = 2x 1073,
X6 = X7 = Xs = b x 1073. Right panel: Variation of the C'P even component of Hs (lower
curve) and the C'P odd component of Hjz (upper curve) without including the contributions
of the vectorlike generation versus a4, for the same inputs as left panel.
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Figure 3: Left panel: Variation of the C'P even component of Hs (upper curves) and the C'P
odd component of Hy (lower curves) including the contributions of the vectorlike generation
versus 6,. The input for the solid curves is tan 8 = 10, my = m% = mg = 2000, |u| = 380,
|AY| = 7400, |AZ| = 8300, gy =12, aye =13, hp = 2.9, hg =04, Iy, = 0.5, hy, = 2.9
(Point 2). The input for the dashed curves is tan 3 = 20, my = mg = md = 2100, |u| = 200,
| Af| = 7800, |AF| = 7000, cay = 1.4, apa = 1, hy = 5.8, hg = 0.4, hy, = 0.5, hy, = 5.8
(Point 4). The input for the dotted curves is tan 3 = 30, mg = m¥ = mg = 2400, |u| = 200,
|AY| = 8950, |Ag| = 1000, gy = 0.9, aye =28, hy = 8.6, hg = 0.4, Iy, = 0.5, hy, = 8.6
(Point 6). The common parameters are: m4 = 500, |hs| = 1.58, |hy| = 6.34 x 1072 |hfj| =
1.97 x 1072, |hy| = 4.42, |h}| = 5.07, || = 12.87, |hs| = 6.6, |h| = 2.67, |h¥] = 1.86 x 107,
|hg| = 1000, |hy| = 1000, |hg| = 1000, x5 = 2 x 1072, x4 = 1 x 1073, x4 = 4 x 1073,
Xa =Tx1073, X, =xf =1x1073% x5 = 9x 1073, xt = 5 x 1073, x¥ = 2 x 1073,
X6 = X7 = Xs = 5 x 1073, Right panel: Variation of the C'P even component of Hy (lower
curves) and the C'P odd component of Hs (upper curves) including the contributions of the
vectorlike generation versus ¢, for the same inputs as left panel. All masses are in GeV and
all phases in rad.
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Figure 4: Left panel: Variation of the C'P even component of Hy (upper curves) and the C'P
odd component of Hy (lower curves) including the contributions of the vectorlike generation
versus aqx. Right panel: Variation of the C'P even component of Hsz (lower curves) and
the C'P odd component of Hz (upper curves) including the contributions of the vectorlike
generation versus aau for the same inputs as figure 3.
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Figure 5: Left panel: Variation of the C'P even component of Hs (upper curves) and the C'P
odd component of Hy (lower curves) including the contributions of the vectorlike generation
versus myp. Right panel: Variation of the C'P even component of Hj3 (lower curves) and
the C'P odd component of Hj (upper curves) including the contributions of the vectorlike
generation versus myg for the same inputs as figure 3.
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Figure 6: Left panel: Variation of the My, (solid curve), My, (dashed curve) and My,
(dotted curve) versus 6, for tan 3 = 10, my = my§ = md = 2000, |u| = 380, |A4| = 7400,
Ad] = 8300, any = 1.2, ays = 1.3, hy = 2.9, hp = 0.4, hy, = 0.5, by, = 2.9. Middle
panel: Variation of the My, (solid curve), My, (dashed curve) and My, (dotted curve)
versus 6, for tan 8 = 20, mp = m% = md = 2100, |u| = 200, |Ay| = 7800, |Ad| = 7000,
ogr =14, a0 =1, hr =58, hg = 0.4, hy, = 0.5, hy, = 5.8. Right panel: Variation of the
My, (solid curve), My, (dashed curve) and My, (dotted curve) versus 6, for tan 3 = 30,
mo = my = mg = 2400, || = 200, |A}| = 8950, [AZ| = 1000, cge = 0.9, avpg = 2.8, hy = 8.6,
hg = 04, hy, = 0.5, hy, = 8.6. The common parameters are: ms = 500, |h3| = 1.58,
RL| = 6.34 x 1072, [BY] = 1.97 x 1072, |hy| = 4.42, |B| = 5.07, || = 12.87, |hs| = 6.6,
L] = 2.67, |hY| = 1.86 x 107", |hg| = 1000, |hs| = 1000, |hs| = 1000, x5 = 2 x 102,
X = 1 x 1073, x5 =4x1073 xy = 7Tx 1073 x, = xf = 1 x1073 x5 = 9 x 1073,
Xe =5 x1073 ! =2x1073 x6 = xr = xg = b x 1073, All masses are in GeV and all
phases in rad.
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Figure 7: Left panel: Variation of the My, (solid curve), My, (dashed curve) and My,
(dotted curve) versus aqy for tan 3 = 10, mg = mf = m§ = 2000, |u| = 380, [A§] = 7400,
|A§] = 8300, 0, = 0.4, aye = 1.3, hy = 2.9, hg = 0.4, hy, = 0.5, hy, = 2.9. Middle
panel: Variation of the My, (solid curve), My, (dashed curve) and My, (dotted curve)
versus e for tan 8 = 20, mg = mf§ = m§ = 2100, |u| = 200, |Ay| = 7800, |AF| = 7000,
0, = 1.7, orye =1, hyr = 5.8, hg = 0.4, hy, = 0.5, hy, = 5.8. Right panel: Variation of the
My, (solid curve), My, (dashed curve) and My, (dotted curve) versus aqx for tan 3 = 30,
mo = mi = mi = 2400, |u| = 200, |AY| = 8950, [Ad] = 1000, 6, = 2.37, Ay = 2.8, hy = 8.6,
hg = 04, hy, = 0.5, hy, = 8.6. The common parameters are: ms = 500, |h3| = 1.58,
BL| = 6.34 x 1072, [BY] = 1.97 x 1072, |hy| = 4.42, |B| = 5.07, || = 12.87, |hs| = 6.6,
L] = 2.67, [hY| = 1.86 x 107", |hg| = 1000, |hs| = 1000, |hs| = 1000, x5 = 2 x 102,
X = 1 x1073, x5 =4x1073 x4 = 7Tx 1073, x, = xf =1 x1073 x5 = 9 x 1073,
Xe =5x1073 ! =2x1073 x6 = xr = xg = b x 1073, All masses are in GeV and all
phases in rad.

5.1 Decays of the Higgs bosons to fermion pairs

Decays of the Higgs bosons are important channels for tests of new physics beyond the

standard model. A convenient ratio for this purpose is R, defined by [4]

R LU= [f)
v L(H; = ff)o
__ (Da(1 = a4 (D)1 - o)
(Dar(0))*(1 = %)% + f2(Diz(0))%(1 — w%)'/?

(40)

where ©3 = 4m3/Mp., 13, = 4m7/Mp,(0)?, where k = 2(1) and f = cos $(sin §) for u-type
quarks (d-type quarks and charged leptons). The argument 0 in D and in the subscript of z ¢
in the denominator indicates that 6, + a4, = 0. For the case when there is no contribution
from the vectorlike multiplet the ratio between the decay widths of the higgs into quark

pairs is exhibited in table 4 for the model point 3 in table 1. As a comparison we exhibit
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the same ratios for the case when a vectorlike multiplet is included again for model point 3
of table 5. One finds significant differences between the two tables for certain decay width
ratios which points to the significant contribution from the vectorlike multiplet to the ratio.
We now study the CP phase dependence for the case with contributions from the vectorlike
multiplet are included. In Fig. 8 we give the dependence of Ry, and R;. on 6, and on
ay = Qag = Qyd. One finds a large sensitivity of the ratio to the CP phases. A similar

analysis for Rgp, Ry, is given in Fig. 9 and for R, R3. in Fig. 10.

Ry b S d t c U

i=1 1.125 1.125 1.125 0.999 0.999
=2 0999 0999 0.999 1.154 1.133 1.133
i=3 1 1 1 0.984 0.992 0.992

Table 4: An exhibition of the ratio between the decay widths of the higgs scalars into quark
pairs for the case without the contributions of vectorlike multiplet. The parameter space
corresponding to point 3 in table 1.

Rif b 5 d t c u

1=1 2069 207 207 ... 0997 0.997
t=2 0998 0.998 0.998 1.701 1.861 1.861
t=3 0.999 0.999 0.999 1.001 1.134 1.134

Table 5: An exhibition of the ratio between the decay widths of the higgs scalars into
quark pairs for the case with the contributions of vectorlike multiplet. The parameter space
corresponding to point 3 in table 1.
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Figure 8: Left panel: Variation of the Ry, versus 0, for the case with the contributions of the
vectorlike generation. Second left panel: Variation of the R,. versus 8, for the case with the
contributions of the vectorlike generation. The inputs correspond to point 2 (solid curve),
point 4 (dashed curve) and point 6 (dotted curve) in table 3. Second right panel: Variation
of the Ry, versus au, (a4, = aap = « Ag) for the case with the contributions of the vectorlike
generation. Right panel: Variation of the R;. versus a4, for the case with the contributions
of the vectorlike generation. The inputs correspond to point 2 (solid curve), point 4 (dashed
curve) and point 6 (dotted curve) in table 3.
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Figure 9: Left panel: Variation of the Ry, versus 0, for the case with the contributions of the
vectorlike generation. Second left panel: Variation of the Ry, versus 8, for the case with the
contributions of the vectorlike generation. The inputs correspond to point 2 (solid curve),
point 4 (dashed curve) and point 6 (dotted curve) in table 3. Second right panel: Variation
of the Ry, versus au, (a4, = aan = « Ag) for the case with the contributions of the vectorlike
generation. Right panel: Variation of the Ry, versus a, for the case with the contributions
of the vectorlike generation. The inputs correspond to point 2 (solid curve), point 4 (dashed
curve) and point 6 (dotted curve) in table 3.
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Figure 10: Left panel: Variation of the Rs, versus 6, for the case with the contributions
of the vectorlike generation. Second left panel: Variation of the Rj. versus 6, for the case
with the contributions of the vectorlike generation. The inputs correspond to point 2 (solid
curve), point 4 (dashed curve) and point 6 (dotted curve) in table 3. Second right panel:
Variation of the Rz, versus au, (aa, = aay = a,a) for the case with the contributions of
the vectorlike generation. Right panel: Variation of the Rs. versus ay, for the case with the
contributions of the vectorlike generation. The inputs correspond to point 2 (solid curve),
point 4 (dashed curve) and point 6 (dotted curve) in table 3.

6 Conclusion

An important phenomenon in supersymmetric models with inclusion of explicit CP violation
relates to the mixing of CP even and CP odd Higgs bosons. In this work we have investigated
the implication of a vectorlike quark multiplet on the CP even-CP odd mixing within an
extended MSSM model. The sector brings with it new sources of CP violation and our
analysis shows that the vectorlike multiplet can generate substantial CP even-CP odd Higgs
mixing even in regions where the mixing from the MSSM sector is small. We have investigated
the dependence of the mixings on the phases and find that large mixings can occur in certain
regions of the parameter space of CP phases. The decays of the Higgs bosons into fermions
are sensitive to new physics. We have investigated these decays for the case of MSSM and
for the case when one has in addition a vectorlike multiplet. Further, for the latter case we
have investigated the dependence of the Higgs decays widths into fermions as a function of
CP phases. These decays show a sharp dependence on the phase of p and on the phase of
the trilinear coupling. These results are of interest regarding the new data expected from
the LHC and the search for the heavy Higgs bosons.

Acknowledgments: This research was supported in part by the NSF Grant PHY-
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7 Appendix: Squark mass matrices

In this Appendix we give further details of the model discussed in section 2. As discussed
in section 2 we allow for mixing between the vector generation and specifically the mirrors
and the standard three generations of quarks. The superpotential allowing such mixings is

given by

AAAAAAAAAA

W =e; [ylqulLblL + yngdlLtlL + 2 H1Q9 Ty, + y, H3Q7 By,
+ysHLG3, 05, + v HYGh 5, + yaHL 63,05, + v LG 05, + ys L6 05, + v HY i, 05,
+ h3EwQClq1L + EZJQCZqQL + hHEwQCZq?,L + h6€wQCZq4L + h4b1LBL + h5£(1:LTL
+ WybS; By, + RAES, Ty + WS, By, + hits, Tp + hebS, Br, + hets, Tr — peg HIH) . (41)

Here the couplings are in general complex. Thus, for example, p is the complex Higgs mixing

parameter so that u = |p|e®. The mass terms for the ups, mirror ups, downs and mirror

downs arise from the term
1 0*W

£==3gaan Vi The. (42)

where 1) and A stand for generic two-component fermion and scalar fields. After spontaneous
breaking of the electroweak symmetry, ((H!) = v,/v/2 and (H3) = vy/v/2), we have the

following set of mass terms written in the four-component spinor notation so that

= ERp(My)er + Th(Ma)ng + hee., (43)

where the basis vectors are defined in Eq. 3 and Eq. 8.

Next we consider the mixing of the down squarks and the charged mirror sdowns. The
mass squared matrix of the sdown - mirror sdown comes from three sources: the F term, the
D term of the potential and the soft SUSY breaking terms. Using the superpotential of the
mass terms arising from it after the breaking of the electroweak symmetry are given by the
Lagrangian

L=Lpr~+Lp~+ Lo , (44)
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where L is deduced from F; = OW/0A;, and —Lp = Vr = F;F} while the Lp is given by

—,CD = §m2Z COS2 0W COS 2&{7?[]?2 - BLIN?Z + 5L52 - §L§2 + ﬂ/Lﬂ,z — (jLsz + £4L£ZL - B4LI~)ZL

~ . - 1 O 4
+ BRBE — TRTE} + §m2Z sin2 HW COS 25{_§tLt*L + —th}({ - —ELEz + géRE*R

3 3
R S B E
guLuL + guRuR + gTRTR — gTLTL — gbLbL — gbRbR
1. ., 2 1~ 2~ - 1~ -,
- gSLSL 3SRSR 3de 3deR+§BRB
2~ - 1 4 -

For Ly we assume the following form
_Lsoft - M1ququch + M; quzqz’fL + M3 ngzqu + M; Lq:’;qu?fL + M%QCk*QCk + MiﬁE%L
+ M b;’;b + M? t§ or + Mlin*Lb + M2ty
+ MZ TS, 85, + M b5y b5, + M b5pb5, + MEB; By + MZT; Ty,
+ Eij{ylAbeQN{L iL yiAtH;(ﬁL%L + ysAb4HfCﬁLbZL - ygAt4H§‘j4Lt4L + Y3 As H1Q2L 2L

Vs AH B 15, + s AdH @05, — Vi A H B 05, + e ArHIQ9Ty — yo ApH3Q9 By + huc.}

(46)

Here Mj;, M7, etc are the soft masses and A;, Ay, etc are the trilinear couplings. The trilinear

couplings are complex and we define their phases so that
Ab = |Ab|€ia‘4b s At = |At|6ia‘4t sttt (47)

From these terms we construct the scalar mass squared matrices. Thus we define the scalar
mass squared matrix ]\/[dg in the basis (l;L,BL,BR,BR,éL,ER,JL,cZR,B4L,54R). We label the
matrix elements of these as (M?2);; = M} which is a hermitian matrix. We can diagonalize

this hermitian mass squared matrix by the unitary transformation
Adt A 2 Hd 2 2 72 2 r2 2 ar2 A2 g2 A2
D Mch - dwg(MJy MJQ’ M(ig’ Mci4’ MJ5’ Mtiﬁ’ Md~7’ MCZS Mfi97 Md~10) ' (48>

Similarly we write the mass squared matrix in the up squark sector in the basis (fL,TL,
fR,TR, Cr, 6R,ﬂL,ﬂR,f4L,f4R) Thus here we denote the up squark mass squared matrix in
the form (M2);; = m - which is also a hermitian matrix. We can diagonalize this mass square
matrix by the umtary transformation

DYIM2D" = diag(M2 , M2, M2 M2 M2 M2 M2 M2 M2 M?2 ). (49)

uy? u? u3) Ugq? us? ue’ ur? usg’? ug’ u10
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We label the matrix elements of these as (M3);; = M7, where the elements of the matrix

are given by

2 2 U%|y1|2 2 2 1 1 .5
M} = Mz, + 5 + |hs|® — m cos2p3 §_§Sm Ow |,
v3|ys|?

1 .
M3, = Mé + 4 |hal® + B+ RGP 4 | Re|? + ngZ cos 23 sin? Oy,

20, |2
1
Mz, = ]\42 % + |yl - §m2Z cos 23 sin® Oy,

3 |ys
M}, = M2+ 22

| 2

1 1
+ |hs|? + |hs* + |h5)? + |he|® + m% cos 23 (— — gsm HW)

2 2 ’U%’y3|2 2 2 1 1 9
Mz = M3, + 5 T |hg|? — m7 cos 23 <§ — gsin GW) ,

2 2 U%WSP s 1 5 2
Mgg = M;, + + |y —ngC0825Sin Ow,

2

20, |2 11
Mz, = M, + a “2/4| + [I5)* — m7 cos 28 (5 - gsin2 0W> :

20, |2

1

Mg, = MZ + U1|32J4’ + |Ry? — ngZ cos 23 sin’ Oy .

i 11
Mgy = MfL + A ’32/5\ + |hg|? — m% cos 23 <§ —3 sin? HW)

M2 —M2+U%|y5’2+|h |2_1 2 923 sin
1010 = Mg, 5 7 3mZCOS sin” By, .

(50)
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. Uyphy  vihayy . Y . .
M122 :M221 = 2\/253 + 1\/4517M123 :M??l = \/_%(UlAb _MU2)=M124:M421 =0,

My = MZY = hihy, Mg = Mg = 0, M, = M2} = hyhs, Mg = Mgy = 0, My = Mgy = hihg,
Yo' . vahsyy | viyshy

M2 :MZ*:O,M2:M2*:O,M2:M2*:—'UA*— v ,M2:M2*— 7
110 101 23 32 24 42 \/5( 241B 2 1) 25 52 \/5 \/5
. . Vo h”y'* V1Y4 B .
M226 = M622 = 07M227 = M722 = \/352 \/54 7M228 = M822 =0,
h* /*h
M229 = M922* = s 2 67M2210 = M1252 =0,

V2 V2

hayy  viyihy
M2 — M2* _ V21145 + 3,M2 — M2* — O, M2 — M2* —h h/*,
34 43 \/§ \/5 35 53 36 63 470y

&3

2 2k 2 2%
M39 - M93 - 07 M310 - M103 - h4h77

! / !
vayhhy vy

M2 — MQ* — 0’ M2 _ MQ* — ’
45 54 46 64 \/5 \/5
! I vlh”y*
M2:M2*:0,M2:M2*:U2y24 34
47 74 48 84 \/é \/é
M2 — MQ* — O,M2 —_ MZ* — V2Ys 7 5’
49 94 410 104 \/§ \/§
MZy = MZ = 2 (0, A% — jvn), ME; = ME = B,

V2
Mgs = Mszg =0, ME?Q = M92§ = hgh& M5210 = M1255 =0, M627 = M7zg =0,
Mgs = Mg = hyhly", Mgy = Mgg = 0, Mg,y = Migs = hyhz, Mg = M35 = %(UIAZ — pw2) .
M729 - Ms?; = hy"hs, M7210 = M1257 =0
Mgy = Mg3 = 0, Mgy, = Mgy = Ryhy, Mgyo = Migy = %(UIAZL — pw2) -
We can diagonalize this hermitian mass squared matrix of the scalar downs by the unitary

transformation
AdE a2 yd 2 2 2 2 2 2 2 2 2 2
_D MciD _dzag(Mtil’MCZ27M(ig’McLﬂMd~5’MCZ67MJ7’MCZ8’MCZQ7MJ10> . (5].)
Next we write the mass squared matrix in the sups sector the basis (fL, TL, tr, TR, ¢, Cr, U, UR, tar, 75~4R).

Thus here we denote the sups mass squared matrix in the form (M2);; = m?j where
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20,712 2,
5 U3y 2 | m2 cos 28 (———sm QW),
mfleiL—i— 9 +|h3‘ + 7 5 3
2 o
2 M2 + U%|y2|2 + ’h5|2 + |hg|2 + |h/5/|2 + |h8|2 . §m2ZCOS2BSHl 9[/{/7
Moy = Mg
2 /12 2 .
m3y = M? + 1}2|32h| + |hs|?® + gm% cos 23 sin? Oy,
1 1 2
2 i 2 0 7
m2, = M2 + v |y|? + |hs|? + |hg|2 + \hg’|2 + |hg|* — m7 cos 23 (2 3 sin W)
44 — Q 2
20,712 2, )
° 2 g — — —sin“ Oy |,
mis :M§2L+ 2|g3| + |h5|* + m7 cos 28 (2 3 W
2 — M? + v3lys[* + |hL|* + %m% cos 23 sin? Oy,
Meg = I, 5
AR "2 2 cos 20 l—gsiHQQW) 7
mz = M3y + 5 + |hs]” +my 573
2 =M? + v3l44l* + |hE12 + %mQZ cos 2[3 sin? Oy,
Mgg = M, 5
U%’yg‘z 2 2 COSQB l_ 281112 HW) ’
mgg = Mj; + 5 + |he|” + m7 53
2 /12 2 »
> valts| 2+ Zm? cos 2B sin? Oy
Mo = M;, + 5 + |hs|” + 3z
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m%é?
m103
mg;
m§5
mgg =

2%
Mgy =

2%
Mgg =

2%
109 —

a2k
_m41_07

/NS
v2y3h5

« x
_Ul\y/%hg UQ}\L/%% , My = m3; = ?/15(”214* pvy ), mi,

= Rihy, mis = mg; = 0,m7; = m7] = hihs, mig = mg; =0,
= 0y, = vty = Y (045 )y =y =~
=0,mj; =m7; = —vl\/%y; Uﬂﬁ;g* ,m3s = mgy =0,

. 17
— DO P s i = 0,y = il = ol
= 0.3, = m = hsh.
_ 07m4216 _ m%z _ _ygk\l/&_h/g + Ul?/Qh?,

2 V2
= 0,y = iy = s P,
= %(WAz — p1),
= hzhy,mis = mgs = 0,
R
e

= A (04 — vy,

V2

_ * 2
= hghy, miy = m101 =0,

?J5 vahg U1Y2 h§

_y§U1h6 U23/5h8
V2 V2
= O,m%9 = mgfé) =0,
hshg
=0, m42110 =

m%gzl = \/§ \/§ )

_ 2% __
hehsy 3 7m510 migs =0

2
0, mgyo =

! %
mige = hihy

_ 1% 2%
hehg ,m710 migr = 0,

2
0, mg10

V2

y5 (UQA

_ 2%« __ N
= mips = s

— p1)
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We can diagonalize the scalar up mass squared matrix by the unitary transformation

D"MZD" = diag(MZ,, M2, M2, M2, M2 M2 M2 M2 MZ Mz ). (53)

ui? uz? us? uq? us? ue? u7? ug? u1o

References

1]

A. Pilaftsis, Phys. Rev. D 58, 096010 (1998) doi:10.1103/PhysRevD.58.096010 [hep-
ph/9803297].

A. Pilaftsis, Phys. Lett. B 435, 88 (1998) doi:10.1016,/S0370-2693(98)00771-0 [hep-
ph/9805373).

A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B 553, 3 (1999) doi:10.1016/S0550-
3213(99)00261-8 [hep-ph /9902371,

D. A. Demir, Phys. Rev. D 60, 055006 (1999) doi:10.1103/PhysRevD.60.055006 [hep-
ph/9901389).

S. Y. Choi, M. Drees and J. S. Lee, Phys. Lett. B 481, 57 (2000) doi:10.1016/S0370-
2693(00)00421-4 [hep-ph/0002287].

M. Carena, J. R. Ellis, A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B 586, 92 (2000)
d0i:10.1016/S0550-3213(00)00358-8 [hep-ph,/0003180].

T. Ibrahim and P. Nath, Phys. Rev. D 63, 035009  (2001)
d0i:10.1103/PhysRevD.63.035009 [hep-ph/0008237].

M. Carena, J. R. Ellis, A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B 625, 345
(2002) doi:10.1016/S0550-3213(02)00014-7 [hep-ph/0111245].

T. Ibrahim and P. Nath, Phys. Rev. D 66, 015005  (2002)
d0i:10.1103/PhysRevD.66.015005 [hep-ph/0204092].

J. R. Ellis, J. S. Lee and A. Pilaftsis, Phys. Rev. D 70, 075010 (2004)
d0i:10.1103 /PhysRevD.70.075010 [hep-ph/0404167].

S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, “The Higgs sector of the com-
plex MSSM at two-loop order: QCD contributions,” Phys. Lett. B 652 (2007) 300
[arXiv:0705.0746 [hep-ph]];

31



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

J. S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. E. M. Wagner, Comput. Phys.
Commun. 184, 1220 (2013) doi:10.1016/j.cpc.2012.11.006 [arXiv:1208.2212 [hep-ph]].

M. Carena, J. Ellis, J. S. Lee, A. Pilaftsis and C. E. M. Wagner, JHEP 1602, 123
(2016) doi:10.1007/JHEP02(2016)123 [arXiv:1512.00437 [hep-ph]].

G. Aad et al. [ATLAS Collaboration|, Phys. Lett. B 716, 1 (2012)
d0i:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].

S. Chatrchyan et al. [CMS Collaboration]|, Phys. Lett. B 716, 30 (2012)
do0i:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 |[hep-ex]].

P. Nath, Phys. Rev. Lett. 66, 2565 (1991). doi:10.1103/PhysRevLett.66.2565

Y. Kizukuri and N. Oshimo, Phys. Rev. D 46, 3025 (1992).
d0i:10.1103 /PhysRevD.46.3025

T. Ibrahim and P. Nath, Phys. Rev. D 58, 111301 (1998)
doi:10.1103/PhysRevD.60.099902. [hep-ph/9807501].

T. Ibrahim and P. Nath, Phys. Rev. D 57, 478 (1998) doi:10.1103 /PhysRevD.58.019901
[hep-ph/9708456].

T. Falk and K. A. Olive, Phys. Lett. B 439, 71 (1998) doi:10.1016/S0370-
2693(98)01022-3 [hep-ph/9806236].

M. Brhlik, G. J. Good and G. L. Kane, Phys. Rev. D 59, 115004 (1999)
doi:10.1103/PhysRevD.59.115004 [hep-ph/9810457].

T. Ibrahim and P. Nath, Phys. Rev. D 61, 093004  (2000)
d0i:10.1103 /PhysRevD.61.093004 [hep-ph/9910553].

T. Ibrahim and P. Nath, Rev. Mod. Phys. 80, 577 (2008)
d0i:10.1103/RevModPhys.80.577 [arXiv:0705.2008 [hep-ph]].

H. Georgi, Nucl. Phys. B 156, 126 (1979); F. Wilczek and A. Zee, Phys. Rev. D
25, 553 (1982); J. Maalampi, J.T. Peltoniemi, and M. Roos, PLB 220, 441(1989);
J. Maalampi and M. Roos, Phys. Rept. 186, 53 (1990); K. S. Babu, I. Gogoladze,
P. Nath and R. M. Syed, Phys. Rev. D 72, 095011 (2005) [hep-ph/0506312]; Phys.

32



Rev. D 74, 075004 (2006), [arXiv:hep-ph/0607244]; Phys. Rev. D 85, 075002 (2012)
[arXiv:1112.5387 [hep-ph]]; P. Nath and R. M. Syed, Phys. Rev. D 81, 037701 (2010).

[25] K. S. Babu, I. Gogoladze, M. U. Rehman and Q. Shafi, Phys. Rev. D 78, 055017 (2008)
d0i:10.1103/PhysRevD.78.055017 [arXiv:0807.3055 [Lep-ph].

26] C. Liu, Phys. Rev. D 80, 035004 (2009) doi:10.1103/PhysRevD.80.035004
[arXiv:0907.3011 [hep-ph]].

[27] S. P. Martin, Phys. Rev. D 81, 035004 (2010) doi:10.1103/PhysRevD.81.035004
[arXiv:0910.2732 [hep-ph]].

28] T. Ibrahim and P. Nath, Phys. Rev. D 78 075013 (2008)
doi:10.1103/PhysRevD.78.075013 [arXiv:0806.3880 [hep-ph]].

[29] T. Ibrahim and P. Nath, Phys. Rev. D 81, no. 3, 033007 (2010)
doi:10.1103/PhysRevD.81.033007 [arXiv:1001.0231 [hep-ph]].

[30] T. Ibrahim and P. Nath, Phys. Rev. D 82, 055001 (2010)
doi:10.1103/PhysRevD.82.055001 [arXiv:1007.0432 [hep-ph]].

[31] T. TIbrahim and P. Nath, Phys. Rev. D 84, 015003 (2011)
doi:10.1103 /PhysRevD.84.015003 [arXiv:1104.3851 [hep-ph]].

[32] T. Ibrahim and P. Nath, Phys. Rev. D 87, mno. 1, 015030 (2013)
doi:10.1103/PhysRevD.87.015030 [arXiv:1211.0622 [hep-ph]].

[33] A. Aboubrahim, T. Ibrahim and P. Nath, Phys. Rev. D 88, 013019 (2013)
doi:10.1103 /PhysRevD.88.013019 [arXiv:1306.2275 [hep-ph]]; Phys. Rev. D 91, no.
9, 095017 (2015) doi:10.1103 /PhysRevD.91.095017 [arXiv:1503.06850 [hep-ph]]; Phys.
Rev. D 89, no. 9, 093016 (2014) doi:10.1103/PhysRevD.89.093016 [arXiv:1403.6448
[hep-ph]]; Phys. Rev. D 89, no. 5, 055009 (2014) doi:10.1103/PhysRevD.89.055009
[arXiv:1312.2505 [hep-ph]].

[34] A. Aboubrahim, T. Ibrahim, P. Nath and A. Zorik, Phys. Rev. D 92, no. 3, 035013
(2015) doi:10.1103/PhysRevD.92.035013 [arXiv:1507.02668 [hep-ph]l;

[35] T. Ibrahim, A. Itani and P. Nath, Phys. Rev. D 92, no. 1, 015003 (2015)
doi:10.1103/PhysRevD.92.015003 [arXiv:1503.01078 [hep-ph]).

33



[36] T. Ibrahim, A. Itani and P. Nath, Phys. Rev. D 90, no. 5, 055006 (2014)
do0i:10.1103/PhysRevD.90.055006 [arXiv:1406.0083 [Lep-ph].

37 C. A. Baker et al, Phys.  Rev.  Lett. 97, 131801  (2006)
doi:10.1103/PhysRevLett.97.131801 [hep-ex/0602020].

34



