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Starting from a textbook result, the nearest-neighbor distribution of particles in an ideal gas, we
develop estimates for the probability with which quarks q in a mixed q, q̄ gas are more strongly
attracted to the nearest q, potentially forming a diquark, than to the nearest q̄. Generic probabilities
lie in the range of tens of percent, with values in the several percent range even under extreme
assumptions favoring qq̄ over qq attraction.
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I. INTRODUCTION

The observation of multiple heavy-quark exotics in re-
cent years, starting with the Belle discovery of the pre-
sumptive qqq̄q̄ state X(3872) in 2003 [1], has provided
entirely new opportunities for developing a deeper un-
derstanding of the QCD dynamics responsible for bind-
ing quarks into color-singlet hadrons. While it is math-
ematically true that all SU(3)c color singlets assembled
from quarks can be decomposed as products of the qqq
and qq̄ combinations familiar from conventional baryons
and mesons, respectively,1 group theory alone does not
dictate the nature of structures dynamically generated
within hadrons.
Several theoretical pictures have been advocated to de-

scribe the multiquark exotics. The mathematical fea-
ture of SU(3)c just described encourages one to consider
molecules of color-singlet hadrons, and heavy-quarkmod-
els of this sort have been contemplated for almost the
entire history of QCD [2, 3]. Alternately, in hadroquarko-

nium [4], the heavy qq̄ pair lies at the center of a cloud
generated by the lighter quarks. In diquark models, pop-
ularized for light-quark systems in Refs. [5, 6] and for
the new heavy quarkoniumlike exotics like X(3872) in
Ref. [7], diquark qq and q̄q̄ pairs form via the color at-
tractive channel 3 × 3 → 3̄ and its conjugate, as dis-
cussed below. The dynamical diquark picture [8, 9] fur-
ther purports that the diquarks do not act as components
of stable molecules, but rapidly separate until confinen-
ment forces the system to hadronize. And in kinematic-

effect models, first suggested for the new exotic states in
Ref. [10], the opening of hadronic thresholds can generate
structures resembling resonances nearby in mass, either
by themselves or by coupling to other channels.
In this work we are interested in diquarks, and par-

ticularly the relative rate at which qq (or q̄q̄) pairs form
compared to the rate for qq̄ pairs. There exists, after
all, no universally accepted experimental evidence for the
existence of diquarks, so that one might suspect their
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1 If valence gluons g are included, then hybrids qq̄g and glueballs

gg, ggg, etc. complete the list of color-singlet substructures.

formation to be a rather rare occurrence. Nevertheless,
fundamental QCD considerations suggest otherwise. The
color dependence of the short-distance coupling of ele-
mentary particles in SU(3)c representations R1 and R2

to the product representation R is proportional to the
combination

C(R,R1, R2) ≡ C2(R)− C2(R1)− C2(R2) , (1)

where C2 is the representation’s quadratic Casimir. For
qq or qq̄ systems, one finds the relative size of the cou-
plings from Eq. (1) to be

C(R,R1, R2) =
1

3
(−8,−4,+2,+1) for R = (1, 3̄,6,8) ,

(2)
respectively. As one might expect, the strongest coupling
is that of the color-singlet qq̄ combination, which provides
a direct route for the formation of mesons. However,
the aforementioned diquark coupling is a full one-half as
strong at short distance, while the two repulsive channels
are both smaller than either of the attractive ones.
Still, one might expect that in a qqq̄q̄ system, even if

diquarks initially form, the greater attraction in the qq̄
singlet channel suggests that the system subsequently re-
arranges itself into a two-singlet combination. This issue
is less acute in the dynamical diquark picture, in which
the diquarks achieve substantial separation before this re-
arrangement can occur. Nevertheless, the attraction de-
scribed by Eq. (2) strictly holds only at short distances,
where single-gluon exchanges dominate. One expects the
interaction between a particular qq or qq̄ pair at separa-
tions beyond a few tenths of a fm to be heavily screened
by gluon and sea-quark pair creation.
The question of whether diquarks actually appear as

important hadronic substructures then can be discussed
in terms of the exact nature of the spatial distribution
of the nearest neighbors of the quarks in the production
process. Statistically speaking, with some finite proba-
bility a q will find itself much closer to another q than
to a q̄, which allows the diquark attraction to dominate.
But pure spatial proximity cannot be the whole story,
however, since in weak and electromagnetic decays the
created qq̄ pair automatically forms a color singlet, and
yet does not always by itself form a single meson (the
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so-called color-suppressed decay diagrams give one coun-
terexample); a large initial relative momentum between
quarks can apparently overwhelm the proximity effect in
certain circumstances, and hadronization can be delayed
until after the quarks lose a significant amount of energy.

We therefore attempt to remove such complications
and create a toy model as simple as possible. We gen-
eralize the system of the handful of quarks and anti-
quarks created in a typical decay or collider process—
whose numbers are exactly equal in a meson decay, e+e−,
or pp̄ collision, or differ only by 6 in a pp collision—as
forming a (q,q̄) gas of arbitrarily large extent, and as-
sume that the particles have become essentially static (or
at least achieve something resembling a low-temperature
thermal distribution) prior to hadronization. Indeed, we
model the system as a two-component (q and q̄) ideal gas
and ask a very basic question: With what probability is
a given q preferentially attracted—at least initially—to
another q rather than a q̄? We show that this probability
could be as large as tens of percent, and indeed is difficult
to reduce to lower than a few percent. Diquarks should
be common components in hadronic processes.

If one subscribes to the long-studied idea [11] that
all baryons have a significant diquark component, then
the simple model studied here also provides a first step
to addressing the relative rates of meson, baryon, and
tetraquark production.

It is important to point out that other works discussing
diquark production focus on different energy, density, or
temperature regimes. Direct diquark production is built
into jet fragmentation event generators dating back at
least as far as the famous Lund model [12]; however,
the diquark attraction described here is of the lower-
energy “non-prompt” variety. Diquark condensation in
dense QCD is a well-studied phenomenon (e.g., [13]), and
has been extended also to finite temperature [14]; obvi-
ously, an ideal low-temperature gas is neither of these. In
addition, in more formal work using an effective super-
symmetric embedding of quantum mechanics into AdS
space [15, 16], diquarks are found to be absolutely nat-
ural and indeed essential hadronic components: In par-
ticular, the qq and qq̄ attraction strengths turn out to
be the same, and baryons are naturally quark-diquark
bound states.

This paper is organized as follows. In Sec. II, the prob-
lem of nearest neighbors in an ideal gas is treated in both
the original textbook case and the two-component case.
Section III applies these ideas to the case of diquark at-
traction, and we outline the many reasons why this treat-
ment falls far short of real QCD, as well as the ways
in which the model attempts to address at least some
of them. Explicit model calculations appear in Sec. IV,
where we find that diquark attraction should be a rather
common occurrence in hadronic physics. Section V sum-
marizes and concludes.

II. NEAREST-NEIGHBOR DISTANCES IN

IDEAL GASES

A. The Classic Problem

We begin with a standard textbook problem, that of
the distribution of nearest-neighbor particles randomly
(Poisson) distributed to form an ideal gas. This problem
was first addressed by P. Hertz in 1909 [17]. We present
here the elegant derivation by Chandrasekhar [18], as
it is useful both for establishing notation and for being
amenable to straightforward generalizations.
In the original problem, the gas particles are classi-

cal, pointlike, and noninteracting except through pos-
sible elastic collisions, and (implicitly) obey Maxwell-
Boltzmann statistics. The system effectively is infinite
in extent and isotropic, so that any point may be treated
as typical.
We are interested in the radial probability density w(r)

of the nearest particle to the (arbitrary) origin to lie at
a distance r, which satisfies the normalization condition

∫ ∞

0

dr w(r) = 1 , (3)

noting that, in light of the isotropy assumption, the an-
gular integrals and volume-element r2 have already been
absorbed into the definition of w(r). We are also inter-
ested in the mean nearest-neighbor distance,

〈r〉 ≡
∫ ∞

0

dr rw(r) . (4)

Let n be the volume number density of particles. Then
w(r) satisfies

w(r)dr =

[
∫ ∞

r

dr′w(r′)

]

n · 4πr2dr . (5)

In words, Eq. (5) says: The probability for the nearest
neighbor to the origin to lie in a spherical shell of radius
dr at r [which is w(r)dr] equals the product of the prob-
ability that no particle lies between the origin and radius
r—i.e., that the nearest neighbor lies between r and ∞
(which is the integral)—times the number of particles in
the spherical shell (which is n · 4πr2dr). Equation (5)
may be recast as a differential equation,

d

dr

[

w(r)

4πr2n

]

= −4πr2n

[

w(r)

4πr2n

]

. (6)

The original problem assumes n constant (appropriate
to a uniform ideal gas of infinite extent), but for later
use, let us generalize to the case of a radially dependent
density n(r) (which implies a unique origin r = 0 for the
system). The solution to Eq. (6) is

w(r) = C · 4πr2n(r) exp
[

−4π

∫ r

0

dr′ n(r′)r′ 2
]

. (7)
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The integration constant C is fixed by imposing the nor-
malization condition Eq. (3). One finds

C =

{

1− exp

[

−4π

∫ ∞

0

dr n(r)r2
]}−1

. (8)

In the case of constant n, or at least n(r) that remains
sufficiently large as r → ∞, the exponential approaches
zero, and C → 1.
In the original case of constant n, the integrals may be

performed analytically, giving

w(r) = 4πr2n exp

(

−4πr3

3
n

)

=
3

a

( r

a

)2

exp

[

− r
3

a3

]

, (9)

〈r〉 = Γ

(

4

3

)(

4πn

3

)− 1

3

= Γ

(

4

3

)

a ≃ 0.8928a , (10)

where the density n defines the natural length scale, a ≡
(4πn/3)−1/3. Indeed, one may also show that

〈

r3
〉

= a3.

B. Two-Component Ideal Gas

We now extend the previous derivation to solve an-
other simple classical problem, which to our knowledge
has not previously been addressed: Consider an ideal gas
consisting of two species, 1 and 2, with corresponding
number densities per unit volume (natural length scales)
ni (ai), i = 1, 2. Starting from some fiducial point (the
origin), what is the probability that the nearest particle
of type 2 does not appear until a distance k times fur-
ther than that at which the nearest particle of type 1
appears? We have in mind of course that the origin con-
tains a quark, and want to know the statistical likelihood
that the nearest neighbor happens to be a quark rather
than an antiquark, by a chosen distance ratio k. Note
that the ratio k can lie anywhere in (0,∞), and that the
specification of the species at the origin (q or q̄) need only
be made at the end of the calculation.
The probability for the first particle of type i lying

at a distance ri from the origin is wi(ri)dri, where wi is
simply the function in Eq. (7) or (9) defined with n→ ni.
Since the gas is ideal, the probabilities are independent,
and the combined probability that the first particle of
type 1 lies at distance r1 and the first particle of type 2
lies at distance r2 from the origin is

p(r1, r2) = w1(r1)dr1 w2(r2)dr2 . (11)

Next, the probability P (r1, k) that the first particle of
type 1 lies at a distance r1 from the origin and that the
first particle of type 2 lies at least a distance kr1 from
the origin is then

P (r1, k) =

∫ ∞

r2=kr1

p(r1, r2) = w1(r1)dr1

∫ ∞

kr1

w2(r2)dr2 ,

(12)

and the probability P1,2(k) that the first particle of type
2 lies at a distance k times that of the first particle of
type 1, regardless of the specific value of r1, is

P1,2(k) =

∫ ∞

r1=0

P (r1, k) =

∫ ∞

0

w1(r1)dr1

∫ ∞

kr1

w2(r2)dr2 .

(13)
This expression, with inputs suitably chosen, is used in
this paper to calculate likelihoods relevant to the forma-
tion of diquarks versus color-singlet qq̄ pairs.
In the case of constant densities ni, the integrals in

Eq. (13) can be performed in closed form. Since

∫ ∞

R

dri wi(ri) = e−(R/ai)
3

, (14)

one finds

P1,2(k) =
a32

k3a31 + a32
=

n1

k3n2 + n1
. (15)

Several limits of this simple expression are easy to under-
stand. It must vanish as k → ∞, which is the unlikely
case that all type-2 particles are arbitrarily far from the
origin; indeed, the scaling with 1/k3 is expected from
the volume effect of scaling the distance ratio as k. The
limit k → 0 simply means the case where the nearest
type-2 particle can be anywhere, for which P1,2(k) must
approach unity. The case k = 1 means the probability
of finding the first type-2 particle to lie at least as far
from the origin as the first type-1 particle; if n1 = n2,
one expects the probabilities for either of the species to
provide the nearest particle to the origin to be equal:
P1,2(1) =

1
2 , exactly as one finds from Eq. (15).

III. IDEALIZED DIQUARK ATTRACTION

A. Warmup: Electric Charges

Using the analysis of the two-component ideal gas in
the previous section, let us begin by considering an analo-
gous problem with static electric charges. Of course, even
the particles of an ideal gas at finite temperature have a
nontrivial velocity distribution, meaning that the static
assumption is already suspect, and Earnshaw’s theorem
moreover forbids such a static system from being in a sta-
ble equilibrium. Nevertheless, one can take the system at
the initial time t = 0 to start from rest and assume that
the dominant interaction between charges is the central
Coulomb force. The model two-component gas consists
of type-1 particles of charge + 1

2 and type-2 particles of
charge +1, designed to emulate the factor-2 difference be-
tween the short-distance strength of the qq and qq̄ chan-
nels. A negative test charge, attracted to both charge
species, is placed at the origin. How frequently does its
initial attraction to a type-1 particle equal or exceed that
to a type-2 particle, due only to the initial distribution
of the particles?
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Several limitations of addressing the problem in this
way have already been noted, but let us remark in addi-
tion that initial attraction to a neighbor is not the same
as the formation of a compact state with this neighbor.
The collective effect of several other neighbors can over-
whelm it, the t> 0 migration of the test charge towards
its most attractive neighbor disturbs the initial config-
uration (as does the movement of the other charges),
allowing other charges to disrupt the initial attraction,
and of course the proper treatment of charges in motion
requires one to include the effects of magnetic fields.
Nevertheless, the idealized problem is well defined.

Since the Coulomb attraction obeys an inverse-square
law, a type-1 particle provides the most attractive initial
interaction for k =

√
2 (i.e., the nearest type-2 parti-

cle lies at least
√
2 times farther from the origin than

the nearest type-1 particle). Assuming that the den-
sities of the two types of particles are equal and con-
stant, Eq. (15) gives that the test charge is initially more
attracted to the smaller type-1 charge with probability
P1,2(

√
2) = 1/(2

√
2 + 1) ≃ 26%, a sizeable fraction.

B. Unscreened Quarks

An ideal, initially stable distribution of q and q̄ is
much more complicated than the example just discussed
for several reasons. First, only the bare (short-distance)
quark interaction obeys the simple scaling from Eq. (2)
in which the attractive qq channel has half the strength
of the attractive qq̄ channel. At larger distances, the in-
teractions represented by the exchange of colored gluons
(and additional qq̄ pair creation) serve to screen the bare
interaction; we attempt a simpleminded modeling of this
effect below. It is worth mentioning that this “Casimir
scaling” given by Eq. (1) is violated only at three-loop
perturbative order [19] and its existence to as much as
r ∼ 1 fm is well supported in lattice simulations [20].
Second, as noted in the Introduction, the short-

distance interactions also feature repulsive qq(6) and
qq̄(8) combinations. One could certainly extend the
derivation of the previous section to a 3- or 4-component
gas, but one sees from Eq. (2) that the short-distance
qq-6 repulsion is only 1

2 as large as the 3̄ attraction, and

the qq̄-8 repulsion is only 1
8 as large as the 1 attrac-

tion. Moreover, we are interested in the attractive forces
that ultimately lead to quarks combining into hadrons,
and therefore ignore the effect of the repulsive channels
(which, presumably, lead to the separation of quark clus-
ters into hadrons). However, even under the assumption
of neglecting repulsive forces, these channels have an im-
portant effect: A generic qq has 9 possible color combi-
nations, of which only the 3 forming the 3̄ are attractive,
while for the 9 possible color combinations of a generic
qq̄ pair, only the singlet 1 combination is attractive. If
one assumes equal densities of q and q̄, then the effective

density of attractive q’s is 3 times the effective density of
attractive q̄’s, i.e., n1 = 3n2. Again using k =

√
2, one

finds from Eq. (15) the remarkable result

P1,2(n1 = 3n2; k =
√
2) = 3(3−

√
2) ≃ 51.5% , (16)

suggesting a very substantial probability for diquark at-
traction in the case of unscreened quark color charges.
The assumption that the initial interaction is dom-

inated by the static color-Coulomb force relies on the
nonrelativistic expansion of the quark bilinears q̄γµq →
δµ0 q

†q in the QCD Lagrangian; nonzero spatial momenta
couple to γi and thus induce significant spin dependence
in the interaction, especially for relativistic quarks. Rela-
tivity is also important for corrections to the assumption
of a quark gas of infinite extent, since a fully correct treat-
ment must include the retardation of the propagating in-
teractions. On the other hand, since the exchange sym-
metry of 3̄ (6) is antisymmetric (symmetric), the effect of
the Pauli exclusion principle and neglecting the 6 serves
to exclude qq pairs in overall flavor-spin-space symmetric
combinations. For distinct light (u, d) quarks in relative
s-waves, isosinglet/spin-singlet and isotriplet/spin-triplet
pairs survive this sorting, while for identical light quarks,
the first combination is also excluded.

C. Color Screening

Despite the significant number of exceptions and cor-
rections to the ideal gas model thus far identified, the
effects discussed above are still essentially classical. Real
QCD is of course a quantum-mechanical theory, mean-
ing that the concept of pointlike particles with potential
interactions depending predominantly upon their sepa-
ration, and hence the very concept of nearest neighbors,
should be considered suspect. Quark wave functions have
a finite extent; therefore, one’s first thought may be to
reanalyze the nearest-neighbor derivation to include fi-
nite particle radii. A relevant calculation has been un-
dertaken in Ref. [21] that models the particles as hard
spheres, and presumably could be generalized to the case
in which the spheres are partially penetrable “clouds”.
In the context of the model here, such an effect could
be incorporated by altering the functional dependence of
the density functions n1,2(r). But even these modifica-
tions do not fully respect a fundamental feature of quan-
tum mechanics: Interactions can collapse wave functions,
which is natural in light of the fact that the fundamental
QCD interaction q̄(x)γµgsAµ(x)q(x) is local. We there-
fore argue that the concept of nearest neighbors retains
its significance when interpreted in the usual statistical
sense of quantum mechanics.
The most important quantum-mechanical effect in

modifying the ideal-gas picture, however, is a quantum
field-theoretical effect: the crucial importance of color
screening in strong interactions. The large size of the
strong coupling αs = g2s/4π at low energies means large
numbers of sea-quark qq̄ pairs created between the orig-
inal quarks of the ideal gas, which serve to screen the
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initial color interactions. Of equal significance, the non-
Abelian nature of QCDmeans that the gluons themselves
carry color charge, and hence self-couple and contribute
to the color screening. Were the exact solutions to the
renormalization group equations known at low scales, a
rigorous treatment of the screening could be undertaken.
In practical terms, the dominant feature of low-energy
QCD is color confinement, whose effect we incorporate
as an effective screening of color charges beyond a radius
given by the largest typical hadron sizes, R = O(1 fm).
Before examining the results of explicit model calcula-

tions, we summarize the multiple roles played by the den-
sity functions n1,2(r). We have used their overall scales
to represent not only the relative densities of q and q̄,
respectively, but also the relative number of channels at-
tractive to a test quark at the origin. Their functional
dependences could in principle be used to model the finite
extent of q, q̄ wave functions, but here we use it to model
the strong color screening in a q, q̄ gas by introducing a
characteristic screening radius R. The only other inde-
pendent parameter in the model is the ratio k, indicating
the relative distance at which a q̄ and q are attracted to
the test quark at the origin with equal strength.

IV. EXPLICIT MODELS

Starting with the expressions Eqs. (7), (8), and (13),
we model the effective screened densities using several
plausible functional forms, and investigate the results for
the probabilities P1,2(k) as an indication of the likelihood
of diquark attraction.
The three functional profiles are all chosen to have

n1 = 3n2 as discussed above, although altering the spe-
cific ratio of 3 does not alter the ultimate significance of
the substantial values obtained for P1,2(k), as discussed
below. The profiles are a hard-wall screen,

n
(1)
1 = n0 Θ(R− r) , (17)

where Θ is the Heaviside step function; a Saxon-Woods
form with a skin depth d,

n
(2)
1 = n0 ·

1 + exp
(

−R
d

)

1 + exp
(

r−R
d

) ; (18)

and a linear decrease out to the screening wall at R,

n
(3)
1 = n0

(

1− r

R

)

Θ(R− r) ; (19)

all of which have the same central unscreened density
n0. For definiteness, we choose n0 = (2/R)3 (indicat-
ing an expectation of encountering two q’s or q̄’s before
reaching R) and d = R/2. We compare results for the
three profiles and explore their k dependence in Table I.
Note first that the result for the hard-wall screen n(1)

with k =
√
2 and n1 = 3n2 almost equals the result of

Eq. (16), meaning that the color screening has little effect

when k =
√
2 and n0 = (2/R)3. In fact, Eq. (16) with

TABLE I: Values of P1,2(k) in percent for the three screened
density profiles of Eqs. (17)–(19), for three values of k.

k =
√

2 k = 2
√

2 k = 3
√

2

n
(1)
1 50.29 10.85 3.46

n
(2)
1 53.24 13.99 4.79

n
(3)
1 40.40 9.04 3.04

TABLE II: Values of P1,2(k =
√

2) in percent for the screened

density profile n
(0)
1 of Eq. (17), for several values of n0.

n0 1/(10R)3 1/(5R)3 1/(2R)3 1/R3 (2/R)3 (3/R)3

P1,2(
√

2) 17.69 17.74 18.69 26.01 50.29 51.47

larger values of k continues to match the results in the
first line of Table I quite well, within 10%. The Saxon-
Woods form n(2) with a substantial skin depth d = R/2
actually gives somewhat larger values of P1,2(k) than the

hard-wall form n(1), due to the sampling of points for
n(2) with r > R. Of course, in the limit d → 0, its
profile Eq. (18) reduces to that of Eq. (17), which can
also be checked numerically. Even a profile like n(3) in
Eq. (19), for which the effective density decreases to zero
at r = R, decreases the values of P1,2 somewhat but
leaves their order of magnitude intact. One can check
that enhancing the rate of decrease even to a profile n(r)
that falls exponentially fast (not exhibited here) does not
fundamentally change this conclusion.
Besides the value of k and the shape of the profile

function n(r), the only remaining degrees of freedom in
this model are the precise value of the central density n0

and the relative ratio n1/n2 of q to q̄ channels attractive
to the central quark, which was argued in the previous
section to be 3. The value of n0 affects the results of
the calculation due to its appearance in the exponentials
of Eqs. (7)–(8); the main effect of changing its value is
to change its precise relationship to the length scales in
the problem, particularly to the screening radius R. For
definiteness, consider the hard-wall profile n(1) and k =√
2. The results for several values of n0 are presented

in Table II. We see that increasing n0 results in a rapid
approach to the unscreened case of Eq. (16); and even a
decrease of n0 to 1/(10R)3 only results in a decrease of
P1,2(k) by a factor of 3, indeed with values approaching
the asymptotic value 1/2k3 (when k > 1), as can be
shown analytically from Eqs. (7), (8), and (13).
Lastly, with respect to the ratio n1/n2, one can check

that the hard-wall density profile n(1) of Eq. (17) gives
results almost exactly matching the idealized unscreened
formula Eq. (15). For example, if n1/n2 is not 3 as sug-
gested by simple color considerations, but somehow the
effective density of attractive q̄’s is 10 times this value,
then P1,2 reduces from 50.29% to 9.59%, still a rather
significant value. In every case, the probability P1,2 of
a test quark being initially attracted most strongly to
another q rather than a q̄ is at least several percent.
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V. CONCLUSIONS

We have seen that the large relative size of the
short-distance attraction between quarks in the color-
antitriplet channel compared to the attraction between a
quark and an antiquark in the color-singlet channel leads
inexorably to a given quark being initially attracted to
a quark rather than an antiquark a sizeable fraction of
the time. We interpret this initial attraction as the seed
event in the formation of a compact diquark qq rather
than a color-singlet qq̄ pair.
While the short-distance color attraction must be mod-

ified by QCD renormalization effects and the color-
screening effects due to confinement, one still expects
this attraction to extend out to some finite distance, and
at greater distances still if both quarks and antiquarks
are comparably screened. Under these assumptions, the
probability of preferential qq attraction is in the tens of
percent. Even if one allows the qq̄ attraction to somehow
dominate by a factor of several at these distances (either
through the relative force of attraction, modeled here by
the parameter k, or through the relative effective density
of q̄ compared to q attracted to the test quark, modeled
here by n1/n2), the probability of preferential qq attrac-
tion is still at least several percent. The key formula
describing the most idealized situation, from which rule-
of-thumb estimates may be obtained, is the unscreened
result Eq. (15). In the context of the class of models
described here, it is very difficult to completely suppress
the qq attraction far below the level of qq̄ attraction.
What evidence, then, does one have of diquark pro-

duction? While tantalizing hints of diquark substructure

have appeared in multiple light-quark systems in the past
(such as the f0 and a0 mesons), the heavy-quark sys-
tems offer greater opportunities for disentangling clear
signals because of the well-defined spectroscopy of heavy
quarkonium systems. Consider one example, the charged
JP = 1+ exotic Z−(4430), confirmed at LHCb at high
statistical significance [22], which is a prime candidate
for a diquark-antidiquark system [8, 23], particularly if
the diquarks are considered well separated, as in Ref. [8].
Its only measured decay mode thus far is Z−(4430) →
ψ(2S)π−, and its combined branching fraction in the de-
cay chain B0 → Z−(4430)K+ → ψ(2S)π−K+ is [24]
(6.0+3.0

−2.4) × 10−5. In comparison, the branching fraction

of B0 to the much lighter conventional 1++ charmonium

state χc1 (3511 MeV) and a K0 is (3.93± 0.27)× 10−4,
with similar values for other two-body charmonium de-
cays. The branching fraction to χc1 is only a factor of
4–12 times larger, despite a two-body phase space that
is 2.4 times larger. A large probability for diquark for-
mation under these assumptions seems to be indicated.
Such positive signals from both data and from this

simple model will hopefully encourage the development of
much more realistic QCD treatments of qq attraction and
diquark formation. It seems unavoidable that allowing
for a substantial degree of diquark formation will need
to be taken into account in future studies of high-energy
and heavy-quark hadronic physics.
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