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Rho resonance parameters from lattice QCD

Dehua Guo,1 Andrei Alexandru,1, ∗ Raquel Molina,1, † and Michael Döring1, 2, ‡

1Physics Department, The George Washington University, Washington, DC 20052, USA§
2Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

We perform a high-precision calculation of the phase shifts for π-π scattering in the I = 1,
J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark flavors
(Nf = 2). We extract the ρ resonance parameters using a Breit-Wigner fit at two different quark
masses, corresponding to mπ = 226 MeV and mπ = 315 MeV, and perform an extrapolation to
the physical point. The extrapolation is based on a unitarized chiral perturbation theory model
that describes well the phase-shifts around the resonance for both quark masses. We find that the
extrapolated value, mρ = 720(1)(15) MeV, is significantly lower that the physical rho mass and we
argue that this shift could be due to the absence of the strange quark in our calculation.

PACS numbers: 12.38.Gc

I. INTRODUCTION

A large experimental and theoretical effort is dedi-
cated to measuring scattering cross-sections in different
channels, extracting phase-shifts, and determining the
parameters for resonances. Lattice QCD calculations can
be used to complement this efforts by providing input
that is either difficult to measure directly or not acces-
sible in experiments, for example by using non-physical
quark masses which can help develop better phenomeno-
logical models. In this study, we will focus on the ρ(770)
resonance in the isospin-1, spin-1 channel for pion-pion
scattering. This resonance was the subject of a number
of lattice QCD calculations [1–12], with the results for
phase-shifts becoming more and more precise and the
quark masses getting closer to the physical point.

Scattering information is determined from lattice QCD
indirectly by computing the energy of the two hadron
states in a finite box with periodic boundary conditions.
In a series of papers Lüscher derived a formula connect-
ing the two-hadron energy states with the phase shift,
valid up to exponential corrections that decrease with
volume [13–16]. The formula was originally developed for
two particle states with total zero momentum in a cubic
box and it was latter extended to non-zero momentum
states (boosted frame) [17] and asymmetric (elongated)
boxes [18]. These extensions were developed to extract
phase shifts in different kinematic regions, where the rela-
tive momentum of the scattering particles is smaller that
in the original setup when using similar lattice volumes.
In this study, we use elongated boxes and extract phase-
shifts both for zero-momentum states and for boosted
states, states with a moving center-of-mass, so that we can
finely scan the phase shift pattern around the resonance
region.
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Our study is carried out using Nf = 2 dynamical con-
figurations with nHYP fermions [19]. This study extends
a previous calculation [5] by adding a larger base of in-
terpolator fields and a set of ensembles at lower pion
masses. Using two different sea quark masses allows us to
extrapolate to the physical point. The need for a larger
interpolator field basis is discussed below.

To obtain the energy spectrum of a resonance in a
specific scattering channel, the choice of the interpolating
fields is nontrivial. The interpolating fields should not
only have the correct symmetries but also have enough
overlap with the relevant eigenstates of the system. For
example, it is known (and our study confirms it) that
the quark-antiquark (qq̄) operators do not have enough
overlap with the few lowest energy states in the channel
studied in this paper and two-hadron interpolator fields
are required. Moreover, as the pion mass becomes smaller,
more multi-hadrons states appear near and below the
resonance region. As a result, more and more multi-
hadron operators have to be included in order to capture
these states. For the channel studied in this paper, two-
pion states with different scattering momentum have to
be included to resolve the energy spectrum near the ρ
resonance region.

The large interpolating field basis leads to a large num-
ber of correlation functions that need to be evaluated
using lattice QCD techniques. The most computational
demanding diagrams are the four-point correlation func-
tions that arise from Wick contractions generated by the
two-hadron interpolating fields. These diagrams require
knowledge of the quark propagator from all points on the
lattice to all other points. Direct evaluation of this all-
to-all propagator is impractical. The standard techniques
used to overcome this problem are stochastic evaluation
or Laplacian-Heaviside (LapH) smearing [20], which only
require the evaluation of the quark propagator in a smaller
subspace. In our previous study [5] we used a stochastic
method, but we decided to use LapH method in this study.
The advantage of the latter method is that it separates
the calculation of the quark propagator from the evalu-
ation of the hadronic correlation functions and it allows
more flexibility in constructing the interpolator basis.

mailto:aalexan@gwu.edu
mailto:ramope71@gwu.edu
mailto:doring@gwu.edu
mailto:guodehua@gwu.edu


2

Note that in this study we use dynamical configurations
with two mass-degenerated fermions (Nf = 2) and the
effects of the strange sea quarks are not included. This
is not ideal if one wants to compare the results with the
physical ones but it does have some advantages. First, it
has the advantage that the Lüscher equation can be used
in the entire region below the 4mπ threshold because the
KK̄ channel is absent. Secondly, the results of this study
allow us to gauge the impact of the strange quark on the
properties of the ρ resonance. As we will show, at least
in some respects, the absence of the strange quark leads
to surprisingly large effects.

We analyze two sets of ensembles with different sea
quark masses: one corresponding to mπ = 315 MeV and
the other to mπ = 226 MeV. For each pion mass we
use three ensembles with different lattice geometry. For
each ensemble we analyze states at rest P = (0, 0, 0),
and states moving along the elongated direction with
momentum P = (0, 0, 1). For each case, we use four
different qq̄ interpolators and two or three π-π operators
in the variational basis. We extract the lowest three or
four energy states using the variational method [15]. For
each energy we compute the associated phase-shift and
then extract the resonance parameters using both Breit-
Wigner parametrization and a unitary chiral perturbation
theory (UχPT) model based on Ref. [21].

The outline of this paper is the following: in Section II,
we discuss the technical details of our analysis. In Sec-
tion III, we present the results for the energy spectrum
and the associated phase shifts. In Section IV, we dis-
cuss the extraction of the resonance parameters and the
extrapolation to the physical point. In Section V, we
present our conclusion and discuss future plans.

II. TECHNICAL DETAILS

A. Phase-shift formulas

As we mentioned in the introduction, Lüscher derived a
relation between the two-hadron state energies and their
scattering phase-shift [16]. In this study we use extensions
of this formula to elongated boxes and to states boosted
along the elongated direction. In this section we collect
the relevant formulas.

In a finite volume box with periodic boundary condi-
tions, the internal symmetries such as flavor and isospin
are the same as in the continuum. However, the spatial
symmetries are reduced to the symmetry group of the
box (at least for zero-momentum states). In this study,
we consider boxes elongated in one direction, which we
take to it be the z-direction. For this geometry the ro-
tational symmetry is reduced to the D4h group which
is a subgroup of the full rotation group SO(3). In this
case, the multiplets transforming under the irreducible
representations (irreps) of the SO(3) group are no longer
irreducible under the action of D4h group. Instead, they
are split into multiplets corresponding to irreps of the

` D4h

0 A+
1

1 A−2 ⊕ E−
2 A+

1 ⊕B
+
1 ⊕B

+
2 ⊕ E+

3 A−2 ⊕B
−
1 ⊕B

−
2 ⊕ 2E−

4 2A+
1 ⊕A

+
2 ⊕B

+
1 ⊕B

+
2 ⊕ 2E+

TABLE I. Resolution of angular momentum from irrep of D4h

group

D4h group. The resulting split for the lowest angular mo-
mentum multiplets is listed in Table I. The ρ resonance
has angular momentum l = 1 and negative parity. The
irrep l = 1 will split into A−2 and E− irreps. A−2 is a
one-dimensional irrep and the lowest states in this channel
correspond to π-π states with a back-to-back momentum
along the elongated directions. E− is a two dimensional
irrep and the lowest states in this channel correspond to
pions moving in the two transversal directions. These
later states change very little when varying the elonga-
tion of the box. Since we want to vary the scattering
momentum using the elongation of the box, we will focus
on states in the A−2 irrep.

We note that the states in the A−2 irrep belong to
different irreps of SO(3). From Table I we can see that
the A−2 irrep couples not only to l = 1, but also to
other higher angular momentum channels such as l = 3,
l = 5, and so on. However, to study the ρ resonance,
we are interested in two pion states with relatively small
scattering momenta. In this energy region the phase-shifts
for the l ≥ 3 channels are small and their contribution
can be safely neglected.

Lüscher’s formula for zero-momentum states in asym-
metric boxes was derived previously [18] and the possi-
bility to use elongated boxes to scan resonances was also
considered in Ref. [22]. We present here the form for
elongated boxes, with geometry L× L× ηL, we used in
our previous study [5, 23]. We use the generalized zeta
function

Zlm(s, q2; η) =
∑
n∈Z3

Ylm(ñ)

(ñ2 − q2)s
(1)

where the harmonic polynomials are

Ylm(ñ) = ñlYlm(Ωñ) (2)

with

ñ = (n1, n2, n3/η),n ∈ Z3 . (3)

The phase shift formula relevant for the A−2 irrep of the
D4h group is

cot δ1(k) =W00 +
2√
5
W20, (4)

where the W function is

Wlm(1, q2; η) =
Zlm(1, q2; η)

π3/2ηql+1
. (5)
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The normalized pion momentum q is defined in terms of
the pion momentum k,

q =
kL

2π
with E = 2

√
m2
π + k2 , (6)

where E is the energy of the two-pion state and mπ is
the pion mass.

For boosted states with total momentum P , the rel-
ativistic effects contract the box along the boost direc-
tion [17]. In the case of an elongated box a boost in a
generic direction will further reduce the symmetry group
from D4h to a subgroup which depends on the direction
of the boost. In this study, we consider states that have a
non-zero momentum parallel with the elongated direction.
In this case, the length contraction affects only the elon-
gated direction. Therefore the boost does not change the
rotational symmetry group which is still D4h. As a result,
we can still focus on the A−2 irrep and use the same phase
shift formula as in Eq. 4 with a slight modification.

For the boosted states in a cubic box with momentum
P = (2π/L)d, where d is a triplet of integers, the relevant
zeta function is

Zd
lm(s; q, γ) =

∑
n∈Pd(γ)

Ylm(n)

(n2 − q2)s
, (7)

where

Pd(γ) =

{
n ∈ R3 | n = γ̂−1

(
m +

d

2

)
,m ∈ Z3

}
. (8)

The projector γ̂−1 is defined as

γ̂−1n = n‖/γ +n⊥,n‖ = v(n · v)/v2 and n⊥ = n−n‖.
(9)

The Lorentz boost factor γ can be obtained from the
velocity of the boost: γ = 1/

√
1− v2, where v = P /E.

The energy in the center-of-mass frame is related the
energy in the lab frame

ECM = E/γ. (10)

The phase shift formula is the same as in Eq. 4 but with
a modified W

Wlm(1, q2; γ) =
Zd
lm(1, q2; γ)

π
3
2 γql+1

. (11)

We extend now the phase shift formula to boosted
states in an elongated box, with the boost in the elongated
direction. The only effect of the elongation is that the
summation region Pd(γ) changes to

Pd(γ, η) =

{
n ∈ R3 | n = γ̂−1η̂−1(m +

1

2
d),m ∈ Z3

}
,

(12)
with η̂−1m = (mx,my,mz/η), assuming that the boost
and elongation are in the z-direction.

To evaluate the phase shift formula in Eq. 4, we need to
compute Zd

00(s = 1) and Zd
20(s = 1). The zeta functions

as defined in Eq. 1 and Eq. 7 diverge at s = 1 and we
need to compute them via an analytical continuation. The
details for evaluating these functions are presented in the
Appendix A.

B. Interpolating basis

In order to extract several low-lying energy levels from
the Euclidean correlation functions, we use the variational
method proposed by Lüscher and Wolff [15]. The idea is
to construct a correlation matrix using a set of interpolat-
ing fields with the same quantum numbers and extract the
energy levels by solving an eigenvalue problem. Choos-
ing a set of interpolating fields with different couplings
to the the eigenstates of the Hamiltonian helps resolve
energy states that are nearly degenerated. In our case the
interpolating field set will include both quark-antiquark
(single-hadron) and multi-hadron interpolating fields.

The correlation matrix is constructed from two-point
functions of all the interpolating fields in the basis. If
we denote the N interpolators in the basis with Oi with
i = 1, . . . , N , the elements of the correlation matrix are

Cij(t) =
〈
Oi(t)O†j(0)

〉
. (13)

We compute the eigenvalues of the correlation matrix by
solving the generalized eigenvalue problem

C(t0)−
1
2C(t)C(t0)−

1
2ψ(n)(t, t0) = λ(n)(t, t0)ψ(n)(t, t0)

(14)
for a particular initial time t0 and for each time slice t.
For t ∈ [t0, 2t0] the eigenvalues were shown to behave
as [15, 24]

λ(n)(t, t0) ∝ e−Ent[1 +O(e−∆Ent)], n = 1, . . . , N ,
(15)

where the correction is driven by the energy difference
∆En = EN+1 − En. This long-time behavior shows that
the larger interpolating basis we use, the faster the cor-
rection for the low energy states vanishes. However, since
the energy eigenstates get denser in the higher-energy
part of the spectrum, the payoff of the variational method
decreases as the size of the correlation matrix increases.

As we explained earlier we focus on the states in the
A−2 irrep, mainly because the lowest states in this channel
correspond to scattering states where the pions move
in the elongated direction. The energy of these states
changes as we increase the elongation and we can scan the
resonance region. For the volumes considered in this study,
the elastic region, E < 4mπ, contains only the lowest three
or four states and our focus will be on designing a set
of interpolators that allows us to compute the energies
of these states accurately. Note that as the pion mass
becomes lower and the volume is increased there are more
multi-hadron states in the elastic scattering energy region
and the basis would need to be adjusted accordingly.

To extract these states we need a basis that overlaps
both with the resonance state, which is expected to have
mainly a quark-antiquark content, and also with the states
that have a dominant two-pion content. From a numeri-
cal point of view, the quark-antiquark interpolators are
advantageous, since they lead after Wick contraction to
two-point quark-correlation functions which can be eval-
uated cheaply using lattice QCD techniques. The four
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quark-antiquark interpolators are of the form

ρ0(Γi(p), t) =
1√
2

[ū(t)Γi(p)u(t)− d̄(t)Γi(p)d(t)] . (16)

Here we consider u(t) and d(t) to be the quark field
on the entire t time slice, a column vector of size N =
12×Nx ×Ny ×Nz, and Γi(p) to be N ×N matrices. To
help with notation we define Γ′i(p) using

[ρ0(Γi(p), t)]† = ρ0(Γ′i(p), t) . (17)

The structure of Γi(p) for the quark-antiquark interpola-
tors is listed in the first four rows of Table II. Two of the
interpolators are point-like and differ only in the gamma-
matrix structure and the other two involve a covariant
derivative

(∇k)abx,y = Uabk (x)δx+k̂,y − δ
abδx,y , (18)

and they involve quark-antiquark pairs separated by one
lattice spacing.

Unfortunately, the quark-antiquark interpolators over-
lap very poorly with the multi-hadron state (the overlap
is suppressed by a power of the lattice volume [8]). There-
fore we have to include also pion-pion interpolators in
our basis. The pion-pion interpolators are constructed to
have isospin I = 1 and I3 = 0, corresponding to ρ0:

ππ(p1,p2) =
1√
2
{π+(p1)π−(p2)− π−(p1)π+(p2)} .

(19)
Here we use

π−(p, t) =
∑
x

ū(x, t)γ5d(x, t)eipx = ū(t)Γ5(p)d(t) ,

π+(p, t) =
∑
x

d̄(x, t)γ5u(x, t)eipx = d̄(t)Γ5(p)u(t) .

(20)

To construct interpolators transforming according to
A−2 representation, we can start with any interpolator that

i Γi(p) Γ′i(p)

1 γ3e
ip γ3e

−ip

2 γ4γ3e
ip γ4γ3e

−ip

3 γ3∇jeip∇j −γ3∇je−ip∇j
4 1

2
{eip,∇3} − 1

2
{e−ip,∇3}

5 γ5e
ip −γ5e−ip

TABLE II. Interpolator structure for the quark bilinears used
in this study. The first four rows are used for the quark-
antiquark interpolators and the last row is used for the pion-
pion interpolators. The elongation is assumed to be in the
z-direction and the interpolators are chosen so that the ρ
polarization is longitudinal: γ3 and ∇3 need to be changed
accordingly if the elongation direction is changed.

has some A−2 component and project onto the relevant
subspace:

ππ(p1,p2)A−2
=

1

|D4h|
∑
g∈D4h

χA−2
(g)ππ(R(g)p1, R(g)p2) ,

(21)
where R(g) implements the rotation associated with the
symmetry transformation g, and χA−2

is the character of

g in the A−2 irrep.

For states with zero total momentum, P0 = p1 +p2 = 0
and for non-zero momentum states with P1 = (0, 0, 1) we
use the following interpolators

ππ
(i)
001 = ππ(p1 = (0, 0, 1),p2 = Pi − p1) ,

ππ
(i)
002 = ππ(p1 = (0, 0, 2),p2 = Pi − p1) ,

ππ
(i)
011 =

1

2

∑
p1∈P

ππ(p1,p2 = Pi − p1) ,

(22)

where P = {(0, 1, 1), (1, 0, 1), (−1, 0, 1), (0,−1, 1)}, is the
set of momenta generated by symmetry transformations
R(g)p from p = (0, 1, 1) which have pz > 0. The later
condition is imposed for different reasons for the ππ(0)

and ππ(1) interpolators. In the zero momentum case
we impose it because the interpolators ππ(p,−p) and
−ππ(−p,p) are identical. For non-zero momentum, the
symmetry group transformations mix states with differ-
ent total momentum, P1 and −P1. When computing
the correlation functions of such interpolating fields, the
correlation functions between sink and source of differ-
ent momentum vanish. The non-vanishing contributions
connect states with the same total momentum. The ex-
pectation values for correlations functions associated with
momentum P1 and −P1 are the same due to symmetry,
so we only need to evaluate the contributions due to
momentum P1.

The same interpolators for the non-zero momentum case
can also be derived using an analysis based on symmetries
of the Poincare group on the lattice [25]. In our case the
little group for states with momentum P1 is C4v and the
relevant irrep is A1 since the longitudinal states have
projection 0+ in the momentum direction. We prefer to
derive them from projections onto the A−2 irrep of D4h

to make clear that the connection between energies and
phase-shifts is provided by the relation in Eq. 4.

To summarize, we use four quark-antiquark interpola-
tors and two pion-pion interpolators for most ensembles
to form a 6× 6 variational basis. For the ensembles with
the largest elongation, Nz = 48 for the largest pion mass
and Nz = 32 for the lowest mass, we add a third pion-

pion interpolator ππ
(i)
002, for reasons that will be explained

later. In principle, six or seven energies can be extracted
from the correlation matrix. However, we only focus on
the first three lowest energy levels that are located in the
elastic scattering region with better signal-to-noise ratio.
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C. LapH correlation functions

Our interpolator basis has quark-antiquark and pion-
pion operators. The correlation matrix will have then
three types of entries

Cρi←ρj =
〈
ρi(P , tf )ρ†j(P , ti)

〉
= −〈[iP f |j′P i]〉 ,

Cρi←ππ =
〈
ρi(P , tf )ππ(p,P − p, ti)

†〉
= 〈[iP f |5′P − pi|5′pi]− [iP f |5′pi|5′P − pi]〉 ,

Cππ←ππ =
〈
ππ(p′,P − p′, tf )ππ(p,P − p, ti)

†〉
=
〈
[5p′f |5P − p′f |5′pi|5′P − pi]

− [5p′f |5P − p′f |5′P − pi|5′pi]
+ [5P − p′f |5p′f |5′P − pi|5′pi]
− [5P − p′f |5p′f |5′pi|5′P − pi]

+ [5p′f |5′pi][5P − p′f |5′P − pi]

− [5p′f |5′P − pi][5P − p′f |5′pi]
〉
.

(23)

Above we used the following notation for the traces pro-
duced by Wick contractions

[i1p1j1| . . . |ikpkjk] ≡ Tr

k∏
α=1

Γiα(pα)M−1(tjα , tjα+1
) ,

(24)
where jk+1 is defined to be j1 and M−1(t, t′) = 〈u(t)ū(t′)〉
is the quark propagator between time slices t and t′,
viewed as a N × N matrix (for more details about the
notation see [5]). Note that Γi′(p) is meant to be Γ′i(p).
We also note that when P = 0, the number of diagrams
that needs to be evaluated is reduced to one for three
point functions and to four for four-point functions.

The two-point quark diagrams can be evaluated cheaply
by computing the quark propagator from one point on the
lattice and using the translational invariance. This is not
possible for three and four-point diagrams. In this case
the all-to-all propagator needs to be computed which is
not practical. The LapH method [20, 26] offers a way to
address this problem. This method can be understood as
a form of smearing of the quark fields, both at the source
and sink, with the added bonus that the calculation can
be completely expressed in terms of a quark-propagator
reduced to a subspace of slowly moving quark states. The
smearing is purely in the spatial direction and it is gauge
covariant by construction. As such the smeared quark
fields have the same transformation properties under lat-
tice symmetry transformations and interpolators built out
of smeared fields have the same quantum numbers as the
ones built using the original fields.

The smearing is constructed using the eigenvectors of
the three-dimensional covariant Laplace operator,

∆t = −
3∑
k=1

∇k(t)∇k(t)† , (25)

with the components

∆ab
t (x,y) =

3∑
k=1

[Uabk (x, t)δ(x + k̂,y)

+ U bak (y, t)∗δ(x− k̂,y)− 2δabδ(x,y)] .

(26)

This operator is negative-definite and its eigenvalues are
all negative. We sort the eigenvalues so that λ1(t) >
λ2(t) > . . .. Using the eigenvectors |s; t〉 of ∆t correspond-
ing to eigenvalue λs(t), we define the smearing operator:

S(t) ≡
Nv∑
s=1

|s; t〉 〈s; t| , (27)

which is the projector on the space spanned by the Nv
lowest frequency eigenmodes of the Laplacean operator.
The smearing operator only acts on the spatial and color
space. The smeared quark field is

q̃(t) ≡ S(t)q(t) . (28)

As mentioned earlier, the bilinears ˜̄qΓq̃ have the same
transformation properties as q̄Γq and we can use them as
building blocks for the ρ and ππ interpolators defined in
the previous section. The advantage of this substitution
is that, on one hand, the correlation functions will be less
noisy, since the overlap of these interpolators with the
physical states is better when we choose Nv appropriately.
On the other hand, as we will show below, the calculation
of all the correlation functions requires only the evaluation
of the quark propagators from 4×Nv×Nt sources, which
is a significant improvement over evaluating the all-to-all
propagator when 4Nv � N .

After Wick contractions, the correlation functions are
identical in form with the ones in Eq. 23, but the prop-
agator that appears in the spinorial traces in Eq. 24 is
replaced with a smeared version

〈q(t)q̄(t′)〉 → 〈q̃(t)˜̄q(t′)〉 = S(t)M−1(t, t′)S(t′) . (29)

The traces in Eq. 24 are then replaced with a smeared
version

[[i1p1j1| . . . |ikpkjk]] ≡

= Tr

k∏
α=1

Γiα(pα)S(tjα)M−1(tjα , tjα+1
)S(tjα+1

)

= Tr

k∏
α=1

Γ̃iα(pα, tjα)M̃−1(tjα , tjα+1
) ,

(30)

where

Γ̃i(p, t)
αβ
s,s′ ≡

〈
s; t
∣∣Γi(p)αβ

∣∣ s′; t〉 ,
M̃−1(t, t′)αβs,s′ ≡

〈
s; t
∣∣M−1(t, t′)αβ

∣∣ s′; t′〉 (31)

are (4Nv)× (4Nv) matrices. Above, s, s′ are eigenvector
indices and α, β are spinorial indices. These relations
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can be easily derived using the definition of the smearing
operator and the cyclic property of the trace. We note
then that the we only require the evaluation of the smeared
all-to-all propagator M̃−1 which only requires 4Nv ×Nt
inversions compared to N×Nt for the all-to-all propagator.
For example, even on the smallest lattice used in this study
N = 12×243 = 165, 888 whereas 4Nv = 400, a significant
reduction.

We also note that the traces are over matrix products
with dimensions 4Nv. When evaluating a large number
of diagrams, the bottleneck becomes the matrix-matrix
products. It is then advisable to carefully examine the
required products to reduce the calculation. One such
simplification can be implemented for matrices in this
4Nv space that factorize in a tensor product between the
spinorial and Laplacean subspaces. For example

Γ̃1(p; t) = γ3ẽ
ip(t) , ẽip(t)s,s′ ≡

〈
s; t
∣∣eip∣∣ s′; t〉 . (32)

The multiplication with this matrix can be implemented
four times more efficient than when using a full (4Nv)×
(4Nv) representation for the Γ̃1 matrix.

The action of the smearing operator S can be illus-
trated by acting on a point source. The magnitude of
‖(Sδx)(y)‖ decays like a gaussian away from the source,

exp(−‖x− y‖2 /r2). The smearing radius r depends of
the on the energy cutoff, Λ = −λNv (t). We can determine
the optimal Λ by tuning individual operators to minimize
the errorbars of the effective mass at a fixed time [20]. In
this study, we fix the number of Laplacean eigenvectors
to Nv = 100. Since the volume varies with the ensemble,
the energy cutoff and the smearing radius change with
the ensemble too. In Fig. 1 we plot the smearing radius
as a function of Λ for the higher mass ensembles. We
indicate in the figure the smearing radii for η = 1, 1.25,
and 2. Note that the change in the smearing radius from
the smallest to the largest volume is about 10%, so the
smearing is very similar on all ensembles, with r ≈ 0.5 fm.

Before we conclude we want to make a couple of points
about LapH smearing. One benefit of this method is
that we can separate the calculation of the smeared quark
propagator M̃−1 from computing the correlation functions.
This is very important when using a large variational ba-
sis, especially since it allows to add other interpolating
fields to the basis without having to redo the inversions.
Another point that we want to stress is that the smearing
employed here does not represent an approximation. The
smeared interpolating fields have the right symmetry prop-
erties even when the number of Laplacean eigenvectors Nv
is very small. If the number is too small the overlap with
the physical states is poor and the signal-to-noise ratio
will be bad. Finally, even though the number of inversions
is much smaller than the total number required for the
all-to-all propagator, we still need to compute 4Nv ×Nt
inversions for each configuration: 19,200 and 25, 600 in-
versions per configuration for the mπ = 315 MeV and
mπ = 226 MeV ensembles, respectively. This calculation
was done using a GPU implementation of a BiCGstab
inverter [27].
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2.5

3.0

3.5

4.0

4.5

5.0

L

r�
a

Η=1.00

Η=1.25

Η=2.00

FIG. 1. Smearing radius for mπ = 315 MeV and lattice spacing
a ≈ 0.121 fm. The radius is evaluated on a 163× 32 ensembles
for Nv = 25, 50, 75, and 100 and the line represents a power
law fit. The horizontal lines indicate the smearing radius
corresponding to Nv = 100 on ensembles E1, E2, and E3.

D. Fitting method

To extract the mass and width of the resonance we need
to fit the phase-shift data using a phase-shift parametriza-
tion in the resonance region. For the ρ-resonance a Breit-
Wigner parametrization

tan δ(E) =
E Γ(E)

m2
ρ − E2

with Γ(E) =
g2
ρππ

6π

p3

E2
, (33)

describes the phase shift well close to the resonance. For
a given box geometry, this parametrization can be used
to determine the eigenvalues of the Hamiltonian using
Lüscher’s formula for A−2 irrep in Eq. 4.

The energies Ek satisfying both equations Eq. 33 and
Eq. 4 are the expected eigenvalues of the Hamiltonian on
periodic boxes with geometry L2 × ηL. These solutions
are functions of the geometry of the box η and the param-
eters of the Breit-Wigner curve and we will denote them
with Ek(mρ, gρππ; η). To determine the fit parameters we
minimize the chi-square function

χ2(mρ, gρππ) =
∑
e

δTe C
−1
e δe, (34)

where the sum runs over the statistically independent
ensembles with different elongations and the residue vector
is given by

(δe)k = Ek(mρ, gρππ; ηe)− E(e)
k . (35)

Above we denote with E
(e)
k the kth energy extracted from

ensemble e and with Ce the covariance matrix for these en-
ergies. Note that the residue vector includes the residues
for both zero-momentum states and boosted-states and
thus it has between 6 and 8 entries depending on the

ensemble considered. The values for E
(e)
k and covariance
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ensemble Nt ×N2
x,y ×Nz η a[fm] Ncfg Nv amπ amK amN ampcac

u/d afπ ampcac
s afK

E1 48× 242 × 24 1.0 0.1210(2)(24) 300 100 0.1934(5) 0.3235(6) 0.644(6) 0.01237(9) 0.0648(8) 0.03566(6) 0.1015(2)
E2 48× 242 × 30 1.25 − − − − − − − − − −
E3 48× 242 × 48 2.0 − − − − − − − − − −
E4 64× 242 × 24 1.0 0.1215(3)(24) 400 100 0.1390(5) 0.3124(8) 0.62(1) 0.00617(9) 0.060(1) 0.03358(6) 0.0980(2)
E5 64× 242 × 28 1.17 − − − − − − − − − −
E6 64× 242 × 32 1.33 − − − − − − − − − −

TABLE III. The parameters for the ensembles used in this study. The lattice spacing a for each ensemble is listed as well as the
number of gauge configurations Ncfg and the number of eigenvectors used for LapH smearing. amN , afπ, and afK represent the
nucleon mass, pion decay constant and kaon decay constant in lattice units. The two errors for the lattice spacing are stochastic,
from the w0/a determination, and a systematic one estimated to be 2%.

matrix Ce are given in Appendinx C. The energies are ex-
tracted using individual correlated fits and the covariance
matrices are estimated using a jackknife analysis.

III. RESULTS

In this section we present the results for the energies
and phase-shifts extracted from the ensembles used in
this study and discuss some of the salient issues. We have
generated configurations using Lüscher-Weiss gauge ac-
tion [28, 29] and nHYP-smeared clover fermions [19] with
two mass-degenerate quark flavors (Nf = 2). For each
mass we generated three sets of ensembles with different
elongations. The elongations were chosen to ensure that
the energy spectrum for the zero-momentum states in
the A−2 channel overlaps well with the ρ-resonance region,
following the procedure described in a previous study [5].

The parameters for these ensembles are listed in Ta-
ble III. A couple of comments regarding the parameters
listed in the table. The lattice spacing was determined
using an observable based on the Wilson flow [30]: the
w0 parameter [31]. This quantity can be determined
with very little stochastic error from a handful of con-
figurations. We used 150 configurations from ensem-
bles E1 and E4 and computed w0/a = 1.3888(24) and
w0/a = 1.4157(37) respectively. These measurements
were used to fix the lattice spacing using the conversion
factors determined in [32]: we computed the dimensionless
quantity y = m2

πt0, determined w0(y)/w0(y = 0) from Fig.
4 in the above reference, and then converted to physical
units using w0(y = 0) = 0.1776(13) fm. This value of w0

was determined from a set of Nf = 2 simulations where
fK was used to set the scale [33]. The scale determined
this way differs from the scale we used in our previous
study [5] by 3.5%, but we attribute this shift to the fact
that the value of the Sommer parameter [34] is difficult to
define unambiguously on configurations with light quarks.
The value we used in our previous study was r0 = 0.5 fm,
but recent determinations of r0 from global fits of the
hadronic spectrum favor smaller values [35, 36] and pro-
duce values in agreement with the scale determined based
on w0. We decided to adopt the scale determined by w0

because the method is very straightforward and it has

small stochastic errors. Note that at fixed lattice spacing
in the presence of lattice artifacts, the lattice spacing
determination introduces a systematic error. We estimate
that our systematic error associated with the lattice spac-
ing is at the level of 2%. To confirm the correctness of
the lattice spacing we looked at the nucleon mass, pion
and kaon decays constants. We computed the nucleon
mass mN and extrapolated to the physical point using
an empirically motivated fit form [37]. The extrapolated
values agree at the level of 2%, but this may be fortuitous
since the error bars of the extrapolation were at the level
of 4%. In any case this error level is in line with the
expectation from other studies that used HEX-smeared
fermions at similar lattice spacing [38], where the hadronic
spectrum was found to be shifted by about 2% relative to
the continuum. The values of fπ and fK were determined
using the procedure outlined in [33]. For the masses used
in our study our values for fK differs by less than 1%
from the values determined there at much smaller lattice
spacing.

For each ensemble we extract the lowest three or four
levels in the A−2 channel, since these levels correspond
roughly to the elastic region where the center-of-mass
energy is below 4mπ. To extract the energies we compute
the correlation matrix C(t), solve the eigenvalue prob-
lem in Eq. 14, and fit the extracted eigenvalues to an
exponential ansatz. In Fig. 2 we show the effective mass
computed from the three lowest eigenvalues on the E1 en-
semble. Note that the effective mass does not flatten out
until later times. To extract the energy we fit a double ex-
ponential function constrained to pass through 1 at t = t0:
f1(t) = Ae−E(t−t0) + (1 − A)e−E

′(t−t0). For the lowest
P = 0 state on ensemble E3 this fit form does not work,
due to wrap-around effects in the time direction [39, 40].
We added a constant term to the fit form to accommodate
this effect: f2(t) = Ae−E(t−t0) +(1−A−C)e−E

′(t−t0) +C.
We used this fit form with the other zero-momentum states
in all the ensembles, but the constant term produced by
minimizing χ2 was compatible with zero. For the moving
states, the wrap-around effect leads to a small, slowly
decaying term with a rate controlled by the mass differ-
ence between the moving pion and the pion at rest δE =√
m2
π + (2π/L)2−mπ [40]. For the states where this con-

tribution was significant, we used the following fit form
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FIG. 2. The effective mass for the lowest three energy levels
of E1 ensemble. The dashed line represent the 4mπ threshold.
Contamination from higher energy levels is present in the early
time slices, therefore we used a double exponential to extract
the energy. The horizontal lines indicate the results of the fit.

f3(t) = Ae−E(t−t0) +(1−A−C)e−E
′(t−t0) +Ce−δE(t−t0).

The fitting details including the choice of t0, fitting range,
fit form, energy extracted, and quality of the fit are tabu-
lated in Table VI in the Appendix.

We discuss now the choice of the interpolator fields
and in particular we address the question whether our
interpolating field basis overlaps well with the lowest
three energy states in the A−2 channel. To this end, we
compare the energy spectrum extracted using different
subsets of the interpolating fields basis. To simplify the
discussion we focus first on the E1 ensemble. The energy
spectrum extracted from different interpolating fields basis
combinations is plotted in Fig. 3. In the first panel, we
include only qq̄ operators. While the ground state seems
to be well approximated, the qq̄ operators have little
overlap with the first and second excited states which
indicates that they are multi-hadron states. In the second
column, we use the ππ100 operator together with various
combinations of qq̄ operators. The ground state and
first excited state are well reproduced, even when using
only one qq̄ interpolator. However, the second excited
state has large error-bars even if we add three other qq̄
operators, which indicates that it has a large multi-hadron
component. In the third panel, we use two multi-hadron
interpolators: ππ100 and ππ011. Once one qq̄ operator
is added to the basis, all three lowest energy states are
well determined with small errorbars. Adding more qq̄
operators to the basis does not improve the extraction
and we conclude that these lowest three states are well
captured by our set of interpolators.

To confirm the conclusion above, we fit a model based
on Unitary Chiral Perturbation theory (see Appendix B)
to the energy levels extracted from ensemble E1 and use
it to predict the energy levels for different box elonga-
tions. The expected energy levels are plotted in Fig. 4
as a function of the elongation. In the graph we also
indicate the expected energy levels for two-pion states in
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FIG. 3. Energy spectrum for ensemble E1 with different inter-
polator basis combinations. The horizontal axis labels different
interpolator choice: O1−4 are the qq̄ interpolating fields, O5 is
ππ100 and O6 is ππ011. The vertical axis represents the energy
for the three lowest levels. Note that we use different scales
for each level. The three horizontal band shows the energy
values extracted from 6× 6 correlation matrix. The first panel
only includes the qq̄ operators. Second panel includes ππ100

and various qq̄ operators. The third panel has ππ100, ππ011

with various qq̄ operators.

the absence of interactions. We see that for elongation
η = 1 which corresponds to ensemble E1 the ground state
is not in the vicinity of any two-pion state and thus it is
mainly a qq̄ state, whereas the first two excited states are
close to non-interacting two-pion states, which indicates
that they have large two-hadron components. That is the
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FIG. 4. Energy spectrum with different elongated factor from
unitary chiral perturbation theory in the rest frame P =
(0, 0, 0) (solid lines). The error bars of eigenvalues are smaller
than the symbol size (black circles). η labels the elongated
factor, in particular η = 1.0, 1.25, 2.0 are the ensembles we
used for mπ ≈ 315 MeV. Here, the η = 1 values are fitted
and then eigenvalues for η = 1.25 and η = 2 are predicted.
The dashed lines represent the energy of non-interacting pion
states with various momentum for two pions.
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FIG. 5. Phase shifts as a function of the center of mass energy. The errorbars are slanted along the direction of the Lüscher
curves. On the left we have the mπ = 315 MeV data and on the right the mπ = 226 MeV data. The triangles, squares, and
hexagons correspond to data extracted from E1, E2, E3 (left) and E4, E5, E6 (right) respectively. The black curve, error-bands,
and fit parameters correspond to Breit-Wigner fit to all data points in the elastic region, Ecm < 4mπ. Blue color indicates the
fit to the data in mρ ± 2Γρ region. The UχPT fits are very close to the blue Breit-Wigner curves.

reason why the multi-hadron operators ππ001 and ππ011

are required to extract these states reliably. For E1 and
E2 these multi-hadron operators are sufficient. However,
for η = 2.0, the second excited state is no longer near the
non-interacting pions moving with back-to-back momen-
tum p = (0, 1, 1), because the state with back-to-back
momentum p = (0, 0, 2) has lower energy for this elonga-
tion. Note that this level crossing is kinematical in nature
rather than due to a resonance. This is a peculiar feature
of our geometry due to the fact that the ordering of levels
with different transverse momenta changes when going
from small elongations to large ones. Thus, in order to
extract the second excited state reliably on E3 and E6 we
need to add the ππ002 interpolating field to our basis. For
these ensembles we use a 7 × 7 correlation matrix and
extract four energy levels since the third excited state is
very close the the second excited state and below the 4mπ

threshold. As a result, we will have more data points to
fit for the phase shift pattern in next section. The number
of energy levels we extracted for each ensemble is listed
in Table VI in Appendix C.

IV. RESONANCE PARAMETERS

We extract the resonance parameters by fitting the
phase-shift data, or equivalently the energy levels, using
two fitting forms: a simple Breit-Wigner form and a model
based on Unitarized Chiral Pertubation Theory (UχPT).
Note that when fitting the phase shift data, the correlation
between Ecm and δ(Ecm) has to be taken into account.
The Breit-Wigner form is used in most lattice studies of
the ρ-resonance since it fits the phase-shift well. This also
offers a straightforward way to compare our results with
the ones from other studies. The UχPT model provides
an alternative parametrization which also captures well
the phase-shift behavior in the ρ-resonance region. Its

main advantage, and the reason we use it in our study, is
that it can be used to fit the data sets at different quark
masses simultaneously, and it offers a reasonable way to
extrapolate our results to the physical point.

The Breit-Wigner parametrization is described in
Eq. 33. In Fig. 5 we show our phase-shifts and the fitted
curves. Note that if we try to fit the entire elastic region,
Ecm < 4mπ, the quality of the fit, as indicated by χ2

per degree of freedom, is not very good. While the curve
passes close to our points, our energy level determination
is very precise and the Breit-Wigner form is not describing
the entire energy range accurately. This is not a serious
problem since the Breit-Wigner form is only expected to
describe the data well near the resonance. Ideally, we
would restrict the fit only to a narrow region around the
resonance, but the number of data points included in our
fit is also reduced and the fit is poorly constrained. As
a compromise we decided to fit the data points that fall
in the range Ecm ∈ [mρ − 2Γρ,mρ + 2Γρ]. The fit quality
is improved and we will use the results of the narrower
fits in the following discussion. For the heavier pion mass
the results in lattice units are

amπ = 0.1934(5), amρ = 0.4878(4), gρππ = 5.47(11)
(36)

and in physical units

mπ = 315.4(0.8)(6.3) MeV , mρ = 795.5(0.7)(16) MeV ,

Γρ = 35.7(1.4)(0.7) MeV , Γ′ρ = 124.4(5)(2.5) MeV ,

(37)

where Γρ is the width at the current pion mass and Γ′ρ is
the width extrapolated to the physical point. The widths
are evaluated using Eq. 33 with Γρ = ΓBW (mρ,mπ) and
Γ′ρ = ΓBW (mphys

ρ ,mphys
π ). The first error is the stochastic

error and the second one is the systematic error due to
the lattice spacing determination. For the lighter pion
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mass we have

amπ = 0.1390(5) , amρ = 0.4613(10) , gρππ = 5.69(12) ,
(38)

and in physical units

mπ = 225.7(0.8)(4.5) MeV , mρ = 749.2(1.6)(15) MeV ,

Γρ = 81.7(3.3)(1.6) MeV , Γ′ρ = 134.4(5)(2.7) MeV .

(39)

We note that the Breit-Wigner fit parameters depend
mildly on the range of the fit. The mass of the resonance
is very well determined, with stochastic errors of the order
of few parts per thousand, and it is insensitive to the fit
range. This is because the place where the phase-shift
passes through π/2 is well constrained by the lattice data.
The coupling gρππ is only constrained at the level of two
percent and it is more sensitive to the fit range, showing
a clear drift towards lower values as we narrow the fitting
range.

If we are interested in capturing the phase-shift behavior
in the entire energy range available, we could use slight
variations of the Breit-Wigner parametrization. Indeed we
found that the quality of the fit in the full elastic region is
improved when adding barrier terms [41], especially on the
larger pion mass ensemble. However, such fitting forms
change the way the resonance mass and width are defined
making it harder to compare our results directly with
other determinations and we will not discuss these results
here. We include all the relevant data for the extracted
energies and their correlation matrix in Appendix C and
invite the interested reader to use it to fit any desired
parametrization.

For the Breit-Wigner fit we found that the quality of the
fit changes significantly as we vary the pion mass within
its error bounds. If the Breit-Wigner fit was known to
be the exact description of the phase shift in the elastic
region, we could in principle use the pion mass as a fitting
parameter in this fit to further constrain its value. Since
this is not the case, we did not attempt to do this here.

We turn now to the discussion of the fit using the
UχPT model. A description is provided in Appendix B.
An important feature is that this model can be used to
fit the phase-shift for both quark masses simultaneously.
This allows us to extrapolate the results to the physical
point and also to assess the corrections due to the missing
strange quark mass in our calculation. When considering
only the π-π channel, the model requires as input the
pion mass, the pion decay constant and two low-energy

constants, l̂1,2. The pion mass and decay constants used
are the ones in Table III. Note that the model can take
directly dimensionless input–amπ, afπ and the energies
aE—so the systematic errors associated with the lattice
spacings play no role in the extraction of dimensionless

parameters l̂1,2. The error-bars that appear in the tables
below reflect just the stochastic error.

In Table IV we show the results of fitting the UχPT
model. The model is similar to the Breit-Wigner
parametrization: it captures the broad features of the

mπ [MeV] l̂1 × 103 l̂2 × 103 mρ[MeV] Γρ[MeV] χ2/dof

315 1.5(5) -3.7(2) 796(1) 35(1) 1
138 704(5) 110(3)

226 2(1) -3.5(2) 748(1) 77(1) 1.53
138 719(4) 120(3)

combined 2.26(14) -3.44(3) 1.26
138 720(1) 120.8(8)

TABLE IV. UχPT fits in the mρ ± 2Γρ region and extrapola-
tions to the physical point. The errors quoted are statistical.
The upper two entries show the cases of heavy and light pion
mass, both individually extrapolated to the physical point.
The third entry shows the combined fit of both masses and
its extrapolation.

phase-shift in the elastic region but the quality of the fit is
not good when trying to fit all energy range. We restrict
the fit range to mρ ± 2Γρ, as we did for Breit-Wigner
parametrization. In this range the quality of the fit is
reasonable. The resonance mass is determined from the
center-of-mass energy that corresponds to a 90◦ phase-
shift. The width corresponds to the imaginary value of
the resonance pole in the complex plane. While these
parameter definitions are not the same as the ones deter-
mined from the Breit-Wigner fit, the results are consistent
as can be seen from the table.

Fitting each quark mass separately produces consistent

values for l̂1,2 which indicates that the phase-shift depen-
dence on the quark mass is well captured by this model.
Since the model is consistent for both quark masses we

can do a combined fit which allows us to pin down l̂1,2
with even better precision. As can be seen from the table
the combined fit quality is similar to the individual ones.
We will use these parameters in the subsequent discussion.

Moreover, we can try to estimate the effects due to the
strange quark using the UχPT model by turning on the
coupling to the KK̄ channel. We fix the ππ → KK̄ and
KK̄ → KK̄ transitions from a fit to the physical data,

while keeping l̂1,2 for the ππ transition at the values we
got from fitting our data. The pion decay constant is
adjusted to mach the values in Table III. We report these
estimates in Table V. More details about the UχPT fit
are included in Appending B.

In Fig. 6 we plot our results for the resonance mass to-
gether with the UχPT extrapolation, in comparison with
results from other lattice groups. It is clear that the ex-
trapolation to the physical point in SU(2) is significantly
below the experimental value, missing it by about 50 MeV
which is about 8% of the resonance mass. The stochastic
error for the extrapolated result is tiny compared with
the shift. The systematic error due to the lattice spacing
determination is larger, but even this cannot account for
the discrepancy. The other possible sources of system-
atic errors are finite lattice spacing contributions, finite
volume corrections, quark mass extrapolation error, and
systematics associated with the missing KK channel. The
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FIG. 6. Resonance mass extrapolation to the physical point.
The red curve corresponds to an extrapolation based on the
UχPT model. The light-red curve corresponds to a simple
mρ = (mρ)0 + const×m2

π fit [42]. The blue band corresponds
to an Nf = 2 + 1 estimate based on the UχPT model (see
text). The other lattice data-points are taken from Lang et
al [4], JLab group studies [8, 10], and Bali et al [6]. The star
corresponds to the physical result. The error-bars shown with
solid lines are stochastic. For the extrapolation the gray, thick
error-bar indicates the systematic error associated with the
lattice spacing determination.

lattice artifacts errors are included in our estimate for
the systematic error associated with the lattice spacing
determination. To gauge the effect of the lattice volume
corrections we compare our results with the ones from a
study by Lang et al [4]. This study was carried out on
boxes of volume (2 fm)3, whereas our study uses boxes
of about (3 fm)3. We see in Fig. 6 that the results agree
and we conclude that the finite volume corrections cannot
account for the discrepancy either. The errors associated
with the quark mass extrapolation are also expected to be
small: in Fig. 6 we show the results of the extrapolation
using a simple polynomial extrapolation which at leading
order depends on m2

π [42][43]. The extrapolation agrees
well with the prediction of UχPT in SU(2). Moreover, a
recent calculation by Bali et al [6] close to the physical
quark mass is also consistent with our extrapolation.

The likely reason for the discrepancy between the ex-

mπ [MeV] mρ[MeV] Γρ[MeV] m̂ρ[MeV] Γ̂ρ[MeV]

315 795.2(7) 36.5(2) 846(0.3)(10) 54(0.1)(3)
226 747.6(6) 77.5(5) 793(0.4)(10) 99(0.3)(3)
138 720(1) 120.8(8) 766(0.7)(11) 150(0.4)(5)

TABLE V. UχPT results for Nf = 2, mρ and Γρ, and Nf =

2+1 estimates, m̂ρ and Γ̂ρ. The parameters l̂1,2 are taken from
the combined fit and the KK channel parameters are taken
from fits to experimental data. The first set of errors quoted
are statistical; for m̂ρ and Γ̂ρ we also quote a set of systematic
errors associated with model dependence (see Appendix B for
details).

trapolation and the physical result is the fact that the
strange quark flavor is not included in our calculation.
We note first that the results for UχPT in SU(2) agree
very well with the results of in the other Nf = 2 studies
by Lang and Bali. The results when the strange quark is
included are also shown in Fig. 6 (blue band indicating es-
timated model uncertainties as discussed in Appendix B).
Note that the estimated shift is surprisingly large and
it reduces the discrepancy substantially. The estimated
resonance mass curve agrees quite well with a Nf = 2 + 1
lattice calculations reported by the Jlab group [8, 10].
While these estimates are likely affected by systematic
errors, we feel that they are accurate enough to indicate
that the discrepancy is mostly generated by the absence
of the strange quark in our calculation. We note that
the magnitude of the shift in the resonance mass due
to the inclusion of the KK̄ channel is surprisingly large.
The present work stresses the importance of taking into
account ππ − KK̄ loops, which is the strength of the
prediction of the UχPT model. We will discuss this point
in detail in an upcoming publication [44].

V. CONCLUSIONS

We presented a high-precision calculation of the phase-
shift in the I = 1, J = 1 channel for ππ scattering. To
scan the resonance region we elongated the lattice in only
one direction, which makes the generation of configuration
less expensive. We used two sets of ensembles, each with
three different elongations, for two different quark masses.
To compute the phase-shift we extracted the energies in
the A−2 channel both for states at rest and for states with
one unit of momentum in the elongated direction. The
required two-, three-, and four-point correlation functions
were computed using the LapH method. Elongated boxes
have a different symmetry than cubic ones and different
Lüscher formulas are required: for the zero-momentum
case they were worked out in [18, 47] and in this paper
we worked out the required one for states boosted along
the elongated direction.

The phase-shifts are broadly described by a Breit-
Wigner parametrization, as expected. However, our calcu-
lation is precise enough to show that more sophisticated
models are required to describe the variation of the phase-
shift in the entire elastic region. It is hoped that our
results can be used to validate these models and to con-
strain their parameters.

The resonance mass and gρππ coupling are extracted
from fitting a Breit-Wigner parametrization in the energy
region mρ ± 2Γρ. In Fig. 7 we compare our results with
other lattice determinations. Other than the ETMC
study, the lattice data seems to be split in two groups:
Nf = 2+1 results (PACS [1] and Jlab [8, 10]) which are in
agreement with Nf = 2 + 1 expectations from UχPT [45],
and Nf = 2 lattice data (Lang et al [4], Bali et al [6], and
this work) that agrees with a Nf = 2 UχPT model fit to
our data.
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FIG. 7. Comparison of different lattice calculation for the ρ resonance mass (left) and width parameter gρππ (right). The errors
included here are only stochastic. The results labeled ETMC are taken from [3] and PACS from [1]. The band in the left plot
indicates a Nf = 2 + 1 expectation from UχPT model constrained by some older lattice QCD data and some other physical
input [45]. The dotted line in the right plot indicates the gρππ that corresponds to the physical rho width [46].

For the resonance mass, we performed an extrapola-
tion to the physical mass using a UχPT model, which we
found can describe well the phase-shift data at both quark
masses using the same parameters. The extrapolation
results are consistent with extrapolations based on other
models [42] and other Nf = 2 lattice calculations, as dis-
cussed before. The extrapolated results differ significantly
from the physical one and we argue that this is due to
the absence of the strange quark in our calculation.

For the quark masses used in this study, we did not find
evidence of significant finite volume effects. However, as
we lower the pion mass, larger volumes would most likely
be required. The original LapH method might turn out to
be too expensive to apply directly, but a stochastic variant
was already developed and showed to work well [11]. Note
that we did not include these data points in Fig. 7 because
this study is using the same ensemble as the Jlab group
study [10] and their results are compatible with the ones
computed by the Jlab group, albeit with slightly larger
errorbars.

Turning to the future, as far as phase-shifts in the ρ
resonance channel are concerned, we seem to have moved
beyond proof-of-principle calculations and toward pre-
cision determinations. We anticipate that in the near
future precise calculations at the physical point might be
possible that will give us access directly to phase-shifts to
be compared to values extracted from physical data. For
example, it would be interesting to see whether phase-
shifts close to threshold match chiral perturbation theory
expectations, which at leading order are controlled solely
by mπ and fπ. The phaseshifts calculated in this study
do not agree well with this prediction even for the data
points closest to the threshold. Note that even the ex-
perimental determined phases also do not agree with the
lowest order chiral perturbation predictions.

Other channels are also of interest, for example the I =
0 channel where the broad sigma resonance is expected to

appear, π-K scattering in the K∗ channels, baryon-meson
scattering, etc. We plan to investigate some of these
channels in the near future.
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Appendix A: Zeta function

To compute the phase shift in Eq. 4 we need to numer-
ically evaluate the zeta function. For the zero momentum
case the relevant formulas for elongated boxes were de-
rived in [18, 47]. In the following we will show how to
extend this to the non-zero momentum states, when the
boost is parallel with the elongated direction of the box.
We discuss first the evaluation of the zeta function for
cubic boxes and then extend it to accommodate elongated
boxes. For a boosted state with momentum P = d2π/L,
the zeta function in a cubic box is

Zd
lm(s; q, γ) =

∑
n∈Pd(γ,η)

Ylm(n)

(n2 − q2)s
, (A1)
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with

Pd(γ) =

{
n ∈ R3

∣∣∣n = γ̂−1

(
m +

d

2

)
,m ∈ Z3

}
.

(A2)
The series above is only convergent when Re s > l + 3/2
but the zeta function needs to be evaluated at s = 1. The
function defined by the series above can be analytically
continued in the region Re s > 1/4. The analytic continua-
tion is done following Lüscher [16] and Rummukainen [17]
using the heat kernel expansion

K(t,x) =
1

(2π)3

∑
n∈Pd(γ)

ein·x−tn
2

=
γ

(4πt)
3
2

∑
n∈P0(1/γ)

ei2π(γ̂−1n)·d/2e−
1
4t (x+2πn)2 .

(A3)

This relation is obtained using Poisson’s summation for-
mula ∑

n∈Z3

f(n) =
∑
k∈Z3

∫ ∞
−∞

f(x)ei2πk·xd3x. (A4)

The spherical projected kernel Klm is defined as Klm =
Ylm(−i∇)K which can be written as

Kd
lm(t,x) = (2π)−3/2

∑
n∈Pd

Ylm(n)e(in·x−tn2)

=
γ

(4πt)3/2

il

(2t)l

∑
n∈Z3

(−1)d·nYlm(x + 2πγ̂n)e−
1
4t (x+2πγ̂n)2 .

(A5)

Using the truncated kernels KΛ
lm = Ylm(−i∇)KΛ with

KΛ(t,x) ≡ 1

(2π)3

∑
n∈Pd(γ),|n|≤Λ

ein·x−tn
2

, (A6)

we define the zeta function by separating the series terms
in two groups, a finite set close to the origin that remains
in the original form, and the rest that will be evaluated
via an kernel integral:

Zd
lm(s; q, γ)

=
∑

n∈Pd(γ)
|n|<Λ

Ylm(n)

(n2 − q2)s
+

(2π)3

Γ(s)

{
δl0δm0γ

(4π)2(s− 3/2)

+

∫ 1

0

dtts−1

[
etq

2

KΛ
lm(t,0)− δl0δm0γ

(4π)2t3/2

]
+

∫ ∞
1

etq
2

KΛ
lm(t,0)

}
.

(A7)

For the integral on the t ∈ [1,∞] range, the heat kernel
expansion in terms of exp(in · x− tn2) is used, and on
the t ∈ [0, 1] range, the expansion in terms of exp[−(x +
2πn)2/4t] is used. In both cases the series converges the

slowest around t = 1: for the t ∈ [1,∞] range large n
terms contribute exp(−t(n2 − q2)) and on the t ∈ [0, 1]
range they contribute exp[tq2 − (2πn)2/4t]. It is clear
that this series converges quickly for large n if we choose
Λ > Re q2. For the A−2 irrep we need to evaluate Zd

00 and
Zd

20. For Zd
00, we have

Zd
00(s; q, γ)

=
∑

n∈Pd(γ)
|n|≤Λ

Y00(n)

(n2 − q2)s
+

πγ

2Γ(s)(s− 3/2)

+ γ
∑

n∈P0(1/γ)

ei2π(γ̂−1n)·d/2Y00(n)I00(s, q, |n|)

−
∑

n∈Pd(γ)
|n|≤Λ

Y00(n)J00(s, q, |n|)

+
∑

n∈Pd(γ)
|n|>Λ

Y00(n)J̄00(s, q, γ, |n|) ,

(A8)

where Y00(n) = 1√
4π

and the notation used is:

I00(s, q, |n|) =
(2π)3

Γ(s)

∫ 1

0

dtts−1 (etq
2−(2πn)2/4t − δ|n|0)

(4πt)3/2
,

J00(s, q, |n|) =
1

Γ(s)

∫ 1

0

dtts−1etq
2

e−tn
2

,

J̄00(s, q, |n|) =
1

Γ(s)

∫ ∞
1

dtts−1etq
2

e−tn
2

=
1

(n2 − q2)s
− J00(s, q, |n|) .

(A9)

These functions can be expressed in terms of Euler gamma
function and exponential integral function

Γ(s, z) =

∫ ∞
z

ts−1e−tdt , En(z) =

∫ ∞
1

e−zt

tn
dt .

(A10)

We have

J00(s, q, |n|) =
1

(n2 − q2)s

(
1− Γ(s,n2 − q2)

Γ(s, 0)

)
,

J̄00(s, q, |n|) = E1−s(n
2 − q2) for n2 > q2 .

(A11)

Therefore, the zeta function can be simplified to

Zd
00(s; q, γ) =

πγ

2Γ(s)(s− 3/2)
+

∑
n∈Pn(γ)

Y00(n)J̄00(s, q, |n|)

+ γ
∑

n∈P0(1/γ)

ei2π(γ̂−1n)·d/2Y00(n)I00(s, q, |n|),

Zd
20(s; q, γ) = γ

∑
n∈P0(1/γ)

ei2π(γ̂−1n)·d/2Y20(n)I20(s, q, |n|)

+
∑

n∈Pd(r)

Y20(n)J̄00(s, q, |n|) .

(A12)
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For the case of interest, s = 1, the J00 and I00 integrals
are

J̄00(1, q, |n|) =
e−(n2−q2)

n2 − q2
,

I00(1, q, 0) = 2π3/2[1− eq
2

−
√
πiq erf(iq)] ,

I00(1, q, |n| 6= 0) =
π

|n|
Re[e2πiq|n|(1− erf(iq + π|n|))] .

(A13)

Similarly, for s = 1, the I20 integral can simplify to

I20(1, q, |n|) = − (3 + 2n2)eq
2−(πn)2

2|n|4
√
π

+ Re
e2πiq|n|[−3 + 2πq|n|(3i+ 2πq|n|)][1− erf(iq + π|n|)]

4|n|5π
(A14)

where the error function is defined as

erf(z) =
2√
π

∫ z

0

e−t
2

dt . (A15)

All the relations above work for n2 − q2 6= 0. The series
are divergent at the points where n2 = q2. To avoid
this trivial divergence these points are removed from the
summation, that is

Zd
lm(s; q, γ) =

∑
n∈Pd(γ)

n2 6=q2

Ylm(n)

(n2 − q2)s
. (A16)

This basically amounts to replacing 1/(n2 − q2) with 0
when n2 = q2. In the simplified expressions above this is
equivalent to setting

J̄lm(s, q, |n|) = − 1

sΓ(s)
(A17)

when q2 = |n|2. This is because the convergent counter-
part J lm(s, q, |n|) = 1/sΓ(s) for s > 0 when q2 = n2 and
the sum of J̄lm and J lm is 1/(n2 − q2) which is replaced
with 0.

For the elongated box case the zeta functions also de-
pend on the elongation factor η. The only difference is
the domain of the summation which becomes

Pd(γ, η) =

{
n ∈ R3

∣∣∣n = γ̂−1η̂−1(m +
d

2
),m ∈ Z3

}
,

(A18)
where γ̂ and η̂ are defined in Eq. 9 and Eq. 12. In sum,
they can be calculated as

Zd
00(s; q, γ, η) = Zd

00(s; q, γη) ,

Zd
20(s; q, γ, η) = Zd

20(s; q, γη) .
(A19)

Appendix B: Unitarized chiral perturbation theory
model

Chiral Perturbation Theory (χPT) is successful in
describing the meson-meson interaction at low ener-
gies [48, 49]. However, the convergence of the ampli-
tude expansion in powers of the meson momenta becomes
slow when the energy increases. Moreover, the pertur-
bative expansion fails in the vicinity of resonances, such
as σ or ρ mesons. To describe the resonant phase shifts
and inelasticities extracted from meson-meson scatter-
ing, one needs to extend the theory to higher energies.
Unitarized Chiral Perturbation Theory (UχPT) is a non-
perturbative method which combines constraints from
chiral symmetry and its breaking and (coupled-channel)
unitarity. The method of Ref. [21] uses the O(p2) and
O(p4) chiral Lagrangians together with a coupled-channel
scattering equation which implements unitarity, and is
able to describe the meson-meson interaction up to about
1.2 GeV. The resulting amplitudes show poles in the com-
plex plane that can be associated with the known scalar
and vector resonances. In the context of the Inverse Am-
plitud method [50–54], the two-meson scattering equation
reads [21]

T = [I − V G]−1V (B1)

where

V = V2[V2 − V4]−1V2 . (B2)

In Eq. B1, G is a diagonal matrix whose elements are
the two-meson loop functions, evaluated in our case in di-
mensional regularization in contrast to the cut-off-scheme
used in the original model of Ref. [21]:

GDRii (E)= i

∫
d4q

(2π)4

1

q2 −m2
1 + iε

1

(P − q)2 −m2
2 + iε

=
1

16π2

{
a(µ) + ln

m2
1

µ2
+
m2

2 −m2
1 + E2

2E2
ln
m2

2

m2
1

+
pi
E

[
ln( E2 − (m2

1 −m2
2) + 2piE)

+ ln( E2 + (m2
1 −m2

2) + 2piE)

− ln(−E2 + (m2
1 −m2

2) + 2piE)

− ln(−E2 − (m2
1 −m2

2) + 2piE)
]}
, (B3)

where pi =

√
(E2−(m1+m2)2)(E2−(m1−m2)2)

2E for the channel
i, E is the center-of-mass energy, and m1,2 refers to the
masses of the mesons 1, 2 in the i channel. Throughout
this study we use µ = 1 GeV and a natural value of the
subtraction constant α(µ) = −1.28.

For the case of the π−π interaction with (I = 1;L = 1),
the kernel of Eq. B1, V (ππ), can be expressed as [21]

V (ππ) =
−2 p2

3(f2
π − 8 l̂1m2

π + 4 l̂2E2)
, (B4)

where specific combinations of LECs have been intro-

duced, l̂1 ≡ 2L4 +L5 and l̂2 ≡ 2L1−L2 +L3. Note that
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these are not identical to the SU(2) CHPT low-energy
constants. The one-channel reduction given by Eq. B4,
which contains the lowest- and next-to-leading order con-
tributions, constitutes the fit model for the Nf = 2 lattice
data of this study.

Coupled channel case (ππ −KK̄)

In this section we describe the meson-meson interaction
in terms of the partial-wave decomposition of the ampli-
tude and apply it to the case of the ππ − KK̄ system
with quantum numbers (L = 1; I = 1). The partial wave
decomposition of the scattering amplitude of two spinless
mesons with definite isospin I can be written as

TI =
∑
J

(2J + 1)TIJPJ(cos θ) . (B5)

where

TIJ =
1

2

∫ 1

−1

PJ(cos θ)TI(θ) d cos θ . (B6)

In the case of two coupled channels, TIJ is a 2× 2 matrix
whose elements (TIJ)ij are related to S matrix elements
through the equations (omitting the I, J labels from here
on)

(T )11 = −8πE

2ip1
[(S)11 − 1] , (T )22 = −8πE

2ip2
[(S)22 − 1] ,

(T )12 = (T )21 = − 8πE

2i
√
p1p2

(S)12 ,

(B7)

with p1, p2 the center-of-mas momenta of the mesons
in channel 1 (ππ) or 2 (KK̄) respectively, that is pi =√

(E/2)2 −m2
i . The S-matrix can be parametrized as

S =

(
ηe2iδ1 i(1− η2)1/2ei(δ1+δ2)

i(1− η2)1/2ei(δ1+δ2) ηe2iδ2

)
.

(B8)
The interaction in the ππ − KK̄ system, is evaluated
from the O(p2) and O(p4) Lagrangians of the χPT ex-
pansion [48, 49]. The potentials, V2 and V4, projected in
I = 1 and L = 1 are [21]

V2(E) = −

 2p2π
3f2
π

√
2pKpπ

3fKfπ√
2pKpπ

3fKfπ

p2K
3f2
K

 (B9)

and

V4(E) = −1× 8p2π(2l̂1m
2
π−l̂2E

2)
3f4
π

8pπpK(L5(m2
K+m2

π)−L3E
2)

3
√

2f2
πf

2
K

8pπpK(L5(m2
K+m2

π)−L3E
2)

3
√

2f2
πf

2
K

4p2K(10l̂1m
2
K+3(L3−2l̂2)E2)

9f4
K

 .

(B10)

The two-channel T -matrix is evaluated by means of Eq. B1.
Note that the channel transitions in Eqs. B9 and B10

depend on four low energy constants, l̂1, l̂2, L3 and L5.

Meson-meson scattering in the finite volume and
UχPT model

In Refs. [22, 55, 56], a formalism has been developed
that is equivalent to the Lüscher framework up to expo-
nentially suppressed corrections. The formalism is sum-
marized in this section. Given the two-meson-interaction
potential, as the V with the O(p2) and O(p4) terms in
the χPT expansion, that is Eqs. B2, B9 and B10, the
scattering amplitude in the finite volume can be written
as,

T̃ = [I − V G̃]−1V , (B11)

or T̃ = [V −1 − G̃]−1, similarly to Eq. B1 in the infinite-
volume limit. In the case of boxes with asymmetry η in
the z direction, G̃ can be evaluated as,

G̃(E) =
1

ηL3

∑
q

I(E, q) , (B12)

where the channel index has been omitted. Here,

I(E,q) =
ω1(q) + ω2(q)

2ω1(q)ω2(q)

1

E2 − (ω1(q)2 + ω2(q)2)
,

(B13)
where q = 2π

L (nx, ny, nz/η). The sum over the momenta
is cut off at qmax. The formalism can also be made inde-
pendent of qmax and related to the subtraction constant
in the dimensional-regularization method, α (as in the
continuum limit), see Ref [57],

G̃ = GDR+

lim
qmax→∞

(
1

ηL3

∑
q<qmax

I(E, q)−
∫
q<qmax

d3q

(2π)3
I(E, q)

)
≡ GDR + lim

qmax→∞
δG ,

(B14)

where GDR stands for the two-meson loop function given
in Eq. B3. For energies Ei which correspond to poles of
T̃ , i.e., the energy eigenvalues in the finite volume, we
can obtain the T matrix in the infinite volume,

T = [G̃(E)−G(E)]−1 (B15)

which is independent of the renormalization of the indi-
vidually divergent expressions.

In the general multi-channel case, the energy spectrum
in a box, predicted by UχPT, is found as solution of the
equation

Det[V −1(E)− G̃(E)] = 0 . (B16)

As has been shown in Ref. [22], the formalism of
Refs. [22, 55, 56] is equivalent to the Lüscher approach
up to contributions which are exponentially suppressed
with the volume. In what follows, we refer to Ref. [58]
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for the generalization of the formalism to moving frames.
The formalism of Ref. [58] is generalized to include partial
wave mixing and coupled channels, but in the current
study the F wave is neglected.

For an equal-mass system interacting in p-wave and
moving with P = 2π

ηL (0, 0, 1) in the direction of the elon-

gation of the box, we find the following relations,

A−2 : −1 + V (ππ)G̃10,10 = 0 (B17)

E− : −1 + V (ππ)G̃11,11 = 0 , (B18)

with G̃lm,l′m′ given in Ref. [58] but modified as in Eqs. B13
and B14 by the elongation factor η. Above, V (ππ) is from

Eq. B4. The above relations are used to fit l̂1, l̂2 directly
to the energy levels in the finite volume.

We have also checked that the numerical results for
the phase shifts derived from Eq. B17 are very similar to
those in Appendix A when the argument of the integrand
I(E, q ) from Eq. B13 is replaced as described in Ref. [22],
I(E, q ) → (2E)−1(p2 − q2)−1, to remove exponentially
suppresed contributions and ensure comparability with
the Lüscher formalism. See also Eq. 18 of Ref. [58] for
the replacement in case of moving frames. In any case,
these exponentially suppressed contributions are small in
the present case.

UχPT fit results

The combined UχPT fit to eigenvalues at both pion
masses is discussed in Sec. III. We do not display the
fit because it is almost indistinguishable from the blue

Nf=2 extrapolation
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FIG. 8. Chiral extrapolation of the phase shift to the physical
mass (red band), obtained from the simultaneous fit to lattice
eigenvalues at both considered pion masses. Only statistical
uncertainties are indicated. The blue band shows the estimated
phase shift when including also the KK̄ channel in the two
variants mentioned in the text. To keep the figure simple,
statistical uncertainties are not indicated for these cases. They
are of the same size as the red band. Open circles indicate
phase shifts extracted from experiment [59].

curves in Fig. 5. The result of the chiral extrapolation is
shown in Fig. 8 with the red band indicating the statis-
tical uncertainties. The experimental data of Ref. [59]
are depicted with circles. As one can see, the Nf = 2
extrapolation remains far from the experimental data.

The two-channel UχPT formalism allows to estimate
the effect of the missing strange quark in terms of the
KK̄ channel. For this, the T -matrix scattering amplitude,
Eq. B1, is evaluated with the kernel V from Eqs. B2, B9

and B10. The LECs in the ππ → ππ transition l̂1 and
l̂2 are fixed at their values from the combined fit to the
Nf = 2 lattice data (see Table IV).

The combinations of LECs appearing in the ππ → KK̄
and the KK̄ → KK̄ transitions of Eq. B10 are different
from those of ππ → ππ and taken from a global fit to
ππ and πK experimental phase shift data, similar as
in Ref. [62]. Statistical uncertainties from this source
are not considered, because they are smaller than those
from lattice data. The relevant values from this fit are
L3 = −3.01(2) × 10−3 and L5 = 0.64(3) × 10−3, l̂1 =

0.26(5)× 10−3, l̂2 = −3.96(4)× 10−3.

However, note that l̂1 and l̂2 also appear in the ππ →
KK̄ and the KK̄ → KK̄ transitions (see Eq. B10). It is

then not clear which values of l̂i to use in these transitions.
We have tested two variants:

1. Evaluate the ππ → KK̄ and KK̄ → KK̄ transi-
tions with the l̂1 and l̂2 from the fit to Nf = 2
lattice data.

2. Set all the LECs involved in the ππ → KK̄ and
KK̄ → KK̄ transitions to the LECs from the men-
tioned fit to experimental data.

As Table IV shows, the l̂i from the fit to Nf = 2 lattice
data are similar to the ones quoted above, but not entirely
compatible.

The result of the 2→ 3 flavor extrapolation with these
two variants is shown in Fig. 8 with the two blue curves
connected by the blue band. The difference between these
two strategies leads to about 20 MeV difference in the
mass of the ρ(770) meson which gives an estimation of
the uncertainties from model consistency.

Even though the KK̄ channel has a significant impact
on the mass of the ρ, the elasticity remains close to unity
when this channel is open. This is shown in Fig. 9 (left).
The KK̄-phase shift is small and negative, as shown in
Fig. 9 (right). It has the same sign as determined in
Ref. [10] at an unphysical pion mass.

Before we conclude, we want to address a possible
concern regarding the four-pion channel, which we believe
to have a negligible effect on our results and conclusions.
The effect is expected to be small because the branching
ratio of ρ to four pions is smaller than 2× 10−3 [46]. The
lattice simulation includes the four-pion channel and the
UχPT model used here takes this effects into account
only implicitly, through a shift in the values of the fitted
low energy constants. At the simulation points the effect
is thus, at least approximately, included and the main
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FIG. 9. Left: Elasticity of ππ → ππ at physical pion masses compared with experimental determinations [59]. The dashed line
shows the inelasticity due to the KK̄ channel alone as derived in reference [60] from the Roy-Steiner solution in reference [61].
Right: Phase shift δ2(KK̄ → KK̄). In this figure we only show the result of variant 2 discussed in the text (results for variant 1
are very similar).

uncertainty comes from the chiral extrapolation. This
is fundamentally different from the K-K̄ channel which
is absent in the lattice simulation. We believe that the
uncertainty in the extrapolation is small, since the model
fits our data at two different pion masses consistently and
the extrapolation agrees very well, as can be seen from
Fig. 6, with another Nf = 2 lattice calculation very close
to the physical point [6].

In summary, even with the discussed theoretical un-
certainty, the shift of the ρ mass by the KK̄ channel is
significant and leads to a surprisingly good post-diction
of experiment.

Appendix C: Extracted energies and correlation
matrices

In this section, we tabulate the details about fitting—
fitting ansatz and fitting windows—for each energy level
and for each ensemble used in this study. These details
are reported in Table VI.

As we discussed in Section II D, to determine resonance
parameters by fitting a functional description to our phase-
shifts we need to take into account cross-correlations
between the extracted energies. The energies extracted
from different ensembles are uncorrelated, but there will
be correlations between the levels extracted from the
same ensemble. We computed these covariance matrices
using a jackknife procedure. These matrices are listed in
Table VII.
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mπ(MeV) P η n ansatz t0 fit window aE χ2/dof Q

315 (0, 0, 0) 1.0 1 d 3 3− 20 0.4932(16) 0.65 0.83
2 d 3 5− 15 0.6612(14) 0.61 0.77
3 d 3 4− 10 0.842(4) 0.61 0.65

1.25 1 d 3 4− 15 0.4847(14) 1.5 0.13
2 d 3 5− 14 0.5891(14) 1.5 0.16
3 d 3 4− 12 0.785(5) 0.82 0.55

2.0 1 dc 3 4− 16 0.4508(6) 0.96 0.47
2 d 3 6− 17 0.5098(18) 1.23 0.27
3 d 3 5− 15 0.6547(13) 0.92 0.49
4 d 3 3− 12 0.704(2) 0.09 0.99

(0, 0, 1) 1.0 1 dt 3 5− 17 0.5024(8) 0.64 0.77
2 d 3 5− 16 0.5768(15) 0.47 0.89
3 d 3 3− 13 0.7492(15) 0.30 0.96

1.25 1 dt 3 7− 15 0.4701(9) 0.69 0.63
2 d 3 5− 16 0.547(2) 0.95 0.47
3 d 3 3− 13 0.717(2) 0.30 0.97

2.0 1 dt 3 3− 20 0.4241(7) 0.95 0.50
2 d 3 5− 20 0.5036(9) 1.36 0.17
3 d 3 5− 17 0.574(1) 0.38 0.96
4 d 3 3− 13 0.676(1) 0.37 0.94

226 (0, 0, 0) 1.0 1 d 3 3− 15 0.4598(15) 0.82 0.61
2 d 3 3− 12 0.6184(15) 0.09 0.99
3 d 3 3− 8 0.820(8) 0.08 0.97

1.17 1 d 3 3− 12 0.448(2) 1.06 0.39
2 d 3 3− 12 0.558(2) 1.24 0.28
3 d 3 3− 10 0.744(18) 0.05 0.99

1.33 1 d 3 3− 13 0.4300(15) 0.44 0.90
2 d 3 3− 14 0.527(2) 0.35 0.96
3 d 3 3− 11 0.71(2) 0.08 0.99

(0, 0, 1) 1.0 1 d 3 6− 18 0.4217(9) 0.68 0.75
2 d 3 5− 16 0.5489(13) 0.68 0.73
3 d 3 3− 12 0.706(2) 0.19 0.99

1.17 1 d 3 6− 20 0.391(1) 0.32 0.99
2 d 3 3− 12 0.530(1) 0.88 0.52
3 d 3 3− 10 0.672(3) 0.70 0.63

1.33 1 dt 3 6− 20 0.371(1) 0.31 0.98
2 d 3 3− 13 0.5095(11) 0.97 0.46
3 d 3 3− 11 0.656(2) 0.17 0.98
4 d 3 3− 11 0.665(17) 1.09 0.26

TABLE VI. Extracted energies and fitting details. The ansatz labels the fitting function used; referring to Section III we have:
d stands for double exponential function f1(t), dc is a double exponential function plus a constant term f2(t), and dt stands for
its boosted variant f3(t). Q is the confidence level of the fit, that is the probability under ideal conditions that the χ2 is larger
than the fit result.
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24.8 1.76 5.95 3.34 2.43 3.47

20.4 14.7 4.04 6.74 12.4
164 4.01 5.22 25.6

6.8 2.67 4.16
23.4 3.74

24.4

× 10−7


24.0 −3.91 −34.0 4.0 3.6 −2.52

23.8 71.0 3.57 4.02 10.0
760 −3.77 23.5 59.0

8.71 1.18 3.17
15.9 −2.22

41.0

× 10−7


19.5 −2.03 −0.256 3.44 8.23 −2.92

21.1 11.2 2.04 7.80 66.7
234 5.11 4.36 51.6

8.34 2.63 0.536
30.0 0.269

41.8

× 10−7


33.9 −14.7 −44.4 1.09 5.67 −10.8

43.1 145 1.60 2.56 22.3
2720 11.4 12.9 144

9.73 0.885 2.98
12.1 −0.436

68.2

× 10−7



3.62 2.24 1.54 1.87 3.16 3.10 1.90 1.74
32.4 0.195 3.15 1.71 8.42 2.34 0.884

15.8 9.77 3.04 −0.063 9.99 6.21
41.8 2.96 1.40 7.16 16.2

4.29 1.48 2.97 2.20
9.57 0.90 0.222

10.1 4.62
9.78


× 10−7



22.8 −5.91 −63.6 4.54 5.92 −3.50 −24.6
42.8 108 3.80 5.21 18.6 32.9

5430 93.7 −29.2 32.6 1690
19.3 2.78 1.62 57.4

14.2 2.45 −31.6
39.9 −24.2

2820


× 10−7

TABLE VII. Covariance matrices for the energies extracted from each ensembles. In the left column from top down we list the
ensembles E1,2,3 corresponding to mπ ≈ 315 MeV and on the right E4,5,6 corresponding to mπ ≈ 226 MeV. The order of the
levels in each matrix corresponds to the order they appear in Table VI.
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