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Abstract
We present a lattice simulation study of largeNc regularities of meson and baryon spectroscopy in

SU(Nc) gauge theory with two flavors of dynamical fundamental representation fermions. Systems

investigated include Nc = 2, 3, 4, and 5, over a range of fermion masses parametrized by a squared

pseudoscalar to vector meson mass ratio between about 0.2 to 0.7. Good agreement with large Nc

scaling is observed in the static potential, in meson masses and decay constants, and in baryon

spectroscopy.
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I. INTRODUCTION

’t Hooft’s [1] large-Nc limit of QCD has been a fruitful source of qualitative and quan-
titative information about the strong interactions for more than forty years. As the gauge
group of QCD, SU(3), is replaced by an SU(Nc) group, and as Nc is taken to infinity, simple
diagrammatic counting rules display characteristic scaling as powers of Nc. This scaling is
used to abstract the relative sizes of various hadronic matrix elements in the real world of
Nc = 3. In a single (oversimplified) sentence, large Nc counting predicts that meson spec-
troscopy is independent of Nc (up to corrections going like 1/Nc) and matrix elements scale
as characteristic powers of Nc.

Baryon spectroscopy also shows large-Nc regularities. Baryons in largeNc can be regarded
as many-quark states [2] or as topological objects in effective theories of mesons[3–6]. Large-
Nc mass formulas for baryons have been developed by the authors of Refs. [7–12]. Results
up to 1998 have been summarized in a review, Ref. [13].

In large-Nc phenomenology, nonperturbative quantities can generally be written as a
power series in the small parameter 1/Nc. The coefficients of the expansion are not given by
largeNc counting; rather, phenomenology assumes that they have some typical hadronic size.
In a mass formula, a dimensionful parameter with units of mass would be expected to have
a size of a few hundred MeV. To pin these numbers down requires a real nonperturbative
calculation, which can be given by numerical simulation of the lattice regularized theory.
Over the last decade or so a number of lattice comparisons to large Nc counting have been
carried out. Most of them involve pure gauge theory. A summary of results can be found
in the review article by Lucini and Panero [14].

The literature on large Nc with fermions is small. Nearly all studies are done in quenched
approximation, neglecting virtual quark anti-quark pairs. The most extensive study of meson
spectroscopy and matrix elements is done by Bali et al [15]. They cover Nc = 2 − 7 and
17. Ref. [16] discusses large Nc expectations for baryons, but it only makes comparisons to
actual lattice data for Nc = 3. Its data sets are unquenched. One of us has co-authored
three papers on baryon spectroscopy [17–19], with Nc = 3, 5, and 7. Ref. [20] is a study
of quenched baryon spectroscopy in SU(4) which also contains large Nc comparisons. The
results of all these studies are easy to state: large Nc counting works very well.

These days, interest in large Nc regularities is not restricted to the study of QCD. There is
a relatively large body of literature devoted to beyond standard model physics, where the new
physics is composite. The targets of such investigations are either composite dark matter,
or alternative dynamics replacing the standard model Higgs boson, or both. (Ref. [21]
is a good recent review of strongly coupled dark matter models and lattice simulations.)
Typically, large Nc counting is used to extrapolate results from Nc = 3 into the system
under study. These extrapolations can be replaced by results from lattice simulation. Some
relevant investigations already exist. There are several studies of spectroscopy for Nc = 2
with Nf = 2 flavors of dynamical fermions. (See Refs. [22–27].) The spectroscopy is QCD-
like. Ref. [28], a study of SU(4) with two flavors of antisymmetric representation fermions,
also makes reference to large-Nc scaling to compare results to SU(3). Good agreement is
observed.

There are also many studies of systems with small Nc and many fermionic degrees of
freedom. The physics of these systems is thought to be different from QCD. (For a survey
of this unrelated field, see Ref. [29].) However, these studies raised a question relevant to
our work: to what extent do theories which are nearby real world QCD resemble QCD?
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“Nearby” probably describes a space with at least three dimensions. One is Nc. Two
involve the number of fermionic degrees of freedom, the representation of the fermions and
the number of fermion flavors. One could imagine studying systems with fermions in several
representations. All of these more exotic systems have a place in beyond standard model
phenomenology. The conventional ’t Hooft large Nc limit might be a useful first benchmark
for comparisons.

Finding the spectrum of QCD in the Nc → ∞ limit can be done by working in the
quenched approximation, computing at many values of Nc and taking the limit.

The technology for doing this was worked out long ago by Bernard, Golterman, Sharpe,
and others [30, 31], and involves the low energy chiral effective theories for quenched and
unquenched QCD. Typical observables have an expansion in terms of the pseudoscalar decay
constant fPS and pseudoscalar mass mPS,

Q(mPS) = A(1 +B
m2

PS

f 2
PS

logm2
PS) + . . . . (1)

Quenched and unquenched QCD can have different B coefficients. Quenched QCD can also
have a different functional form, for example

m2
PS/mq = Cm(δ/(1+δ))

q +Dmq + . . . . (2)

where δ, C, and D are all constants.
At any finite value of Nc, these differences mean that the quenched approximation differs

fundamentally from a system with real dynamical fermions. This is why modern lattice
calculations in QCD no longer use the quenched approximation; they all include the effects
of dynamical fermions.

However, for infinite Nc the quenched approximation is expected to become exact because
of suppression of dynamical quark loops by powers of Nf/Nc. What is done in the literature
is to fit lattice data Nc by Nc to the appropriate quenched formula (such as Eq. 2), and take
the limit of the constants δ, C, and D. The discussion in Ref. [15] is probably the most
complete summary to date. It is hard to imagine that any other lattice technique could
compete with this one, to find the Nc → ∞ spectrum.

We believe that to do anything more requires simulations with dynamical fermions. For
example, presumably the Nc → ∞ spectrum would be known for all values of the fermion
masses. How does it compare to the spectrum of Nc = 3? Real experimental data only
exists at the physical values of the quark masses. Comparing the spectrum anywhere else
requires the synthetic data that only a simulation with dynamical fermions can give. A
related question is, what is the spectroscopy of systems with the same fermion flavor content,
but with different Nc values? How well does large Nc scaling relate their observables?
Presumably there are Nf/Nc corrections. Therefore, we have performed a calculation of
meson and baryon spectroscopy in SU(Nc) gauge theories with two flavors of fundamental
representation dynamical fermions.

We collected data at Nc = 2, 3, 4, and 5. The minimal large-Nc study needs at least three
Nc’s, to see corrections to leading behavior. For example, a baryon of angular momentum
J made of Nc quarks has a spectrum characterized by two parameters m0 and B,

M(Nc, J) = Ncm0 +B
J(J + 1)

Nc

(3)
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which in leading order in Nc are independent of Nc. At next-to-leading order, there are
corrections: m0(Nc) = m00 + m01/Nc + · · · . More than two Nc’s are needed to fit such
behavior.

Next, SU(2) is special: there are no baryons (only diquarks) and the pattern of chiral
symmetry breaking is different than Nc ≥ 3. (Fundamental fermions occupy a pseudo real
representation in SU(2). The pattern of chiral symmetry breaking is SU(4) → Sp(4) for
two flavors.) We are not sure if it is a legitimate participant in a large Nc scaling plot, but
we have the data and will include it. Anyway, for three Nc’s for baryons, we have Nc = 3,
4 and 5.

Simulating large Nc presents some slightly different issues than are seen in ordinary QCD.
The goal of a QCD simulation is usually a direct comparison with experiment. To achieve
this goal requires taking the lattice spacing to zero, the volume to infinity, and the fermion
masses to their small physical values. Large Nc comparisons do not require any of these
limits: they can be made for any value of the cutoff, the volume, and the fermion mass,
as long as these quantities are treated consistently across Nc. Nevertheless, it is always a
goal, to try to tie a large Nc prediction to a physical observable. Doing that imposes all the
requirements of a QCD simulation, plus being able to vary Nc. This is a tall order, but this
project is a start.

In a nutshell, we find that large-Nc scaling laws give an excellent quantitative description
of the static potential, of meson and baryon spectroscopy and of simple mesonic matrix
elements. The biggest deviations occur for Nc = 2. Large-Nc regularities also reveal them-
selves in the way bare parameters, such as the bare gauge coupling, must be tuned to match
physical observables across Nc, and in how the lattice spacing is affected by the fermion
mass.

The outline of the paper is as follows: Sec. II contains all the details of the lattice
calculation. It also shows our first large-Nc comparisons, of how bare parameters must be
tuned to produce more or less constant physics across Nc. Then we begin comparisons of
more physical quantities: Sec. III shows the Nc and fermion mass dependence of the static
potential. Sec. IV shows results for mesonic observables. Sec. V shows results for baryon
spectroscopy. Our conclusions are presented in Sec. VI.

II. THE LATTICE CALCULATION

A. Overview

The lattice calculation has two parts. We begin by carrying out simulations for a set of
SU(Nc) gauge theories coupled to Nf = 2 fundamental representation fermions. For each
Nc we simulate at a number of values of the bare fermion mass. We adjust the bare gauge
coupling so that the lattice spacing (as determined by some common observable) is roughly
the same for all Nc’s. Nothing about large Nc phenomenology enters at this stage.

After we have collected the data sets, we can compare them using the framework of
large-Nc counting. This also has two parts. Large-Nc phenomenology involves the ’t Hooft
coupling λ = g2Nc where g

2 is the gauge coupling. We can ask whether or not the matched
scales that we have determined in the first part of the calculation occur at similar values
of λ, expressed in terms of g2 the bare gauge coupling. If this is so, then lines of constant
physics across Nc will correspond approximately to lines of constant ‘t Hooft coupling. We
then compare the values of observables such as the static potential, meson and baryon
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spectroscopy, and simple mesonic matrix elements.

B. Methodology

The lattice theory is taken to be the usual Wilson plaquette gauge action coupled to
Wilson–clover fermions. The fermion action uses gauge connections defined as normalized
hypercubic (nHYP) smeared links [32–34]. The bare gauge coupling g0 is set by the simula-
tion parameter β = 2Nc/g

2
0. We take the two Dirac flavors to be degenerate, with common

bare quark mass mq
0 introduced via the hopping parameter κ = (2mq

0a+ 8)−1. As is appro-
priate for nHYP smearing [35], the clover coefficient is fixed to its tree level value, cSW = 1.

Refs. [32–34] describe the construction of nHYP links for Nc = 2, 3, and 4. We need an
implementation which can be used for arbitrary Nc. Doing this was straightforward. The
details of the construction are given in Appendix A.

Gauge-field updates used the Hybrid Monte Carlo (HMC) algorithm [36–38] with a multi-
level Omelyan integrator [39] and multiple integration time steps [40], including one level of
mass preconditioning for the fermions [41]. Lattices used for analysis are spaced a minimum
of 10 HMC time units apart (50 time units for some of the SU(4) data sets). All data sets
except the three lightest mass SU(5) points are based on a single stream. These last sets
were composed of five streams, four of which were seeded from the first one and the first
fifty trajectories discarded.

We wanted to fix all parameters of the simulation other than Nc to a common value.
Accordingly, we tuned the lattice spacing to be approximately equal and we worked at
a common lattice volume, 163 × 32 sites. This volume, small by today’s standards, is a
compromise forced on us by the constraint that large-Nc simulations become expensive as
Nc grows; their cost scales roughly like N3

c . This will impact our ability to present results
at light fermion masses. We return to this point in Sec. IID below.

We set the lattice spacing using the shorter version [42] of the Sommer [43] parameter
r1, defined in terms of the force F (r) between static quarks: r2F (r) = −1.0 at r = r1. It
is r1 = 0.31 fm as measured in real-world SU(3)[44]. We will also need the usual Sommer
parameter, r2F (r) = −1.65 at r = r0 (about 0.5 fm).

The correlation functions whose analysis produced our spectroscopy used propagators
constructed in Coulomb gauge, with Gaussian sources and ~p = 0 point sinks. We collected
sets for several different values of the width R0 of the source. These correlation functions
are not variational since the source and sink are different. We begin each fit with a distance-
dependent effective mass meff (t), defined to be meff (t) = logC(t)/C(t + 1) in the case of
open boundary conditions for the correlator C(t). Because our sources and sinks are not
identical, meff(t) can approach its asymptotic value from above or below. We empirically
chose R0’s which produced flat effective mass plateaus. When it improved the signal, we
mixed data with different values of R0 to produce correlators with relatively flat meff(t).
All results are based on a standard full correlated analysis involving fits to a wide range of
t’s. For more detail see Ref. [17].

Meson correlators come from the usual ψ̄Γψ bilinear operators. Baryon masses are found
using interpolating fields which are operators which create non-relativistic quark model trial
states. They are diagonal in a γ0 basis, exactly as was done in Ref. [17].

Our resulting data sets are shown in Tables I, II, III, IV, V, VI, VII, and VIII. Some
of the SU(3) data has previously been published in Ref. [28]. Shown in the tables is the
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so-called Axial Ward Identity (AWI) quark mass mq, defined as

∂t
∑

x

〈Aa
0(x, t)Oa〉 = 2mq

∑

x

〈P a(x, t)Oa〉 , (4)

where the axial current Aa
µ = ψ̄γµγ5(τ

a/2)ψ, the pseudoscalar density P a = ψ̄γ5(τ
a/2)ψ,

and Oa can be any source. Here it is the Gaussian shell model source.
Tables IX, X and XI give the baryon mass differences. These are computed together with

the baryon masses: a jackknife average of correlated, single-exponential fits to all different
states’ masses is performed and the differences are collected. This insures that the average
mass difference is equal to the difference of the average masses. Correlations in the data mean
that the uncertainty in the mass difference is usually smaller than the naive combination of
uncertainties on the individual masses. These fits are over the range t = 4 − 10. We have
checked that the numbers are insensitive to the fit range.

C. Nc dependence of simulation points

The relation of the ’t Hooft coupling λ to the usual definition of the lattice coupling is

β =
2Nc

g2
=

2N2
c

λ
. (5)

We chose to simulate each Nc at fixed bare gauge coupling, varying κ to tune the quark
mass. For SU(2) we worked at two beta values, 1.9 and 1.95. For SU(3), SU(4) and
SU(5) we collected data at β = 5.4, 10.2, and 16.4, respectively. As expected, we see that
lattice spacings are approximately matched scaling β by N2

c . That is, lattice spacings are
matched when the bare lattice regulated ’t Hooft couplings λ = β/N2

c are approximately
matched. This is shown in Fig. 1. We wanted to use roughly the same lattice spacing as
the earlier quenched study of Ref. [17] and we see that our λ’s approach the quenched ones
as Nc increases. The expected size of fermionic corrections is O(1/Nc) and the shift of the
coupling, at least for Nc ≥ 3, is consistent with that behavior. Because we encountered more
severe finite volume effects for SU(2), we ended up collecting data for that group at larger
lattice spacing. This is why β is smaller and λ is larger than naive extrapolation would
desire.

Fig. 1 oversimplifies the situation: the lattice spacing depends on both the bare gauge
coupling and the fermion mass. The dependence of the lattice spacing, through the ratio
r1/a, on fermion mass at fixed gauge coupling is shown in Fig. 2. The ratio (mPS/mV )

2 is
used instead of a fermion mass. Data sets are crosses for Nc = 2, β = 1.9, fancy crosses for
Nc = 2, β = 1.95, octagons for Nc = 3, squares for Nc = 4 and diamonds for Nc = 5. It
seems to be the case that the quark mass dependence of the lattice spacing decreases as Nc

increases. This is the expected large-Nc behavior, because the relative number of fermionic
degrees of freedom decreases compared to the gauge ones as Nc increases.

Certainly, SU(2) is special from a simulation point of view: there is a very strong de-
pendence of the lattice spacing on the quark mass. We note that we have experience with
another system where the number of fermionic degrees of freedom is large compared to the
gauge ones: SU(4) with Nf = 2 two-index antisymmetric representation flavors [28]. A
similar strong dependence of the lattice spacing on fermion mass was also observed for that
system.
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FIG. 1: Comparison of the bare ’t Hooft coupling λ = 2N2
c /β at which data was collected, vs 1/Nc.

Octagons show the values used in this work while the squares are from the earlier quenched study

of [17].

FIG. 2: Comparison of the short Sommer parameter vs quark mass, here parametrized as the ratio

(mPS/mV )
2, for Nc = 2 (crosses for β = 1.9, fancy crosses for β = 1.95), 3 (octagons), 4 (squares),

and 5 (diamonds).
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D. Minimizing finite volume effects

The dominant way that finite volume affects spectroscopy is when tadpoles, where a
meson is emitted from some location and returns to the same point, are replaced by a set
of contributions connecting the location to its image points. Generally, we can write the
pseudoscalar correlator for a particle of mass m in a box of length Lµ in direction µ as

∆(m, x) →
∑

nµ

∆(m, x+ nµLµ) (6)

and the infinite volume propagator, call it ∆̄(m, x), is the n = 0 term in the sum. The finite
volume tadpole is

∆(m, 0) = ∆̄(m, 0) + Ī1(m,L) (7)

where Ī1(m,L) is the sum over images. If a typical infinite volume observable has a chiral
expansion

O(L = ∞) = O0[1 + C0
1

f 2
PS

∆̄(m, 0)] (8)

then the finite volume correction is

O(L)− O(L = ∞) = O0[C0
1

f 2
PS

Ī1(m,L)]. (9)

We need some criterion to tell us whether any given data set might be compromised by
finite volume. Sharpe [31] has shown that nearest image contribution gives a useful lower
bound on the finite volume correction. It is

I1(m,L) ∼ 6

(
m2

16π2

)(
8π

(mL)3

)1/2

exp(−mL). (10)

The factor of 6 counts the three neighboring points at positive offset, and the three neigh-
boring points at negative offset.

We can use Eq. 10, plus our tables of lattice masses and decay constants, to check to see
which of our data sets might be compromised by volume. The result, 2I1(m,L)/f

2
PS (the

2 is needed to convert our 130 MeV definition of the decay constant to the standard chiral
literature’s 93 MeV) is shown in Fig. 3. This figure includes all the data sets we collected,
the ones shown in the tables plus other ones. Pretty clearly, to keep finite volume corrections
under control, we need to keep r1mq greater than about 0.05. The data sets we discarded
are ones with r1mq < 0.05.

Our SU(2) results showed much larger finite volume effects than the higher-Nc data sets
did. We believe that is a consequence of two effects. One is the large Nc scaling for the
pseudoscalar decay constant. Finite volume effects scale as 1/f 2

PS and as we will see, fPS

scales approximately as
√
Nc. The other is the different pattern of chiral symmetry breaking

in SU(2), which gives rise to different coefficients in the chiral expansion. For example, C0

in Eq. 8 for the squared pseudoscalar mass is -1/2 for Nc ≥ 3 and -3/4 for SU(2). (See the
tables in Ref. [45].)

One can also notice that the two SU(2) data sets have different finite volume corrections,
and that the β = 1.95 data set has larger ones. This is because the lattice valued fPS is
smaller at the bigger β value.
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FIG. 3: Expected finite size effect from Eq. 10, from our tabulated data. Symbols are crosses for

SU(2), β = 1.9, fancy crosses for SU(2), β = 1.95, squares for SU(3), octagons for SU(4).

SU(2) has diquark states rather than baryons. However, there is no new physics in these
states; their correlators are identical to the corresponding mesonic ones, by charge conjuga-
tion. This is natural: the three pseudoscalar meson Goldstone bosons are accompanied by
a pair of scalar diquark Goldstones. These states are nicely described by Ref. [22]. We do
not consider them further.

Comparisons of our two SU(2) data sets (results from which are shown separately in all
figures to follow) shows that discretization effects are generally small for them.

E. Matching data across different Nc’s

It is straightforward to analyze each Nc data set separately. The questions we can ask
are the usual ones: how do dimensionless ratios of dimensionful quantities (mass ratios, for
example) depend on the fermion mass? The correct version of this question should add the
phrase “as the lattice spacing is taken to zero.” However, in keeping with most exploratory
QCD simulations, we pick a convenient observable (call itmH to be definite) to set the lattice
spacing, and then quote ratios such as mi/mH as our predictions. We must also pose our
sample question more sharply, trading the (unphysical) bare mass for some more physical
observable such as the AWI quark mass or the squared pseudoscalar mass, and expressing
it in terms of some physical observable: how does (mPS/mH)

2 vary with mq/mH? We then
might ask how sensitive our answer is, to a particular choice of mH . This sensitivity would
be a rough measure of the residual cutoff dependence in the calculation.

Now we want to combine data from different Nc. As long as we analyze the data from
different Nc values in precisely the same way, we can make a large-Nc comparison. But “in
precisely the same way” requires making some arbitrary choice of what is fixed, and what is
allowed to vary. This is not a lattice artifact. It happens because we are studying different
physical systems: SU(3) with Nf = 2 fundamentals simply has a different spectrum from
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FIG. 4: One observable which will be used to match data across Nc: (mPS/mV )
2 versus the bare

hopping parameter κ. The lines are (mPS/mV )
2 = 0.6, 0.54, 0.48, 0.4 and 0.3. Crosses and fancy

crosses label SU(2), β = 1.9 and 1.95; squares are SU(3), octagons SU(4), and diamonds SU(5).

SU(4) with Nf = 2 fundamentals. We need to look at several dimensionless observables
which might be used to make matches: we chose the squared ratio of the pseudoscalar mass
to vector mass (squared, because this quantity is linear in the quark mass), or r1mq using
the Sommer parameter and the AWI quark mass, or r1mPS.

Fig. 4 shows one such plot: (mPS/mV )
2 versus κ. The horizontal lines, of course, mark

out constant values which we will use when we make comparisons at fixed physical quark
mass. They are (mPS/mV )

2 = C, where from the top C = 0.6, 0.54, 0.48, 0.4 and 0.3.
Fig. 5 continues the comparison: we could use the AWI quark mass itself, rather than

(mPS/mV )
2 as a measurement of a quark mass. The lines again label (mPS/mV )

2 = C.
Fig. 6 replots the data in Fig. 5 along its horizontal lines. It shows r1mq at roughly matched
(mPS/mV )

2 values, versus 1/Nc. It appears that for Nc ≥ 3, matching (mPS/mV )
2 is nearly

equivalent to matching r1mq, but that Nc = 2 is discrepant.
We believe that the discrepancy is intrinsic to SU(2). A match can only be successful

if the candidate theories for matching are really identical in all ways except for their Nc

dependence. This is the case for Nf = 2 and Nc ≥ 3, which have an identical pattern
of chiral symmetry breaking. These systems have identical chiral expansions and the only
place Nc dependence enters is in the intrinsic dependence of dimensionful chiral quantities
(such as the pseudoscalar decay constant) on Nc. Then we can trade quark mass dependence
for pseudoscalar mass dependence, using the formulas of chiral perturbation theory. The
pattern of chiral symmetry breaking is different for SU(2) than it is for the other Nc’s, and
so the relation between mq and m2

PS is simply different for SU(2) than it is for the other
systems. We will have to keep this difference in mind as we make comparisons.
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FIG. 5: A comparison of (mPS/mV )
2 versus the AWI quark mass, r1mq. Crosses and fancy crosses

label SU(2), β = 1.9 and 1.95; squares are SU(3), octagons SU(4), and diamonds SU(5).

III. Nc SCALING FOR THE POTENTIAL

We begin our comparison with large-Nc scaling with the static potential. We performed
a standard analysis of Wilson loop data (similar to the one in Ref. [46]) to extract the
parameters of the static potential. The lattice spacing varies with the dynamical fermion
mass, and in principle the shape of the potential could also vary. Therefore, to make com-
parisons, we must work at a common physical value, and plot the dimensionless combination
r1V (r) vs r/r1. In Fig. 7 we choose that value to be (mPS/mV )

2 = 0.4, This corresponds
to κ = 0.1295, 0.127, 0.127, 0.128 for Nc = 2, 3, 4, 5 respectively. The potential appears to
show little Nc dependence.

We can then examine how the shape of the potential varies with fermion mass. We
have two dimensionless observables, r1

√
σ and r0

√
σ, where σ is the string tension. Fig. 8

shows the variation of these quantities with Nc and fermion mass, through the observable
(mPS/mV )

2. The data sets are noisier than in the previous figure, but also show little Nc

dependence.
We can quantify this statement by modeling the quark mass dependence of this scaling

quantity, fitting r1
√
σ = Ai+Bix with various choices for x. We considered x = (mPS/mV )

2,
x = (r1mPS)

2, and x = r1mq (with the AWI quark mass). Not all the individual fits were
of high quality (chi-squared per degree of freedom ranged from below 2 for two degrees of
freedom to 23 for eight degrees of freedom) and of course a linear dependence is purely
phenomenological. The results are shown in Fig. 9. Nc = 3, 4, and 5 exhibit essentially
no Nc dependence for this observable while Nc = 2 is only about 12 per cent lower. The
parameter Bi is larger for SU(2). For the x = (mPS/mV )

2 case, it is 0.22(5), 0.03(2), 0.05(3),
and 0.04(2) for Nc = 2, 3, 4, and 5. This common small value for Nc ≥ 3 is the expected
scaling behavior.
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FIG. 6: The scaled AWI quark mass r1mq from Fig. 5. The symbols are at (mPS/mV )
2 = C where

C = 0.6 (octagons), 0.54 (squares), 0.48 (diamonds), 0.4 (crosses) and 0.3 (fancy crosses).

FIG. 7: Comparison of the dimensionless combination r1V (r) vs r/r1 from data sets matched in

quark mass, at (mPS/mV )
2 = 0.4. Symbols are crosses for Nc = 2, octagons for Nc = 3, squares

for Nc = 4 and diamonds for Nc = 5.
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FIG. 8: Panels (a) and (b) show comparisons of the dimensionless combinations r1
√
σ and r0

√
σ

vs quark mass, here parametrized as the ratio (mPS/mV )
2, for Nc = 2 (crosses for β = 1.9, fancy

crosses for β = 1.95), 3 (octagons), 4 (squares) and 5 (diamonds).

FIG. 9: The combination r1
√
σ at zero quark mass from linear fits described in the text. The

plotting symbols show results where the independent variable is (mPS/mV )
2 (squares), (r1mPS)

2

(diamonds) and r1mq (octagons).

IV. MESONIC OBSERVABLES

A. Masses

Both the pseudoscalar and vector meson mass show their expected lack of dependence on
Nc. The dimensionless quantities (r1mPS)

2 and r1mV are displayed versus r1mq in Figs. 10
and 11.
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A closer look at the squared pseudoscalar mass reveals some differences between SU(2)
and the higher Nc’s. The data is shown in Fig. 12, a plot of r1m

2
PS/mq. The r1 multiplier

makes this a dimensionless quantity. It appears that the quantity is about ten per cent
higher for SU(2) than it is for the other Nc’s. There also appears to be some tendency
for this quantity to flatten as Nc increases. This is a large-Nc expectation since the non-
analytic part of the chiral expansion for r1m

2
PS/mq, which affects the mass in both infinite

and finite volume, scales as 1/f 2
PS ∝ 1/Nc. However, we do not feel that we can do more

than display the figure. Probably several larger volumes per Nc will be needed to disentangle
finite volume effects and chiral logarithms.

It does not appear that the data are good enough quality to directly extract a more
detailed picture of Nc dependence, say a plot versus 1/Nc at matched quark masses. We
can, however, compare results of a naive fit of r1mV to the linear form r1mV = A+Br1mq.
All fits are of good quality, with χ2/DoF at or below unity. The A coefficient for Nc = 3,
4, and 5 are identical (1.39(2), 1.39(2), 1.40(2)) as are the B coefficients (2.16(9), 2.11(8),
2.19(7)). Again, SU(2) is an outlier: A = 1.50(2), B = 1.5(1). r1mV = 1.4 translates to a
vector meson mass in the chiral limit of 890 MeV, which is high compared to the physical
rho meson. However, our simulation volumes are not large and a linear extrapolation to
zero is far too naive to account for the two-pion threshold’s impact on the rho mass.

We also collected data for the scalar, axial vector, and tensor mesons (with interpolating
fields ψ̄Γψ and Γ = 1, γiγ5, and γiγj, respectively). The scalar channel is too noisy to
analyze. The axial vector and tensor channels had signals, although at large time separations
they degraded. We show the masses for these channels in Fig. 13. We observe, again, Nc

independence. With 1/r1 = 635 MeV, the mq = 0 extrapolations appear to be in good,
though noisy, agreement with observation (the a1(1235) and the a2(1320)). The strange
quark is around r1mq ∼ 0.15 and we note that the f1(1420) and f

′
2(1525) would be the ss̄

states, at r1M ∼ 2.2 and 2.4.

B. Decay constants

Decay constants are defined as follows: the pseudoscalar decay constant is

〈0|ūγ0γ5d|PS〉 = mPSfPS (11)

(so in our conventions fπ ∼ 130 MeV) while the vector meson decay constant of state V is
defined as

〈0|ūγid|V 〉 = m2
V fV ǫi. (12)

ǫi is a unit polarization vector.
Calculations of matrix elements require a conversion to continuum regularization. We

choose to adopt the old tadpole-improved procedure of Lepage and Mackenzie [52], and
work at one loop.

In this scheme a continuum-regulated fermionic bilinear quantity Q with engineering
dimension D (we have in mind the MS (modified minimal subtraction) value at scale µ) is
related to the lattice value by

Q(µ) = aDQ(a)(1 − 3κ

4κc
)ZQ (13)
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FIG. 10: Squared pseudoscalar mass versus quark mass. Data are crosses and fancy crosses for

SU(2), squares for SU(3), octagons for SU(4), and diamonds for SU(5).

and at scale µa = 1,

ZQ = 1 + α
CF

4π
zQ (14)

where α = g2/(4π), CF is the usual quadratic Casimir, here (N2
c − 1)/(2Nc), and zQ is a

scheme matching number. (The ones we need are tabulated in Ref. [54].) The axial vector
and vector Z-factors are only a few percent different from unity for nHYP clover fermions
and so ZQ is taken to be unity.
κc is the value of the hopping parameter where the AWI quark mass and the pion mass

vanishes. Because the lattice spacing depends on the bare simulation parameters, we deter-
mined the values of κc by fitting the dimensionless combination r1mq to a linear dependence
on κ. Plots of this quantity, and of (r1mPS)

2 vs κ are shown in Fig. 14. The resulting values
of κc are listed in the tables of data. The uncertainties are ±1 in the final quoted digit.

The pseudoscalar and vector decay constants are expected to scale as
√
Nc. To expose

deviations from this behavior, we scale the decay constants by
√
3/Nc and see whether they

lie on a single curve. That appears to be the case for fPS: see Fig. 15.
The vector meson decay constants are shown in Fig. 16. They are noisier than the

pseudoscalar decay constant but still appear to exhibit the appropriate scaling behavior.

C. The condensate from the Gell Mann, Oakes, Renner relation

As a proxy for the condensate, we compute a condensate-like variable Σ(mq) from the
Gell Mann, Oakes, Renner relation,

Σ(m) =
m2

PSf
2
PS

4mq
(15)
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FIG. 11: Vector meson mass versus quark mass. Data are crosses for SU(2), squares for SU(3),

octagons for SU(4), and diamonds for SU(5).

(the factor of 4 compensates for our convention that fPS = 130 MeV). The actual condensate
might be obtained from the zero mass limit of this quantity.

We are aware of more modern ways of finding the condensate, from the spectrum of
eigenvalues of the Dirac operator [47–51], but these methods seem to us to require smaller
quark mass data than we can safely obtain given our simulation volumes.

We evaluated Eq. 15 using a single elimination jackknife from separate fits to the AWI
quark mass, the decay constant, and the pseudoscalar mass.

A renormalization constant is needed to convert the lattice result of the quark condensate
to its MS value. We do this as follows: We use the coupling constant from the so-called
“αV ” scheme [52]. The one-loop expression relating the plaquette to the coupling is

ln
1

Nc

TrUp = −4πCFαV (q
∗
V ), (16)

where q∗ = 3.41/a for the Wilson plaquette gauge action. In this and in all following
formulas, αV appears in the combination αVCF ∝ αVNc. This is nearly identical over the
values of Nc studied (compare Fig. 17) and so the conversion factor from lattice to continuum
regularization will be nearly the same over our data sets.

Then (following Ref. [53]) we make the conversion αMS(e
−5/6q∗) = αV (1 − 2αV /π) and

run to αMS(2 GeV) by using the two-loop beta function.
The constant zS is tabulated in Ref. [54]. (This paper has a typo: the pseudoscalar and

scalar z− factors are interchanged. zs = 0.04.) The matching between lattice and continuum
is done at a scale µ = q∗S = 1.66/a according to the prescription of Ref. [55]. Finally the
MS quark mass and condensate are run to µ = 2 GeV using the usual two-loop formula.
Recall that the scale is set by r1 = 0.31 fm. The overall rescaling is quite small since zS is
tiny and since the inverse lattice spacings are close to the fiducial 2 GeV scale.
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FIG. 12: Squared pseudoscalar mass divided by quark mass, versus quark mass and scaled by r1.

Data are crosses and fancy crosses for SU(2), squares for SU(3), octagons for SU(4), and diamonds

for SU(5).

FIG. 13: Axial vector (a) and tensor (b) meson masses versus quark mass. Data are crosses and

fancy crosses for SU(2), squares for SU(3), octagons for SU(4), and diamonds for SU(5).
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FIG. 14: Plots of r1mq and (r1mPS)
2 vs hopping parameter κ, for (a) SU(2) (β = 1.9), (b) SU(3),

(c) SU(4) and (d) SU(5).

A plot of the condensate, again with all dimensions scaled by r1, is shown in Fig. 18.
The different Nc values are also rescaled by the expected large-Nc factor, 1/Nc. The figure
shows that Σ(m) follows the expected linear scaling in Nc for Nc = 3, 4, and 5. The lack
of scaling for Nc = 2 is the largest such effect we observe in any of our data sets. We recall
that SU(2) is special from the point of chiral symmetry breaking; its pattern of symmetry
breaking is different and it has five Goldstones in its spectrum rather than three.

Most of the effect seems to come from the higher value of r1m
2
PS/mq already presented

in Fig. 12, which is related to the lower value of the quark mass at fixed (mPS/mV )
2 for

SU(2) than for the other Nc’s, seen in Fig. 6.
Again we cannot resist performing a naive linear fit to the data, (3/Nc)r

3
1Σ = Σ0 +

Σ1(r1mq). We find (Σ0,Σ1, χ
2/DoF ) of (0.137(4), 0.68(8),14/9), (0.099(6), 0.66(3),15/6),

(0.097(6), 0.59(6),5.5/4), and (0.105(7),0.60(4), 1.4/3) for Nc = 2, 3, 4, and 5. As we have
already seen many times, Nc = 2 is the outlier. With r1 = 0.31 fm, Σ0 = 0.1 corresponds
to a physical value for the condensate of about (295 MeV)3, which is higher than typical
results from good quality simulations on larger volumes and at smaller fermion masses: for
example, (260 MeV)3 from Ref. [50].
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FIG. 15: Pseudoscalar decay constant divided by
√

Nc/3 so that curve collapse signals the correct

large Nc scaling behavior, versus quark mass. Data are crosses for SU(2), squares for SU(3),

octagons for SU(4), and diamonds for SU(5).

FIG. 16: Vector meson decay constant divided by
√

Nc/3 so that curve collapse signals the correct

large Nc scaling behavior, versus quark mass. Data are crosses for SU(2), squares for SU(3),

octagons for SU(4), and diamonds for SU(5).
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FIG. 17: Coupling constants extracted from plaquette measurements and then scaled by an overall

factor of Nc, plotted as a function of hopping parameter, from the various data sets.

FIG. 18: Rescaled condensate, more properly (3/Nc)m
2
PSf

2
PS/(4mq) which extrapolates to the

rescaled condensate in the chiral limit, versus quark mass. Data are crosses for SU(2), squares

for SU(3), octagons for SU(4), diamonds for SU(5). Curve collapse shows that the condensate

scales as Nc. Recall that SU(2) has different chiral properties than the others. Lattice data are

converted to an MS quantity using the method described in the text.
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FIG. 19: Baryon masses versus quark mass. Data are squares for SU(3), octagons for SU(4),

diamonds for SU(5). The splitting of the higher Nc baryons follows the rotor formula.

V. BARYONIC OBSERVABLES

Unlike mesons, the Nc scaling of baryonic quantities cannot be displayed in a single
picture. We begin with the data for individual masses. It is shown in Fig. 19. For each Nc

there are a set of angular momentum (J) and isospin (I) locked states ranging down from
I = J = Nc/2 to I = J = 1/2 or 0. In all cases, the masses of the baryons increase roughly
linearly with Nc, and the states are ordered in ascending value with J .

The numerator of the rotor term of Eq. 3 can be tested at fixed Nc using the ratio of
differences

∆(J1, J2, J3) =
M(Nc, J2)−M(Nc, J3)

M(Nc, J1)−M(Nc, J3)
, (17)

for which the constants (m0, B) cancel. The result is shown in Fig. 20 for Nc = 4 and
5. The lines have zero intercept and the slopes are given by the rotor spectrum. Eq. 3
seems to describe the data. Identical behavior was observed in the quenched simulations of
Ref. [17] and for the six-quark baryons in SU(4) gauge theory with two-index antisymmetric
representation fermions [28].

We now fit the masses to the rotor formula. We do this for each individual fermion mass,
to produce plots of m0 and B as a function of fermion mass. For Nc = 3 these fits have no
degrees of freedom; for Nc = 4 and 5 they have one degree of freedom. In all cases the χ2

is below 0.3, as expected from an examination of Fig. 19. The results are shown in Figs. 21
and 22.

Fig. 21 shows a pretty clear systematic drift of m0 with Nc at fixed (mPS/mV )
2. In large

Nc phenomenology the origin of this drift is that the coefficients in the rotor formula are
themselves functions of Nc, Ji = Ji0 + Ji1/Nc + Ji2/N

2
c + . . . . This means that a large Nc
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FIG. 20: Mass differences in the SU(4) and SU(5) multiplets, panels (a) and (b) respectively.

Lines are slopes from Eq. 17.

expression which is exact through O(1/Nc) is

M(Nc, J) = Ncm00 +m01 +B
J(J + 1)

Nc
(18)

rather than the naive Eq. 3. Can we separate out m01? This has to come from a two-stage
process where we first determine m0(Nc) from a fit, then filter the results. In Sec. II E we
filtered the data in terms of lines of constant (mPS/mV )

2. Projecting the data of Fig. 21
produces Fig. 23. We would say that the large Nc resolution, that m0 = m00 +m01/Nc, is
plausible, but of course there could be an m02/N

2
c term as well. Note that checking this

dependence would require at least four values of Nc if a fit with a nonzero number of degrees
of freedom were desired.

The uncertainties in B do not allow us to look for Nc dependence. One piece of phe-
nomenology we can investigate is the relation of B and m0. One can imagine two origins
for the rotor formula. The first is just a rigid rotation of the baryon, in which case B/Nc

is the inverse moment of inertia of the baryon. This implies that B scales as 1/m0. Alter-
natively, one could generate the rotor formula from one gluon exchange, a color magnetic
hyperfine interaction, which is proportional to the product of the two participants’ magnetic
moments. As a fermion magnetic moment scales inversely with its mass, this suggests B
scaling as 1/m2

0. Our data certainly show that B decreases as m0 increases, but does not
allow us to say much more.

Chiral perturbation theory, specifically heavy baryon chiral perturbation theory [56, 57],
allows us to go a bit farther. The authors of Ref. [19], drawing on the derivation in Ref. [58],
have formulas for the mass of a baryon with Nc colors and angular momentum J . Figs. 21
and 22 show that we should only consider the most minimal truncations of their mass
formulas. In a simpler notation, the baryon mass through order 1/Nc is

mB = Nc(m00 + µ1m
2
PS) + (m01 + µ2m

2
PS) +

J(J + 1

Nc
(B0 + bm2

PS) + . . . (19)
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FIG. 21: The quantity m0 (as defined in the rotor formula, Eq. 3) vs (mPS/mV )
2. Data are squares

for SU(3), octagons for SU(4), diamonds for SU(5).

Altogether we have data for 49 combinations of Nc and J . We fit r1mB to a function of
(r1mPS)

2. The fit is excellent; χ2 = 42 for 43 degrees of freedom. We display it in Fig. 24.
We record the dimensionless (i.e. rescaled by appropriate powers of r1) best-fit parameters
in Table XII. As one would expect from Figs. 21 and 22, m00, µ1, m01, and B0 are well
determined while b and especially µ2 are less well fixed.

One pion exchange generates a contribution to the baryon mass proportional to
g2A/F

2
PSm

3
PS where FPS is the pseudoscalar decay constant in the chiral limit and gA

is the axial charge of the nucleon. Rather than looking for the complete functional
form given in Ref. [19], we simply add a spin-independent term δr1mB = p7(r1mPS)

3 or
δr1mB = p7Nc(r1mPS)

3 to the fitting function. The χ2 of the fit is unchanged (χ2 = 41 for
42 degrees of freedom for either choice) and p7 is essentially undetermined, p7 = −0.055(50)
or -0.016(20) for the two possibilities.

Our data sets allow us to compare the baryonic matrix element of the scalar density (the
sigma term) using the Feynman-Hellman theorem. We define

f (B)
q =

mq

mB

∂mB

∂mq

=
mq

mB

〈B|ψ̄ψ|B〉. (20)

Multiplying by the ratio mq/mB cancels the renormalization of the quark mass and gives
a dimensionless ratio. As described in Refs. [28] and [29] (see also [20]) this quantity is
interesting in composite dark matter phenomenology; it enters into a cross section for dark
matter scattering mediated by Higgs exchange. We determined it by carrying out a linear
fit to r1mB as a function of r1mq and multiplying the resulting slope by mq/mB at each
data point. The result (only for the minimum-J state in each Nc) is shown in Fig. 25.
Comparison with the figures in [28] and [29] shows that this quantity is quite insensitive to
Nc and even to representation content.
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FIG. 22: The quantity B (as defined in the rotor formula, Eq. 3) vs (mPS/mV )
2. Data are squares

for SU(3), octagons for SU(4), diamonds for SU(5).

VI. CONCLUSIONS

A coarse summary of our results is that we observe that large-Nc scaling does an excellent
job of reproducing the regularities in the spectrum of SU(Nc) gauge theories with two
flavors of dynamical fermions, for Nc = 3, 4, and 5, and fermion masses in a range so that
0.2 < (mPS/mV )

2 < 0.7.
Nc = 2 is the outlier. This is not surprising: 1/Nc = 1/2 is not a small number and the

pattern of chiral symmetry breaking is different from that of the other Nc values. Note that
the larger finite volume effects we encountered for SU(2) meant that we had to simulate at
larger lattice spacing than we used for the other Nc values. It is possible that some of the
differences we saw may simply be due to the larger lattice spacing. Even saying all that,
Nc = 2 results are not discrepant by more than 15-20 per cent.

This was a pilot study. Its major deficiency was the small simulation volume. This
was necessitated by the desire to study larger Nc’s. It meant that we could not go to
small fermion masses without encountering finite volume artifacts. This prevented us from
studying detailed features of chiral symmetry breaking, such as the relative sizes of chiral
logarithms, or indeed of any proper extrapolation to the zero fermion mass limit. A follow
up calculation ought to be done on bigger lattice volumes and perhaps at several lattice
spacings to take an honest continuum limit.

Of course, we have only scratched the surface of large Nc lattice calculations. Obvious
goals for future work would be to investigate the large-Nc scaling of more difficult observables.
Examples which immediately come to mind include the Nc dependence of higher order terms
in the chiral Lagrangian, or indeed the whole issue of the eta prime mass at increasing Nc.
(Recall the discussion in Ref. [59].)

We also recall the recent discussion by Buras [60] about connections between lattice
[61, 62] and large-Nc [63] calculations of kaon weak matrix elements. The lattice calculations
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FIG. 23: The quantity m0 from the rotor formula plotted versus 1/Nc along lines of approximately

constant fermion mass. The symbols are at (mPS/mV )
2 = C where C = 0.6 (octagons), 0.54

(squares), 0.48 (diamonds), 0.4 (crosses) and 0.3 (fancy crosses).

FIG. 24: Baryon spectroscopy over-plotted with the best fit values from Eq. 19. Data are squares

for SU(3), octagons for SU(4), diamonds for SU(5). Results of the fit are shown as fancy crosses.
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FIG. 25: The quantity f
(B)
q defined in Eq. (20), plotted vs the ratio (mPS/mV )

2. Data are squares

for SU(3), octagons for SU(4), diamonds for SU(5).

relevant to K → ππ decays are difficult even at Nc = 3, but a direct study of the kaon
B−parameter is feasible with relatively small resources. (While this paper was under review,
Ref. [64] appeared. It directly addresses this question. It is done in quenched approximation,
with care taken to include important non-leading Nf/Nc effects.) The reader can no doubt
list many more possibilities.

An issue with large Nc simulations that we have not resolved is simply that they are
expensive. One might argue that, since the fermions are supposed to become less important
at large Nc, simulations might somehow become easier there. We did not observe this.
However, modern dynamical fermion simulations have many tunable parameters; perhaps
we have missed something obvious. Having said that, we do not see any technical barriers
to performing any analog of a QCD calculation at Nc > 3 as long as one is willing to put
up with the extra computational expense.

Finally, we suspect that our results indicate that if an analytic solution to large Nc QCD
could be constructed, it could be compared both qualitatively and quantitatively (with
appropriate rescaling) to real-world data. This is not a controversial statement, but of
course it is nice to have data in hand to justify it.
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κ r1/a amq amPS a fPS amV N

β = 1.9 κc = 0.13020

0.1280 2.49(3) 0.093 0.582(2) 0.436(6) 0.761(5) 90

0.1285 2.56(3) 0.075 0.528(3) 0.384(9) 0.722(4) 90

0.1290 2.59(3) 0.059 0.464(3) 0.383(3) 0.663(12) 90

0.1295 2.76(4) 0.044 0.392(4) 0.354(11) 0.608(6) 90

0.1297 2.82(4) 0.035 0.359(3) 0.326(4) 0.604(6) 90

0.1300 2.97(5) 0.026 0.302(5) 0.297(5) 0.542(10) 90

0.1302 3.00(4) 0.020 0.266(5) 0.269(14) 0.540(11) 90

β = 1.95 κc = 0.13014

0.1270 2.66(3) 0.097 0.575(3) 0.395(3) 0.728(4) 90

0.1280 2.84(3) 0.063 0.456(2) 0.354(3) 0.629(5) 90

0.1290 3.26(5) 0.030 0.311(3) 0.275(4) 0.530(8) 90

0.1292 3.29(5) 0.023 0.287(4) 0.237(5) 0.516(8) 90

TABLE I: Masses in lattice units for the SU(2) data sets. From left to right, the entries are the

hopping parameter κ, the relative scale r1/a, the Axial Ward Identity quark mass, the pseudoscalar

mass, the pseudoscalar decay constant, the the vector meson mass, and the number of lattices in

the measurement set.

κ amA amT fV (3/2)r31Σ

β = 1.9

0.1280 1.096(16) 1.108(19) 0.820(20) 0.299(17)

0.1285 1.134(36) 1.085(19) 0.871(16) 0.267(17)

0.1290 0.998(18) 0.978(18) 0.956(20) 0.262(18)

0.1295 0.888(17) 0.904(20) 0.953(20) 0.242(18)

0.1297 0.852(17) 0.897(21) 0.945(24) 0.215(15)

0.1300 0.786(19) 0.801(19) 0.991(16) 0.207(17)

0.1302 0.713(24) 0.762(19) 0.949(17) 0.146(13)

β = 1.95

0.1270 0.932(33) 1.077(13) 0.781(4) 0.289(15)

0.1280 0.929(17) 0.931(18) 0.860(7) 0.248(15)

0.1290 0.706(29) 0.803(18) 0.861(22) 0.208(20)

0.1292 0.564(30) 0.728(14) 0.952(15) 0.177(19)

TABLE II: More SU(2) results, all in lattice units: hopping parameter κ, axial vector mass, tensor

mass, vector decay constant, rescaled condensate in MS from jackknife fit.

developed by Y. Shamir and B. Svetitsky.

Appendix A: nHYP smearing for SU(Nc)

Normalized hypercubic or nHYP smearing, introduced in Ref. [32], is described in Ref. [33]
for the SU(2) and SU(3) gauge groups and in Ref. [34] for SU(4). Smeared links Vnµ are
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β = 5.4 κc = 0.12838

κ r1/a amq amPS a fPS amV amB(J = 3
2 ) amB(J = 1

2) N

0.1250 2.95(2) 0.105 0.559(2) 0.456(6) 0.696(3) 1.143(13) 1.042(7) 100

0.1260 3.08(3) 0.070 0.457(1) 0.424(4) 0.619(3) 1.011(10) 0.926(7) 100

0.1265 3.11(3) 0.059 0.404(2) 0.393(5) 0.575(4) 0.941(13) 0.841(10) 101

0.1270 3.23(3) 0.042 0.340(3) 0.370(5) 0.531(5) 0.887(22) 0.748(8) 101

0.1272 3.30(3) 0.033 0.307(3) 0.318(7) 0.479(6) 0.833(25) 0.698(8) 100

0.1274 3.32(2) 0.028 0.264(3) 0.319(5) 0.472(7) 0.819(25) 0.690(12) 107

0.1276 3.46(2) 0.021 0.239(2) 0.294(4) 0.462(10) 0.785(20) 0.629(9) 107

0.1278 3.41(3) 0.014 0.206(3) 0.258(6) 0.439(8) 0.767(25) 0.633(16) 107

TABLE III: Masses in lattice units for the SU(3) data sets. From left to right, the entries are the

hopping parameter κ, the relative scale r1/a, the Axial Ward Identity quark mass, the pseudoscalar

mass, the pseudoscalar decay constant, the vector meson mass, the baryons, labeled by their spin

J , and the number of lattices in the measurement set.

κ amA amT fV r31Σ

0.1250 0.973(9) 0.985(9) 0.905(4) 0.314(10)

0.1260 0.882(7) 0.895(6) 0.993(8) 0.251(10)

0.1265 0.829(8) 0.848(8) 1.010(6) 0.204(7)

0.1270 0.722(25) 0.804(10) 1.050(9) 0.210(10)

0.1272 0.668(19) 0.769(12) 1.037(13) 0.169(8)

0.1274 0.714(12) 0.747(13) 1.084(8) 0.153(6)

0.1276 0.665(8) 0.686(10) 1.058(12) 0.160(7)

0.1278 0.618(8) 0.665(15) 1.072(10) 0.130(8)

TABLE IV: More SU(3) results, all in lattice units: hopping parameter κ, axial vector mass, tensor

mass, vector decay constant, condensate in MS from jackknife fit.

β = 10.2 κc = 0.12841

κ r1/a amq amPS a fPS amV amB(J = 2) amB(J = 1) amB(J = 0) N

0.1252 2.96(2) 0.098 0.525(1) 0.507(3) 0.675(2) 1.524(11) 1.431(7) 1.388(8) 90

0.1262 3.09(2) 0.066 0.422(1) 0.462(3) 0.592(2) 1.340(13) 1.249(16) 1.202(10) 90

0.1265 3.14(3) 0.057 0.385(1) 0.449(3) 0.560(3) 1.295(11) 1.196(9) 1.141(8) 101

0.1270 3.19(2) 0.041 0.328(1) 0.410(3) 0.516(4) 1.196(13) 1.086(10) 1.036(10) 101

0.1275 3.29(3) 0.026 0.258(2) 0.367(4) 0.475(6) 1.136(19) 1.007(10) 0.944(11) 101

0.1277 3.32(4) 0.019 0.218(2) 0.336(4) 0.465(6) 1.062(17) 0.959(13) 0.894(13) 121

TABLE V: Masses in lattice units for the SU(4) data sets.
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κ amA amT fV (3/4)r31Σ

0.1252 0.941(12) 0.957(5) 1.056(4) 0.260(6)

0.1262 0.851(6) 0.862(7) 1.157(6) 0.225(7)

0.1265 0.796(7) 0.824(7) 1.240(14) 0.206(8)

0.1270 0.759(6) 0.780(6) 1.181(8) 0.176(5)

0.1275 0.689(6) 0.708(7) 1.238(10) 0.152(6)

0.1277 0.639(5) 0.555(35) 1.268(8) 0.125(6)

TABLE VI: More SU(4) results, all in lattice units: hopping parameter κ, axial vector mass, tensor

mass, vector decay constant, rescaled condensate in MS from jackknife fit.

β = 16.4 κc = 0.12951

κ r1/a amq amPS a fPS amV amB(J = 5
2 ) amB(J = 3

2 ) amB(J = 1
2) N

0.1260 2.99(1) 0.102 0.549(1) 0.590(6) 0.694(2) 2.010(17) 1.928(15) 1.881(14) 90

0.1270 3.11(1) 0.073 0.448(2) 0.522(3) 0.607(3) 1.792(22) 1.711(12) 1.664(11) 100

0.1275 3.19(2) 0.057 0.390(1) 0.482(3) 0.566(2) 1.651(11) 1.560(10) 1.508(9) 111

0.1280 3.24(2) 0.041 0.332(2) 0.450(3) 0.526(2) 1.548(12) 1.444(11) 1.395(10) 114

0.1285 3.20(1) 0.027 0.263(2) 0.443(5) 0.487(7) 1.472(16) 1.371(15) 1.305(14) 106

TABLE VII: Masses in lattice units for the SU(5) data sets.

constructed from bare links Unµ in three consecutive smearing steps,

Vnµ = ProjU(Nc)

[
(1− α1)Unµ +

α1

6

∑

±ν 6=µ

Ṽnν;µṼn+ν̂,µ;νṼ
†
n+µ̂,ν;µ

]
, (A1a)

Ṽnµ;ν = ProjU(Nc)

[
(1− α2)Unµ +

α2

4

∑

±ρ6=ν,µ

V nρ;ν µV n+ρ̂,µ;ρ νV
†

n+µ̂,ρ;ν µ

]
, (A1b)

V nµ;ν ρ = ProjU(Nc)

[
(1− α3)Unµ +

α3

2

∑

±η 6=ρ,ν,µ

UnηUn+η̂,µU
†
n+µ̂,η

]
. (A1c)

The restricted sums mean that only links which share a hypercube with Unµ participate in
the smearing. The projection to U(Nc) indicated in Eqs. (A1) normalizes the link. It is the
only place where Nc dependence appears in the algorithm. We take α1 = 0.75, α2 = 0.6 and
α3 = 0.3 as in previous work.

κ amA amT fV (3/5)r31Σ

0.1260 0.970(6) 0.982(5) 1.183(9) 0.292(8)

0.1270 0.880(5) 0.895(5) 1.232(10) 0.242(6)

0.1275 0.796(4) 0.797(7) 1.282(5) 0.210(6)

0.1280 0.742(6) 0.750(8) 1.360(18) 0.189(5)

0.1285 0.742(6) 0.760(7) 1.396(18) 0.160(5)

TABLE VIII: More SU(5) results, all in lattice units: hopping parameter κ, axial vector mass,

tensor mass, vector decay constant, rescaled condensate in MS from jackknife fit.
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κ ∆mB(
3
2 ,

1
2)

0.1250 0.101(11)

0.1260 0.085(9)

0.1265 0.101(13)

0.1270 0.139(22)

0.1272 0.135(24)

0.1274 0.129(22)

0.1276 0.156(18)

0.1278 0.135(28)

TABLE IX: Baryon mass splittings for Nc = 3.

κ ∆mB(2, 1) ∆mB(2, 0) ∆mB(1, 0)

0.1252 0.093(9) 0.136(10) 0.043(4)

0.1262 0.091(21) 0.138(14) 0.047(16)

0.1265 0.099(8) 0.154(9) 0.056(6)

0.1270 0.110(11) 0.160(15) 0.050(10)

0.1275 0.129(19) 0.192(20) 0.063(10)

0.1277 0.103(18) 0.168(17) 0.065(14)

TABLE X: Baryon mass splittings for Nc = 4.

Refs. [33, 34] employed the Cayley–Hamilton theorem to give an expression that can be
differentiated later to obtain the force for the molecular-dynamics evolution. For a general
Nc ×Nc matrix Ω, the projected matrix V is given by

V = Ω(Ω†Ω)−1/2. (A2)

We need to find the inverse square root of Q ≡ Ω†Ω, which is a positive Hermitian matrix.
If it is non-singular, the Cayley–Hamilton theorem allows us to write Q−1/2 as a polynomial
in Q,

Q−1/2 =

Nc−1∑

j=0

fjQ
j. (A3)

The fj’s are constructed from the eigenvalues gi of Q, which we find numerically. In the
eigenbasis of Q, Eq. A3 becomes

Gi =Wijfj (A4)

κ ∆mB(
5
2 ,

3
2) ∆mB(

5
2 ,

1
2) ∆mB(

3
2 ,

1
2)

0.1260 0.082(8) 0.129(11) 0.047(3)

0.1270 0.080(13) 0.128(15) 0.048(6)

0.1275 0.091(6) 0.144(8) 0.053(4)

0.1280 0.104(9) 0.153(8) 0.049(5)

0.1285 0.101(12) 0.167(15) 0.067(10)

TABLE XI: Baryon mass splittings for Nc = 5.
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m00 0.87(2)

µ1 0.15(2)

m01 -0.81(8)

µ2 -0.13(47)

B0 0.43(3)

b -0.07(2)

TABLE XII: Dimensionless (i.e. scaled by the appropriate power of r1) fit parameters corresponding

to the fit of Eq. 19 and Fig. 24.

where Gk = g
−1/2
k and Wij = gji , in both cases summing all indices from 0 to Nc − 1. This

is a Vandermonde matrix equation which we solve numerically. This is the place where we
diverge from Refs. [33, 34], who solve the system analytically and express the result in terms
of symmetric polynomials of the

√
gi’s. If the molecular dynamics force is not needed, one

is done.
Now for the force. We follow the derivation in Sec. 3 of Ref. [33], which in turn is based

on Ref. [66]. The force is the derivative of the effective action with respect to the simulation
time τ . The fermionic part of the action includes only the fat links Vnµ, so

d

dτ
Seff = Re tr

δSeff

δVµ

dV µ

dτ
≡ Re tr (ΣnµV̇nµ). (A5)

The chain rule is repeatedly applied to V̇nµ via Eqs. (A1) until one reaches derivatives U̇nµ

of the thin links. (If the fermions were not in the fundamental representation, one would
first apply the chain rule to the change of representation.)

The only factor in the chain rule that depends on the group comes from the U(Nc)
projection (Eq. A2). It appears at every level of smearing in Eqs. A1. We need to express
V̇ in terms of Ω̇. Eqs. A3 or A4 let us do that. [See also Eq. (3.10) of Ref. [33].]

Re tr ΣV̇ = Re tr
[
Σ
d

dτ
(ΩQ−1/2)

]

= Re [tr (Q−1/2ΣΩ̇) + tr (ΣΩ
d

dτ
Q−1/2)]

= Re [tr (Q−1/2ΣΩ̇) + tr (ΣΩ
∑

n

(
dfn
dt
Qn + fn

dQn

dt
))].

(A6)

The third term can be written as

Re tr (ΣΩ
∑

n

fn
dQn

dt
) ≡ Re tr (A3Q̇), (A7)

using the chain rule
dQn

dt
= Q̇Qn−1 +QQ̇Qn−2 + · · ·+Qn−1Q̇, (A8)

and the cyclic property of the trace to construct A3.
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The goal now is to write the second term as

Re tr (ΣΩ
∑

n

dfn
dt
Qn) ≡ Re tr (A2Q̇) (A9)

because if we can do that, then (with A = A2+A3), we can differentiate Q = Ω†Ω to obtain

Re tr ΣV̇ = Re tr
[
(Q−1/2Σ+ AΩ+ + A+Ω+)Ω̇

]
. (A10)

(This is Eq. A14 of Ref. [34].)
A2 is found as follows: fn depends on the traces

cn =
1

n + 1
trQn+1, (A11)

so one can write

ḟi =

Nc∑

n=0

bintr
(
QnQ̇

)
, (A12)

where bin = ∂fi/∂cn. These quantities are calculated via the eigenvalues gk through the
chain rule,

bij =
∂fi
∂cj

=
∑

k

∂fi
∂gk

∂gk
∂cj

≡ FikGkj. (A13)

Eq. A11 tells us that

Vjm =
∂cj
∂gm

= (gm)
j =W T , (A14)

the transpose of the Vandermonde matrix in Eq. A4. Thus Gkl = (V −1)kl.
To find Fij we again use Eq. A4, fl = (W−1)liGi, so that

∂fl
∂gk

= −(W−1)lm
∂Wmn

∂gk
(W−1)niGi + (W−1)li

∂Gi

∂gk
. (A15)

The pieces of this are
∂Gi

∂gk
= − 1

2g
3/2
k

δik (A16)

and
∂Wmn

∂gk
= δmk

∑

n

ngn−1
k fn. (A17)

Putting everything together,

bij = −(W−1)ik(W
−1)jkSk (A18)

where

Sk =
1

2g
3/2
k

+

Nc∑

n=0

ngn−1
k fn. (A19)

This goes into

A2 =
∑

n

tr (BnΣΩ)Q
n (A20)
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where
Bn =

∑

i

binQ
i (A21)

as in Refs. [33, 34]. Basically, their long, Nc - dependent analytic calculations are replaced
by the numerical inversion of the Vandermonde matrix W .
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