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We present a determination of the strange, charm and bottom quark masses as well as the strong coupling

constant in 2+1-flavor lattice QCD simulations using Highly Improved Staggered Quark action. The ratios of

the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained

from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57)

in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the

moments of pseudoscalar charmonium correlators: αs(µ = mc) = 0.3697(85) and mc(µ = mc) = 1.267(12) GeV.

Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so

far and is translated to the value αs(µ = MZ , n f = 5) = 0.11622(84).

PACS numbers: 12.38. Gc, 12.38.-t, 12.38.Bx

I. INTRODUCTION

Accurate determination of QCD parameters received a lot

of attention in recent years. Lattice QCD calculations play

an important role in this quest. The precise knowledge of

the QCD parameters is important for testing the prediction of

the standard model. One prominent example is the sensitivity

of Higgs branching ratios to the heavy quark masses and the

strong coupling constant [1]. While several precise determina-

tions of the heavy quark masses and the strong coupling con-

stant αs on the lattice exist, it is always important to obtain re-

sults using different lattice methods to ensure that all the errors

are under control. In case of αs different lattice and non-lattice

methods often give quite different results, possibly suggesting

that not all the sources of errors are under control [2]. In par-

ticular, the lattice determinations that use the static quark anti-

quark potential lead to smaller values of αs [3, 4]. As the result

of this the error on the αs quoted in the most recent Particle

Data Group (PDG) Review update has increased for the first

time in many years: αs(MZ) = 0.1181(16) [5]. This should be

compared to the 2013 PDG value, αs(MZ) = 0.1185(6). Lat-

tice QCD offers the possibility to determine the strong cou-

pling constant at relatively low energy scales. So far the only

non-lattice method that offers a low energy determination of

αs is the analysis of the τ decay but there are large systematic

uncertainties due to different ways of organizing the perturba-

tive expansion in this method (see Ref. [6] for a recent work

on this topic and references therein). For certain applications

it is important to have the running of the coupling constant at

low energy scales. One example is the comparison of weak

coupling and lattice results in QCD thermodynamics, where

the typical scale ≃ πT could be as low as 1 GeV [7–10].

There are also sizable differences in the value of the charm

quark masses. The recent determination of mc by HPQCD col-

laboration [11] is significantly lower than the value obtained

by ETMC collaboration [12]. Some lattice QCD calculations

use 2 or 3 flavors of dynamical quarks [13–15], while others

use 4 dynamical flavors [11, 12, 16]. Therefore, understand-

ing of the flavor dependence of the charm quark mass is also

important.

Furthermore, non-perturbative determination of the bottom

quark mass is problematic matter in the lattice simulations due

to the discretization errors caused by powers of mha where

mh is the bare mass of the heavy quarks. However, owing to

improvements of discretization of the action as well as simu-

lations with smaller lattice spacing using powerful comput-

ing resources it has, recently, become possible to perform

calculations with quark masses larger than the charm quark

mass. The region around the bottom quark mass can be ac-

cessed using extrapolations [17]. Several determinations of

the quark mass ratio of the bottom to charm have been re-

ported and slight inconsistency has been found: The ratio re-

cently obtained by ETMC collaboration [18] shows smaller

value than that previously determined by HPQCD collabora-

tions [11, 17]. Thus the determinations of the bottom quark

mass with different setups and approaches are also important

to provide precise theoretical predictions.

In this paper we report on the calculation of the quark

masses and the strong coupling constant in 2+1 flavor QCD

using Highly Improved Staggered Quark (HISQ) action. More

precisely, we determine the ratio of the charm quark mass

to the strange quark mass and the bottom quark mass to the

charm quark mass from the pseudoscalar and vector meson

masses calculated on the lattice and combined with the ex-

perimental inputs. Furthermore, the strong coupling constant

αs and the charm quark mass mc(mc) in MS renormaliza-

tion scheme are determined from the moments of the pseu-

doscalar charmonium correlators and the comparison to the

corresponding perturbative result. By using the quark mass ra-

tios together with αs and mc(mc) we also determine the strange

and bottom quark masses.

This paper is organized as follows: In section II we intro-

duce the details of the lattice setup and explain our approach to

determine the quark mass ratios, the strong coupling constant

and the quark masses. Our main numerical results are dis-

cussed in section III, including the determination of the phys-

ical values of the charm quark mass, the ratios of the quark

masses as well as the moments of the pseudoscalar charmo-

nium correlators. In section IV we compare our results for

the strong coupling constant and the quark masses with other

lattice results. The paper is concluded in Sec. V.
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II. LATTICE SETUP AND DETAILS OF ANALYSIS

To determine the quark masses and the strong coupling

constant we calculate meson masses as well as the moments

of pseudoscalar charmonium correlators in (2 + 1)-flavor lat-

tice QCD. The gauge configuration used in our study have

been generated using tree level improved gauge action [19]

and Highly Improved Staggered Quark (HISQ) action [20] by

HotQCD collaboration [21]. The strange quark mass, ms, was

fixed to its physical value, while for the light (u and d) quark

masses the value ml = ms/20 was used. The later corresponds

to the pion mass of 160 MeV in the continuum limit. Thus,

the value of the light quark masses are slightly larger than

the physical value. This small difference , however, does not

lead to any visible effects in the physical observables at zero

temperature, which agree well with the experimental values

[21, 22]. For the valence charm and bottom quarks we use the

HISQ action with the so-called ǫ-term [20], which removes

the tree-level discretization effects due to the large quark mass

up to O((am)4). The HISQ action with ǫ-term turned out to

be very effective for treating the charm quark on the lattice

[16, 20, 22, 23]. The lattice spacing in our calculations has

been fixed using r1 scale defined in terms of the energy of

static quark anti-quark pair V(r) as

r2 dV

dr

∣

∣

∣

∣

∣

r=r1

= 1.0. (1)

We use the value of r1 determined in Ref. [24] using the pion

decay constant as an input:

r1 = 0.3106 (18) fm. (2)

In the above equation all the sources of errors in Ref. [24]

have been added in quadrature. The above value of r1 corre-

sponds to the value of the scale parameter determined from

the Wilson flow w0 = 0.1749(14) [21]. This agrees very well

with determination of Wilson flow parameter by BMW col-

laboration w0 = 0.1755(18)(4) [25]. It is also consistent with

HPQCD value r1 = 0.3133(23)(3) within errors [26]. This

gives us confidence in our scale setting.

All of the quantities in this paper can be calculated from

the meson correlation functions. In this study we focus only

on the local meson operators which have the same structures

in the taste and spin generators of Dirac gamma matrices Γ.

In particular we calculate the meson propagators consisting of

the pseudoscalar Γ = γ5 and vector γi operators. To obtain the

moments of the charmonium correlators (explained in detail

below) we calculate the pseudoscalar meson correlators with

the point sources. On the other hand, to determine the bare

charm quark mass and quark mass ratios, mc/ms and mb/mc,

we utilize the meson correlators obtained with the corner-wall

sources, where on a given time slice we set the sources to

one at the origin of each 23 cube and to zero elsewhere. The

corner-wall sources enable reduction of the contribution of

higher excited states and thus more accurate determination

of the ground state masses. From the meson propagators we

extract the charmonium and bottomonium masses using two

type of fits. The first type of fits includes only the ground state

contributions, while the second type of fits includes ground

state contribution and the first excited state contribution [27].

The second type of fit allows to use a larger range in the time

direction. We find that the two fits agree quite well. We also

checked the fit range dependence of the extracted masses and

found it to be small. Any dependence on the fit range that is

larger than the statistical error is treated as a systematic error.

For the determination of the ratio mc/ms we need the mass of

the unmixed pseudoscalar ss̄ meson mass at the physical point

and utilize the lattice results from Ref. [21].

Using the J/ψ and ηc masses obtained for several trial val-

ues of the lattice bare quark mass mct we study the charm

quark mass dependence of the spin averaged mass

M =
1

4
(3MJ/ψ + Mηc

). (3)

Using M has the advantage that effects of hyperfine splitting,

which are sensitive to discretization errors, cancel out in this

combination. We fit the mct dependence of M using the linear

form

M = d + bmct, (4)

which works very well. Then the physical value of the bare

charm quark mass can be determined as

mc0 =
1

b

[

M − d0

(

r1

a

)

r−1
1

]

, (5)

where we explicitly expressed d in terms of dimensionless

quantity given in lattice unit: d0 = ad.

The mass of the unmixed pseudoscalar meson is given by

M2
ηss̄
= Bms0. Then the mass ratio of the charm to strange

quarks can be written as

mc0

ms0

=
B

M2
ηss̄

M − d

b
. (6)

By using the r1 scale as well as the values of B, r1/a, d0 and

b, extracted on the lattice the above equation can be re-written

as

mc0

ms0

=
B0

bMηss̄
r1

(

r1

a

)













M

Mηss̄

−

(

r1

a

)

d0

Mηss̄
r1













, (7)

where B0 = aB. Since the ratio of the quark masses is scheme

and scale independent mc/ms = mc0/ms0 and the above equa-

tion is the basis for our extraction of mc/ms. Using the exper-

imental input for the meson masses M and Mηss̄
on one hand,

and the value of the fit parameters b and d0 obtained on the

lattice together with the values of B0 and r1/a from Ref. [21]

on the other hand, we can obtain the value of mc/ms at each

lattice spacing. Next we have to perform the continuum ex-

trapolation of this ratio to obtain its physical value. In the

next section we discuss the numerical details of these steps

along the discussion of the corresponding error budget.

Similar approach can be applied to the bottom quark mass

and the ratio of the bottom to charm quark mass. With the

meson correlation functions at heavy valence quark masses,
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in general mh > mc0, we also fit the quark mass dependence

of pseudoscalar masses with the linear form

Mηh
= dh + bhmh . (8)

With the experimental value of ηb meson mass the quark mass

ratio can be evaluated as

mb

mc

=
Mηb
− dh

M − d

b

bh

=
b

bh

r1Mηb
− dh0(r1/a)

r1 M − d0(r1/a)
, (9)

where dh0 = adh. Here we use the pseudoscalar mass instead

of the spin averaged mass, because the effects of hyperfine

splitting are quite small compared to the overall mass scale.

Even in the state-of-the-art lattice simulations it is difficult to

obtain the ηb mass because amb ∼ 1.0 and the discretization

errors are significant. To circumvent this problem we perform

calculations for several values of the valence quark masses

that are smaller than the bottom quark mass and extrapolate

to the region of the bottom quark mass. If the utilized va-

lence quark masses are too small, this procedure could have

systematic uncertainties. To investigate such uncertainties we

perform the extrapolations from the data points at amh < 1.0

to mb0 with several mass ranges and estimate discrepancy be-

tween the results obtained using different ranges. These dis-

crepancies are treated as systematic errors.

Once the lattice charm quark masses mc0 corresponding

to the physical value have been determined we calculate the

pseudoscalar charmonium correlator with the valence mass of

mc0 using point sources. Then we consider the moments of

the pseudoscalar charmonium correlator, which are defined as

Gn =
∑

t

tnG(t), G(t) = a6
∑

x

(amc0)2〈 j5(x, t) j5(0, 0)〉, (10)

Here j5 = ψ̄γ5ψ is the pseudoscalar current. To take into

account the periodicity of the lattice of temporal size Nt the

above definition of the moments can be generalized as fol-

lows:

Gn =
∑

t

tn(G(t) +G(Nt − t)). (11)

The moments Gn are finite for n ≥ 4 (n even) since the cor-

relation function diverges as t−4 for small t. Furthermore, the

moments Gn do not need renormalization because the explicit

factors of the quark mass are included in their definition [28].

They can be calculated in perturbation theory in MS scheme

Gn =
gn(αs(µ), µ/mc)

amn−4
c (µ)

. (12)

Here µ is the MS renormalization scale. The coefficient

gn(αs(µ), µ/mc) is calculated up to 4-loop, i.e. up to order

α3
s [29–31]. Given the lattice data on Gn one can extract the

αs(µ) and mc(µ) from the above equation. However, as it was

pointed out in Ref. [28] it is more practical to consider the

reduced moments

Rn =















Gn/G
(0)
n (n = 4)

(

Gn/G
(0)
n

)1/(n−4)
(n ≥ 6)

, (13)

TABLE I. The gauge couplings (β), lattice sizes (N3
s × Nt) and the

strange quark masses (ams) used in our calculations as well as cor-

responding lattice spacing (a−1 [GeV]). The number of trajectories

(traj.) we use to calculate the charmonium correlation function with

the corner-wall sources are also summarized, as well as the results

for the bare charm quark masses, mc0 in GeV and ratios of charm

to strange quark masses (mc/ms). The calculations have been done

every 5 trajectory for Nt = 32 and 48 and 6 trajectory for Nt = 64.

β N3
s × Nt ams a−1 [GeV] traj. mc0 mc/ms

6.488 324 0.0620 1.42 2500 1.0899(23) 12.586(28)

6.515 324 0.0604 1.46 2500 1.0810(23) 12.518(28)

6.664 324 0.0514 1.69 2500 1.0407(20) 12.299(25)

6.740 484 0.0476 1.81 2440 1.0215(18) 12.162(22)

6.880 484 0.0412 2.07 2465 0.9935(21) 12.023(26)

7.030 484 0.0356 2.39 1530 0.9673(21) 11.917(27)

7.150 483 × 64 0.0320 2.67 2406 0.9471(25) 11.926(32)

7.280 483 × 64 0.0284 3.01 2376 0.9289(25) 11.886(34)

7.373 483 × 64 0.0250 3.28 1206 0.9161(27) 11.832(35)

7.596 644 0.0202 4.00 1200 0.8878(34) 11.850(46)

7.825 644 0.0164 4.89 1200 0.8679(57) 11.930(80)

where G
(0)
n is the moment calculated from the free correla-

tion function. The lattice artifacts largely cancel out in these

reduced moments. It is straightforward to write down the per-

turbative expansion for Rn:

Rn =

{

r4 (n = 4)

rn · (mc0/mc(µ)) (n ≥ 6)
, (14)

rn = 1 +

3
∑

j=1

rn j(µ,mc)α
j
s(µ). (15)

For the choice of the renormalization scale µ = mc the expan-

sion coefficients are just simple numbers that have been tab-

ulated for example in Ref. [11]. This choice of the renormal-

ization scale has the advantage that the expansion coefficients

are never large.

III. NUMERICAL ANALYSIS AND CONTINUUM

EXTRAPOLATIONS

A. Determinations of mc0 and ratios mc/ms and mb/mc

To obtain the value of mc0 as well as mc/ms and mb/mc

at each lattice spacing we need physical masses: M, Mηss̄

and Mηb
. We directly utilize the experimental value Mηb

=

9.3980(32) GeV from PDG [5], whereas to specify M we

take the values of ηc and J/ψ masses from PDG and obtain

M = 3.067 GeV.

The gauge configurations used in our study are summarized

in Tab. I together with the number of analyzed trajectories and

the corresponding lattice spacings. The statistical errors on

meson masses and more generally on meson correlation func-

tions and their moments have been estimated using jackknife

analysis. We varied the jackknife bin size and checked that the
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estimated statistical errors do not change significantly. There-

fore, the analysis does not suffer from the effects of autocor-

relations.

Our calculation neglects disconnected diagrams and elec-

tromagnetic effects. The effect of disconnected diagrams on

the ground state charmonium is know to be few MeV [32].

Electromagnetic effects are of similar size [11]. Therefore,

following Ref. [11] we assign an error of 3 MeV to the value

of M. On the other hand, to estimate the unmixed pseu-

doscalar ss̄ meson mass we use the leading order chiral per-

turbation theory, Mηss̄
=

√

2M2
K
− M2

π . We need, however, to

take into account the breaking of the isospin symmetry and

the electromagnetic effects, which are neglected in our calcu-

lations. Following Ref. [33] for the pion and kaon masses we

write

M2
π = M2

π0 , (16)

M2
K =

1

2
(M2

K0 + M2
K+ − (1 + ∆E)(M2

π+ − M2
π0 )). (17)

The parameter ∆E characterizes the violation of the Dashen

theorem stating that in the chiral limit the electromagnetic

corrections to MK+ and Mπ+ are the same, while there are no

electromagnetic corrections to Mπ0 and MK0 . The value of ∆E

was determined to be ∆E = 0.84(25) [34]. There is also a

very recent lattice determination of this parameter [35]. Here,

however, we follow Ref. [33] and use a more conservative ap-

proach varying ∆E from 0 to 2. We find

Mηss̄
= 686.00(92) MeV, (18)

where the central value corresponds to ∆E = 0. This value is

in excellent agreement with the HPQCD determination Mηss̄
=

685.8(3.8)(1.2) MeV [26], making us confident that the value

based on leading order chiral perturbation theory is accurate.

To associate the absolute scale r1 with evaluated quantities

on the lattice we use the values of r1/a given in Table VIII

of Ref. [21]. These values are obtained from the interpolation

of the calculated r1/a values [21]. Since r1/a is a smooth

function of the gauge coupling the errors in the determination

of r1/a can be largely reduced by using smooth interpolation

(see Ref. [21] for details). We also performed the analysis

using the calculated value of r1/a at each β and checked that

our final result does not change.

Now we can determine the bare charm quark mass mc0 on

the lattice and the mass ratio of the charm to strange quarks.

To determine d0 and b at each β we calculate the masses of

J/ψ and ηc mesons for several trial values of the charm quark

mass in the range that encompasses the physical value of the

charm quark mass. Some details on the determination of the

charmonium masses are given in appendix A. We perform in-

terpolation of the calculated spin averaged mass M to its phys-

ical value. We find that the linear fits aM = d0 + b(amct) work

very well and the statistical errors of d0 and b are estimated us-

ing the bootstrap analysis. The results of mc0 are also shown

in Tab. I with the number of trajectories used to calculate J/ψ

and ηc masses. The statistical errors on mc0 are estimated from

the errors on d0 and b as well as from the errors on r1/a added

in quadrature. Table I shows that the determination of mc0
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FIG. 1. The lattice spacing dependence of mc/ms together with con-

tinuum extrapolations. The triangle (square) corresponds to the a2

(a2 + a4) continuum extrapolation. The results of extrapolations with

χ2/Ndf of the fits are also shown. The thick lines show the extrap-

olation curves in the interval in which the fits have been performed,

while the thin lines show the same curves outside that interval.

achieves an accuracy of 0.4%, except for the highest β value,

where the error becomes about 0.7% mainly due to the uncer-

tainty of r1/a. The determined mc0 values will be used for the

calculations of the moments of the pseudoscalar charmonium

correlator discussed below.

Using the value of B0 calculated from the values of ams

and aMηss̄
given in Tables III and V of Ref. [21], B0 =

(aMηss̄
)2/ams, we can determine mc/ms using Eq. (7) at each

lattice spacing. The error on B0 comes from the error on the

mass of the unmixed pseudoscalar ss̄ meson determined in

Ref. [21]. This error was included in the analysis, however,

it is sub-dominant. The results are shown in Fig. 1 as a func-

tion of a2. At this point we do not include the errors on M,

Mηss̄
and the physical value of r1, as these are common for

all data points. We performed continuum extrapolations using

a2 form as well as a2 form plus a4 term. These are shown in

Fig. 1. The coarsest two lattice spacings are not in the scal-

ing regime and therefore are not included in the final analysis.

Using a2 + a4 extrapolation we obtain mc/ms = 11.877(56)

with χ2/Ndf = 0.54, while for the a2 extrapolation we have

11.863(89) with χ2/Ndf = 1.01. Since the two extrapolation

agree within the errors we take mc/ms = 11.877(56) as our fi-

nal continuum result. Now adding the errors from the absolute

values of M, Mηss̄
and r1 we obtain our final result:

mc

ms

= 11.877 (56) (72) , (19)

where the first (second) parenthesis indicates the statistical

(scale) uncertainty.

To test possible cutoff effects in our calculations we con-

sider the charmonium spectra and hyperfine splitting in the

continuum limit. For the pseudoscalar (PS) and vector (V)

masses with the trial amc values we perform similar fits with

Eq. (4) and obtain d
(i)

0
and b(i) with i =PS and V. Then those
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FIG. 2. The lattice spacing dependence of the charmonium hyper-

fine splitting together with continuum extrapolations. The triangle

(square) plot corresponds to the a2 (a2+a4) continuum extrapolation.

The results of extrapolations with χ2/Ndf of the fits as well as the ex-

perimental value MJ/ψ − Mηc = 113.3(6) MeV are also shown. The

thick lines show the extrapolation curves in the interval in which the

fits have been performed, while the thin lines show the same curves

outside that interval.

masses on the lattice can be determined as

Mi = r−1
1

(

r1

a

)

d
(i)

0
+ b(i)mc0, i = PS and V. (20)

We find that the dependence of the masses on the lattice spac-

ing becomes very mild. From the continuum extrapolation

using the a2 form and the six highest β values we obtain

MPS = 2.982 (12) GeV , (21)

MV = 3.095 (12) GeV , (22)

which agree well with the experimental values Mηc
=

2.9836(6) GeV and MJ/ψ = 3.096916(11) GeV. The hyper-

fine splitting ∆M ≡ MV − MPS can also be extracted from the

lattice masses and is shown in Fig. 2. We perform continuum

extrapolations of the hyperfine splitting using a2 and a2 + a4

forms, which are also shown in Fig. 2. The results from the

two continuum extrapolations agree very well within the er-

rors. Taking the results from the a2 + a4 extrapolations and

considering the errors from the absolute values of M and r1

we obtain:

∆M = 113.5 (18) (7) MeV. (23)

This agrees very well with the experimental value MJ/ψ −

Mηc
= 113.3(6) MeV.

In the end of the subsection we determine the ratio of the

bottom to charm quark mass mb/mc. For this purpose we

chose heavier valence masses than the charm quark mass,

mh > mc0, and calculate the pseudoscalar meson mass Mηh
.

For the four finest lattice spacings at β = 7.280–7.825 we

calculate the meson correlation functions at 0.5 ≤ amh ≤ 1.0

and determine the quark mass dependence of Mηh
according to

Eq. (8). The number of trajectories we use for this calculation

is summarized in Tab. II for each gauge coupling β. The de-

tails of the extraction of the heavy pseudoscalar meson masses

are discussed in Appendix A. The parameters dh0 and bh are

determined by the linear fittings of Mηh
as a function of mh

with three data at amh = 0.7, 0.8 and 0.9. In our calculations

the interpolation from Mηh
to the experimental Mηb

is possible

for β = 7.825. For other β values, however, the bottom quark

mass corresponds to the region amh > 1 and extrapolations

are necessary to obtain Mηb
. We estimate uncertainties com-

ing from the extrapolation to the bottom quark masses in the

following way: First by using dh0 and bh obtained from the fit

at amh = (0.7, 0.8, 0.9) we determine the bare bottom quark

mass mb0 at each β as

mb0 =
1

bh

[

Mηb
− dh0

(

r1

a

)

r−1
1

]

. (24)

Then we iterate the fit with the different data points at 0.5 ≤

amh ≤ 1.0, e.g. amh = (0.8, 0.9, 1.0), and calculate mb0 again.

The difference between these two values provides an estimate

of the systematic errors. The numerical values of mb/mc ob-

tained from Eq. (9) are summarized in Tab. II, where the first

and second parentheses indicate the statistical and systematic

errors, respectively. The lattice spacing dependence of mb/mc

is shown in Fig. 3, where the error bars and gray shadows in-

dicate the statistical and systematic errors, respectively. We

find that the lattice spacing dependence is very mild. The

systematic errors become larger on coarser lattices, and are

significantly larger than the statistical errors for β ≤ 7.373.

Although there is no significant lattice spacing dependence,

we perform the continuum extrapolations with the a2 form,

including the uncertainties from the statistical and systematic

errors in quadrature. As a consequence we obtain:

mb

mc

= 4.528 (50) (27) , (25)

where the number in the first parenthesis shows the combined

statistical and extrapolation errors, and the number in the sec-

ond parenthesis is the combined error from the values of M,

Mηb
and r1. As a test of our approach we have performed

the calculations of mb/mc by using vector bottomonium MV

masses obtained on the lattice combined with the experimen-

tal Υ mass and obtained the value mb/mc = 4.531(52), which

is essentially the same as the above. The small lattice spacing

dependence of the ratio mb/mc may appear somewhat surpris-

ing. Note, however, that the discretization errors for the HISQ

action are small also in the heavy quark mass region as long

as amh ≤ 1 [20]. In particular, the cutoff dependence of the

ground state quarkonium masses was studied in a wide range

of quark masses and was found to be small [17]. This is the

reason why the cutoff dependence of mb/mc is small.

B. Strong coupling constant and quark masses from the

moments

The strong coupling constant is determined from the mo-

ments of the pseudoscalar charmonium correlators on the lat-

tice combined with the perturbative expansion of the corre-
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FIG. 3. The lattice spacing dependence of mb/mc. The error bars

indicate the statistical errors, whereas the gray shadows indicate sys-

tematic uncertainties due to the heavy quark mass extrapolations (see

text for more details). Result of the continuum extrapolation done by

a2 form is also shown with χ2/Ndf value of the fit. The thick line

shows the extrapolation curve in the interval in which the fit has been

performed, while the thin line shows the same curve outside that in-

terval.

TABLE II. The gauge coupling (β) and the number of trajectories

(traj.) used to calculate the bottomonium correlation functions with

the corner-wall sources. Also shown are the results of the ratios of

the bottom to charm quark mass. The first parenthesis in the last

column indicates the statistical errors and the second one indicates

the systematic errors due to extrapolations to heavy quark masses

(see the text for more detail).

β traj. mb/mc

7.280 1800 4.512(12)(41)

7.373 1800 4.525(13)(43)

7.596 1680 4.547(17)(22)

7.825 2562 4.512(30)(0)

sponding quantity. We calculate the pseudoscalar charmo-

nium meson correlators with the valence mass mc0 determined

above using point sources with large statistics. Gauge cou-

plings β and the number of trajectories used to calculate the

moments are summarized in Tab. III (see also Tab. I for the

corresponding lattice size and mc0). The numerical results of

the reduced moments are also summarized in Tab. III up to

n ≤ 10. The statistical errors of the reduced moments Rn have

been estimated using jackknife procedure and we checked

again that there is no dependence on the jackknife bin size.

Since the lattice gauge configurations used in our study do

not include the effects of charm quarks, following Ref. [28]

we estimate such effects using perturbation theory. It was

shown that charm quarks increase the value of R4 by 0.7%

[28]. Therefore, we scale our lattice results for R4 by 1.007.

In the following we always give the rescaled value of R4. The

results of R4 are shown in Fig. 4 as a function of the lattice

spacing a2. The lattice spacing dependence of R4 is signifi-

cant, and for the coarsest lattice it amounts to 6%. We have

performed continuum extrapolation of our results using vari-

ous fit forms. For HISQ action the leading discretization ef-

fects are expected to be αsa
2 and a4. It is usually assumed

that the running of the coupling constant αs can be neglected

if the considered range of the lattice spacing is not too large.

Therefore, we can fit the numerical results for R4 using a2 and

a2 + a4 forms. We could also perform continuum extrapola-

tions using the αsa
2 form by defining the boosted coupling

constant

αb
s(1/a) =

1

4π

g2
0

u4
0

, (26)

where g2
0
= 10/β is a bare lattice gauge coupling and u0

is an averaged link valuable defined by the plaquette u4
0
=

〈TrU�〉/3. Furthermore, we perform continuum extrapola-

tions using αsa
2 + a4 and αs(a

2 + a4) forms . We obtain the

following continuum results:

R4 = 1.2743(40) , a2 fit

R4 = 1.2799(53) , a2 + a4 fit

R4 = 1.2705(37) , αb
sa2 fit

R4 = 1.2769(49) , αb
sa2 + a4 fit

R4 = 1.2759(47) , αb
s (a2 + a4) fit

(27)

The continuum extrapolations with a2 and a2 + a4 forms are

shown in Fig. 4. When performing fits with a2 and αb
sa2 forms

the data for the two coarsest lattice spacings have been ex-

cluded since these are not in the scaling regime. As our fi-

nal continuum result we take the value of R4 obtained from

the simple a2 extrapolation and assign a systematic error of

0.0047 due to the continuum extrapolation to take into account

the spread in the central values of R4 obtained above:

R4 = 1.2743(40)(47). (28)

Our continuum result for R4 agrees with the continuum re-

sults R4 = 1.281(5) and R4 = 1.282(4) obtained in Ref. [28]

and Ref. [17], respectively, within errors. Our central value is

slightly smaller. It should be pointed out that we have many

more lattice spacings in the region a < 0.1 fm to perform the

continuum extrapolations compared to Refs. [28] and [17].

Using the above results for R4 as well as the correspond-

ing perturbative expansion it is straightforward to determine

αs(µ = mc). We obtain the value

αs(µ = mc, n f = 3) = 0.3697 (54) (64) (15) , (29)

where the first error is statistical, the second error corresponds

to the uncertainty of the continuum extrapolation and the last

error comes from the truncation of the perturbative series for

r4. The truncation error was estimated as follows. First we

used the perturbative result up to order α3
s to estimate the

strong coupling constant. Then we included α4
s term with a

coefficient equal to r43 × 2 and estimated the strong coupling

constant again. The difference between these two estimates is

the truncation error.

Now let us discuss the determination of the charm quark

mass. The value of the charm quark mass is also needed to



7

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4

a2 [GeV-2]

a2+a4

R4 = 1.2799(53)

χ2/Ndf = 0.20

a2

R4 = 1.2743(40)

χ2/Ndf = 0.06

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4

R4

FIG. 4. Lattice results for R4. Also shown are the continuum extrap-
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in which the fits have been performed, while the thin lines show the

same curves outside that interval.
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in which the fits have been performed, while the thin lines show the

same curves outside that interval.

specify αs at any scale using Eq. (29). We determine the

charm quark mass by considering R6. The MS charm mass

can be estimated from the lattice mass as mc = r6/(R6/mc0).

The effect of charm quark loops turns out to be much smaller

for R6 than for R4 when estimated using perturbation theory.

It was estimated that charm quark loops increase R6 and this

effect amounts to 0.1% [28]. We corrected our lattice data for

this tiny effect and always show the corrected values of R6

in the discussions below. Our lattice results for R6/mc0 are

shown in Fig. 5. The lattice spacing dependence of R6/mc0 is

milder than for R4. The maximal discretization errors are less

than 2%. This is not surprising since the contribution to G6

from the data points at small t is smaller than for G4. The data

points at small t are the most sensitive to the lattice artifacts.

To obtain the continuum result we again perform a2 ex-

trapolation which results in R6/mc0 = 1.0191(27). Per-

forming an extrapolation with a4 term included results in

R6/mc0 = 1.0196(61), which is in very good agreement with

the above result (shown in Fig. 5). We also performed ex-

trapolations using αsa
2 and αsa

2 + a4 forms and obtained

R6/mc0 = 1.0181(23) and R6/mc0 = 1.0192(56), respectively.

Since all the above continuum results agree well within the

estimated statistical errors we use the value from simple a2

extrapolations as our final continuum estimate

R6/mc0 = 1.0191(27). (30)

Using this and the perturbative result for r6 we obtain

mc(µ = mc, n f = 3) = 1.2668(33)(34)(79)(73) GeV, (31)

where the first error is statistical, the second error is the trun-

cation error in r6, the third error comes from αs determined

above, and the last error comes from setting the scale in our

lattice calculations.

The higher moments can also be utilized to determine αs

and mc. Namely, we can use Rn−2/Rn to determine αs and

Rn/mc0 to determine mc(mc). Here n ≥ 8. These calculations

provide a valuable cross check for the extraction of αs and

mc. There is also an advantage that the lattice spacing depen-

dence for higher moments is expected to become milder as

discussed above. Thus, more accurate continuum extrapola-

tions could be possible. There is, however, an disadvantage in

using higher moments. Higher order contributions in the per-

turbative expansion become significant for higher moments,

but the perturbative coefficients are known up to α3
s orders

at present. The absence of higher order perturbative calcula-

tions leads to larger truncation errors. On the lattice side there

is also an disadvantage that the higher moments require in-

formation of the correlation functions at larger distance (c.f.

Eq. (11)), but the calculation is performed on the finite lat-

tice. Thus, the results for the higher moments potentially suf-

fer from larger finite volume effects. In our calculations the

finite volume effects become more serious at finer lattice spac-

ing.

In our study the finite volume effects mostly appear in the

moments of the free correlation functions G
(0)
n introduced in

Eq. (13). This is due to the fact that the exponential decay of

the free meson correlator is governed by 2mc0 ≃ 1.8−2.0 GeV

rather than by mηc
≃ 3 GeV. To investigate such effects we cal-

culate the free moments in the infinite temporal-size limit by

using the results of 1.5Nt and 2Nt and estimate the finite vol-

ume effects from G
(0)
n (Nt)/G

(0)
n (∞), where the numerator is the

same one used in Eq. (13), whereas the denominator is that on

the infinite temporal size. We perform this calculation for the

highest two β values and find that the effects become negligi-

ble for n ≤ 6, whereas 1% and 6% effects appear for R8 and

R10 at β = 7.596, and 7% and 23% effects appear for R8 and

R10 at β = 7.825. Those are larger than the amount of the

statistical errors of corresponding quantities and we omit the

corresponding data in our analysis. We perform the contin-

uum extrapolations of Rn−2/Rn and Rn/mc0 for n = 8 and 10

using a2 form and including the lattice data for β = 7.030–
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TABLE III. The gauge couplings (β) and the number of trajectories

(traj.) used for the calculations of the moments of the pseudoscalar

correlation functions with the valence mass mc0 and point sources.

Numerical results of the reduced moments Rn are also shown up to

n ≤ 10.

β traj. R4 R6 R8 R10

6.740 8005 1.2012(24) 1.0252(12) 0.94261(67) 0.89873(48)

6.880 8095 1.2110(27) 1.0014(13) 0.91399(75) 0.87025(54)

7.030 9830 1.2196(25) 0.9763(12) 0.88726(69) 0.84523(50)

7.150 7902 1.2289(33) 0.9577(16) 0.86794(83) 0.82661(58)

7.280 8058 1.2401(34) 0.9424(17) 0.85182(90) 0.81119(63)

7.373 9246 1.2454(41) 0.9303(18) 0.84022(94) 0.80054(65)

7.596 9510 1.2542(38) 0.9020(17) – –

7.825 9516 1.2614(47) 0.8811(20) – –

7.373 and obtain the following continuum results

R6/R8 = 1.1140(18), (32)

R8/R10 = 1.04954(65), (33)

R8/mc0 = 0.9167(54), (34)

R10/mc0 = 0.8731(50). (35)

Since the continuum extrapolations using a2+a4 fit form with

the lattice data for β = 6.740–7.373 leads to results that agree

very well with the above results within errors, we consider

them as our final continuum results. From the continuum re-

sults for the ratio Rn−2/Rn and Rn/mc0 we obtain the following

values for αs and mc:

n = 8 n = 10

αs(mc) = 0.3954(71)(210) 0.3611(50)(152)

mc(mc) = 1.2717(75)(9) 1.2708(73)(35)
, (36)

where the first (second) parenthesis indicates the statistical

(truncation) errors. We see that the truncation errors for αs are

an order of magnitude larger than the truncation errors com-

ing from R4. Within the large errors the above values of αs are

consistent with the αs determination from the fourth moment.

On the other hand the truncation errors are fairly small for the

charm quark mass and the above values of mc agree well with

our previous determination.

Before concluding this section let us compare the contin-

uum results for the higher moments Rn, n ≥ 6 with the

HPQCD results [17, 28]. In Refs. [17, 28] a slightly different

definition of Rn was used: Rn = mηc
/(2mc0)(Gn/G

(0)
n )1/(n−4). If

we use this definition, we obtain R6 = 1.520(4), R8 = 1.367(8)

and R10 = 1.302(8), which agree well with the results of

Ref. [17]: R6 = 1.527(4), R8 = 1.373(3) and R10 = 1.304(2),

as well as with the results of Ref. [28]: R6 = 1.528(11),

R8 = 1.370(10) and R10 = 1.304(9).

IV. SUMMARY OF RESULTS AND COMPARISON WITH

OTHER WORKS

Now we summarize the main findings of this paper. From

the masses of pseudoscalar and vector mesons on the lattice

we obtained the quark mass ratios:

mc

ms

= 11.877(91) ,
mb

mc

= 4.528(57) , (37)

where the statistical and systematic errors are added in quadra-

ture. On the other hand, from the moments of the pseu-

doscalar charmonium correlation functions we estimated the

strong coupling constant and the charm quark masses in MS

scheme for µ = mc:

αs(µ = mc, n f = 3) = 0.3697(85) , (38)

mc(µ = mc, n f = 3) = 1.267(12) GeV . (39)

Let us first compare the quark mass ratios, which are scale

and scheme independent quantities with other lattice determi-

nations. In Fig. 6 we show our result on mc/ms and compare

with several recent lattice QCD results. We find that the re-

sults in 2+1-flavor simulations show similar values. Our result

for mc/ms is about one sigma larger than 2 + 1 + 1-flavor re-

sults. In Fig. 7 we compare our result on mb/mc with other re-

cent lattice QCD determinations. Our result agrees well with

the result from HPQCD collaboration and has similar errors.

By just multiplying both ratios we obtain the mass ratio of the

bottom to the strange quarks:

mb

ms

= 53.78(79) . (40)

This can be compared with one of the prediction in the grand-

unified theory, namely the Georgi-Jarlskog relation which

states: mb/ms = 3mτ/mµ = 50.45 [36]. Our result is by 6%

away from this prediction.

To compare our result on the strong coupling constant with

other determinations we need to evolve it to higher scales

µ. We do so by using the 4-loop perturbation theory in MS

scheme and the RunDeC package [37]. First we compare our

result to two low energy determinations of αs in 2 + 1-flavor

lattice QCD simulations. One of them comes from the anal-

ysis of static quark anti-quark energy [3, 4] with the most re-

cent value αs(1.5GeV) = 0.336(+12)(−0.008) [4]. Evolving

our result to µ = 1.5 GeV and propagating the uncertainties

we obtain

αs(1.5 GeV, n f = 3) = 0.3316(69) (41)

in excellent agreement with the above result. Another low

energy determination of αs by HPQCD Collaboration comes

from the lattice calculations of the moments of meson corre-

lators consisting of heavy quarks with several values of the

heavy quark mass and the Bayesian fit of these correlators to

the perturbative result [17]: αs(5GeV, n f = 3) = 0.2034(21).

Evolving our results to µ = 5 GeV and propagating the errors

we obtain

αs(5 GeV, n f = 3) = 0.1978(22), (42)

which is two sigma lower than the above result. Furthermore,

we evolve our result to the commonly used scale µ = MZ with
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FIG. 6. Determinations of the ratio of the charm quark mass to

strange quark mass mc/ms in lattice QCD simulations. We include

the determinations from HPQCD’15 [11], MILC’14 [16], ETMC’14

[12], χQCD’15 [15], HPQCD’10 [14], ETMC’10 [39] and Durr’12

[13].

n f = 5 by adding the contributions of the charm and bottom

quarks using the RunDeC package1

αs(MZ , n f = 5) = 0.11622(84) . (43)

In Fig. 8 we compare our αs(MZ) with recent results obtained

by other collaborations. We see that our result is in agreement

with Ref. [4] (“Bazavov’14” ) but is lower than other lattice

determinations.

The charm quark mass mc(mc) was directly obtained by ex-

trapolating the lattice moments to the continuum and match-

ing those to the corresponding perturbative results. Figure 9

shows the comparison of our charm quark mass with the re-

cent results of other collaborations. We find that our result

is similar to other lattice determinations but is lower than the

ETMC ’14 result [12]. We can also calculate the strange and

bottom quark masses from mc(mc) with the quark mass ratios

and obtain:

ms(µ = 2 GeV, n f = 3) = 92.0(1.7) MeV , (44)

mb(µ = mb, n f = 5) = 4.184(89) GeV. (45)

Our result of mb(mb) is almost the same as the recent re-

sult by HPQCD collaboration mb(mb) = 4.162(48) [11] and

also agrees with the ETMC result mb(mb) = 4.26(10) [18]

within the errors. On the other hand, for the strange quark

mass our result agrees well with the recent HPQCD result

1 In more detail, we start from our αs(mc, n f = 3) and match it to αs(mc, n f =

4) using mc(mc) as the threshold. We evolve the corresponding αs(mc, n f =

4) to the scale µ = mb(mb), where we match it to αs(mb, n f = 5). Finally,

we evolve the coupling constant to µ = MZ .

 4.3  4.4  4.5  4.6

mb/mc

Nf = 2 + 1

Nf = 2 + 1 + 1
ETMC’16

HPQCD’15

this paper

HPQCD’10

FIG. 7. Determinations of the ratio of the bottom quark mass to

charm quark mass mb/mc in lattice QCD simulations. In the com-

parison we include the results from ETMC’16 [18], HPQCD’15 [11]

and HPQCD’10 [17].

 0.116  0.118  0.12

αs(MZ)

Nf = 2 + 1

Nf = 2 + 1 + 1
HPQCD’15

ETMC’14

this paper

JLQCD’16

Bazavov’14
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FIG. 8. Determinations of αs(MZ , n f = 5) in lattice QCD simula-

tions. Recent results are included coming from HPQCD’15 [11],

ETMC’14 [40], JLQCD’16 [41], Bazavov’14 [4] and HPQCD’10

[14].

[11] within uncertainties: ms(2GeV) = 93.6(8) MeV. It is

lower than the values obtained by ETMC collaboration [12],

ms(2GeV) = 99.6(4.3) MeV and Dürr et al [13], ms(2GeV) =

97.0(2.6)(2.5) MeV. Evolving our result to µ = 3 GeV we get

ms(3GeV) = 83.6(1.5). This is in good agreement with the re-

sult from RBC/UKQCD ms(3GeV) = 81.64(1.17) MeV [38].

V. CONCLUSION

We have performed determinations of the quark mass ratios

as well as the strong coupling constant and the quark masses

in 2+1 flavor lattice QCD simulations. The former have been



10

 1.2  1.25  1.3  1.35

mc(mc)

Nf = 2

Nf = 2 + 1

Nf = 2 + 1 + 1

HPQCD’15

ETMC’14

this paper

JLQCD’16

χQCD’15

HPQCD’10

ETMC’10
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[39].

obtained from the pseudoscalar and vector meson masses to-

gether with the experimental mass values, whereas the latter

have been obtained from the moments of the pseudoscalar

charmonium correlators and its comparison to the perturba-

tive result at scale µ = mc.

At the level of the reduced moments our results agree well

with the results obtained by HPQCD collaboration. Our re-

sults for bottom, charm and strange quark masses are also

in very good agreement with the HPQCD results. We deter-

mined the QCD running coupling constant in MS scheme at

the lowest energy scale so far. The error in our determination

of the strong coupling constant is dominated by the lattice er-

ror, whereas the error due to the truncation of the perturbative

series is very small. Evolving this low energy determination

to µ = MZ we obtain αs(MZ , n f = 5) = 0.11622(84), which

is lower than the most lattice QCD determinations, as well as

the PDG value.

One open issue with the present determination based on

moments of heavy meson correlators is whether the system-

atic error of the perturbative expansion is sufficiently conser-

vative. Recent analysis seem to suggest that the error in the

perturbative expansion may be underestimated [42].
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FIG. 10. Effective masses extracted from the pseudoscalar meson

correlators at the valence quark mass of amh = 0.8 (gray symbols)

as a function of the separation t. Also shown are the extracted pseu-

doscalar meson masses as function of tmin/a. The lines in the right-

hand-side indicate estimated magnitude of the plateaus for each β

(see text for more details).

Appendix A: Pseudoscalar meson masses

In this appendix we discuss the determination of the pseu-

doscalar meson masses for various quark masses including the

quark mass region utilized to estimate the bottom quark mass.

To determine the bottom quark mass we calculate the meson

correlator in the pseudoscalar channel and estimate the low-

est lying pseudoscalar meson masses, Mηh
at the quark mass

range of 0.7 ≤ amh ≤ 0.9. Then we extrapolate to the region

of heavier quark masses. Thus, high quality extraction of the

ground state meson masses is crucial to ensure the quality of

the heavy quark extrapolations.

To demonstrate the quality of meson mass determination

in Fig. 10 we show the effective masses as well as the fit re-

sults for the pseudoscalar channel at amh = 0.8 obtained with

corner-wall sources. In the figure results for four β values are

shown, which are used to estimate the bottom quark mass in

the continuum limit. Here the gray symbols correspond to

the results of the effective masses, whereas the colored sym-

bols depict the fit results of the pseudo-scalar meson masses

performed in the range at [tmin/a, Nt − tmin/a]. We find that

both the effective masses and fit results approach plateau for

large t or large values of tmin/a. On finer lattices one needs

larger separations to achieve the plateau. For the finest lat-

tice β = 7.825 the plateau behavior can be seen at t/a ≥ 24.

The values of the plateaus are estimated by averaging over the

fit results tmin/a = 24–27. This is also shown by the lines

in the right-hand-side. We find that the effective masses as

well as the fit results are converged to the lines at large dis-

tance which implies that magnitudes of our extracted plateau

well reproduce the lowest lying masses of the corresponding

states.

Similar analysis has been performed for the valence quark

masses around the charm quark mass. The corresponding re-



11

 1

 1.2

 1.4

 1.6

 0  4  8  12  16  20  24

aMPS

t / a

β   mc/ms
6.740, 11.8
6.880, 11.6
7.030, 11.4

FIG. 11. Effective masses extracted from the pseudoscalar meson

correlators with the valence quark masses around the charm quark

mass (gray symbols) as a function of the separation t. Also shown are

the extracted pseudoscalar meson masses as function of tmin/a. The

lines in the right-hand-side indicate estimated values of the plateaus

for each β (see text for more details).

sults are shown in Fig. 11 for several gauge couplings β. Once

again we see that the extracted masses are stable with respect

to the variation of tmin/a within a reasonable range, and the ex-

tracted masses agree with the plateaus of the effective masses.
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